1
|
Soylu KO, Yemisci M, Karatas H. The link between spreading depolarization and innate immunity in the central nervous system. J Headache Pain 2025; 26:25. [PMID: 39901107 PMCID: PMC11792447 DOI: 10.1186/s10194-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025] Open
Abstract
Spreading depolarization (SD) is a complex event that induces significant cellular stress in the central nervous system, leading to a robust inflammatory response without causing cell death in healthy tissues which may be called as neuro-parainflammation. Research has established a clear link between SD and the activation of pro-inflammatory pathways, particularly through the release of cytokines like interleukin-1β and tumor necrosis factor-α, and the involvement of inflammatory mediators such as cyclooxygenase-2 and high mobility group box 1 (HMGB1). Mechanistically, the opening of pannexin-1 (Panx1) channels and the activation of the (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome play critical roles in this process, facilitating the release of inflammatory signals that can exacerbate conditions like migraine. Furthermore, the interplay between neurons and glial cells, particularly astrocytes and microglia, underscores the intricate nature of neuroinflammation triggered by SD. Importantly, these findings indicate that these inflammatory processes may also have systemic implications, affecting immune responses beyond the central nervous system. Overall, this body of work highlights the need for further exploration of the mechanisms underlying SD-induced inflammation and potential therapeutic targets to mitigate neuroinflammatory disorders. Inflammation extends beyond the central nervous system to peripheral structures, including the meninges and trigeminovascular system, which are critical for headache initiation. Genetic factors, particularly familial hemiplegic migraine (FHM), exacerbate neuroinflammatory responses to SD, leading to increased susceptibility and prolonged headache behaviors. Collectively, these findings underscore the complex cellular interactions and innate inflammatory processes underlying SD and their relevance to migraine mechanisms, suggesting potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kadir Oguzhan Soylu
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Department of Neurology, Hacettepe University, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye.
| |
Collapse
|
2
|
Pál B. On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 2024; 19:2602-2612. [PMID: 38595279 PMCID: PMC11168512 DOI: 10.4103/nrr.nrr-d-23-01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extrasynaptic N-methyl-D-aspartate receptors with the contribution of astrocytes. These events are significantly slower than the excitatory postsynaptic currents. Parameters of slow inward currents are determined by several factors including the mechanisms of astrocytic activation and glutamate release, as well as the diffusion pathways from the release site towards the extrasynaptic receptors. Astrocytes are stimulated by neuronal network activity, which in turn excite neurons, forming an astrocyte-neuron feedback loop. Mostly as a consequence of brain edema, astrocytic swelling can also induce slow inward currents under pathological conditions. There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level. These events often occur in synchrony on neurons located in the same astrocytic domain. Besides synchronization of neuronal excitability, slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity. In addition, slow inward currents are also subject to non-synaptic plasticity triggered by long-lasting stimulation of the excitatory inputs. Of note, there might be important region-specific differences in the roles and actions triggering slow inward currents. In greater networks, the pathophysiological roles of slow inward currents can be better understood than physiological ones. Slow inward currents are identified in the pathophysiological background of autism, as slow inward currents drive early hypersynchrony of the neural networks. Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes. These events are related to epilepsy, but also found in Alzheimer's disease, Parkinson's disease, and stroke, leading to the decline of cognitive functions. Events with features overlapping with slow inward currents (excitatory, N-methyl-D-aspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke, traumatic brain injury, or epilepsy. One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation. However, to state this, more experimental evidence from greater neuronal networks or the level of the individual is needed. In this review, I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Chang CY, Wu CC, Tzeng CY, Li JR, Chen YF, Chen WY, Kuan YH, Liao SL, Chen CJ. NMDA receptor blockade attenuates Japanese encephalitis virus infection-induced microglia activation. J Neuroinflammation 2024; 21:291. [PMID: 39511597 PMCID: PMC11545997 DOI: 10.1186/s12974-024-03288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Neurodegeneration and neuroinflammation are key components in the pathogenesis of Japanese Encephalitis caused by Japanese Encephalitis Virus (JEV) infection. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotoxic and pro-inflammatory properties in a cell context-dependent manner. Herein, potential roles of the NMDA receptor in excitatory neurotoxicity and neuroinflammation and effects of NMDA receptor blockade against JEV pathogenesis were investigated in rat microglia, neuron/glia, neuron cultures, and C57BL/6 mice. In microglia, JEV infection induced glutamate release and activated post-receptor NMDA signaling, leading to activation of Ca2+ mobilization and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), accompanied by pro-inflammatory NF-κB and AP-1 activation and cytokine expression. Additionally, increased Dynamin-Related Protein-1 protein phosphorylation, NAPDH Oxidase-2/4 expression, free radical generation, and Endoplasmic Reticulum stress paralleled with the reactive changes of microglia after JEV infection. JEV infection-induced biochemical and molecular changes contributed to microglia reactivity and pro-inflammatory cytokine expression. NMDA receptor antagonists MK801 and memantine alleviated intracellular signaling and pro-inflammatory cytokine expression in JEV-infected microglia. JEV infection induced neuronal cell death in neuron/glia culture associated with the concurrent production of pro-inflammatory cytokines. Conditioned media of JEV-infected microglia compromised neuron viability in neuron culture. JEV infection-associated neuronal cell death was alleviated by MK801 and memantine. Activation of NMDA receptor-related inflammatory changes, microglia activation, and neurodegeneration as well as reversal effects of memantine were revealed in the brains of JEV-infected mice. The current findings highlight a crucial role of the glutamate/NMDA receptor axis in linking excitotoxicity and neuroinflammation during the course of JEV pathogenesis, and proposes the anti-inflammatory and neuroprotective potential of NMDA receptor blockade.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, 420, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
- Department of Financial Engineering, Providence University, Taichung City, 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City, 433, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Yu-Fang Chen
- Department of Microbiology & Immunology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
4
|
Cropper HC, Conway CM, Wyche W, Pradhan AA. Glial activation in pain and emotional processing regions in the nitroglycerin mouse model of chronic migraine. Headache 2024; 64:973-982. [PMID: 38899347 PMCID: PMC11864597 DOI: 10.1111/head.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Our aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine. BACKGROUND Chronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain. METHODS The mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed. RESULTS Behavioral testing demonstrated increased cephalic allodynia in nitroglycerin- versus vehicle-treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification. CONCLUSIONS Immunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine-associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.
Collapse
Affiliation(s)
- Haley C Cropper
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | | | - Whitney Wyche
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
- Department of Anesthesiology, Washington University, St Louis, MO
| |
Collapse
|
5
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
6
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
7
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
8
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
10
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Hohmann U, Ghadban C, Hohmann T, Kleine J, Schmidt M, Scheller C, Strauss C, Dehghani F. Nimodipine Exerts Time-Dependent Neuroprotective Effect after Excitotoxical Damage in Organotypic Slice Cultures. Int J Mol Sci 2022; 23:ijms23063331. [PMID: 35328753 PMCID: PMC8954806 DOI: 10.3390/ijms23063331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
During injuries in the central nervous system, intrinsic protective processes become activated. However, cellular reactions, especially those of glia cells, are frequently unsatisfactory, and further exogenous protective mechanisms are necessary. Nimodipine, a lipophilic L-type calcium channel blocking agent is clinically used in the treatment of aneurysmal subarachnoid haemorrhage with neuroprotective effects in different models. Direct effects of nimodipine on neurons amongst others were observed in the hippocampus as well as its influence on both microglia and astrocytes. Earlier studies proposed that nimodipine protective actions occur not only via calcium channel-mediated vasodilatation but also via further time-dependent mechanisms. In this study, the effect of nimodipine application was investigated in different time frames on neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures. Nimodipine, but not nifedipine if pre-incubated for 4 h or co-applied with NMDA, was protective, indicating time dependency. Since blood vessels play no significant role in our model, intrinsic brain cell-dependent mechanisms seems to strongly be involved. We also examined the effect of nimodipine and nifedipine on microglia survival. Nimodipine seem to be a promising agent to reduce secondary damage and reduce excitotoxic damage.
Collapse
Affiliation(s)
- Urszula Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Chalid Ghadban
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Tim Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Joshua Kleine
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Miriam Schmidt
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Faramarz Dehghani
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
- Correspondence: ; Tel.: +49-3455571707
| |
Collapse
|
12
|
Mathew AA, Panonnummal R. Cortical spreading depression: culprits and mechanisms. Exp Brain Res 2022; 240:733-749. [DOI: 10.1007/s00221-022-06307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/06/2022] [Indexed: 02/14/2023]
|
13
|
Malkov A, Popova I, Ivanov A, Jang SS, Yoon SY, Osypov A, Huang Y, Zilberter Y, Zilberter M. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol 2021; 4:1054. [PMID: 34504272 PMCID: PMC8429759 DOI: 10.1038/s42003-021-02551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
A predominant trigger and driver of sporadic Alzheimer’s disease (AD) is the synergy of brain oxidative stress and glucose hypometabolism starting at early preclinical stages. Oxidative stress damages macromolecules, while glucose hypometabolism impairs cellular energy supply and antioxidant defense. However, the exact cause of AD-associated glucose hypometabolism and its network consequences have remained unknown. Here we report NADPH oxidase 2 (NOX2) activation as the main initiating mechanism behind Aβ1-42-related glucose hypometabolism and network dysfunction. We utilize a combination of electrophysiology with real-time recordings of metabolic transients both ex- and in-vivo to show that Aβ1-42 induces oxidative stress and acutely reduces cellular glucose consumption followed by long-lasting network hyperactivity and abnormalities in the animal behavioral profile. Critically, all of these pathological changes were prevented by the novel bioavailable NOX2 antagonist GSK2795039. Our data provide direct experimental evidence for causes and consequences of AD-related brain glucose hypometabolism, and suggest that targeting NOX2-mediated oxidative stress is a promising approach to both the prevention and treatment of AD. Anton Malkov, Irina Popova et al. demonstrate that beta-amyloid application induces oxidative stress and reduces glucose consumption in the mouse brain, leading to network hyperactivity and behavioral changes—pathologies similar to those observed early on in Alzheimer’s disease patients. Inhibition of NADPH oxidase 2 (NOX2) rescued these phenotypes, suggesting that NOX2 may represent an important therapeutic target for Alzheimer’s disease.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton Ivanov
- Aix Marseille Université, Inserm, Marseille, France
| | - Sung-Soo Jang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Osypov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
14
|
Jing F, Zou Q, Wang Y, Cai Z, Tang Y. Activation of microglial GLP-1R in the trigeminal nucleus caudalis suppresses central sensitization of chronic migraine after recurrent nitroglycerin stimulation. J Headache Pain 2021; 22:86. [PMID: 34325647 PMCID: PMC8323319 DOI: 10.1186/s10194-021-01302-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background Central sensitization is considered a critical pathogenic mechanism of chronic migraine (CM). Activation of microglia in the trigeminal nucleus caudalis (TNC) contributes to this progression. Microglial glucagon-like peptide-1 receptor (GLP-1R) activation can alleviate pain; however, whether it is involved in the mechanism of CM has not been determined. Thus, this study aims to investigate the precise role of GLP-1R in the central sensitization of CM. Methods Repeated nitroglycerin injection-treated mice were used as a CM animal model in the experiment. To identify the distribution and cell localization of GLP-1R in the TNC, we performed immunofluorescence staining. Changes in the expression of GLP-1R, Iba-1, PI3K and p-Akt in the TNC were examined by western blotting. To confirm the effect of GLP-1R and PI3K/Akt in CM, a GLP-1R selective agonist (liraglutide) and antagonist (exendin(9–39)) and a PI3K selective antagonist (LY294002) were administered. Mechanical hypersensitivity was measured through von Frey filaments. To investigate the role of GLP-1R in central sensitization, calcitonin gene-related peptide (CGRP) and c-fos were determined using western blotting and immunofluorescence. To determine the changes in microglial activation, IL-1β and TNF-α were examined by western blotting, and the number and morphology of microglia were measured by immunofluorescence. We also confirmed the effect of GLP-1R on microglial activation in lipopolysaccharide-treated BV-2 microglia. Results The protein expression of GLP-1R was increased in the TNC after nitroglycerin injection. GLP-1R was colocalized with microglia and astrocytes in the TNC and was fully expressed in BV-2 microglia. The GLP-1R agonist liraglutide alleviated basal allodynia and suppressed the upregulation of CGRP, c-fos and PI3K/p-Akt in the TNC. Similarly, the PI3K inhibitor LY294002 prevented nitroglycerin-induced hyperalgesia. In addition, activating GLP-1R reduced Iba-1, IL-1β and TNF-α release and inhibited TNC microglial number and morphological changes (process retraction) following nitroglycerin administration. In vitro, the protein levels of IL-1β and TNF-α in lipopolysaccharide-stimulated BV-2 microglia were also decreased by liraglutide. Conclusions These findings suggest that microglial GLP-1R activation in the TNC may suppress the central sensitization of CM by regulating TNC microglial activation via the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01302-x.
Collapse
Affiliation(s)
- Feng Jing
- Department of Histology and Embryology, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118 Xingguang Avenue, Liangjiang New Area, 401147, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118 Xingguang Avenue, Liangjiang New Area, 401147, Chongqing, China. .,Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China.
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
15
|
Vuralli D, Karatas H, Yemisci M, Bolay H. Updated review on the link between cortical spreading depression and headache disorders. Expert Rev Neurother 2021; 21:1069-1084. [PMID: 34162288 DOI: 10.1080/14737175.2021.1947797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Experimental animal studies have revealed mechanisms that link cortical spreading depression (CSD) to the trigeminal activation mediating lateralized headache. However, conventional CSD as seen in lissencephalic brain is insufficient to explain some clinical features of aura and migraine headache. AREAS COVERED The importance of CSD in headache development including dysfunction of the thalamocortical network, neuroinflammation, calcitonin gene-related peptide, transgenic models, and the role of CSD in migraine triggers, treatment options, neuromodulation and future directions are reviewed. EXPERT OPINION The conventional understanding of CSD marching across the hemisphere is invalid in gyrencephalic brains. Thalamocortical dysfunction and interruption of functional cortical network systems by CSD, may provide alternative explanations for clinical manifestations of migraine phases including aura. Not all drugs showing CSD blocking properties in lissencephalic brains, have efficacy in migraine headache and monoclonal antibodies against CGRP ligand/receptors which are effective in migraine treatment, have no impact on aura in humans or CSD properties in rodents. Functional networks and molecular mechanisms mediating and amplifying the effects of limited CSD in migraine brain remain to be investigated to define new targets.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Hulya Karatas
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
16
|
Murakawa-Hirachi T, Mizoguchi Y, Ohgidani M, Haraguchi Y, Monji A. Effect of memantine, an anti-Alzheimer's drug, on rodent microglial cells in vitro. Sci Rep 2021; 11:6151. [PMID: 33731780 PMCID: PMC7969939 DOI: 10.1038/s41598-021-85625-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pathophysiology of Alzheimer's disease (AD) is related to neuroinflammatory responses mediated by microglia. Memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors used as an anti-Alzheimer's drug, protects from neuronal death accompanied by suppression of proliferation and activation of microglial cells in animal models of AD. However, it remains to be tested whether memantine can directly affect microglial cell function. In this study, we examined whether pretreatment with memantine affects intracellular NO and Ca2+ mobilization using DAF-2 and Fura-2 imaging, respectively, and tested the effects of memantine on phagocytic activity by human β-Amyloid (1-42) phagocytosis assay in rodent microglial cells. Pretreatment with memantine did not affect production of NO or intracellular Ca2+ elevation induced by TNF in rodent microglial cells. Pretreatment with memantine also did not affect the mRNA expression of pro-inflammatory (TNF, IL-1β, IL-6 and CD45) or anti-inflammatory (IL-10, TGF-β and arginase) phenotypes in rodent microglial cells. In addition, pretreatment with memantine did not affect the amount of human β-Amyloid (1-42) phagocytosed by rodent microglial cells. Moreover, we observed that pretreatment with memantine did not affect 11 major proteins, which mainly function in the phagocytosis and degradation of β-Amyloid (1-42), including TREM2, DAP12 and neprilysin in rodent microglial cells. To the best of our knowledge, this is the first report to suggest that memantine does not directly modulate intracellular NO and Ca2+ mobilization or phagocytic activity in rodent microglial cells. Considering the neuroinflammation hypothesis of AD, the results might be important to understand the effect of memantine in the brain.
Collapse
Affiliation(s)
- Toru Murakawa-Hirachi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Masahiro Ohgidani
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
17
|
Bonaterra GA, Mierau O, Hofmann J, Schwarzbach H, Aziz-Kalbhenn H, Kolb C, Kinscherf R. In Vitro Effects of St. John's Wort Extract Against Inflammatory and Oxidative Stress and in the Phagocytic and Migratory Activity of Mouse SIM-A9 Microglia. Front Pharmacol 2021; 11:603575. [PMID: 33628177 PMCID: PMC7898673 DOI: 10.3389/fphar.2020.603575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Herbal medicinal plants as Hypericum perforatum L., known as St. John’s wort (SJW) have been in use for a long time. SJW that is specifically used for the treatment of depressive disorders. Inflammatory cytokines derived from microglia play an important role in the regulation of the synthesis and reuptake of glutamate and influence synaptic function, morphology and neuronal plasticity. The present study was performed to investigate, whether STW3-VI, a special SJW extract has protective effects on mouse SIM-A9 microglia against cytotoxic and proinflammatory effects of ROS, glutamate, NMDA or cortisol. Additionally, we investigated the effects of SJW on migratory and phagocytic properties of microglia. Results: Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine—inhibited the H2O2-induced TNF-α release by 20–40%. Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) delayed the 3 or 4 mM H2O2-induced intracellular ROS level by 26.9 and 44.4%, respectively. Furthermore, pre-treatment (48 h) of microglia with STW3-VI (5 μg/ml) - in contrast to desipramine - lowered the glutamate-induced cytotoxicity by 13.2%. Besides, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) or desipramine (5 µM) inhibited the NMDA-induced decrease of the viability by 16.5–28.8% or 12%, respectively. Finally, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine - reduced the cortisol-induced cytotoxicity by 15.5 and 12.9%. Treatment of microglia with STW3-VI (10 or 100 μg/ml) increased the migratory and the phagocytic capacities by 100 and 40%. Conclusion: Our data provide evidence that STW3-VI—in contrast to desipramine - protects microglia from oxidative stress, NMDA- or glutamate-induced cytotoxicity, and has anti-inflammatory properties that are accompanied by improvement of their migratory and phagocytic capacity. These protective (particularly the anti-inflammatory) properties may be beneficial in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Olga Mierau
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Johanna Hofmann
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Heba Aziz-Kalbhenn
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Christiane Kolb
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Varga DP, Menyhárt Á, Pósfai B, Császár E, Lénárt N, Cserép C, Orsolits B, Martinecz B, Szlepák T, Bari F, Farkas E, Dénes Á. Microglia alter the threshold of spreading depolarization and related potassium uptake in the mouse brain. J Cereb Blood Flow Metab 2020; 40:S67-S80. [PMID: 31987008 PMCID: PMC7687034 DOI: 10.1177/0271678x19900097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Pósfai
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Császár
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tamás Szlepák
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
19
|
Liu L, Kearns KN, Eli I, Sharifi KA, Soldozy S, Carlson EW, Scott KW, Sluzewski MF, Acton ST, Stauderman KA, Kalani MYS, Park M, Tvrdik P. Microglial Calcium Waves During the Hyperacute Phase of Ischemic Stroke. Stroke 2020; 52:274-283. [PMID: 33161850 DOI: 10.1161/strokeaha.120.032766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Ischemic injury triggers multiple pathological responses in the brain tissue, including spreading depolarizations across the cerebral cortex (cortical spreading depolarizations [CSD]). Microglia have been recently shown to play a significant role in the propagation of CSD. However, the intracellular responses of myeloid cells during ischemic stroke have not been investigated. METHODS We have studied intracellular calcium activity in cortical microglia in the stroke model of the middle cerebral artery occlusion, using the murine Polr2a-based and Cre-dependent GCaMP5 and tdTomato reporter (PC::G5-tdT). High-speed 2-photon microscopy through cranial windows was employed to record signals from genetically encoded indicators of calcium. Inflammatory stimuli and pharmacological inhibition were used to modulate microglial calcium responses in the somatosensory cortex. RESULTS In vivo imaging revealed periodical calcium activity in microglia during the hyperacute phase of ischemic stroke. This activity was more frequent during the first 6 hours after occlusion, but the amplitudes of calcium transients became larger at later time points. Consistent with CSD nature of these events, we reproducibly triggered comparable calcium transients with microinjections of potassium chloride (KCl) into adjacent cortical areas. Furthermore, lipopolysaccharide-induced peripheral inflammation, mimicking sterile inflammation during ischemic stroke, produced significantly greater microglial calcium transients during CSD. Finally, in vivo pharmacological analysis with CRAC (calcium release-activated channel) inhibitor CM-EX-137 demonstrated that CSD-associated microglial calcium transients after KCl microinjections are mediated at least in part by the CRAC mechanism. CONCLUSIONS Our findings demonstrate that microglia participate in ischemic brain injury via previously undetected mechanisms, which may provide new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
| | - Kathryn N Kearns
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
| | - Ilyas Eli
- Department of Neurosurgery (I.E., E.W.C.), University of Utah School of Medicine, Salt Lake City
| | - Khadijeh A Sharifi
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
- Department of Neuroscience (K.A. Sharifi, M.Y.S.K., P.T.), University of Virginia Health System, Charlottesville
| | - Sauson Soldozy
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
| | - Elizabeth W Carlson
- Department of Neurosurgery (I.E., E.W.C.), University of Utah School of Medicine, Salt Lake City
| | - Kyle W Scott
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
| | - M Filip Sluzewski
- Department of Electrical and Computer Engineering (M.F.S., S.T.A.), University of Virginia Health System, Charlottesville
| | - Scott T Acton
- Department of Electrical and Computer Engineering (M.F.S., S.T.A.), University of Virginia Health System, Charlottesville
| | | | - M Yashar S Kalani
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
- Department of Neuroscience (K.A. Sharifi, M.Y.S.K., P.T.), University of Virginia Health System, Charlottesville
| | - Min Park
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
| | - Petr Tvrdik
- Department of Neurological Surgery (L.L., K.N.K., K.A. Sharifi, S.S., K.W.S., M.Y.S.K., M.P., P.T.), University of Virginia Health System, Charlottesville
- Department of Neuroscience (K.A. Sharifi, M.Y.S.K., P.T.), University of Virginia Health System, Charlottesville
| |
Collapse
|
20
|
Mei YY, Lee MH, Cheng TC, Hsiao IH, Wu DC, Zhou N. NMDA receptors sustain but do not initiate neuronal depolarization in spreading depolarization. Neurobiol Dis 2020; 145:105071. [PMID: 32890774 DOI: 10.1016/j.nbd.2020.105071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Spreading depolarization (SD) represents a neurological process characterized by a massive, self-sustaining wave of brain cell depolarization. Understanding its mechanism is important for treating ischemic or hemorrhagic stroke and migraine with aura. Many believed that ion fluxes through NMDA receptors (NMDARs) are responsible for neuronal transmembrane currents of SD. However, the explicit role of NMDARs remains ambiguous. This is in part due to the limitation of traditional pharmacological approaches in resolving the contribution of NMDARs in different intercellular and intracellular processes of SD. Here, we applied single-cell blockade and genetic deletion methods to remove functional NMDARs from individual hippocampal CA1 neurons in order to examine the role of NMDARs in the depolarization mechanism without affecting the propagation of SD. We analyzed neuronal membrane potential changes to demonstrate that NMDARs are not required for initiating the depolarization. Consistently, neuronal input resistance (RN) revealed a sharp decline at the start of SD, which was unaffected by blocking NMDARs. Instead, the recovery of both membrane potential and RN during the late phase of SD was facilitated by inhibition of NMDARs, indicating that NMDARs are responsible for sustaining the depolarization. Our results strongly indicate that NMDAR activation is not a determinant of the initiation of depolarization but is important for sustaining transmembrane ion fluxes during SD.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ting-Chun Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Han Hsiao
- Department of Neurosurgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Dong Chuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
22
|
Adenosine A 2A Receptor Antagonists Affects NMDA Glutamate Receptor Function. Potential to Address Neurodegeneration in Alzheimer's Disease. Cells 2020; 9:cells9051075. [PMID: 32357548 PMCID: PMC7290564 DOI: 10.3390/cells9051075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022] Open
Abstract
(1) Background. N-methyl d-aspartate (NMDA) ionotropic glutamate receptor (NMDAR), which is one of the main targets to combat Alzheimer’s disease (AD), is expressed in both neurons and glial cells. The aim of this paper was to assess whether the adenosine A2A receptor (A2AR), which is a target in neurodegeneration, may affect NMDAR functionality. (2) Methods. Immuno-histo/cytochemical, biophysical, biochemical and signaling assays were performed in a heterologous cell expression system and in primary cultures of neurons and microglia (resting and activated) from control and the APPSw,Ind transgenic mice. (3) Results. On the one hand, NMDA and A2A receptors were able to physically interact forming complexes, mainly in microglia. Furthermore, the amount of complexes was markedly enhanced in activated microglia. On the other hand, the interaction resulted in a novel functional entity that displayed a cross-antagonism, that could be useful to prevent the exacerbation of NMDAR function by using A2AR antagonists. Interestingly, the amount of complexes was markedly higher in the hippocampal cells from the APPSw,Ind than from the control mice. In neurons, the number of complexes was lesser, probably due to NMDAR not interacting with the A2AR. However, the activation of the A2AR receptors resulted in higher NMDAR functionality in neurons, probably by indirect mechanisms. (4) Conclusions. A2AR antagonists such as istradefylline, which is already approved for Parkinson’s disease (Nouriast® in Japan and Nourianz® in the US), have potential to afford neuroprotection in AD in a synergistic-like fashion. i.e., via both neurons and microglia.
Collapse
|
23
|
Raghunatha P, Vosoughi A, Kauppinen TM, Jackson MF. Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia 2020; 68:1421-1434. [PMID: 32036619 DOI: 10.1002/glia.23790] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Chronic neuroinflammation driven by microglia is a characteristic feature associated with numerous neurodegenerative diseases. While acute inflammation can assist with recovery and repair, prolonged microglial pro-inflammatory responses are known to exacerbate neurodegenerative processes. Yet, detrimental outcomes of extended microglial activation are counterbalanced by beneficial outcomes including phagocytosis and release of trophic factors promoting neuronal viability. Our past work has shown that the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a key signaling hub driving pro-inflammatory microglia responses, but the signaling pathway maintaining PARP-1 activation remains elusive. While best understood for its role in promoting DNA repair, our group has shown that PARP-1 activity can be stimulated via Ca2+ influx-dependent ERK1/2-mediated phosphorylation. However, to date, the route of Ca2+ entry responsible for stimulating PARP-1 has not been identified. A likely candidate is via Ca2+ -permeable transient receptor potential melastatin 2 (TRPM2) channels activated downstream of PARP-1 in a cascade that involves ADP-ribose (ADPR) production by poly(ADP-ribose) glycohydrolase (PARG). Here we demonstrate that NMDA receptor (NMDAR) stimulation in primary cultured microglia induces their proliferation, morphological activation and release of pro-inflammatory mediators. These responses were contingent on the recruitment of PARP-1, PARG and Ca2+ permeable TRPM2 channels. Furthermore, we show that Ca2+ influx is necessary to activate PARP-1/TRPM2 signaling, in an ERK1/2-dependent, but DNA damage independent, manner. Our findings, showing that PARP-1/TRPM2 mediate the pro-inflammatory effects of NMDAR stimulation, provides a unifying mechanism linking elevated glutamate levels to chronic neuroinflammation.
Collapse
Affiliation(s)
- Prajwal Raghunatha
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Amir Vosoughi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Eyo UB, Wu LJ. Microglia: Lifelong patrolling immune cells of the brain. Prog Neurobiol 2019; 179:101614. [PMID: 31075285 PMCID: PMC6599472 DOI: 10.1016/j.pneurobio.2019.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 02/02/2023]
Abstract
Microglial cells are the predominant parenchymal immune cell of the brain. Recent evidence suggests that like peripheral immune cells, microglia patrol the brain in health and disease. Reviewing these data, we first examine the evidence that microglia invade the brain mesenchyme early in embryonic development, establish residence therein, proliferate and subsequently maintain their numbers throughout life. We, then, summarize established and novel evidence for microglial process surveillance in the healthy and injured brain. Finally, we discuss emerging evidence for microglial cell body dynamics that challenge existing assumptions of their sessile nature. We conclude that microglia are long-lived immune cells that patrol the brain through both cell body and process movements. This recognition has significant implications for neuroimmune interactions throughout the animal lifespan.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Magni G, Boccazzi M, Bodini A, Abbracchio MP, van den Maagdenberg AMJM, Ceruti S. Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice. Cephalalgia 2019; 39:1809-1817. [DOI: 10.1177/0333102419861710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Gain-of-function missense mutations in the α1A subunit of neuronal CaV2.1 channels, which define Familial Hemiplegic Migraine Type 1 (FHM1), result in enhanced cortical glutamatergic transmission and a higher susceptibility to cortical spreading depolarization. It is now well established that neurons signal to surrounding glial cells, namely astrocytes and microglia, in the central nervous system, which in turn become activated and in pathological conditions can sustain neuroinflammation. We and others previously demonstrated an increased activation of pro-algogenic pathways, paralleled by augmented macrophage infiltration, in both isolated trigeminal ganglia and mixed trigeminal ganglion neuron-satellite glial cell cultures of FHM1 mutant mice. Hence, we hypothesize that astrocyte and microglia activation may occur in parallel in the central nervous system. Methods We have evaluated signs of reactive glia in brains from naïve FHM1 mutant mice in comparison with wild type animals by immunohistochemistry and Western blotting. Results Here we show for the first time signs of reactive astrogliosis and microglia activation in the naïve FHM1 mutant mouse brain. Conclusions Our data reinforce the involvement of glial cells in migraine, and suggest that modulating such activation may represent an innovative approach to reduce pathology.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Antonella Bodini
- Institute for Applied Mathematics and Information Technologies “Enrico Magenes”, National Research Council, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Zhang L, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci 2018; 12:306. [PMID: 30459555 PMCID: PMC6232769 DOI: 10.3389/fncel.2018.00306] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a common emotional cognitive disorder that seriously affects people’s physical and mental health and their quality of life. Due to its clinical and etiological heterogeneity, the molecular mechanisms underpinning MDD are complex and they are not fully understood. In addition, the effects of traditional drug therapy are not ideal. However, postmortem and animal studies have shown that overactivated microglia can inhibit neurogenesis in the hippocampus and induce depressive-like behaviors. Nonetheless, the molecular mechanisms by which microglia regulate nerve regeneration and determine depressive-like behaviors remain unclear. As the immune cells of the central nervous system (CNS), microglia could influence neurogenesis through the M1 and M2 subtypes, and these may promote depressive-like behaviors. Microglia may be divided into four main states or phenotypes. Under stress, microglial cells are induced into the M1 type, releasing inflammatory factors and causing neuroinflammatory responses. After the inflammation fades away, microglia shift into the alternative activated M2 phenotypes that play a role in neuroprotection. These activated M2 subtypes consist of M2a, M2b and M2c and their functions are different in the CNS. In this article, we mainly introduce the relationship between microglia and MDD. Importantly, this article elucidates a plausible mechanism by which microglia regulate inflammation and neurogenesis in ameliorating MDD. This could provide a reliable basis for the treatment of MDD in the future.
Collapse
Affiliation(s)
- Lijuan Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili You
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Kurauchi Y, Noma K, Hisatsune A, Seki T, Katsuki H. Na +, K +-ATPase inhibition induces neuronal cell death in rat hippocampal slice cultures: Association with GLAST and glial cell abnormalities. J Pharmacol Sci 2018; 138:167-175. [PMID: 30322800 DOI: 10.1016/j.jphs.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Na+, K+-ATPase is a highly expressed membrane protein. Dysfunction of Na+, K+-ATPase has been implicated in the pathophysiology of several neurodegenerative and psychiatric disorders, however, the underlying mechanism of neuronal cell death resulting from Na+, K+-ATPase dysfunction is poorly understood. Here, we investigated the mechanism of neurotoxicity due to Na+, K+-ATPase inhibition using rat organotypic hippocampal slice cultures. Treatment with ouabain, a Na+, K+-ATPase inhibitor, increased the ratio of propidium iodide-positive cells among NeuN-positive cells in the hippocampal CA1 region, which was prevented by MK-801 and d-AP5, specific blockers of the N-methyl-d-aspartate (NMDA) receptor. EGTA, a Ca2+-chelating agent, also protected neurons from ouabain-induced injury. We observed that astrocytes expressed the glutamate aspartate transporter (GLAST), and ouabain changed the immunoreactive area of GFAP-positive astrocytes as well as GLAST. We also observed that ouabain increased the number of Iba1-positive microglial cells in a time-dependent manner. Furthermore, lithium carbonate, a mood-stabilizing drug, protected hippocampal neurons and reduced disturbances of astrocytes and microglia after ouabain treatment. Notably, lithium carbonate improved ouabain-induced decreases in GLAST intensity in astrocytes. These results suggest that glial cell abnormalities resulting in excessive extracellular concentrations of glutamate contribute to neurotoxicity due to Na+, K+-ATPase dysfunction in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazuki Noma
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
28
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
29
|
|
30
|
Eroli F, Loonen IC, van den Maagdenberg AM, Tolner EA, Nistri A. Differential neuromodulatory role of endocannabinoids in the rodent trigeminal sensory ganglion and cerebral cortex relevant to pain processing. Neuropharmacology 2018; 131:39-50. [DOI: 10.1016/j.neuropharm.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
|
31
|
Madry C, Arancibia-Cárcamo IL, Kyrargyri V, Chan VTT, Hamilton NB, Attwell D. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc Natl Acad Sci U S A 2018; 115:E1608-E1617. [PMID: 29382767 PMCID: PMC5816168 DOI: 10.1073/pnas.1715354115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microglia, the brain's innate immune cells, have highly motile processes which constantly survey the brain to detect infection, remove dying cells, and prune synapses during brain development. ATP released by tissue damage is known to attract microglial processes, but it is controversial whether an ambient level of ATP is needed to promote constant microglial surveillance in the normal brain. Applying the ATPase apyrase, an enzyme which hydrolyzes ATP and ADP, reduces microglial process ramification and surveillance, suggesting that ambient ATP/ADP maintains microglial surveillance. However, attempting to raise the level of ATP/ADP by blocking the endogenous ecto-ATPase (termed NTPDase1/CD39), which also hydrolyzes ATP/ADP, does not affect the cells' ramification or surveillance, nor their membrane currents, which respond to even small rises of extracellular [ATP] or [ADP] with the activation of K+ channels. This indicates a lack of detectable ambient ATP/ADP and ecto-ATPase activity, contradicting the results with apyrase. We resolve this contradiction by demonstrating that contamination of commercially available apyrase by a high K+ concentration reduces ramification and surveillance by depolarizing microglia. Exposure to the same K+ concentration (without apyrase added) reduced ramification and surveillance as with apyrase. Dialysis of apyrase to remove K+ retained its ATP-hydrolyzing activity but abolished the microglial depolarization and decrease of ramification produced by the undialyzed enzyme. Thus, applying apyrase affects microglia by an action independent of ATP, and no ambient purinergic signaling is required to maintain microglial ramification and surveillance. These results also have implications for hundreds of prior studies that employed apyrase to hydrolyze ATP/ADP.
Collapse
Affiliation(s)
- Christian Madry
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom;
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - I Lorena Arancibia-Cárcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Vasiliki Kyrargyri
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Victor T T Chan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom;
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
32
|
The THIK and Thin of Microglia Dynamics. Neuron 2018; 97:253-255. [PMID: 29346745 DOI: 10.1016/j.neuron.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Madry et al. (2018) show that the two-pore potassium channel THIK-1 is tonically active in microglia and promotes microglial ramification and surveillance of the brain parenchyma. Interestingly, THIK-1 is not essential to damage-induced outgrowth of microglial processes but is critical to microglial IL-1β release.
Collapse
|
33
|
Al-Karagholi MAM, Hansen JM, Severinsen J, Jansen-Olesen I, Ashina M. The K ATP channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain 2017; 18:90. [PMID: 28831746 PMCID: PMC5567577 DOI: 10.1186/s10194-017-0800-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Johanne Severinsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| |
Collapse
|
34
|
Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K + channels and migration. J Neuroinflammation 2017; 14:166. [PMID: 28830445 PMCID: PMC5567442 DOI: 10.1186/s12974-017-0941-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.
Collapse
Affiliation(s)
- Doris Lam
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Kurauchi Y, Kinoshita R, Mori A, Sakamoto K, Nakahara T, Ishii K. MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochem Biophys Res Commun 2017; 488:329-334. [PMID: 28495529 DOI: 10.1016/j.bbrc.2017.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor activation increases regional cerebral blood flow (rCBF) and induces neuronal injury, but similarities between these processes are poorly understood. In this study, by measuring rCBF in vivo, we identified a clear correlation between cerebral hyperemia and brain injury. NMDA receptor activation induced brain injury as a result of rCBF increase, which was attenuated by an inhibitor of mitogen-activated protein kinase or calcineurin. Moreover, NMDA induced phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor of activated T-cell (NFAT) in neurons. Therefore, a MEK/ERK- and calcineurin/NFAT-mediated mechanism of neurovascular coupling underlies the pathophysiology of neurovascular disorders.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Rintaro Kinoshita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
36
|
Shibata M, Suzuki N. Exploring the role of microglia in cortical spreading depression in neurological disease. J Cereb Blood Flow Metab 2017; 37:1182-1191. [PMID: 28155572 PMCID: PMC5414895 DOI: 10.1177/0271678x17690537] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia play a pivotal role in innate immunity in the brain. During development, they mature from myeloerythroid progenitor cells in the yolk sac and colonize the brain to establish a resident population of tissue macrophages. In the postnatal brain, they exert phagocytosis and induce inflammatory response against invading pathogens. Microglia also act as guardians of brain homeostasis by surveying the microenvironment using motile processes. Cortical spreading depression (CSD) is a slowly propagating (2-5 mm/min) wave of rapid, near-complete depolarization of neurons and astrocytes followed by a period of electrical suppression of a distinct population of cortical neurons. Not only has CSD been implicated in brain migraine aura, but CSD-like events have also been detected in stroke and traumatic injury. CSD causes a considerable perturbation of the ionic environment in the brain, which may be readily detected by microglia. Although CSD is known to activate microglia, the role of microglial activation in CSD-related neurological disorders remains poorly understood. In this article, we first provide an overview of microglial development and the multiple functions of microglia. Then, we review existing data on the relationship between microglia and CSD and discuss the relevance of CSD-induced microglial activation in neurological disease.
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Neonatal l-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters. Amino Acids 2016; 49:337-346. [DOI: 10.1007/s00726-016-2365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
|