1
|
Bernstein HL, Lu YL, Botterill JJ, Duffy ÁM, LaFrancois JJ, Scharfman HE. Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices. Hippocampus 2025; 35:e23652. [PMID: 39665517 DOI: 10.1002/hipo.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively. Here we describe methods to selectively activate MC axons in the IML using mice with Cre recombinase expressed in MCs. Slices were made after injecting adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) in the DG. In these slices, we show that fEPSPs could be recorded reliably in the IML in response to optogenetic stimulation of MC axons. Furthermore, fEPSPs were widespread across the septotemporal axis. However, fEPSPs were relatively weak because they were small in amplitude and did not elicit a significant population spike in GCs. They also showed little paired pulse facilitation. We confirmed the extracellular findings with patch clamp recordings of GCs despite different recording chambers and other differences in methods. Together the results provide a simple method for studying MC activation of GCs and add to the evidence that this input is normally weak but widespread across the GC population.
Collapse
Affiliation(s)
- Hannah L Bernstein
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | - Yi-Ling Lu
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | - Justin J Botterill
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | - Áine M Duffy
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | - John J LaFrancois
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| |
Collapse
|
2
|
Bernstein HL, Lu YL, Botterill JJ, Duffy ÁM, LaFrancois JJ, Scharfman HE. Field EPSPs of dentate gyrus granule cells studied by selective optogenetic activation of hilar mossy cells in hippocampal slices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622679. [PMID: 39574724 PMCID: PMC11580982 DOI: 10.1101/2024.11.08.622679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively. Here we describe methods to selectively activate MC axons in the IML using mice with Cre recombinase expressed in MCs. Slices were made after injecting adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) in the DG. In these slices, we show that fEPSPs could be recorded reliably in the IML in response to optogenetic stimulation of MC axons. Furthermore, fEPSPs were widespread across the septotemporal axis. However, fEPSPs were relatively weak because they were small in amplitude and did not elicit a significant population spike in GCs. They also showed little paired pulse facilitation. We confirmed the extracellular findings with patch clamp recordings of GCs despite different recording chambers and other differences in methods. Together the results provide a simple method for studying MC activation of GCs and add to the evidence that this input is normally weak but widespread across the GC population. KEY POINTS We describe a method to activate the MC input to GCs selectively using optogenetics in hippocampal slicesMC excitation is weakly excitatory but so common among GCs that a field EPSP is generated at the site of MC synapses on GCsMC excitation of GCs is consistent across the septotemporal axis and contralaterallyUsing the characteristics of optogenetically-evoked fEPSPs, electrical stimulation of the MC input to GCs can be optimized.
Collapse
|
3
|
Yeganegi H, Ondracek JM. Local sleep in songbirds: different simultaneous sleep states across the avian pallium. J Sleep Res 2024:e14344. [PMID: 39425588 DOI: 10.1111/jsr.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024]
Abstract
Wakefulness and sleep have often been treated as distinct and global brain states. However, an emerging body of evidence on the local regulation of sleep stages challenges this conventional view. Apart from unihemispheric sleep, the current data that support local variations of neural oscillations during sleep are focused on the homeostatic regulation of local sleep, i.e., the role preceding awake activity. Here, to examine local differences in brain activity during natural sleep, we recorded the electroencephalogram and the local field potential across multiple sites within the avian pallium of zebra finches without perturbing the previous awake state. We scored the sleep stages independently in each pallial site and found that the sleep stages are not pallium-wide phenomena but rather deviate widely across electrode sites. Importantly, deeper electrode sites had a dominant role in defining the temporal aspects of sleep state congruence. Altogether, these findings show that local regulation of sleep oscillations also occurs in the avian brain without prior awake recruitment of specific pallial circuits and in the absence of mammalian cortical neural architecture.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
| |
Collapse
|
4
|
Lamberti M, Kikirikis N, Putten MJAMV, Feber JL. Impact of background input on memory consolidation. Sci Rep 2024; 14:23681. [PMID: 39390214 PMCID: PMC11467303 DOI: 10.1038/s41598-024-75463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Memory consolidation involves repeated replay of new information by the hippocampus, which transfers memories to the neocortex for long-term storage. This occurs mainly during slow wave sleep, a phase characterized in the cortex by low cholinergic tone and low afferent input. High cholinergic tone has been shown to hamper memory consolidation, probably mediated by reduced network excitability (the ease of activity propagation in a network). We used cortical neuronal networks on multi electrode arrays to investigate whether low background input contributes to memory consolidation. Networks received focal electrical stimuli to memorize, with or without background afferent input (global optogenetic stimulation). Background stimulation hampered memory formation and consolidation, confirming the importance of low background input. Moreover, it lowered network excitability, similar to high cholinergic tone. These findings suggest that high network excitability is a critical feature of slow wave sleep that facilitates memory consolidation.
Collapse
Affiliation(s)
- Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.
| | - Nikolaos Kikirikis
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.
| |
Collapse
|
5
|
Sukumaran R, Nair AS, Banerjee M. Ethnic and region-specific genetic risk variants of stroke and its comorbid conditions can define the variations in the burden of stroke and its phenotypic traits. eLife 2024; 13:RP94088. [PMID: 39268810 PMCID: PMC11398864 DOI: 10.7554/elife.94088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.
Collapse
Affiliation(s)
- Rashmi Sukumaran
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Department of Computational Biology and Bioinformatics, University of KeralaThiruvananthapuramIndia
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of KeralaThiruvananthapuramIndia
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| |
Collapse
|
6
|
Chen L, Wu K, He J, Hou J, Zhang Y, Liu L, Wang J, Xia Z. Circadian Regulation of the Lactate Metabolic Kinetics in Mice Using the [ 1H- 13C]-NMR Technique. Mol Neurobiol 2024; 61:5802-5813. [PMID: 38231323 DOI: 10.1007/s12035-024-03927-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.
Collapse
Affiliation(s)
- Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Kefan Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jingang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jie Wang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, People's Republic of China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, People's Republic of China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
7
|
Zheng ZJ, Zhang HY, Hu YL, Li Y, Wu ZH, Li ZP, Chen DR, Luo Y, Zhang XJ, Li C, Wang XY, Xu D, Qiu W, Li HP, Liao XP, Ren H, Sun J. Sleep Deprivation Induces Gut Damage via Ferroptosis. J Pineal Res 2024; 76:e12987. [PMID: 38975671 DOI: 10.1111/jpi.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dong-Rui Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Cang Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Squarcio F, Tononi G, Cirelli C. Effects of non-rapid eye movement sleep on the cortical synaptic expression of GluA1-containing AMPA receptors. Eur J Neurosci 2024; 60:3961-3972. [PMID: 38973508 DOI: 10.1111/ejn.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.
Collapse
Affiliation(s)
- Fabio Squarcio
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Lemieux MR, Freigassner B, Hanson JL, Thathey Z, Opp MR, Hoeffer CA, Link CD. Multielectrode array characterization of human induced pluripotent stem cell derived neurons in co-culture with primary human astrocytes. PLoS One 2024; 19:e0303901. [PMID: 38917115 PMCID: PMC11198861 DOI: 10.1371/journal.pone.0303901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ∼0.9 in as little as six-weeks with a mean firing rate of ∼13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of blood-brain barrier breakdown by using human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.
Collapse
Affiliation(s)
- Maddie R. Lemieux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Bernhard Freigassner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jessica L. Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Zahra Thathey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Charles A. Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Christopher D. Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
10
|
Basu R, Preat T, Plaçais PY. Glial metabolism versatility regulates mushroom body-driven behavioral output in Drosophila. Learn Mem 2024; 31:a053823. [PMID: 38862167 PMCID: PMC11199944 DOI: 10.1101/lm.053823.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Providing metabolic support to neurons is now recognized as a major function of glial cells that is conserved from invertebrates to vertebrates. However, research in this field has focused for more than two decades on the relevance of lactate and glial glycolysis for neuronal energy metabolism, while overlooking many other facets of glial metabolism and their impact on neuronal physiology, circuit activity, and behavior. Here, we review recent work that has unveiled new features of glial metabolism, especially in Drosophila, in the modulation of behavioral traits involving the mushroom bodies (MBs). These recent findings reveal that spatially and biochemically distinct modes of glucose-derived neuronal fueling are implemented within the MB in a memory type-specific manner. In addition, cortex glia are endowed with several antioxidant functions, whereas astrocytes can serve as pro-oxidant agents that are beneficial to redox signaling underlying long-term memory. Finally, glial fatty acid oxidation seems to play a dual fail-safe role: first, as a mode of energy production upon glucose shortage, and, second, as a factor underlying the clearance of excessive oxidative load during sleep. Altogether, these integrated studies performed in Drosophila indicate that glial metabolism has a deterministic role on behavior.
Collapse
Affiliation(s)
- Ruchira Basu
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
11
|
Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, Yue Z, Sehgal A. A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci 2024; 27:666-678. [PMID: 38360946 PMCID: PMC11001586 DOI: 10.1038/s41593-023-01568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Sleep is thought to be restorative to brain energy homeostasis, but it is not clear how this is achieved. We show here that Drosophila glia exhibit a daily cycle of glial mitochondrial oxidation and lipid accumulation that is dependent on prior wake and requires the Drosophila APOE orthologs NLaz and GLaz, which mediate neuron-glia lipid transfer. In turn, a full night of sleep is required for glial lipid clearance, mitochondrial oxidative recovery and maximal neuronal mitophagy. Knockdown of neuronal NLaz causes oxidative stress to accumulate in neurons, and the neuronal mitochondrial integrity protein, Drp1, is required for daily glial lipid accumulation. These data suggest that neurons avoid accumulation of oxidative mitochondrial damage during wake by using mitophagy and passing damage to glia in the form of lipids. We propose that a mitochondrial lipid metabolic cycle between neurons and glia reflects a fundamental function of sleep relevant for brain energy homeostasis.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elana S Pyfrom
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongjun Li
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishnu Anand Cuddapah
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack A Jacobs
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Lemieux MR, Freigassner B, Thathey Z, Opp MR, Hoeffer CA, Link CD. Multielectrode array characterization of human induced pluripotent stem cell derived neurons in co-culture with primary human astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583341. [PMID: 38496655 PMCID: PMC10942372 DOI: 10.1101/2024.03.04.583341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ~0.9 in as little as six-weeks with a mean firing rate of ~13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of sporadic Alzheimer's disease by mimicking blood-brain barrier breakdown using a human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.
Collapse
Affiliation(s)
- Maddie R Lemieux
- Department of Integrative Physiology, University of Colorado Boulder
| | | | - Zahra Thathey
- Department of Integrative Physiology, University of Colorado Boulder
| | - Mark R Opp
- Department of Integrative Physiology, University of Colorado Boulder
| | - Charles A Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder
- Institute for Behavioral Genetics, University of Colorado Boulder
| | | |
Collapse
|
13
|
Shi T, Shah I, Dang Q, Taylor L, Jagannath A. Sex-specific regulation of the cortical transcriptome in response to sleep deprivation. Front Neurosci 2024; 17:1303727. [PMID: 38504908 PMCID: PMC10948409 DOI: 10.3389/fnins.2023.1303727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024] Open
Abstract
Multiple studies have documented sex differences in sleep behaviour, however, the molecular determinants of such differences remain unknown. Furthermore, most studies addressing molecular mechanisms have been performed only in males, leaving the current state of knowledge biased towards the male sex. To address this, we studied the differences in the transcriptome of the cerebral cortex of male and female C57Bl/6 J mice after 6 h of sleep deprivation. We found that several genes, including the neurotrophin growth factor Bdnf, immediate early genes Fosb and Fosl2, and the adenylate cyclase Adcy7 are differentially upregulated in males compared to females. We identified the androgen-receptor activating transcription factor EZH2 as the upstream regulatory element specifying sex differences in the sleep deprivation transcriptome. We propose that the pathways downstream of these transcripts, which impact on cellular re-organisation, synaptic signalling, and learning may underpin the differential response to sleep deprivation in the two sexes.
Collapse
Affiliation(s)
- Tianyi Shi
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Ishani Shah
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Quang Dang
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Qin H, Duan G, Zhou K, Qin L, Lai Y, Liu Y, Lu Y, Peng B, Zhang Y, Zhou X, Huang J, Huang J, Liang L, Wei Y, Zhang Q, Li X, OuYang Y, Bin B, Zhao M, Yang J, Deng D. Alteration of white matter microstructure in patients with sleep disorders after COVID-19 infection. Sleep Med 2024; 114:109-118. [PMID: 38181582 DOI: 10.1016/j.sleep.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. METHODS 29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. RESULTS Both COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1β (IL-1β) compared with COVID_NonSD group. These WM abnormalities and IL-1β levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1β levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. CONCLUSION Abnormalities in right IFOF and left CST and elevated IL-1β levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.
Collapse
Affiliation(s)
- Haixia Qin
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Gaoxiong Duan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Kaixuan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lixia Qin
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yinqi Lai
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Ying Liu
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yian Lu
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Bei Peng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yan Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaoyan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jiazhu Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jinli Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yichen Wei
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Qingping Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaocheng Li
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yinfei OuYang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Bolin Bin
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Mingming Zhao
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Jianrong Yang
- Guangxi Clinical Reserch Center for Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Demao Deng
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China.
| |
Collapse
|
15
|
Kompotis K, Mang GM, Hubbard J, Jimenez S, Emmenegger Y, Polysopoulos C, Hor CN, Wigger L, Hébert SS, Mongrain V, Franken P. Cortical miR-709 links glutamatergic signaling to NREM sleep EEG slow waves in an activity-dependent manner. Proc Natl Acad Sci U S A 2024; 121:e2220532121. [PMID: 38207077 PMCID: PMC10801902 DOI: 10.1073/pnas.2220532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.
Collapse
Affiliation(s)
- Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, ZurichCH-8057, Switzerland
| | - Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Christos Polysopoulos
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, ZurichCH-8057, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Leonore Wigger
- Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sébastien S. Hébert
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Axe Neurosciences, Québec, QCG1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QCG1V 0A6, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QCH3T 1J4, Canada
- Centre de recherche, Centre hospitalier de l’Université de Montréal, Montréal, QCH2X 0A9, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QCH4J 1C5, Canada
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
16
|
Andrillon T, Oudiette D. What is sleep exactly? Global and local modulations of sleep oscillations all around the clock. Neurosci Biobehav Rev 2023; 155:105465. [PMID: 37972882 DOI: 10.1016/j.neubiorev.2023.105465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Wakefulness, non-rapid eye-movement (NREM) and rapid eye-movement (REM) sleep differ from each other along three dimensions: behavioral, phenomenological, physiological. Although these dimensions often fluctuate in step, they can also dissociate. The current paradigm that views sleep as made of global NREM and REM states fail to account for these dissociations. This conundrum can be dissolved by stressing the existence and significance of the local regulation of sleep. We will review the evidence in animals and humans, healthy and pathological brains, showing different forms of local sleep and the consequences on behavior, cognition, and subjective experience. Altogether, we argue that the notion of local sleep provides a unified account for a host of phenomena: dreaming in REM and NREM sleep, NREM and REM parasomnias, intrasleep responsiveness, inattention and mind wandering in wakefulness. Yet, the physiological origins of local sleep or its putative functions remain unclear. Exploring further local sleep could provide a unique and novel perspective on how and why we sleep.
Collapse
Affiliation(s)
- Thomas Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia.
| | - Delphine Oudiette
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France
| |
Collapse
|
17
|
Krueger JM. Tripping on the edge of consciousness. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad039. [PMID: 37954093 PMCID: PMC10632728 DOI: 10.1093/sleepadvances/zpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 11/14/2023]
Abstract
Herein the major accomplishments, trials and tribulations, and epiphanies experienced by James M. Krueger over the course of his career in sleep research are presented. They include the characterization of a) the supranormal EEG delta waves occurring during NREMS post sleep loss, b) Factor S as a muramyl peptide, c) the physiological roles of cytokines in sleep regulation, d) multiple other sleep regulatory substances, e) the dramatic changes in sleep over the course of infectious diseases, and f) sleep initiation within small neuronal/glial networks. The theory that the preservation of brain plasticity is the primordial sleep function is briefly discussed. These accomplishments resulted from collaborations with many outstanding scientists including James M. Krueger's mentors (John Pappenheimer and Manfred Karnovsky) and collaborators later in life, including Charles Dinarello, Louis Chedid, Mark Opp, Ferenc Obal jr., Dave Rector, Ping Taishi, Linda Toth, Jeannine Majde, Levente Kapas, Eva Szentirmai, Jidong Fang, Chris Davis, Sandip Roy, Tetsuya Kushikata, Fabio Garcia-Garcia, Ilia Karatsoreos, Mark Zielinski, and Alok De, plus many students, e.g. Jeremy Alt, Kathryn Jewett, Erika English, and Victor Leyva-Grado.
Collapse
Affiliation(s)
- James M Krueger
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, USA
| |
Collapse
|
18
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
19
|
Bedont JL, Kolesnik A, Pivarshev P, Malik D, Hsu CT, Weljie A, Sehgal A. Chronic sleep loss sensitizes Drosophila melanogaster to nitrogen stress. Curr Biol 2023; 33:1613-1623.e5. [PMID: 36965479 PMCID: PMC10133188 DOI: 10.1016/j.cub.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 03/27/2023]
Abstract
Chronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation.1,2 To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss).3,4,5,6,7 Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction. Studies of excretion demonstrate inefficient nitrogen elimination in adult sleep mutants, likely contributing to their polyamine accumulation. Increasing levels of polyamines, particularly putrescine, promote sleep in control flies but poison sleep mutants. This parallels the broadly enhanced toxicity of high dietary nitrogen load from protein in chronically sleep-restricted Drosophila, including both sleep mutants and flies with hyper-activated wake-promoting neurons. Together, our results implicate nitrogen stress as a novel mechanism linking chronic sleep loss to adverse health outcomes-and perhaps for linking food and sleep homeostasis at the cellular level in healthy organisms.
Collapse
Affiliation(s)
- Joseph L Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Anna Kolesnik
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Pavel Pivarshev
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Dania Malik
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Cynthia T Hsu
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
20
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
21
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
22
|
Li Y, Haynes P, Zhang SL, Yue Z, Sehgal A. Ecdysone acts through cortex glia to regulate sleep in Drosophila. eLife 2023; 12:e81723. [PMID: 36719183 PMCID: PMC9928426 DOI: 10.7554/elife.81723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Steroid hormones are attractive candidates for transmitting long-range signals to affect behavior. These lipid-soluble molecules derived from dietary cholesterol easily penetrate the brain and act through nuclear hormone receptors (NHRs) that function as transcription factors. To determine the extent to which NHRs affect sleep:wake cycles, we knocked down each of the 18 highly conserved NHRs found in Drosophila adults and report that the ecdysone receptor (EcR) and its direct downstream NHR Eip75B (E75) act in glia to regulate the rhythm and amount of sleep. Given that ecdysone synthesis genes have little to no expression in the fly brain, ecdysone appears to act as a long-distance signal and our data suggest that it enters the brain more at night. Anti-EcR staining localizes to the cortex glia in the brain and functional screening of glial subtypes revealed that EcR functions in adult cortex glia to affect sleep. Cortex glia are implicated in lipid metabolism, which appears to be relevant for actions of ecdysone as ecdysone treatment mobilizes lipid droplets (LDs), and knockdown of glial EcR results in more LDs. In addition, sleep-promoting effects of exogenous ecdysone are diminished in lsd-2 mutant flies, which are lean and deficient in lipid accumulation. We propose that ecdysone is a systemic secreted factor that modulates sleep by stimulating lipid metabolism in cortex glia.
Collapse
Affiliation(s)
- Yongjun Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula Haynes
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Pharmacology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Zhifeng Yue
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
23
|
Lin JH, Chen XH, Wu Y, Cao YB, Chen HJ, Huang NX. Altered isotropic volume fraction in gray matter after sleep deprivation and its association with visuospatial memory: A neurite orientation dispersion and density imaging study. Front Neurosci 2023; 17:1144802. [PMID: 37034160 PMCID: PMC10076534 DOI: 10.3389/fnins.2023.1144802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background and aims Diffusion magnetic resonance imaging (dMRI) studies have revealed microstructural abnormalities in white matter resulting from sleep deprivation (SD). This study aimed to adopt neurite orientation dispersion and density imaging (NODDI) to investigate the effect of SD on gray matter (GM) microstructural properties and its association to visuospatial memory (VSM). Methods Twenty-four healthy women underwent two sessions of dMRI scanning and visuospatial ability assessment by Complex Figure Test (CFT), once during rested wakefulness (RW) and once after 24 h of SD. We calculated NODDI metrics, including intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISO). Differences in NODDI-related metrics between RW and SD were determined using a voxel-wise paired t-test. We identified an association between NODDI metrics and CFT results using Spearman's correlation coefficient. Results Sleep deprivation worsened subjects' performance in the delayed-CFT trial. We observed no significant difference in ICVF and ODI between RW and SD. After SD, subjects showed decreases in ISO, primarily in the prefrontal cortex and temporal lobe, while exhibiting ISO increases in the anterior and posterior cerebellar lobe and cerebellar vermis. Furthermore, ISO change in the left superior, middle and inferior frontal gyrus was significantly correlated with completion time change in delayed-CFT trial performance. Conclusion Our results suggested that SD hardly affected the density and spatial organization of neurites in GM, but the extra-neurite water molecule diffusion process was affected (perhaps resulting from neuroinflammation), which contributed to VSM dysfunction.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xu-Hui Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yun-Bin Cao
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Hua-Jun Chen,
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- Nao-Xin Huang,
| |
Collapse
|
24
|
Diering GH. Remembering and forgetting in sleep: Selective synaptic plasticity during sleep driven by scaling factors Homer1a and Arc. Neurobiol Stress 2022; 22:100512. [PMID: 36632309 PMCID: PMC9826981 DOI: 10.1016/j.ynstr.2022.100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023] Open
Abstract
Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Carolina Institute for Developmental Disabilities, USA,111 Mason Farm Road, 5200 Medical and Biomolecular Research Building, Chapel Hill, NC, 27599-7545, USA.
| |
Collapse
|
25
|
Wang Y, Minami Y, Ode KL, Ueda HR. The role of calcium and CaMKII in sleep. Front Syst Neurosci 2022; 16:1059421. [PMID: 36618010 PMCID: PMC9815122 DOI: 10.3389/fnsys.2022.1059421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sleep is an evolutionarily conserved phenotype shared by most of the animals on the planet. Prolonged wakefulness will result in increased sleep need or sleep pressure. However, its mechanisms remain elusive. Recent findings indicate that Ca2+ signaling, known to control diverse physiological functions, also regulates sleep. This review intends to summarize research advances in Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in sleep regulation. Significant changes in sleep phenotype have been observed through calcium-related channels, receptors, and pumps. Mathematical modeling for neuronal firing patterns during NREM sleep suggests that these molecules compose a Ca2+-dependent hyperpolarization mechanism. The intracellular Ca2+ may then trigger sleep induction and maintenance through the activation of CaMKII, one of the sleep-promoting kinases. CaMKII and its multisite phosphorylation status may provide a link between transient calcium dynamics typically observed in neurons and sleep-wake dynamics observed on the long-time scale.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji L. Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan,*Correspondence: Hiroki R. Ueda,
| |
Collapse
|
26
|
Vigilant Attention, Cerebral Blood Flow and Grey Matter Volume Change after 36 h of Acute Sleep Deprivation in Healthy Male Adults: A Pilot Study. Brain Sci 2022; 12:brainsci12111534. [DOI: 10.3390/brainsci12111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
It is commonly believed that alertness and attention decrease after sleep deprivation (SD). However, there are not enough studies on the changes in psychomotor vigilance testing (PVT) during SD and the corresponding changes in brain function and brain structure after SD. Therefore, we recruited 30 healthy adult men to perform a 36 h acute SD experiment, including the measurement of five indicators of PVT every 2 h, and analysis of cerebral blood flow (CBF) and grey matter volume (GMV) changes, before and after SD by magnetic resonance imaging (MRI). The PVT measurement found that the mean reaction time (RT), fastest 10% RT, minor lapses, and false starts all increased progressively within 20 h of SD, except for major lapses. Subsequently, all indexes showed a significant lengthening or increasing trend, and the peak value was in the range of 24 h-32 h and decreased at 36 h, in which the number of major lapses returned to normal. MRI showed that CBF decreased in the left orbital part of the superior frontal gyrus, the left of the rolandic operculum, the left triangular part, and the right opercular part of the inferior frontal gyrus, and CBF increased in the left lingual gyrus and the right superior gyrus after 36 h SD. The left lingual gyrus was negatively correlated with the major lapses, and both the inferior frontal gyrus and the superior frontal gyrus were positively correlated with the false starts. Still, there was no significant change in GMV. Therefore, we believe that 36 h of acute SD causes alterations in brain function and reduces alert attention, whereas short-term acute SD does not cause changes in brain structure.
Collapse
|
27
|
Giannos P, Prokopidis K, Forbes SC, Celoch K, Candow DG, Tartar JL. Gene Expression Changes of Murine Cortex Homeostasis in Response to Sleep Deprivation Hint Dysregulated Aging-like Transcriptional Responses. Brain Sci 2022; 12:825. [PMID: 35884632 PMCID: PMC9313387 DOI: 10.3390/brainsci12070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep deprivation leads to the deterioration in the physiological functioning of the brain, cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age. Sleep insufficiency and impairments in cognitive function are characterized by progressive neuronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-deprived murine models and circadian matched controls to identify genes that might underlie cortical homeostasis in response to sleep deprivation. Screening of the literature resulted in three murine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included cortical tissue biopsies from mice that are sleep deprived for 6 h (n = 15) and from circadian controls that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a network of encoded proteins that are ranked based on their interactome according to 11 topological algorithms. The analysis revealed three genes-NFKBIA, EZR, and SGK1-which exhibited the highest multi-algorithmic topological significance. These genes are strong markers of increased brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply aging-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants further experimental validation.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Kamil Celoch
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Jaime L. Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| |
Collapse
|
28
|
Chang C, Furukawa T, Asahina T, Shimba K, Kotani K, Jimbo Y. Coupling of in vitro Neocortical-Hippocampal Coculture Bursts Induces Different Spike Rhythms in Individual Networks. Front Neurosci 2022; 16:873664. [PMID: 35677356 PMCID: PMC9168126 DOI: 10.3389/fnins.2022.873664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Brain-state alternation is important for long-term memory formation. Each brain state can be identified with a specific process in memory formation, e.g., encoding during wakefulness or consolidation during sleeping. The hippocampal-neocortical dialogue was proposed as a hypothetical framework for systems consolidation, which features different cross-frequency couplings between the hippocampus and distributed neocortical regions in different brain states. Despite evidence supporting this hypothesis, little has been reported about how information is processed with shifts in brain states. To address this gap, we developed an in vitro neocortical-hippocampal coculture model to study how activity coupling can affect connections between coupled networks. Neocortical and hippocampal neurons were cultured in two different compartments connected by a micro-tunnel structure. The network activity of the coculture model was recorded by microelectrode arrays underlying the substrate. Rhythmic bursting was observed in the spontaneous activity and electrical evoked responses. Rhythmic bursting activity in one compartment could couple to that in the other via axons passing through the micro-tunnels. Two types of coupling patterns were observed: slow-burst coupling (neocortex at 0.1–0.5 Hz and hippocampus at 1 Hz) and fast burst coupling (neocortex at 20–40 Hz and hippocampus at 4–10 Hz). The network activity showed greater synchronicity in the slow-burst coupling, as indicated by changes in the burstiness index. Network synchronicity analysis suggests the presence of different information processing states under different burst activity coupling patterns. Our results suggest that the hippocampal-neocortical coculture model possesses multiple modes of burst activity coupling between the cortical and hippocampal parts. With the addition of external stimulation, the neocortical-hippocampal network model we developed can elucidate the influence of state shifts on information processing.
Collapse
Affiliation(s)
- ChihHsiang Chang
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- *Correspondence: ChihHsiang Chang
| | - Takuma Furukawa
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takahiro Asahina
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenta Shimba
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Zhao R, Sun JB, Deng H, Cheng C, Li X, Wang FM, He ZY, Chang MY, Lu LM, Tang CZ, Xu NG, Yang XJ, Qin W. Per1 gene polymorphisms influence the relationship between brain white matter microstructure and depression risk. Front Psychiatry 2022; 13:1022442. [PMID: 36440417 PMCID: PMC9691780 DOI: 10.3389/fpsyt.2022.1022442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian rhythm was involved in the pathogenesis of depression. The detection of circadian genes and white matter (WM) integrity achieved increasing focus for early prediction and diagnosis of major depressive disorder (MDD). This study aimed to explore the effects of PER1 gene polymorphisms (rs7221412), one of the key circadian genes, on the association between depressive level and WM microstructural integrity. MATERIALS AND METHODS Diffusion tensor imaging scanning and depression assessment (Beck Depression Inventory, BDI) were performed in 77 healthy college students. Participants also underwent PER1 polymorphism detection and were divided into the AG group and AA group. The effects of PER1 genotypes on the association between the WM characteristics and BDI were analyzed using tract-based spatial statistics method. RESULTS Compared with homozygous form of PER1 gene (AA), more individuals with risk allele G of PER1 gene (AG) were in depression state with BDI cutoff of 14 (χ2 = 7.37, uncorrected p = 0.007). At the level of brain imaging, the WM integrity in corpus callosum, internal capsule, corona radiata and fornix was poorer in AG group compared with AA group. Furthermore, significant interaction effects of genotype × BDI on WM characteristics were observed in several emotion-related WM tracts. To be specific, the significant relationships between BDI and WM characteristics in corpus callosum, internal capsule, corona radiata, fornix, external capsule and sagittal stratum were only found in AG group, but not in AA group. CONCLUSION Our findings suggested that the PER1 genotypes and emotion-related WM microstructure may provide more effective measures of depression risk at an early phase.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Jin-Bo Sun
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hui Deng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Chen Cheng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Xue Li
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhao-Yang He
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Meng-Ying Chang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Li-Ming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Juan Yang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Colombi I, Nieus T, Massimini M, Chiappalone M. Spontaneous and Perturbational Complexity in Cortical Cultures. Brain Sci 2021; 11:1453. [PMID: 34827452 PMCID: PMC8615728 DOI: 10.3390/brainsci11111453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity.
Collapse
Affiliation(s)
- Ilaria Colombi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
- IRCCS, Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics and System Engineering, 16145 Genova, Italy
- Rehab Technologies Lab., Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
31
|
Kow LM, Kandel H, Kilinc M, Daniels MA, Magarinos AM, Jiang CS, Pfaff DW. Potassium channels and the development of arousal-relevant action potential trains in primary hindbrain neurons. Brain Res 2021; 1768:147574. [PMID: 34274325 PMCID: PMC8513459 DOI: 10.1016/j.brainres.2021.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Murat Kilinc
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Martin A Daniels
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Ana M Magarinos
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
32
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
33
|
Effects of Severe Sleep Disruption on the Synaptic Ultrastructure of Young Mice. eNeuro 2021; 8:ENEURO.0077-21.2021. [PMID: 34193511 PMCID: PMC8287877 DOI: 10.1523/eneuro.0077-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
There is molecular, electrophysiological, and ultrastructural evidence that a net increase in synaptic strength occurs in many brain circuits during spontaneous wake (SW) or short sleep deprivation, reflecting ongoing learning. Sleep leads instead to a broad but selective weakening of many forebrain synapses, thus preventing synaptic saturation and decreasing the energy cost of synaptic activity. Whether synaptic potentiation can persist or further increase after long sleep deprivation is unknown. Whether synaptic renormalization can occur during chronic sleep restriction (CSR) is also unknown. Here, we addressed these questions by measuring an established ultrastructural measure of synaptic strength, the axon-spine interface (ASI), in the primary motor cortex (M1) of (1) one-month-old adolescent mice CSR using a paradigm that decreases NREM and REM sleep by two/thirds; (2) in two-week-old mouse pups sleep deprived for 15 h, or allowed afterward to recover for 16 h. Both groups were compared with mice of the same age that were asleep or awake for a few hours (both sexes). The ASI size of CSR mice (n = 3) was comparable to that measured after SW or short sleep deprivation and larger than after sleep (n = 4/group). In pups, the ASI size increased after short sleep loss (n = 3) relative to sleep (n = 4), fell below sleep levels after long sleep deprivation (n = 4), and remained low after recovery (n = 3). Long sleep deprived pups also lost some weight. These results suggest that (1) severe sleep restriction is incompatible with synaptic renormalization; (2) very young mice cannot maintain high synaptic strength during prolonged wake.
Collapse
|
34
|
Dykstra-Aiello C, Koh KMS, Nguyen J, Xue M, Roy S, Krueger JM. A wake-like state in vitro induced by transmembrane TNF/soluble TNF receptor reverse signaling. Brain Behav Immun 2021; 94:245-258. [PMID: 33571627 PMCID: PMC8058269 DOI: 10.1016/j.bbi.2021.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) has sleep regulatory and brain development roles. TNF promotes sleep in vivo and in vitro while TNF inhibition diminishes sleep. Transmembrane (tm) TNF and the tmTNF receptors (Rs), are cleaved by tumor necrosis factor alpha convertase to produce soluble (s) TNF and sTNFRs. Reverse signaling occurs in cells expressing tmTNF upon sTNFR binding. sTNFR administration in vivo inhibits sleep, thus we hypothesized that a wake-like state in vitro would be induced by sTNFR-tmTNF reverse signaling. Somatosensory cortical neuron/glia co-cultures derived from male and female mice lacking both TNFRs (TNFRKO), or lacking TNF (TNFKO) and wildtype (WT) mice were plated onto six-well multi-electrode arrays. Daily one-hour electrophysiological recordings were taken on culture days 4 through 14. sTNFR1 (0.0, 0.3, 3, 30, 60, and 120 ng/µL) was administered on day 14. A final one-hour recording was taken on day 15. Four measures were characterized that are also used to define sleep in vivo: action potentials (APs), burstiness index (BI), synchronization of electrical activity (SYN), and slow wave power (SWP; 0.25-3.75 Hz). Development rates of these emergent electrophysiological properties increased in cells from mice lacking TNF or both TNFRs compared to cells from WT mice. Decreased SWP, after the three lowest doses (0.3, 3 and 30 ng/µL) of the sTNFR1, indicate a wake-like state in cells from TNFRKO mice. A wake-like state was also induced after 3 ng/µl sTNFR1 treatment in cells from TNFKO mice, which express the TNFR1 ligand, lymphotoxin alpha. Cells from WT mice showed no treatment effects. Results are consistent with prior studies demonstrating involvement of TNF in brain development, TNF reverse signaling, and sleep regulation in vivo. Further, the current demonstration of sTNFR1 induction of a wake-like state in vitro is consistent with the idea that small neuronal/glial circuits manifest sleep- and wake-like states analogous to those occurring in vivo. Finally, that sTNF forward signaling enhances sleep while sTNFR1 reverse signaling enhances a wake-like state is consistent with other sTNF/tmTNF/sTNFR1 brain actions having opposing activities.
Collapse
Affiliation(s)
- Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States.
| | - Khia Min Sabrina Koh
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Joseph Nguyen
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - James M Krueger
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| |
Collapse
|
35
|
McKillop LE, Fisher SP, Milinski L, Krone LB, Vyazovskiy VV. Diazepam effects on local cortical neural activity during sleep in mice. Biochem Pharmacol 2021; 191:114515. [PMID: 33713641 PMCID: PMC8363939 DOI: 10.1016/j.bcp.2021.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
GABA-ergic neurotransmission plays a key role in sleep regulatory mechanisms and in brain oscillations during sleep. Benzodiazepines such as diazepam are known to induce sedation and promote sleep, however, EEG spectral power in slow frequencies is typically reduced after the administration of benzodiazepines or similar compounds. EEG slow waves arise from a synchronous alternation between periods of cortical network activity (ON) and silence (OFF), and represent a sensitive marker of preceding sleep-wake history. Yet it remains unclear how benzodiazepines act on cortical neural activity during sleep. To address this, we obtained chronic recordings of local field potentials and multiunit activity (MUA) from deep cortical layers of the primary motor cortex in freely behaving mice after diazepam injection. We found that the amplitude of individual LFP slow waves was significantly reduced after diazepam injection and was accompanied by a lower incidence and duration of the corresponding neuronal OFF periods. Further investigation suggested that this is due to a disruption in the synchronisation of cortical neurons. Our data suggest that the state of global sleep and local cortical synchrony can be dissociated, and that the brain state induced by benzodiazepines is qualitatively different from spontaneous physiological sleep.
Collapse
Affiliation(s)
- Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom.
| |
Collapse
|
36
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
37
|
Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2021; 143:3672-3684. [PMID: 33188680 PMCID: PMC7805800 DOI: 10.1093/brain/awaa338] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods—reflecting transient suppressions of neuronal activity—in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Fecchio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Silvia Casarotto
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Alessandro Viganò
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | | | - Olivia Gosseries
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Matteo Quarenghi
- Unità Operativa Radiologia, Azienda Ospedaliera Vizzolo P -Risonanza Magnetica- ASST Melegnano e Martesana, Vizzolo Predabissi, Italy
| | - Steven Laureys
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Guya Devalle
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
38
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
39
|
Zeng B, Zhou J, Li Z, Zhang H, Li Z, Yu P. Altered Percent Amplitude of Fluctuation in Healthy Subjects After 36 h Sleep Deprivation. Front Neurol 2021; 11:565025. [PMID: 33519662 PMCID: PMC7843545 DOI: 10.3389/fneur.2020.565025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate regional brain activity alteration in healthy subjects in a sleep deprivation (SD) status relative to a rested wakefulness status using a percent amplitude of fluctuation (PerAF) method. Methods: A total of 20 healthy participants (12 males, 8 females; age, 22.25 ± 1.12 years) were recruited. All participants underwent attention tests and resting-state functional MRI scans during rested wakefulness before SD and after 36 h SD, respectively. The PerAF method was applied to identify SD-related regional brain activity alteration. A ROC curve was conducted to evaluate the ability of the PerAF method in distinguishing different sleep statuses. The relationships between SD-induced brain alterations and attention deficits were determined by Pearson correlation analysis. Results: SD resulted in a 2.23% decrease in accuracy rate and an 8.82% increase in reaction time. SD was associated with increased PerAF differences in the bilateral visual cortex and bilateral sensorimotor cortex, and was associated with decreased PerAF differences in bilateral dorsolateral prefrontal cortex and bilateral cerebellum posterior lobe. These SD-induced brain alterations exhibited a high discriminatory power of extremely high AUC values (0.993-1) in distinguishing the two statuses. The accuracy rate positively correlated with the bilateral cerebellum posterior lobe, and bilateral dorsolateral prefrontal cortex, and negatively correlated with the bilateral sensorimotor cortex. Conclusions: Acute SD could lead to an ~8% attention deficit, which was associated with regional brain activity deficits. The PerAF method might work as a potential sensitivity biomarker for identifying different sleep statuses.
Collapse
Affiliation(s)
- Bingliang Zeng
- Department of Radiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jian Zhou
- Department of Radiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Zicong Li
- Department of Radiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Hua Zhang
- Department of Imaging, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Imaging, The First Hospital of Nanchang, Nanchang, China
| | - Zongliang Li
- Department of Radiology, Nanfeng County People's Hospital, Fuzhou, China
| | - Peng Yu
- Radiology Department, Jinxian County People's Hospital, Nanchang, China
| |
Collapse
|
40
|
Britten RA, Fesshaye AS, Duncan VD, Wellman LL, Sanford LD. Sleep Fragmentation Exacerbates Executive Function Impairments Induced by Low Doses of Si Ions. Radiat Res 2020; 194:116-123. [PMID: 32845991 DOI: 10.1667/rade-20-00080.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 11/03/2022]
Abstract
Astronauts on deep space missions will be required to work autonomously and thus their ability to perform executive functions could be critical to mission success. Ground-based rodent experiments have shown that low (<25 cGy) doses of several space radiation (SR) ions impair various aspects of executive function. Translating ground-based rodent studies into tangible risk estimates for astronauts remains an enormous challenge, but should similar neurocognitive impairments occur in astronauts exposed to low-SR doses, a Numbers-Needed-to-Harm analysis (of the rodent data) predicts that approximately 30% of the astronauts could develop severe cognitive flexibility decrements. In addition to the health risks associated with SR exposure, astronauts have to contend with other stressors, of which inadequate sleep quantity and quality are considered to be major concerns. We have shown that a single session of fragmented sleep uncovered latent attentional set-shifting (ATSET) performance deficits in rats exposed to protracted neutron radiation that had no obvious defects in performance under rested wakefulness conditions. It is unclear if the exacerbating effect of sleep fragmentation (SF) only occurs in rats receiving protracted low-dose-rate-neutron radiation. In this study, we assessed whether SF also unmasks latent ATSET deficits in rats exposed to 5 cGy 600 MeV/n 28Si ions. Only sham and Si-irradiated rats that had good ATSET performance (passing every stage of the test on their first attempt) were selected for study. Sleep fragmentation selectively impaired performance in the more complex IDR, EDS and EDR stages of the ATSET test in the Si-irradiated rats. Set-shifting performance has rarely been affected by SR exposure in our studies conducted with rats tested under rested wakefulness conditions. The consistent SF-related unmasking of latent set-shifting deficits in both Si- and neutron-irradiated rats suggests that there is a unique interaction between sleep fragmentation and space radiation on the functionality of the brain regions that regulate performance in the IDR, EDS and EDR stages of ATSET. The uncovering of these latent SR-induced ATSET performance deficits in both Si- and neutron-irradiated rats suggests that the true impact of SR-induced cognitive impairment may not be fully evident in normally rested rats, and thus cognitive testing needs to be conducted under both rested wakefulness and sleep fragmentation conditions.
Collapse
Affiliation(s)
- Richard A Britten
- Departments of a Radiation Oncology.,Departments of Microbiology and Molecular Cell Biology.,Center for Integrative Neuroscience and Inflammatory Diseases.,Leroy T. Canoles Jr. Cancer Center
| | | | | | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases.,Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases.,Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
41
|
Abstract
Sleep is a fundamental property conserved across species. The homeostatic induction of sleep indicates the presence of a mechanism that is progressively activated by the awake state and that induces sleep. Several lines of evidence support that such function, namely, sleep need, lies in the neuronal assemblies rather than specific brain regions and circuits. However, the molecular mechanism underlying the dynamics of sleep need is still unclear. This review aims to summarize recent studies mainly in rodents indicating that protein phosphorylation, especially at the synapses, could be the molecular entity associated with sleep need. Genetic studies in rodents have identified a set of kinases that promote sleep. The activity of sleep-promoting kinases appears to be elevated during the awake phase and in sleep deprivation. Furthermore, the proteomic analysis demonstrated that the phosphorylation status of synaptic protein is controlled by the sleep-wake cycle. Therefore, a plausible scenario may be that the awake-dependent activation of kinases modifies the phosphorylation status of synaptic proteins to promote sleep. We also discuss the possible importance of multisite phosphorylation on macromolecular protein complexes to achieve the slow dynamics and physiological functions of sleep in mammals.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics, Osaka, Japan
| |
Collapse
|
42
|
Melloni EMT, Poletti S, Dallaspezia S, Bollettini I, Vai B, Barbini B, Zanardi R, Colombo C, Benedetti F. Changes of white matter microstructure after successful treatment of bipolar depression. J Affect Disord 2020; 274:1049-1056. [PMID: 32663931 DOI: 10.1016/j.jad.2020.05.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with bipolar disorder (BD). The chronotherapeutic combination of repeated total sleep deprivation and morning light therapy (TSD+LT) can acutely reverse depressive symptoms in approximately 60% of patients, and it has been confirmed as a model antidepressant treatment to investigate the neurobiological correlates of rapid antidepressant response. METHODS We tested if changes in DTI measures of WM microstructure could parallel antidepressant response in a sample of 44 patients with a major depressive episode in course of BD, treated with chronoterapeutics for one week. We used both a tract-wise and a voxel-wise approach for the whole-brain extraction of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA). RESULTS Compared to baseline level, at one-week follow up we observed a significant increase in average FA measures paralleled by a significant decrease in MD measures of several WM tracts including cingulum, corpus callosum, corona radiata, cortico-spinal tract, internal capsule, fornix and uncinate fasciculus. The degree of change was associated to clinical response. CONCLUSIONS This is the first study to show changes of individual DTI measures of WM microstructure in response to antidepressant treatment in BD. Our results add new evidence to warrant a role for chronotherapeutics as a first-line treatment for bipolar depression and contribute identifying generalizable neuroimaging-based biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy.
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy
| | - Barbara Barbini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
43
|
Sun J, Zhao R, Yang X, Deng H, Zhu Y, Chen Y, Yuan K, Xi Y, Yin H, Qin W. Alteration of Brain Gray Matter Density After 24 h of Sleep Deprivation in Healthy Adults. Front Neurosci 2020; 14:754. [PMID: 32903801 PMCID: PMC7438917 DOI: 10.3389/fnins.2020.00754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
It has been reported that one night of acute sleep deprivation (SD) could induce brain structural changes at the synaptic and neuronal levels in animal studies, and could lead to white matter microstructure and cortical thickness change in human neuroimaging studies. In this study, we focused on changes of brain gray matter density (GMD) after one night of acute SD, which has not been explored previously. Twenty-three normal young participants completed the experiment. Each participant underwent twice T1-weighted structural image scanning with one at 08:00 after normal sleep [resting wakeful (RW)] and the other at 08:00 after 24 h of SD. Using voxel-based morphometry (VBM) analysis by FSL-VBM software, we compared GMD between RW and SD. In addition, the gray matter volume (GMV) and cortical thickness (CT) were also calculated based on volumetric and surface measures with FreeSurfer software. The psychomotor vigilance test (PVT) and the Karolinska Sleepiness Scale (KSS) were performed and evaluated for correlation analysis with GMD, GMV, and CT of the significant regions. Our results showed that the GMD in the right frontal pole (FP), right superior frontal gyrus (SFG), and right middle frontal gyrus significantly increased and GMV and CT in the right temporal pole (TP) significantly decreased after 24 h of acute SD. SD-induced changes in GMD in the right middle frontal gyrus were positively correlated with the changes of KSS scores (Spearman’s correlation r = 0.625, p = 0.0014, Bonferroni correction with p < 0.05/25). Taken together, our findings suggested that one night of acute SD could induce substantial brain structure changes and the alterations in GMD in the right middle frontal gyrus (MFG) might be implicated in sleepiness after SD.
Collapse
Affiliation(s)
- Jinbo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Xuejuan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yao Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Kai Yuan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
44
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
45
|
Lee YF, Gerashchenko D, Timofeev I, Bacskai BJ, Kastanenka KV. Slow Wave Sleep Is a Promising Intervention Target for Alzheimer's Disease. Front Neurosci 2020; 14:705. [PMID: 32714142 PMCID: PMC7340158 DOI: 10.3389/fnins.2020.00705] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia, characterized by the presence of amyloid-beta plaques and neurofibrillary tau tangles. Plaques and tangles are associated with sleep-wake cycle disruptions, including the disruptions in non-rapid eye movement (NREM) slow wave sleep (SWS). Alzheimer's patients spend less time in NREM sleep and exhibit decreased slow wave activity (SWA). Consistent with the critical role of SWS in memory consolidation, reduced SWA is associated with impaired memory consolidation in AD patients. The aberrant SWA can be modeled in transgenic mouse models of amyloidosis and tauopathy. Animal models exhibited slow wave impairments early in the disease progression, prior to the deposition of amyloid-beta plaques, however, in the presence of abundant oligomeric amyloid-beta. Optogenetic rescue of SWA successfully halted the amyloid accumulation and restored intraneuronal calcium levels in mice. On the other hand, optogenetic acceleration of slow wave frequency exacerbated amyloid deposition and disrupted neuronal calcium homeostasis. In this review, we summarize the evidence and the mechanisms underlying the existence of a positive feedback loop between amyloid/tau pathology and SWA disruptions that lead to further accumulations of amyloid and tau in AD. Moreover, since SWA disruptions occur prior to the plaque deposition, SWA disruptions may provide an early biomarker for AD. Finally, we propose that therapeutic targeting of SWA in AD might lead to an effective treatment for Alzheimer's patients.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Dmitry Gerashchenko
- Harvard Medical School/VA Boston Healthcare System, West Roxbury, MA, United States
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval, Québec, QC, Canada
- CERVO Brain Research Center, Québec, QC, Canada
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
46
|
Krueger JM. Sleep and circadian rhythms: Evolutionary entanglement and local regulation. Neurobiol Sleep Circadian Rhythms 2020; 9:100052. [PMID: 32529121 PMCID: PMC7281830 DOI: 10.1016/j.nbscr.2020.100052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022] Open
Abstract
Circadian rhythms evolved within single cell organisms and serve to regulate rest-activity cycles in most single-cell and multiple-cell organisms. In contrast, sleep is a network emergent property found in animals with a nervous system. Rhythms and sleep are much entangled involving shared regulatory molecules such as adenosine, ATP, cytokines, neurotrophins, and nitric oxide. These molecules are activity-dependent and act locally to initiate regulatory events involved in rhythms, sleep, and plasticity.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, Washington State University, Spokane, United States
| |
Collapse
|
47
|
Bandarabadi M, Vassalli A, Tafti M. Sleep as a default state of cortical and subcortical networks. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Pace M, Colombi I, Falappa M, Freschi A, Bandarabadi M, Armirotti A, Encarnación BM, Adamantidis AR, Amici R, Cerri M, Chiappalone M, Tucci V. Loss of Snord116 alters cortical neuronal activity in mice: a preclinical investigation of Prader–Willi syndrome. Hum Mol Genet 2020; 29:2051-2064. [DOI: 10.1093/hmg/ddaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Abstract
Prader–Willi syndrome (PWS) is a neurodevelopmental disorder that is characterized by metabolic alteration and sleep abnormalities mostly related to rapid eye movement (REM) sleep disturbances. The disease is caused by genomic imprinting defects that are inherited through the paternal line. Among the genes located in the PWS region on chromosome 15 (15q11-q13), small nucleolar RNA 116 (Snord116) has been previously associated with intrusions of REM sleep into wakefulness in humans and mice. Here, we further explore sleep regulation of PWS by reporting a study with PWScrm+/p− mouse line, which carries a paternal deletion of Snord116. We focused our study on both macrostructural electrophysiological components of sleep, distributed among REMs and nonrapid eye movements. Of note, here, we study a novel electroencephalography (EEG) graphoelements of sleep for mouse studies, the well-known spindles. EEG biomarkers are often linked to the functional properties of cortical neurons and can be instrumental in translational studies. Thus, to better understand specific properties, we isolated and characterized the intrinsic activity of cortical neurons using in vitro microelectrode array. Our results confirm that the loss of Snord116 gene in mice influences specific properties of REM sleep, such as theta rhythms and, for the first time, the organization of REM episodes throughout sleep–wake cycles. Moreover, the analysis of sleep spindles present novel specific phenotype in PWS mice, indicating that a new catalog of sleep biomarkers can be informative in preclinical studies of PWS.
Collapse
Affiliation(s)
- Marta Pace
- Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Ilaria Colombi
- Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova 16132, Italy
| | - Matteo Falappa
- Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova 16132, Italy
| | - Andrea Freschi
- Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Mojtaba Bandarabadi
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | | | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, Bern 3010, Switzerland
- Department of Clinical Research, Inselspital University Hospital, University of Bern, Bern 3010, Switzerland
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna 40126, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna 40126, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| |
Collapse
|
49
|
Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2020; 42:5536856. [PMID: 31329251 PMCID: PMC6802571 DOI: 10.1093/sleep/zsz157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/27/2019] [Indexed: 02/03/2023] Open
Abstract
Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Yige Huang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - Laura E McKillop
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - David A Bechtold
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| |
Collapse
|
50
|
Familiarity Detection and Memory Consolidation in Cortical Assemblies. eNeuro 2020; 7:ENEURO.0006-19.2020. [PMID: 32122957 PMCID: PMC7215585 DOI: 10.1523/eneuro.0006-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023] Open
Abstract
Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain inconclusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity detection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate were distributed over the entire network, suggesting that familiarity detection is a system level property. We also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classification results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition, using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy induced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
Collapse
|