1
|
Wang Z, Zhang L, Xing T, Zhao L, Gao F. Effects of sodium lactate injection on meat quality and lactate content in broiler chickens: emphasis on injection method and dosage. Poult Sci 2024; 103:104084. [PMID: 39067126 PMCID: PMC11338084 DOI: 10.1016/j.psj.2024.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
This study aims to develop an experimental model of high lactate levels in broilers to mimic the condition of birds under stress or diseases and evaluate its consequent effects on meat quality. The injection sites and dosage effects were compared separately in 2 experiments. Experiment 1 includes 3 injection sites: intraperitoneal injection, intramuscular injection, and subcutaneous injection. Experiment 2 was a dosage experiment based on the results of Experiment 1: sodium lactate intraperitoneal injection group with 1.5, 3, 6 mM concentration. The results showed that injecting sodium lactate intraperitoneally, intramuscularly, or subcutaneously all significantly decreased body weight and breast muscle weight while elevating lactic acid levels in both the blood and breast muscle of broilers. Moreover, all 3 injection methods caused a significant reduction in pH24h and an increase in the shear force value of breast muscle. In addition, dose-response experiments of intraperitoneal injection showed that a concentration of 3 mM and 6 mM were significantly decreased body weight and breast muscle weight in broiler chickens, accompanied by a notable increase in breast muscle lactate content. Compared to the control group, intraperitoneal injections of 1.5 mM, 3 mM, and 6 mM sodium lactate treatments significantly reduced the yellowness values of the breast muscle. As the dose of sodium lactate increased, the shear force value of the breast meat exhibited linear and quadratic increments, while the drip loss decreased linearly. Intraperitoneal injection of 3 mM sodium lactate also significantly reduced the pH24h of broiler breast muscle. In addition, an increased dose of lactate injections up-regulated the glycolytic pathway responsible for endogenous lactate production in the breast muscle by upregulating the expression of phosphofructokinase, pyruvate kinase and lactate dehydrogenase A. In conclusion, intraperitoneal injection of sodium lactate at 3 mM directly increased breast muscle lactate levels, providing a valuable method for establishing a high-level lactate model in poultry.
Collapse
Affiliation(s)
- Zhenxin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
2
|
Jang I, Kyun S, Hwang D, Kim T, Lim K, Park HY, Kim SW, Kim J. Chronic Administration of Exogenous Lactate Increases Energy Expenditure during Exercise through Activation of Skeletal Muscle Energy Utilization Capacity in Mice. Metabolites 2024; 14:220. [PMID: 38668348 PMCID: PMC11052295 DOI: 10.3390/metabo14040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON (sedentary + saline), LAC (sedentary + lactate), EXE (exercise + saline), and EXLA (exercise + lactate). The total experimental period was set at 4 weeks, the training intensity was set at 60-70% VO2max, and each exercise group was administered a solution immediately after exercise. Changes in the energy substrate utilization at rest and during exercise, the protein levels related to energy substrate utilization in skeletal muscles, and the body composition were measured. Lactate intake and exercise increased carbohydrate oxidation as a substrate during exercise, leading to an increased energy expenditure and increased protein levels of citrate synthase and malate dehydrogenase 2, key factors in the TCA(tricarboxylic acid) cycle of skeletal muscle. Exercise, but not lactate intake, induced the upregulation of the skeletal muscle glucose transport factor 4 and a reduction in body fat. Hence, chronic lactate administration, as a metabolic regulator, influenced energy substrate utilization by the skeletal muscle and increased energy expenditure during exercise through the activation of carbohydrate metabolism-related factors. Therefore, exogenous lactate holds potential as a metabolic regulator.
Collapse
Affiliation(s)
- Inkwon Jang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghwan Kyun
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Deunsol Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Taeho Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Kiwon Lim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Young Park
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Jisu Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Kyun S, Kim J, Hwang D, Jang I, Park HY, Lim K. Lactate administration induces skeletal muscle synthesis by influencing Akt/mTOR and MuRF1 in non-trained mice but not in trained mice. Physiol Rep 2024; 12:e15952. [PMID: 38383135 PMCID: PMC10881281 DOI: 10.14814/phy2.15952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 02/23/2024] Open
Abstract
The perception regarding lactate has changed over the past decades, and some of its physiological roles have gradually been revealed. However, the effects of exogenous lactate on skeletal muscle synthesis remain unclear. This study aimed to confirm the effects of a 5-week lactate administration and post-exercise lactate administration on skeletal muscle synthesis. Thirty-two Institute of Cancer Research mice were randomly assigned to non-trained + placebo, non-trained + lactate, trained + placebo, and trained + lactate groups. Furthermore, 3 g/kg of lactate or an equivalent volume of saline was immediately administered after exercise training (maximum oxygen uptake: 70%). Lactate administration and/or exercise training was performed 5 days/week for 5 weeks. After the experimental period, it was observed that lactate administration tended to elevate skeletal muscle weight, increased protein kinase B (p < 0.05) and mammalian target of rapamycin (p < 0.05) mRNA levels, and decreased muscle ring-finger protein-1 expression (p < 0.05). Lactate administration after exercise training significantly enhanced plantaris muscle weight; however, it had no additional effects on most signaling factors. This study demonstrated that a 5-week lactate administration could stimulate skeletal muscle synthesis, and lactate administration after exercise training may provide additional effects, such as increasing skeletal muscle.
Collapse
Affiliation(s)
- Sunghwan Kyun
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Jisu Kim
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Deunsol Hwang
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Inkwon Jang
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
- Department of Physical Education, Konkuk University, Seoul, Korea
| |
Collapse
|
4
|
Ngai D, Schilperoort M, Tabas I. Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to mediate tissue repair. Nat Metab 2023; 5:2206-2219. [PMID: 38012414 PMCID: PMC10782856 DOI: 10.1038/s42255-023-00921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
The clearance of apoptotic cells by macrophages (efferocytosis) prevents necrosis and inflammation and activates pro-resolving pathways, including continual efferocytosis. A key resolution process in vivo is efferocytosis-induced macrophage proliferation (EIMP), in which apoptotic cell-derived nucleotides trigger Myc-mediated proliferation of pro-resolving macrophages. Here we show that EIMP requires a second input that is integrated with cellular metabolism, notably efferocytosis-induced lactate production. Lactate signalling via GPR132 promotes Myc protein stabilization and subsequent macrophage proliferation. This mechanism is validated in vivo using a mouse model of dexamethasone-induced thymocyte apoptosis, which elevates apoptotic cell burden and requires efferocytosis to prevent inflammation and necrosis. Thus, EIMP, a key process in tissue resolution, requires inputs from two independent processes: a signalling pathway induced by apoptotic cell-derived nucleotides and a cellular metabolism pathway involving lactate production. These findings illustrate how seemingly distinct pathways in efferocytosing macrophages are integrated to carry out a key process in tissue resolution.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Departments of Physiology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Esaki N, Matsui T, Tsuda T. Lactate induces the development of beige adipocytes via an increase in the level of reactive oxygen species. Food Funct 2023; 14:9725-9733. [PMID: 37817572 DOI: 10.1039/d3fo03287f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Recent studies have indicated that lactate acts as a signaling molecule in various tissues. We previously demonstrated that intake of an amino acid mixture combined with exercise synergistically induced beige adipocyte formation in inguinal white adipose tissue (iWAT) in mice. Moreover, plasma lactate levels remained significantly elevated in the amino acid mixture + exercise group even 16 h after exercise, indicating that a lactate-mediated pathway may be involved in the induction of beige adipocyte formation. Against this background, we hypothesized that oral intake of lactate would induce beige adipocyte formation via the lactate signaling pathway without exercise. Furthermore, if oral intake of lactate can produce the same effect as exercise, lactate might be used as a food-derived exercise replacement-factor. Oral intake of lactate (100 mM in drinking water) for 4 weeks significantly induced beige adipocyte formation in iWAT in mice as well as a significant elevation of lactate transporter (monocarboxylic acid transporter 1; MCT1) and lactate dehydrogenase B levels. Administration of lactate to adipocytes significantly increased reactive oxygen species (ROS) and superoxide levels and the NADH/NAD+ ratio. The induction of lactate-mediated uncoupling protein 1 (UCP1) expression and ROS production were significantly suppressed by antioxidant treatment or inhibition of MCT1. However, UCP1 induction was not significantly affected by the inhibition of lactate receptor (hydroxycarboxylic acid receptor 1). These findings suggest that lactate-mediated ROS production induces beige adipocyte formation, and thus oral intake of lactate may confer some benefits of exercise without the need to perform exercise.
Collapse
Affiliation(s)
- Nana Esaki
- College of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan.
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanori Tsuda
- College of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
6
|
Kyun S, Kim J, Hwang D, Jang I, Choi J, Kim J, Jung WS, Hwang H, Kim SW, Kim J, Jung K, Seo J, Sun Y, Park HY, Lim K. Exogenous lactate intake immediately after endurance exercise increases time to exhaustion in VO2max measurements in mice. Phys Act Nutr 2023; 27:13-18. [PMID: 37583067 PMCID: PMC10440182 DOI: 10.20463/pan.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE The purpose of the study was to investigate the effects of 4 weeks of lactate intake immediately after endurance exercise on maximal oxygen uptake (VO2max) in exercise performance. METHODS Seven-week-old mice from the Institute of Cancer Research (ICR) were randomly divided into four groups: vehicle intake (SE/CON), lactate intake (SE/LAC), endurance exercise with vehicle intake (EX/ CON), and lactate intake with endurance exercise (EX/ LAC). Mice were subjected to 60-70% VO2max endurance exercise with or without oral lactate intake 5 days/ week for 4 weeks. VO2max measurements (VO2max, time to exhaustion (TTE), respiratory exchange rate, fat oxidation, and carbohydrate oxidation) were recorded at the end of the study period. After 48 h of VO2max measurement, the mice were sacrificed, and three different abdominal fat samples (epididymal, perirenal, and mesenteric) were collected. RESULTS Body weight and abdominal fat mass did not differ between the groups. When measuring VO2max, endurance exercise raised VO2max, and lactate intake after endurance exercise increased TTE. The change in energy substrate utilization during VO2max measurement demonstrated that although the respiratory exchange rate and fat oxidation were enhanced by lactate intake, there were no synergistic effects of lactate intake and endurance exercise. CONCLUSION Lactate intake immediately after endurance exercises can improve exercise performance, indicating the benefit of long-term exogenous lactate intake as an exercise supplement.
Collapse
Affiliation(s)
- Sunghwan Kyun
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Deunsol Hwang
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Inkwon Jang
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Jeehee Choi
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Jongwon Kim
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Jeeyoung Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kyunghwa Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Yerin Sun
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Konkuk Unisersity, Seoul, Republic of Korea
- Department of Physical Education, Konkuk Unisersity, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Lund J, Breum AW, Gil C, Falk S, Sass F, Isidor MS, Dmytriyeva O, Ranea-Robles P, Mathiesen CV, Basse AL, Johansen OS, Fadahunsi N, Lund C, Nicolaisen TS, Klein AB, Ma T, Emanuelli B, Kleinert M, Sørensen CM, Gerhart-Hines Z, Clemmensen C. The anorectic and thermogenic effects of pharmacological lactate in male mice are confounded by treatment osmolarity and co-administered counterions. Nat Metab 2023; 5:677-698. [PMID: 37055619 DOI: 10.1038/s42255-023-00780-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberte Wollesen Breum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cláudia Gil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Marie Sophie Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olivia Sveidahl Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Nonaka M, Kanouchi H, Torii S, Nagano H, Kondo S, Fujii A, Nagano M, Takenaka S. Lactic acid induces HSPA1A expression through ERK1/2 activation. Biosci Biotechnol Biochem 2023; 87:191-196. [PMID: 36441019 DOI: 10.1093/bbb/zbac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Heat shock protein (HSP) A1A protects cells from various stressors. The concentrated liquid of the traditional Japanese rice black vinegar Kurozu increased HSPA1A expression in normal rat liver RLN-10 cells. Lactic acid, the primary component of concentrated Kurozu, induced HSPA1A expression in a concentration-dependent manner. Induction with 4 m m lactic acid increased HSPA1A expression by three times compared with that in the absence of lactic acid. The induction was inhibited by staurosporine or a selective MEK1/2 inhibitor (SL327). The phosphorylation of ERK1/2 was increased by lactic acid. These results suggest that lactic acid induces HSPA1A expression by activating ERK1/2. As well as lactate, 3,5-dihydroxybenzoic acid (DHBA), a ligand for G protein-coupled receptor 81 (GPR81), also induced HSPA1A at lower concentrations than lactate. The increased effect of DHBA on HSPA1A expression as compared with lactate may be related to the higher affinity of DHBA for GPR81 than of lactate.
Collapse
Affiliation(s)
- Miwa Nonaka
- Kumamoto Prefectural Johoku Livestock Hygiene Center, Kumamoto, Japan
| | - Hiroaki Kanouchi
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Saki Torii
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nagano
- Faculty of Regional Innovation, University of Miyazaki, Miyazaki, Japan
| | - Shigetada Kondo
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | | | | | - Shigeo Takenaka
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
9
|
Yoo C, Kim J, Kyun S, Hashimoto T, Tomi H, Lim K. Synergic effect of exogenous lactate and caffeine on fat oxidation and hepatic glycogen concentration in resting rats. Phys Act Nutr 2022; 26:5-13. [PMID: 36775646 PMCID: PMC9925112 DOI: 10.20463/pan.2022.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/08/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Although several physiological roles of lactate have been revealed in the last decades, its effects on energy metabolism and substrate oxidation remain unknown. Therefore, we investigated the effects of lactate on the energy metabolism of resting rats. METHODS Male rats were divided into control (Con; distilled water), caffeine (Caf; 10 mg/kg), L-lactate (Lac; 2 g/kg), and lactate-plus-caffeine (Lac+Caf; 2 g/ kg + 10 mg) groups. Following oral administration of supplements, resting energy expenditure (study 1), biochemical blood parameters, and mRNA expression involved in energy metabolism in the soleus muscle were measured at different time points within 120 minutes of administration (study 2). Moreover, glycogen level and Pyruvate dehydrogenase (PDH) activity were measured. RESULTS Groups did not differ in total energy expenditure throughout the 6 hour post-treatment evaluation. Within the first 4 hours, the Lac and Lac+Caf groups showed higher fat oxidation rates than the Con group (p<0.05). Lactate treatment decreased blood free fatty acid levels (p<0.05) and increased the mRNA expression of fatty acid translocase (FAT/CD36) (p<0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) (p<0.05) in the skeletal muscle. Hepatic glycogen level in the Lac+Caf group was significantly increased (p<0.05). Moreover, after 30 and 120 minutes, PDH activity was significantly higher in lactate-supplemented groups compared to Con group (p<0.05). CONCLUSION Our findings showed that Lac+Caf enhanced fat metabolism in the whole body and skeletal muscle while increasing hepatic glycogen concentration and PDH activity. This indicates Lac+Caf can be used as a potential post-workout supplement.
Collapse
Affiliation(s)
- Choongsung Yoo
- Department of Kinesiology and Sport management, Texas A&M University, College Station, Texas 77845, United States of America
| | - Jisu Kim
- Physical Activity & Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sunghwan Kyun
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Takeshi Hashimoto
- Faculty of Sport & Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hironori Tomi
- Center for Regional Sustainability and Innovation Kochi University, B-200 Mononobe, Nankoku, Kochi 682035, Japan
| | - Kiwon Lim
- Physical Activity & Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea,Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea,Corresponding author : Kiwon Lim, Ph. D. Laboratory of Exercise Nutrition, Department of Physical Education, Konkuk University 120, Neungdong-ro, Gwangin-gu, Seoul 143-701, Republic of Korea. Tel: +82-2-450-3827 Fax: +82-2-452-6027 E-mail:
| |
Collapse
|
10
|
Lactate Activates AMPK Remodeling of the Cellular Metabolic Profile and Promotes the Proliferation and Differentiation of C2C12 Myoblasts. Int J Mol Sci 2022; 23:ijms232213996. [PMID: 36430479 PMCID: PMC9694550 DOI: 10.3390/ijms232213996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lactate is a general compound fuel serving as the fulcrum of metabolism, which is produced from glycolysis and shuttles between different cells, tissues and organs. Lactate is usually accumulated abundantly in muscles during exercise. It remains unclear whether lactate plays an important role in the metabolism of muscle cells. In this research, we assessed the effects of lactate on myoblasts and clarified the underlying metabolic mechanisms through NMR-based metabonomic profiling. Lactate treatment promoted the proliferation and differentiation of myoblasts, as indicated by significantly enhanced expression levels of the proteins related to cellular proliferation and differentiation, including p-AKT, p-ERK, MyoD and myogenin. Moreover, lactate treatment profoundly regulated metabolisms in myoblasts by promoting the intake and intracellular utilization of lactate, activating the TCA cycle, and thereby increasing energy production. For the first time, we found that lactate treatment evidently promotes AMPK signaling as reflected by the elevated expression levels of p-AMPK and p-ACC. Our results showed that lactate as a metabolic regulator activates AMPK, remodeling the cellular metabolic profile, and thereby promoting the proliferation and differentiation of myoblasts. This study elucidates molecular mechanisms underlying the effects of lactate on skeletal muscle in vitro and may be of benefit to the exploration of lactate acting as a metabolic regulator.
Collapse
|
11
|
Lawson D, Vann C, Schoenfeld BJ, Haun C. Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. J Funct Morphol Kinesiol 2022; 7:jfmk7040081. [PMID: 36278742 PMCID: PMC9590033 DOI: 10.3390/jfmk7040081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
The present review aims to explore and discuss recent research relating to the lactate response to resistance training and the potential mechanisms by which lactate may contribute to skeletal muscle hypertrophy or help to prevent muscle atrophy. First, we will discuss foundational information pertaining to lactate including metabolism, measurement, shuttling, and potential (although seemingly elusive) mechanisms for hypertrophy. We will then provide a brief analysis of resistance training protocols and the associated lactate response. Lastly, we will discuss potential shortcomings, resistance training considerations, and future research directions regarding lactate's role as a potential anabolic agent for skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- Daniel Lawson
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| | - Christopher Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College of CUNY, Bronx, NY 10468, USA
| | - Cody Haun
- Fitomics, LLC, Alabaster, AL 35007, USA
| |
Collapse
|
12
|
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep 2022; 10:e15436. [PMID: 35993446 PMCID: PMC9393907 DOI: 10.14814/phy2.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 04/12/2023] Open
Abstract
Lactate is a metabolic product of glycolysis and has recently been shown to act as a signaling molecule that induces adaptations in oxidative metabolism. In this study, we investigated whether lactate administration enhanced muscle hypertrophy and protein synthesis responses during resistance exercise in animal models. We used male ICR mice (7-8 weeks old) were used for chronic (mechanical overload induced by synergist ablation: [OL]) and acute (high-intensity muscle contraction by electrical stimulation: [ES]) resistance exercise models. The animals were intraperitoneally administrated a single dose of sodium lactate (1 g/kg of body weight) in the ES study, and once a day for 14 consecutive days in the OL study. Two weeks of mechanical overload increased plantaris muscle wet weight (main effect of OL: p < 0.05) and fiber cross-sectional area (main effect of OL: p < 0.05), but those were not affected by lactate administration. Following the acute resistance exercise by ES, protein synthesis and phosphorylation of p70 S6 kinase and ribosomal protein S6, which are downstream molecules in the anabolic signaling cascade, were increased (main effect of ES: p < 0.05), but lactate administration had no effect. This study demonstrated that exogenous lactate administration has little effect on the muscle hypertrophic response during resistance exercise using acute ES and chronic OL models. Our results do not support the hypothesis that elevated blood lactate concentration induces protein synthesis responses in skeletal muscle.
Collapse
Affiliation(s)
- Takanaga Shirai
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohama‐shiKanagawaJapan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Katsuyuki Tokinoya
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
- Division of Clinical Medicine, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Kohei Takeda
- School of Political Science and EconomicsMeiji UniversitySuginami‐kuTokyoJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
13
|
Cunha T, Vieira J, Santos J, Coelho M, Brum P, Gabriel-Costa D. Lactate modulates cardiac gene expression in mice during acute physical exercise. Braz J Med Biol Res 2022; 55:e11820. [PMID: 35588524 PMCID: PMC9054034 DOI: 10.1590/1414-431x2022e11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to verify the role of lactate as a signaling molecule in cardiac tissue under physiological conditions. C57BL6/J male mice were submitted to acute running bouts on a treadmill at different exercise intensities (30, 60, and 90% of maximal speed - Smax) under the effect of two doses (0.5 and 5 mM) of α-cyano-4-hydroxycynnamate (CINN), a blocker of lactate transporters. Cardiac lactate levels, activity of the enzymes of glycolytic [hexokinase (HK) and lactate dehydrogenase (LDH)] and oxidative metabolism [citrate synthase (CS)], and expression of genes also related to metabolism [LDH, nuclear factor erythroid 2-related factor 2 (NRF-2), cytochrome oxidase IV (COX-IV), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)] were evaluated. Elevated cardiac lactate levels were observed after high intensity running at 90% of Smax, which were parallel to increased activity of the HK and CS enzymes and mRNA levels of PGC-1α and COX-IV. No changes were observed in cardiac lactate levels in mice running at lower exercise intensities. Interestingly, prior intraperitoneal administration (15 min) of CINN (0.5 mM) significantly reduced cardiac lactate concentration, activities of HK and CS, and mRNA levels of PGC-1α and COX-IV in mice that ran at 90% of Smax. In addition, cardiac lactate levels were significantly correlated to both PGC-1α and COX-IV cardiac gene expression. The present study provides evidence that cardiac lactate levels are associated to gene transcription during an acute bout of high intensity running exercise.
Collapse
Affiliation(s)
- T.F. Cunha
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
- Universidade Paulista, São Paulo, SP, Brasil
| | - J.S. Vieira
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
| | - J.B. Santos
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
| | - M.A. Coelho
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
| | - P.C. Brum
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
| | - D. Gabriel-Costa
- Escola de Educação Física e Esporte, Universidade de São Paulo,
São Paulo, SP, Brasil
- Universidade da Força Aérea, Força Aérea Brasileira, Rio de
Janeiro, RJ, Brasil
| |
Collapse
|
14
|
Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022; 13:868679. [PMID: 35401579 PMCID: PMC8984030 DOI: 10.3389/fimmu.2022.868679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.
Collapse
Affiliation(s)
- Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Holt
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Victor Lam
- College of Arts and Science, New York University, New York City, NY, United States
| | - Yong Yang
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
15
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
16
|
Mang ZA, Ducharme JB, Mermier C, Kravitz L, de Castro Magalhaes F, Amorim F. Aerobic Adaptations to Resistance Training: The Role of Time under Tension. Int J Sports Med 2022; 43:829-839. [PMID: 35088396 DOI: 10.1055/a-1664-8701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, skeletal muscle adaptations to exercise are perceived through a dichotomous lens where the metabolic stress imposed by aerobic training leads to increased mitochondrial adaptations while the mechanical tension from resistance training leads to myofibrillar adaptations. However, there is emerging evidence for cross over between modalities where aerobic training stimulates traditional adaptations to resistance training (e.g., hypertrophy) and resistance training stimulates traditional adaptations to aerobic training (e.g., mitochondrial biogenesis). The latter is the focus of the current review in which we propose high-volume resistance training (i.e., high time under tension) leads to aerobic adaptations such as angiogenesis, mitochondrial biogenesis, and increased oxidative capacity. As time under tension increases, skeletal muscle energy turnover, metabolic stress, and ischemia also increase, which act as signals to activate the peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which is the master regulator of mitochondrial biogenesis. For practical application, the acute stress and chronic adaptations to three specific forms of high-time under tension are also discussed: Slow-tempo, low-intensity resistance training, and drop-set resistance training. These modalities of high-time under tension lead to hallmark adaptations to resistance training such as muscle endurance, hypertrophy, and strength, but little is known about their effect on traditional aerobic training adaptations.
Collapse
Affiliation(s)
- Zachary Aaron Mang
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Jeremy B Ducharme
- Health, Exercise, and Sports Science, University of New Mexico - Albuquerque, Albuquerque, United States
| | - Christine Mermier
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Len Kravitz
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Flavio de Castro Magalhaes
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Fabiano Amorim
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| |
Collapse
|
17
|
Hickmott LM, Chilibeck PD, Shaw KA, Butcher SJ. The Effect of Load and Volume Autoregulation on Muscular Strength and Hypertrophy: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2022; 8:9. [PMID: 35038063 PMCID: PMC8762534 DOI: 10.1186/s40798-021-00404-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
Background Autoregulation has emerged as a potentially beneficial resistance training paradigm to individualize and optimize programming; however, compared to standardized prescription, the effects of autoregulated load and volume prescription on muscular strength and hypertrophy adaptations are unclear. Our objective was to compare the effect of autoregulated load prescription (repetitions in reserve-based rating of perceived exertion and velocity-based training) to standardized load prescription (percentage-based training) on chronic one-repetition maximum (1RM) strength and cross-sectional area (CSA) hypertrophy adaptations in resistance-trained individuals. We also aimed to investigate the effect of volume autoregulation with velocity loss thresholds ≤ 25% compared to > 25% on 1RM strength and CSA hypertrophy. Methods This review was performed in accordance with the PRISMA guidelines. A systematic search of MEDLINE, Embase, Scopus, and SPORTDiscus was conducted. Mean differences (MD), 95% confidence intervals (CI), and standardized mean differences (SMD) were calculated. Sub-analyses were performed as applicable. Results Fifteen studies were included in the meta-analysis: six studies on load autoregulation and nine studies on volume autoregulation. No significant differences between autoregulated and standardized load prescription were demonstrated for 1RM strength (MD = 2.07, 95% CI – 0.32 to 4.46 kg, p = 0.09, SMD = 0.21). Velocity loss thresholds ≤ 25% demonstrated significantly greater 1RM strength (MD = 2.32, 95% CI 0.33 to 4.31 kg, p = 0.02, SMD = 0.23) and significantly lower CSA hypertrophy (MD = 0.61, 95% CI 0.05 to 1.16 cm2, p = 0.03, SMD = 0.28) than velocity loss thresholds > 25%. No significant differences between velocity loss thresholds > 25% and 20–25% were demonstrated for hypertrophy (MD = 0.36, 95% CI – 0.29 to 1.00 cm2, p = 0.28, SMD = 0.13); however, velocity loss thresholds > 25% demonstrated significantly greater hypertrophy compared to thresholds ≤ 20% (MD = 0.64, 95% CI 0.07 to 1.20 cm2, p = 0.03, SMD = 0.34). Conclusions Collectively, autoregulated and standardized load prescription produced similar improvements in strength. When sets and relative intensity were equated, velocity loss thresholds ≤ 25% were superior for promoting strength possibly by minimizing acute neuromuscular fatigue while maximizing chronic neuromuscular adaptations, whereas velocity loss thresholds > 20–25% were superior for promoting hypertrophy by accumulating greater relative volume. Protocol Registration The original protocol was prospectively registered (CRD42021240506) with the PROSPERO (International Prospective Register of Systematic Reviews). Supplementary Information The online version contains supplementary material available at 10.1186/s40798-021-00404-9.
Collapse
Affiliation(s)
- Landyn M Hickmott
- College of Medicine, Health Sciences Program, University of Saskatchewan, Saskatoon, Canada.
| | | | - Keely A Shaw
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Scotty J Butcher
- School of Rehabilitation Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Sato S, Cui A, Choi JT. Visuomotor errors drive step length and step time adaptation during 'virtual' split-belt walking: the effects of reinforcement feedback. Exp Brain Res 2021; 240:511-523. [PMID: 34816293 DOI: 10.1007/s00221-021-06275-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Precise foot placement is dependent on changes in spatial and temporal coordination between two legs in response to a perturbation during walking. Here, we used a 'virtual' split-belt adaptation task to examine the effects of reinforcement (reward and punishment) feedback about foot placement on the changes in error, step length and step time asymmetry. Twenty-seven healthy adults (20 ± 2.5 years) walked on a treadmill with continuous feedback of the foot position and stepping targets projected on a screen, defined by a visuomotor gain for each leg. The paradigm consisted of a baseline period (same gain on both legs), visuomotor adaptation period (split: one high = 'fast', one low = 'slow' gain) and post-adaptation period (same gain). Participants were divided into 3 groups: control group received no score, reward group received increasing score for each target hit, and punishment group received decreasing score for each target missed. Re-adaptation was assessed 24 ± 2 h later. During early adaptation, the slow foot undershot and fast foot overshot the stepping target. Foot placement errors were gradually reduced by late adaptation, accompanied by increasing step length asymmetry (fast < slow step length) and step time asymmetry (fast > slow step time). Only the punishment group showed greater error reduction and step length re-adaptation on the next day. The results show that (1) explicit feedback of foot placement alone drives adaptation of both step length and step time asymmetry during virtual split-belt walking, and (2) specifically, step length re-adaptation driven by visuomotor errors may be enhanced by punishment feedback.
Collapse
Affiliation(s)
- Sumire Sato
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ashley Cui
- Public Health Science Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T Choi
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA. .,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Shirai T, Uemichi K, Hidaka Y, Kitaoka Y, Takemasa T. Effect of lactate administration on mouse skeletal muscle under calorie restriction. Curr Res Physiol 2021; 4:202-208. [PMID: 34746839 PMCID: PMC8562144 DOI: 10.1016/j.crphys.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Calorie restriction (CR) involves a reductions of calorie intake without altering the nutritional balance, and has many beneficial effects, such as improving oxidative metabolism and extending lifespan. However, CR decreases in skeletal muscle mass and fat mass in correlation with the reduction in food intake. Lactate is known to have potential as a signaling molecule rather than a metabolite during exercise. In this study, we examined the effects of the combination of caloric restriction and lactate administration on skeletal muscle adaptation in order to elucidate a novel role of lactate. We first demonstrated that daily lactate administration (equivalent to 1 g/kg of body weight) for 2 weeks suppressed CR-induced muscle atrophy by activating mammalian/mechanistic target of rapamycin (mTOR) signaling, a muscle protein synthesis pathway, and inhibited autophagy-induced muscle degradation. Next, we found that lactate administration under calorie restriction enhanced mitochondrial enzyme activity (citrate synthase and succinate dehydrogenase) and the expression of oxidative phosphorylation (OXPHOS) protein expression. Our results suggest that lactate administration under caloric restriction not only suppresses muscle atrophy but also improves mitochondrial function.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.,Research Fellow of Japan Society for Promotion Science, Japan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan
| | - Yuki Hidaka
- School of Physical Education, Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| |
Collapse
|
20
|
Segev Y, Nujedat H, Arazi E, Assadi MH, Tarasiuk A. Changes in energy metabolism and respiration in different tracheal narrowing in rats. Sci Rep 2021; 11:19166. [PMID: 34580405 PMCID: PMC8476542 DOI: 10.1038/s41598-021-98799-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Why obstructive sleep apnea (OSA) treatment does not completely restore healthy metabolic physiology is unclear. In rats, the need for respiratory homeostasis maintenance following airway obstruction (AO) is associated with a loss of thermoregulation and abnormal metabolic physiology that persists following successful obstruction removal. Here, we explored the effect of two different types of tracheal narrowing, i.e., AO and mild airway obstruction (mAO), and its removal on respiratory homeostasis and metabolic physiology. We show that after ten weeks, mAO vs. AO consumes sufficient energy that is required to maintain respiratory homeostasis and thermoregulation. Obstruction removal was associated with largely irreversible increased feeding associated with elevated serum ghrelin, hypothalamic growth hormone secretagogue receptor 1a, and a phosphorylated Akt/Akt ratio, despite normalization of breathing and energy requirements. Our study supports the need for lifestyle eating behavior management, in addition to endocrine support, in order to attain healthy metabolic physiology in OSA patients.
Collapse
Affiliation(s)
- Yael Segev
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Haiat Nujedat
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Mohammad H Assadi
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel.
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel.
| |
Collapse
|
21
|
Davids CJ, Næss TC, Moen M, Cumming KT, Horwath O, Psilander N, Ekblom B, Coombes JS, Peake JM, Raastad T, Roberts LA. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. J Appl Physiol (1985) 2021; 131:1731-1749. [PMID: 34554017 DOI: 10.1152/japplphysiol.00464.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood flow restriction (BFR) with low-load resistance exercise (RE) is often used as a surrogate to traditional high-load RE to stimulate muscular adaptations, such as hypertrophy and strength. However, it is not clear whether such adaptations are achieved through similar cellular and molecular processes. We compared changes in muscle function, morphology and signaling pathways between these differing training protocols. Twenty-one males and females (mean ± SD: 24.3 ± 3.1 years) experienced with resistance training (4.9 ± 2.6 years) performed nine weeks of resistance training (three times per week) with either high-loads (75-80% 1RM; HL-RT), or low-loads with BFR (30-40% 1RM; LL-BFR). Before and after the training intervention, resting muscle biopsies were collected, and quadricep cross-sectional area (CSA), muscular strength and power were measured. Approximately 5 days following the intervention, the same individuals performed an additional 'acute' exercise session under the same conditions, and serial muscle biopsies were collected to assess hypertrophic- and ribosomal-based signaling stimuli. Quadricep CSA increased with both LL-BFR (7.4±4.3%) and HL-RT (4.6±2.9%), with no significant differences between training groups (p=0.37). Muscular strength also increased in both training groups, but with superior gains in squat 1RM occurring with HL-RT (p<0.01). Acute phosphorylation of several key proteins involved in hypertrophy signaling pathways, and expression of ribosomal RNA transcription factors occurred to a similar degree with LL-BFR and HL-RT (all p>0.05 for between-group comparisons). Together, these findings validate low-load resistance training with continuous BFR as an effective alternative to traditional high-load resistance training for increasing muscle hypertrophy in trained individuals.
Collapse
Affiliation(s)
- Charlie J Davids
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia
| | - Tore C Næss
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Maria Moen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | | | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jonathan M Peake
- Queensland Academy of Sport, Nathan, Australia.,Queensland University of Technology, School of Biomedical Science, Brisbane, Australia
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Llion Arwyn Roberts
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia.,Griffith Sports Science, School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| |
Collapse
|
22
|
Vandewalle J, Timmermans S, Paakinaho V, Vancraeynest L, Dewyse L, Vanderhaeghen T, Wallaeys C, Van Wyngene L, Van Looveren K, Nuyttens L, Eggermont M, Dewaele S, Velho TR, Moita LF, Weis S, Sponholz C, van Grunsven LA, Dewerchin M, Carmeliet P, De Bosscher K, Van de Voorde J, Palvimo JJ, Libert C. Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metab 2021; 33:1763-1776.e5. [PMID: 34302744 DOI: 10.1016/j.cmet.2021.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/05/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Sepsis is a potentially lethal syndrome resulting from a maladaptive response to infection. Upon infection, glucocorticoids are produced as a part of the compensatory response to tolerate sepsis. This tolerance is, however, mitigated in sepsis due to a quickly induced glucocorticoid resistance at the level of the glucocorticoid receptor. Here, we show that defects in the glucocorticoid receptor signaling pathway aggravate sepsis pathophysiology by lowering lactate clearance and sensitizing mice to lactate-induced toxicity. The latter is exerted via an uncontrolled production of vascular endothelial growth factor, resulting in vascular leakage and collapse with severe hypotension, organ damage, and death, all being typical features of a lethal form of sepsis. In conclusion, sepsis leads to glucocorticoid receptor failure and hyperlactatemia, which collectively leads to a lethal vascular collapse.
Collapse
Affiliation(s)
- Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Lies Vancraeynest
- Department Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Liza Dewyse
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Lise Van Wyngene
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Kelly Van Looveren
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Louise Nuyttens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Sylviane Dewaele
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Tiago R Velho
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena 07743, Germany; Institute for Infectious Diseases and Infection Control, Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital and Center for Sepsis Control and Care, Jena University Hospital, Jena 07749, Germany
| | - Christoph Sponholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena 07743, Germany
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research lab, VIB Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Johan Van de Voorde
- Department Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium.
| |
Collapse
|
23
|
Miyamoto T, Shimizu Y, Matsuo Y, Otaru T, Kanzawa Y, Miyamae N, Yamada E, Katsuno T. Effects of exercise intensity and duration on a myokine, secreted protein acidic and rich in cysteine. Eur J Sport Sci 2021; 22:1401-1410. [PMID: 34228591 DOI: 10.1080/17461391.2021.1953152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an exercise-induced myokine, has been suggested as a potential endogenous factor that suppresses colon tumorigenesis. However, the effects of different exercise protocols on circulating SPARC levels are unclear. The main purpose of this study was to examine the effects of both exercise intensity and duration on circulating SPARC levels. This study also examined the relationship between responsiveness of SPARC levels and physical characteristics, including body composition and skeletal muscle function. Nineteen healthy adult men participated in four experimental interventions: two 30-min exercises at workloads corresponding to 60% (W60) and 40% (W40) peak oxygen uptake (VO2peak), a 45-min session of W40, and a 30-min session of complete rest. Blood SPARC and lactate concentrations were measured before and after each session. Only W60 significantly increased serum SPARC levels (p < 0.05), and a significant correlation was found between changes in SPARC levels and lactate concentrations (r = 0.411, p < 0.05). The relative changes in SPARC levels during W60 demonstrated significant positive correlations with skeletal muscle mass and knee extensor muscle strength (both p < 0.05). The increase in serum SPARC levels might be mediated by lactate accumulation and might not, hence, be induced during exercise at the intensity of the first ventilatory threshold levels even though the duration is prolonged. Our results provide fundamental insight into exercise prescription of both exercise intensity and duration for SPARC response, leading to a better understanding of the preventive effects of exercise on colon cancer.Highlight This study found that the increase in serum secreted protein acidic and rich in cysteine (SPARC) levels might be mediated by lactate accumulation and might, hence, be influenced by exercise intensity rather than exercise duration.An association was found between SPARC response to exercise and skeletal muscle mass.Our results provide a better understanding of the preventive effects of exercise on colon cancer.
Collapse
Affiliation(s)
- Toshiaki Miyamoto
- Department of Physical Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Yurika Shimizu
- Department of Physical Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Yuka Matsuo
- Department of Physical Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Taiki Otaru
- Department of Physical Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Yuto Kanzawa
- Department of Physical Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Nao Miyamae
- School of Nursing, Hyogo University of Health Sciences, Kobe, Japan
| | - Eri Yamada
- School of Nursing, Hyogo University of Health Sciences, Kobe, Japan
| | - Tomoyuki Katsuno
- Department of Occupational Therapy, School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| |
Collapse
|
24
|
Oshima A, Wakahara T, Nakamura Y, Tsujiuchi N, Kamibayashi K. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans. Exp Brain Res 2021; 239:2127-2139. [PMID: 33961075 DOI: 10.1007/s00221-021-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Humans can flexibly modify their walking patterns. A split-belt treadmill has been widely used to study locomotor adaptation. Although previous studies have examined in detail the time-series changes in the spatiotemporal characteristics of walking during and after split-belt walking, it is not clear how intramuscular coherence changes during and after split-belt walking. We thus investigated the time-series changes of intramuscular coherence in the ankle dorsiflexor muscle associated with split-belt locomotor adaptation by coherence analysis using paired electromyography (EMG) signals. Twelve healthy males walked on a split-belt treadmill. Surface EMG signals were recorded from two parts of the tibialis anterior (TA) muscle in both legs to calculate intramuscular coherence. Each area of intramuscular coherence in the beta and gamma bands in the slow leg gradually decreased during split-belt walking. Significant differences in the area were observed from 7 min compared to the first minute after the start of split-belt walking. Meanwhile, the area of coherence in both beta and gamma bands in the fast leg for the first minute of normal walking following split-belt walking was significantly increased compared with normal walking before split-belt walking, and then immediately returned to the normal walking level. These results suggest that cortical involvement in TA muscle activity gradually weakens when adapting from a normal walking pattern to a new walking pattern. On the other hand, when re-adapting from the newly adapted walking pattern to the normal walking pattern, cortical involvement might strengthen temporally and then weaken quickly.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Taku Wakahara
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.,Human Performance Laboratory, Waseda University, Saitama, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Nobutaka Tsujiuchi
- Department of Mechanical and Systems Engineering, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
25
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
26
|
Preobrazenski N, Islam H, Gurd BJ. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: a call to action. Eur J Appl Physiol 2021; 121:1835-1847. [PMID: 33830325 DOI: 10.1007/s00421-021-04669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Blood flow-restricted (BFR) exercise can induce training adaptations comparable to those observed following training in free flow conditions. However, little is known about the acute responses within skeletal muscle following BFR aerobic exercise (AE). Moreover, although preliminary evidence suggests chronic BFR AE may augment certain training adaptations in skeletal muscle mitochondria more than non-BFR AE, the underlying mechanisms are poorly understood. In this review, we summarise the acute BFR AE literature examining mitochondrial biogenic signalling pathways and provide insight into mechanisms linked to skeletal muscle remodelling following BFR AE. Specifically, we focus on signalling pathways potentially contributing to augmented peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA following work-rate-matched BFR AE compared with non-BFR AE. We present evidence suggesting reductions in muscle oxygenation during acute BFR AE lead to increased intracellular energetic stress, AMP-activated protein kinase (AMPK) activation and PGC-1α mRNA. In addition, we briefly discuss mitochondrial adaptations to BFR aerobic training, and we assess the risk of bias using the Cochrane Collaboration risk of bias assessment tool. We ultimately call for several straightforward modifications to help minimise bias in future BFR AE studies.
Collapse
Affiliation(s)
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
27
|
Moberg M, Apró W, Cervenka I, Ekblom B, van Hall G, Holmberg HC, Ruas JL, Blomstrand E. High-intensity leg cycling alters the molecular response to resistance exercise in the arm muscles. Sci Rep 2021; 11:6453. [PMID: 33742064 PMCID: PMC7979871 DOI: 10.1038/s41598-021-85733-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
This study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.
Collapse
Affiliation(s)
- Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden. .,The Swedish School of Sport and Health Sciences, Box 5626, 114 86, Stockholm, Sweden.
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Shirai T, Hanakita H, Uemichi K, Takemasa T. Effect of the order of concurrent training combined with resistance and high-intensity interval exercise on mTOR signaling and glycolytic metabolism in mouse skeletal muscle. Physiol Rep 2021; 9:e14770. [PMID: 33650809 PMCID: PMC7923557 DOI: 10.14814/phy2.14770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Athletes train to improve strength and endurance to demonstrate maximum performance during competitions. Training methods vary but most focus on strength, endurance, or both. Concurrent training is a combination of two different modes of training. In this study, we combined resistance exercise (RE) and high-intensity interval exercise (HIIE) to investigate the influence of the order of the concurrent training on signal molecules on hypertrophy and glycolysis in the skeletal muscle. The phosphorylation levels of mechanistic target of rapamycin (mTOR) signals, p70 S6 kinase (p70S6 K), ribosomal protein S6 (S6), and glycogen synthase kinase beta (GSK-3β) were significantly increased in the HIIE first group compared with the control group. The combined training course did not affect the glycogen content and expression levels of proteins concerning glycolytic and metabolic capacity, suggesting that a combination of HIIE and RE on the same day, with HIIE prior to RE, improves hypertrophy response and glycolysis enhancement.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Hideto Hanakita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle. Pflugers Arch 2021; 473:241-252. [PMID: 33420549 DOI: 10.1007/s00424-020-02499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10-72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [ηp2 = 0.14]) whereas PGC-1α protein decreased (main effect of time: p < 0.01) during both FAST and FAST+EX. P53 acetylation increased in both conditions (main effect of time: p < 0.01) whereas ACC and SIRT1 phosphorylation were non-significantly decreased (both p < 0.06 [ηp2 = 0.15]). Fasting-induced increases in NFE2L2 and NRF1 protein were observed (main effects of time: p < 0.03), though TFAM and COXIV protein remained unchanged (p > 0.05). Elevating whole-body energetic stress blunted the increase in p53 mRNA, which was apparent during FAST only (condition × time interaction: p = 0.04). Select autophagy/mitophagy regulators (LC3BI, LC3BII, BNIP3) were non-significantly reduced at the protein level (p ≤ 0.09 [ηp2 > 0.13]) but the LC3II:I ratio was unchanged (p > 0.05). PDK4 mRNA (p < 0.01) and intramuscular triglyceride content in type IIA fibers (p = 0.04) increased similarly during both conditions. Taken together, human skeletal muscle signaling, mRNA/protein expression, and substrate storage appear to be unaffected by whole-body energetic stress during the initial hours of fasting.
Collapse
|
30
|
Nikooie R, Moflehi D, Zand S. Lactate regulates autophagy through ROS-mediated activation of ERK1/2/m-TOR/p-70S6K pathway in skeletal muscle. J Cell Commun Signal 2021; 15:107-123. [PMID: 33398722 DOI: 10.1007/s12079-020-00599-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/26/2020] [Indexed: 12/09/2022] Open
Abstract
The role of autophagy and lysosomal degradation pathway in the regulation of skeletal muscle metabolism was previously studied. However, underlying molecular mechanisms are poorly understood. L-lactate which is utilized as an energetic substrate by skeletal muscle can also augment genes expression related to metabolism and up-regulate those being responsive to reactive oxygen species (ROS). Since ROS is the most important regulator of autophagy in skeletal muscle, we tested if there is a link between cellular lactate metabolism and autophagy in differentiated C2C12 myotubes and the gastrocnemius muscle of male wistar rats. C2C12 mouse skeletal muscle was exposed to 2, 6, 10, and 20 mM lactate and evaluated for lactate autophagic effects. Lactate dose-dependently increased autophagy and augmented ROS generation in differentiated C2C12 myotubes. The autophagic effect of lactate deterred in N-acetylcysteine presence (NAC, a ROS scavenger) indicated lactate regulates autophagy with ROS participation. Lactate-induced up-regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) through ROS was required to regulate the autophagy by lactate. Further analysis about ERK1/2 up- and downstream indicated that lactate regulates autophagy through ROS-mediated the activation of ERK1/2/mTOR/p70S6K pathway in skeletal muscle. The in vitro effects of lactate on autophagy also occurred in the gastrocnemius muscle of male Wistar rats. In conclusion, we provided the lactate-associated regulation evidence of autophagy in skeletal muscle by activating ROS-mediated ERK1/2/mTOR/p70S6K pathway. Since the increase in cellular lactate concentration is a hallmark of energy deficiency, the results provide insight into a skeletal muscle mechanism to fulfill its enhanced energy requirement.
Collapse
Affiliation(s)
- Rohollah Nikooie
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Daruosh Moflehi
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Samira Zand
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
31
|
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020; 26:molecules26010005. [PMID: 33374961 PMCID: PMC7792620 DOI: 10.3390/molecules26010005] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Collapse
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2293-015
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Juan Hancke
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
| |
Collapse
|
32
|
Fritzen AM, Lundsgaard AM, Kiens B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 2020; 16:683-696. [PMID: 32963340 DOI: 10.1038/s41574-020-0405-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
Both the consumption of a diet rich in fatty acids and exercise training result in similar adaptations in several skeletal muscle proteins. These adaptations are involved in fatty acid uptake and activation within the myocyte, the mitochondrial import of fatty acids and further metabolism of fatty acids by β-oxidation. Fatty acid availability is repeatedly increased postprandially during the day, particularly during high dietary fat intake and also increases during, and after, aerobic exercise. As such, fatty acids are possible signalling candidates that regulate transcription of target genes encoding proteins involved in muscle lipid metabolism. The mechanism of signalling might be direct or indirect targeting of peroxisome proliferator-activated receptors by fatty acid ligands, by fatty acid-induced NAD+-stimulated activation of sirtuin 1 and/or fatty acid-mediated activation of AMP-activated protein kinase. Lactate might also have a role in lipid metabolic adaptations. Obesity is characterized by impairments in fatty acid oxidation capacity, and individuals with obesity show some rigidity in increasing fatty acid oxidation in response to high fat intake. However, individuals with obesity retain improvements in fatty acid oxidation capacity in response to exercise training, thereby highlighting exercise training as a potential method to improve lipid metabolic flexibility in obesity.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
TAK1 is involved in sodium L-lactate-stimulated p38 signaling and promotes apoptosis. Mol Cell Biochem 2020; 476:873-882. [PMID: 33111211 DOI: 10.1007/s11010-020-03952-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
In the present study, we found that the phosphorylation of p38 mitogen-activated protein kinase (p38) was significantly increased in L-lactate-treated HeLa cells, which is under concentration- and time-dependent manner. The protein level of Bcl-2 was significantly reduced and Bax and C-caspase3 were significantly increased in L-lactate-treated cells. qRT-PCR analysis suggested that the expression level of apoptosis-related genes Bax, C-myc, and FasL were significantly upregulated by L-lactate treatment. In addition, p38 inhibitor SB203580 blocked the L-lactate-stimulated phosphorylation of p38 (p-p38) and apoptosis, which suggested that L-lactate-stimulated apoptosis may be related to the activation of p38. Moreover, TAK1 inhibitor Takinib reduced L-lactate-triggered phosphorylation of p38 and also apoptosis; however, ASK1 inhibitor NQDI-1 did not. Cells transfected with siRNA of TAK1(siTAK1) showed similar results with Takinib inhibitor. These results suggested that the L-lactate treatment elevated activation of p38 and apoptosis was related to TAK1. In this study, we suggested that TAK1 plays an important role in L-lactate-stimulated activation of p38 affecting apoptosis in HeLa cells.
Collapse
|
34
|
Kyun S, Yoo C, Park HY, Kim J, Lim K. The Effects of Exogenous Lactate Administration on the IGF1/Akt/mTOR Pathway in Rat Skeletal Muscle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7805. [PMID: 33113811 PMCID: PMC7663284 DOI: 10.3390/ijerph17217805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
We investigated the effects of oral lactate administration on protein synthesis and degradation factors in rats over 2 h after intake. Seven-week-old male Sprague-Dawley rats were randomly divided into four groups (n = 8/group); their blood plasma levels of lactate, glucose, insulin, and insulin-like growth factor 1 (IGF1) were examined following sacrifice at 0, 30, 60, or 120 min after sodium lactate (2 g/kg) administration. We measured the mRNA expression levels of protein synthesis-related genes (IGF receptor, protein kinase B (Akt), mammalian target of rapamycin (mTOR)) or degradation-related genes (muscle RING-finger protein-1 (MuRF1), atrogin-1) and analyzed the protein expression and phosphorylation (activation) of Akt and mTOR. Post-administration, the plasma lactate concentration increased to 3.2 mmol/L after 60 min. Plasma glucose remained unchanged throughout, while insulin and IGF1 levels decreased after 30 min. The mRNA levels of IGF receptor and mTOR peaked after 60 min, and Akt expression was significantly upregulated from 30 to 120 min. However, MuRF1 and atrogin-1 expression levels were unaffected. Akt protein phosphorylation did not change significantly, whereas mTOR phosphorylation significantly increased after 30 min. Thus, lactate administration increased the mRNA and protein expression of protein-synthesis factors, suggesting that it can potentially promote skeletal muscle synthesis.
Collapse
Affiliation(s)
- Sunghwan Kyun
- Department of Physical Education, Konkuk University, Gwangjin-gu, Seoul 05029, Korea;
| | - Choongsung Yoo
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| | - Hun-Young Park
- Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.P.); (J.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.P.); (J.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, Gwangjin-gu, Seoul 05029, Korea;
- Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.P.); (J.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
35
|
Liegnell R, Apró W, Danielsson S, Ekblom B, van Hall G, Holmberg HC, Moberg M. Elevated plasma lactate levels via exogenous lactate infusion do not alter resistance exercise-induced signaling or protein synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab 2020; 319:E792-E804. [PMID: 32830552 DOI: 10.1152/ajpendo.00291.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactate has been implicated as a potential signaling molecule. In myotubes, lactate incubation increases mechanistic target of rapamycin complex 1 (mTORC1)- and ERK-signaling and induces hypertrophy, indicating that lactate could be a mediator of muscle adaptations to resistance exercise. However, the potential signaling properties of lactate, at rest or with exercise, have not been explored in human tissue. In a crossover design study, 8 men and 8 women performed one-legged resistance exercise while receiving venous infusion of saline or sodium lactate. Blood was sampled repeatedly, and muscle biopsies were collected at rest and at 0, 90, and 180 min and 24 h after exercise. The primary outcomes examined were intracellular signaling, fractional protein synthesis rate (FSR), and blood/muscle levels of lactate and pH. Postexercise blood lactate concentrations were 130% higher in the Lactate trial (3.0 vs. 7.0 mmol/L, P < 0.001), whereas muscle levels were only marginally higher (27 vs. 32 mmol/kg dry wt, P = 0.003) compared with the Saline trial. Postexercise blood pH was higher in the Lactate trial (7.34 vs. 7.44, P < 0.001), with no differences in intramuscular pH. Exercise increased the phosphorylation of mTORS2448 (∼40%), S6K1T389 (∼3-fold), and p44T202/T204 (∼80%) during recovery, without any differences between trials. FSR over the 24-h recovery period did not differ between the Saline (0.067%/h) and Lactate (0.062%/h) trials. This study does not support the hypothesis that blood lactate levels can modulate anabolic signaling in contracted human muscle. Further in vivo research investigating the impact of exercised versus rested muscle and the role of intramuscular lactate is needed to elucidate its potential signaling properties.
Collapse
Affiliation(s)
- Rasmus Liegnell
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Sebastian Danielsson
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
36
|
Response of Blood Biomarkers to Sprint Interval Swimming. Int J Sports Physiol Perform 2020; 15:1442-1447. [PMID: 32963121 DOI: 10.1123/ijspp.2019-0747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate and compare the effects of 2 sprint interval training (SIT) sets of different distances on biochemical markers indicative of metabolism, stress, and antioxidant capacity in competitive swimmers and, to investigate the potential influence of gender on these markers. METHODS Twenty-four adolescent, well-trained swimmers (12 men and 12 women) participated in the study. In a random and counterbalanced order, the swimmers completed 2 SIT sets (8 × 50 m and 8 × 25 m) in freestyle with maximal intensity on different days. Work-to-rest ratio was 1:1 in both sets. Blood samples were drawn preexercise, immediately postexercise, and 1 hour postexercise to evaluate the effects of the SIT sets on a number of biochemical parameters. RESULTS Swimming speed was higher at 8 × 25 m. The 2 SIT sets induced significant increases in lactate, glucose, insulin, glucagon, cortisol, and uric acid (P ≤ .001). No differences in these parameters were found between sets, except for irisin (higher in 8 × 50 m; P = .02). Male swimmers were faster and had higher lactate and uric acid concentrations, as well as lower reduced glutathione concentration, than female swimmers (P < .01). CONCLUSIONS The 2 swimming SIT sets induced increases in most of the biochemical markers studied. The 2-fold difference between sets in distance did not differentiate the effects of sprint interval exercise on most biochemical parameters. Thus, low-volume SIT sets seem to be effective stimuli for competitive swimmers.
Collapse
|
37
|
Takahashi K, Kitaoka Y, Matsunaga Y, Hatta H. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle. Curr Res Physiol 2020; 3:34-43. [PMID: 34746818 PMCID: PMC8562145 DOI: 10.1016/j.crphys.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023] Open
Abstract
Lactate is not merely a metabolic intermediate that serves as an oxidizable and glyconeogenic substrate, but it is also a potential signaling molecule. The objectives of this study were to investigate whether lactate administration enhances post-exercise glycogen repletion in association with cellular signaling activation in different types of skeletal muscle. Eight-week-old male ICR mice performed treadmill running (20 m/min for 60 min) following overnight fasting (16 h). Immediately after the exercise, animals received an intraperitoneal injection of phosphate-buffered saline or sodium lactate (equivalent to 1 g/kg body weight), followed by oral ingestion of water or glucose (2 g/kg body weight). At 60 min of recovery, glucose ingestion enhanced glycogen content in the soleus, plantaris, and gastrocnemius muscles. In addition, lactate injection additively increased glycogen content in the plantaris and gastrocnemius muscles, but not in the soleus muscle. Nevertheless, lactate administration did not significantly alter protein levels related to glucose uptake and oxidation in the plantaris muscle, but enhanced phosphorylation of TBC1D1, a distal protein regulating GLUT4 translocation, was observed in the soleus muscle. Muscle FBP2 protein content was significantly higher in the plantaris and gastrocnemius muscles than in the soleus muscle, whereas MCT1 protein content was significantly higher in the soleus muscle than in the plantaris and gastrocnemius muscles. The current findings suggest that an elevated blood lactate concentration and post-exercise glucose ingestion additively enhance glycogen recovery in glycolytic phenotype muscles. This appears to be associated with glyconeogenic protein content, but not with enhanced glucose uptake, attenuated glucose oxidation, or lactate transport protein.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Corresponding author. Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
38
|
Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun 2020; 11:3547. [PMID: 32669546 PMCID: PMC7363928 DOI: 10.1038/s41467-020-17402-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.
Collapse
|
39
|
Kyun S, Yoo C, Hashimoto T, Tomi H, Teramoto N, Kim J, Lim K. Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats. Phys Act Nutr 2020; 24:1-5. [PMID: 32698255 PMCID: PMC7451839 DOI: 10.20463/pan.2020.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Lactate has several beneficial roles as an energy resource and in metabolism. However, studies on the effects of oral administration of lactate on fat metabolism and glycogen synthesis are limited. Therefore, the purpose of the present study was to investigate how oral administration of lactate affects fat metabolism and glycogen synthesis factors at specific times (0, 30, 60, 120 min) after intake. METHODS Male Sprague Dawley (SD) rats (n = 24) were divided into four groups as follows: the control group (0 min) was sacrificed immediately after oral lactate administration; the test groups were administered lactate (2 g/kg) and sacrificed after 30, 60, and 120 min. Skeletal muscle and liver mRNA expression of GLUT4, FAT/CD36, PDH, CS, PC and GYS2 was assessed using reverse transcription-polymerase chain reaction. RESULTS GLUT4 and FAT/CD36 expression was significantly increased in skeletal muscle 120 min after lactate administration. PDH expression in skeletal muscle was altered at 30 and 120 min after lactate consumption, but was not significantly different compared to the control. CS, PC and GYS2 expression in liver was increased 60 min after lactate administration. CONCLUSION Our results indicate that exogenous lactate administration increases GLUT4 and FAT/CD36 expression in the muscle as well as glycogen synthase factors (PC, GYS2) in the liver after 60 min. Therefore, lactate supplementation may increase fat utilization as well as induce positive effects on glycogen synthesis in athletes.
Collapse
Affiliation(s)
- Sunghwan Kyun
- Department of physical education, Konkuk University, SeoulRepublic of Korea
| | - Choongsung Yoo
- Department of Health and Kinesiology, Texas A&M University, TexasUSA
| | - Takeshi Hashimoto
- Faculty of Sport & Health Science, Ritsumeikan University, ShigaJapan
| | - Hironori Tomi
- Center for Regional Sustainability and Innovation, Kochi University, KochiJapan
| | | | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine and Science, Konkuk University, SeoulRepublic of Korea
| | - Kiwon Lim
- Department of physical education, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine and Science, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
40
|
Knudsen JR, Li Z, Persson KW, Li J, Henriquez-Olguin C, Jensen TE. Contraction-regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen. J Physiol 2020; 598:2637-2649. [PMID: 32372406 DOI: 10.1113/jp279780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α2 -AMPK activity-deficient mice have lower contraction-stimulated protein synthesis. Increasing glycogen activates mTORC1-S6K1. Normalizing muscle glycogen content rescues reduced protein synthesis in AMPK-deficient mice. ABSTRACT The mechansitic target of rapamycin complex 1 (mTORC1)-S6K1 signalling pathway regulates muscle growth-related protein synthesis and is antagonized by AMP-activated protein kinase (AMPK) in multiple cell types. Resistance exercise stimulates skeletal muscle mTORC1-S6K1 and AMPK signalling and post-contraction protein synthesis. Glycogen inhibits AMPK and has been proposed as a pro-anabolic stimulus. The present study aimed to investigate how muscle mTORC1-S6K1 signalling and protein synthesis respond to resistance exercise-mimicking contraction in the absence of AMPK and with glycogen manipulation. Resistance exercise-mimicking unilateral in situ contraction of musculus quadriceps femoris in anaesthetized wild-type and dominant negative α2 AMPK kinase dead transgenic (KD-AMPK) mice, measuring muscle mTORC1 and AMPK signalling immediately (0 h) and 4 h post-contraction, and protein-synthesis at 4 h. Muscle glycogen manipulation by 5 day oral gavage of the glycogen phosphorylase inhibitor CP316819 and sucrose (80 g L-1 ) in the drinking water prior to in situ contraction. The mTORC1-S6K1 and AMPK signalling axes were coactivated immediately post-contraction, despite potent AMPK-dependent Ser792 phosphorylation on the mTORC1 subunit raptor. KD-AMPK muscles displayed normal mTORC1-S6K1 activation at 0 h and 4 h post-exercise, although there was impaired contraction-stimulated protein synthesis 4 h post-contraction. Pharmacological/dietary elevation of muscle glycogen content augmented contraction-stimulated mTORC1-S6K1-S6 signalling and rescued the reduced protein synthesis-response in KD-AMPK to wild-type levels. mTORC-S6K1 signalling is not influenced by α2 -AMPK during or after intense muscle contraction. Elevated glycogen augments mTORC1-S6K1 signalling. α2 -AMPK-deficient KD-AMPK mice display impaired contraction-induced muscle protein synthesis, which can be rescued by normalizing muscle glycogen content.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar W Persson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Hu S, Liu H, Hu Z, Li L, Yang Y. Follistatin-like 1: A dual regulator that promotes cardiomyocyte proliferation and fibrosis. J Cell Physiol 2020; 235:5893-5902. [PMID: 32017077 DOI: 10.1002/jcp.29588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Follistatin-like 1 (FSTL1) is a key factor in maintaining cardiac growth and development. It can be activated by exercise training and has a dual role in promoting cardiomyocyte proliferation and fibrosis, but its underlying mechanism is not fully understood. To elucidate the dual mechanism and target of FSTL1 regulating of cardiomyocyte proliferation and myocardial fibrosis, and the mechanism by which exercise-regulated FSTL1 improves cardiovascular disease, we explored the signal transduction pathway of FSTL1 promoting cardiomyocyte proliferation and fibrosis, and compared the effects of different modes of exercise on the dual role of FSTL1. We believe that the dual role of promoting cardiomyocyte proliferation and fibrosis may be related to the ratio of cardiomyocyte and myocardial interstitial cell proliferation, different stages of the disease, different degrees of fibrosis, immune repair process, and transforming growth factor-β activation. Compared with long-term excessive endurance exercise, moderate resistance exercise can activate cardiomyocyte proliferation pathway through FSTL1, which is one of the effective ways to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Siyuan Hu
- Graduate School, Wuhan Sports University, Wuhan, China.,School of Sports Art, Hunan University of Chinese Medicine, Changsha, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Zhixi Hu
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Li
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
42
|
Benjamin D, Hall MN. Lactate jump-starts mTORC1 in cancer cells. EMBO Rep 2019; 20:embr.201948302. [PMID: 31133599 DOI: 10.15252/embr.201948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Don Benjamin
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|