1
|
Soleman SR, Jeem YA, Faruqi MFBA, Kasyiva M, Widyasari V, Kuswati K, Djunet NA, Rizkawati M, Handayani ES. Effect of pesticide exposure on stunting incidence: a systematic review and meta-analysis. Clin Exp Pediatr 2024; 67:510-518. [PMID: 39314197 PMCID: PMC11471919 DOI: 10.3345/cep.2023.01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 09/25/2024] Open
Abstract
As an endocrine disruptor chemical, pesticide exposure may affect the regulation of growth hormones such as insulin-like growth factor-1 (IGF-1). A few current studies to date have noted that long-term pesticide exposure disrupted IGF-1, a potential risk of stunting in children. This study aims to evaluate studies to date of the effect of pesticide exposure on stunting incidence. This systematic review and meta-analysis adhered to the PRISMA (Pre-ferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. The PubMed and EBSCO databases were searched for relevant articles without publication restrictions. This review aimed to include reviews, randomized controlled trials (RCT), and cohort, case-control, and cross-sectional studies, which provide actual exposure types of pesticides with stunting measurement by height-age z score. A screening, extraction, and synthesis were conducted, leading to a consensus for reaching mutual agreement. The analysis was performed using Microsoft Excel 2017 for the screening and extraction, Revman version 5.4 software for the meta-analysis, and OpenMEE software for the meta-regression. Of the 13 studies subjected to the qualitative analysis, 6 were eligible for inclusion in the meta-analysis: 2 reviews, 2 RCTs, 2 cohorts, 2 case-control, and 5 cross-sectional studies. Exposure to organophosphate and pyrethroid pesticides was not associated with stunting (P=0.78; odds ratio [OR], 1.11; 95% confidence interval [CI], 0.65-1.88). Heterogeneity existed for 79% of the meta-analysis (P≤0.000; z=-5.37; 95% CI, -0.034 to -0.016), and the meta-regression identified age as the causative covariate. Pesticide exposure, regardless of type, is not associated with stunting in children.
Collapse
Affiliation(s)
- Sani Rachman Soleman
- Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | | | - Mahdea Kasyiva
- Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Vita Widyasari
- Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Kuswati Kuswati
- Department of Anatomy, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Nur Aini Djunet
- Department of Biochemistry, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Muflihah Rizkawati
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Ety Sari Handayani
- Department of Anatomy, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Zhang Y, Li JN, Wang JX, Li YF, Kallenborn R, Xiao H, Cai MG, Tang ZH, Zhang ZF. High-throughput screening of 222 pesticides in road environments in a megacity of northern China: A new approach to urban population exposure. ENVIRONMENTAL RESEARCH 2024; 257:119379. [PMID: 38851374 DOI: 10.1016/j.envres.2024.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis. The results showed that a total of 33 pesticides were detected in road dust and green-belt soil, with the total concentrations of 650 and 236 ng/g (dry weight = dw), respectively. The concentrations of pesticides in road dust were significantly higher than that in green-belt soil. Pesticides in the environment were influenced by the seasons, with the highest concentrations of insecticides in autumn and the highest levels of herbicides in spring. In road dust, the concentrations of highways in autumn and spring (with the mean values of 94.1 and 68.2 ng/g dw) were much lower than that of the other road classes (arterial roads, sub-arterial roads and branch ways). Whereas in the green-belt soil, there was no significant difference in the concentration of pesticides between the different road classes. A first risk assessment was conducted to evaluate the potential adverse health effects of the pesticides, the results showed that the highest hazard index (HI) for a single pesticide in dust and soil was 0.12, the hazard index for children was higher than that for adults, with an overall hazard index of less than 1. Our results indicated that pesticide levels do not have a significant health impact on people.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Chwoyka C, Linhard D, Durstberger T, Zaller JG. Ornamental plants as vectors of pesticide exposure and potential threat to biodiversity and human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49079-49099. [PMID: 39044056 PMCID: PMC11310276 DOI: 10.1007/s11356-024-34363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
The production of conventional ornamental plants is pesticide-intensive. We investigated whether pesticide active ingredients (AIs) are still present in ornamentals at the time of purchase and assessed their potential ecotoxicity to non-target organisms. We purchased 1000 pot plants and 237 cut flowers of different species from garden centers in Austria and Germany between 2011 and 2021 and analyzed them for up to 646 AIs. Ecotoxicological risks of AIs were assessed by calculating toxic loads for honeybees (Apis mellifera), earthworms (Eisenia fetida), birds (Passer domesticus), and mammals (Rattus norvegicus) based on the LD50 values of the detected AIs. Human health risks of AIs were assessed on the basis of the hazard statements of the Globally Harmonized System. Over the years, a total of 202 AIs were detected in pot plants and 128 AIs in cut flowers. Pesticide residues were found in 94% of pot plants and 97% of cut flowers, with cut flowers containing about twice as many AIs (11.0 ± 6.2 AIs) as pot plants (5.8 ± 4.0 AIs). Fungicides and insecticides were found most frequently. The ecotoxicity assessment showed that 47% of the AIs in pot plants and 63% of the AIs in cut flowers were moderately toxic to the considered non-target organisms. AIs found were mainly toxic to honeybees; their toxicity to earthworms, birds, and mammals was about 105 times lower. Remarkably, 39% of the plants labeled as "bee-friendly" contained AIs that were toxic to bees. More than 40% of pot plants and 72% of cut flowers contained AIs classified as harmful to human health. These results suggest that ornamental plants are vectors for potential pesticide exposure of consumers and non-target organisms in home gardens.
Collapse
Affiliation(s)
- Cecily Chwoyka
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, BOKU University, 1180, Vienna, Austria
| | - Dominik Linhard
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070, Vienna, Austria
| | - Thomas Durstberger
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070, Vienna, Austria
| | - Johann G Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, BOKU University, 1180, Vienna, Austria.
| |
Collapse
|
4
|
Chronister BNC, Justo D, Wood RJ, Lopez-Paredes D, Gonzalez E, Suarez-Torres J, Gahagan S, Martinez D, Jacobs DR, Checkoway H, Jankowska MM, Suarez-Lopez JR. Sex and adrenal hormones in association with insecticide biomarkers among adolescents living in ecuadorian agricultural communities. Int J Hyg Environ Health 2024; 259:114386. [PMID: 38703462 PMCID: PMC11421858 DOI: 10.1016/j.ijheh.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17β-estradiol, and cortisol. We used general linear models to assess linear (β = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (β2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (βboys = 5.88% [1.21%, 10.78%], βgirls = 4.10% [-0.02%, 8.39%]), and cortisol (βboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (β2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (β2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (βboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (βboys = 3.90% [1.28%, 6.58%]) were positively associated with 17β-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17β-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.
Collapse
Affiliation(s)
- Briana N C Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Denise Justo
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert J Wood
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Eduardo Gonzalez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Los Angeles, CA, 91010, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Quandt SA, Smith SA, Arcury TA, Chen H, Hester K, Pope CN, Anderson KA, Laurienti PJ. Comparing Longitudinal Measures of Cholinesterase as Biomarkers for Insecticide Exposure Among Latinx Children in Rural Farmworker and Urban Nonfarmworker Communities in North Carolina. J Occup Environ Med 2023; 65:1077-1085. [PMID: 37696813 PMCID: PMC10840727 DOI: 10.1097/jom.0000000000002965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
OBJECTIVE In a 2-group prospective design, this study compared seasonal cholinesterase levels of Latinx children in rural farmworker families and comparable urban children to assess the impact of environmental exposure to cholinesterase-inhibiting insecticides. METHODS Quarterly blood samples and passive dosimeter wristbands were collected over 2 years in 8-year-old children (74 rural, 62 urban). Laboratory analysis assessed total cholinesterase, acetylcholinesterase, and butyrylcholinesterase from blood samples, and insecticides from wristbands. RESULTS In spring and summer, total cholinesterase and acetylcholinesterase levels were depressed in rural children compared with winter and fall. Butyrylcholinesterase was depressed in rural children in fall compared with spring and summer. Adjustment for insecticide exposure did not affect these associations. CONCLUSIONS Environmental exposures to cholinesterase-inhibiting insecticides have measurable biochemical effects on blood cholinesterases in rural children from farmworker families.
Collapse
Affiliation(s)
- Sara A. Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sydney A. Smith
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kirstin Hester
- Department of Physiological Sciences, Center for Veterinary Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Carey N. Pope
- Department of Physiological Sciences, Center for Veterinary Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chronister BN, Yang K, Yang AR, Lin T, Tu XM, Lopez-Paredes D, Checkoway H, Suarez-Torres J, Gahagan S, Martinez D, Barr D, Moore RC, Suarez-Lopez JR. Urinary Glyphosate, 2,4-D and DEET Biomarkers in Relation to Neurobehavioral Performance in Ecuadorian Adolescents in the ESPINA Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107007. [PMID: 37819080 PMCID: PMC10566341 DOI: 10.1289/ehp11383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Herbicides are the most used class of pesticides worldwide, and insect repellents are widely used globally. Yet, there is a dearth of studies characterizing the associations between these chemical groups and human neurobehavior. Experimental studies suggest that glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides can affect neurobehavior and the cholinergic and glutamatergic pathways in the brain. We aim to assess whether herbicides and insect repellents are associated with neurobehavioral performance in adolescents. METHODS We assessed 519 participants (11-17 years of age) living in agricultural communities in Ecuador. We quantified urinary concentrations of glyphosate, 2,4-D, and two N,N-diethyl-meta-toluamide (DEET) insect repellent metabolites [3-(diethylcarbamoyl)benzoic acid (DCBA) and 3-(ethylcarbamoyl)benzoic acid (ECBA)] using isotope-dilution mass spectrometry. We assessed neurobehavioral performance using 9 subtests across 5 domains (attention/inhibitory control, memory/learning, language, visuospatial processing, and social perception). We characterized the associations using generalized estimating equations and multiple imputation for metabolites below detection limits. Models were adjusted for demographic and anthropometric characteristics, urinary creatinine, and sexual maturation. Mediation by salivary cortisol, dehydroepiandrosterone, 17 β -estradiol , and testosterone was assessed using structural equation modeling. RESULTS The mean of each neurobehavioral domain score was between 7.0 and 8.7 [standard deviation (SD) range: 2.0-2.3]. Glyphosate was detected in 98.3% of participants, 2,4-D in 66.2%, DCBA in 63.3%, and ECBA in 33.4%. 2,4-D was negatively associated with all neurobehavioral domains, but statistically significant associations were observed with attention/inhibition [score difference per 50% higher metabolite concentration ( β ) = - 0.19 95% confidence interval (CI): - 0.31 , - 0.07 ], language [β = - 0.12 (95% CI: - 0.23 , - 0.01 )], and memory/learning [β = - 0.11 (95% CI: - 0.22 , 0.01)]. Glyphosate had a statistically significant negative association only with social perception [β = - 0.08 (95% CI: - 0.14 , - 0.01 )]. DEET metabolites were not associated with neurobehavioral performance. Mediation by gender and adrenal hormones was not observed. CONCLUSION This study describes worse neurobehavioral performance associated with herbicide exposures in adolescents, particularly with 2,4-D. Replication of these findings among other pediatric and adult populations is needed. https://doi.org/10.1289/EHP11383.
Collapse
Affiliation(s)
- Briana N.C. Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Kun Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Audrey R. Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Tuo Lin
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Xin M. Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | | | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Raeanne C. Moore
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Jose R. Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Sirikul W, Sapbamrer R. Exposure to pesticides and the risk of hypothyroidism: a systematic review and meta-analysis. BMC Public Health 2023; 23:1867. [PMID: 37752464 PMCID: PMC10523800 DOI: 10.1186/s12889-023-16721-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Knowledge surrounding the association between exposure to pesticides and hypothyroidism is inconsistent and controversial. METHODS The aim of present study was, therefore, to review scientific evidence systematically and conduct a meta-analysis into the contribution of exposure to pesticides to hypothyroidism. PubMed, Scopus, Web of Science, and Google Scholar were searched. The findings are presented as OR, HR, PR, IRR, and 95% confidence interval (95%CI). A fixed-effect model using the inverse-variance method and random-effects inverse-variance model with DerSimonian-Laird method were used for estimating the pooled estimates. Cochran Q and I2 tests were used to confirm the heterogeneity of selected studies. RESULTS Twelve studies were included in the systematic review, and 9 studies in the meta-analysis. Epidemiological evidence suggested that exposure to insecticides including organochlorines, organophosphates, and pyrethroids increased risk of hypothyroidism (adjusted odds ratio (aOR) = 1.23, 95%CI = 1.14, 1.33 for organochlorines, aOR = 1.12, 95%CI = 1.07, 1.17 for organophosphates, aOR = 1.15, 95%CI = 1.03, 1.28 for pyrethroids). Exposure to herbicides also increased risk of hypothyroidism (aOR = 1.06, 95%CI = 1.02, 1.10). However, exposure to fungicides and fumigants was not found to be associated with hypothyroidism. CONCLUSION To increase current knowledge and confirm evidence to date future research needs to center on large-scale longitudinal epidemiological and biological studies, examination of dose-response relationships, the controlling of relevant confounding variables, using standardized and high sensitivity tools, and investigating the effects of environmental exposure.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Rodríguez D, Barg G, Queirolo EI, Olson JR, Mañay N, Kordas K. Pyrethroid and Chlorpyrifos Pesticide Exposure, General Intellectual Abilities, and Executive Functions of School Children from Montevideo, Uruguay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5288. [PMID: 37047904 PMCID: PMC10093823 DOI: 10.3390/ijerph20075288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/01/2023]
Abstract
Children's developing brains are susceptible to pesticides. Less is known about the effect of exposure to chlorpyrifos and pyrethroids on executive functions (EF). We measured urinary 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of chlorpyrifos, and urinary 3-phenoxybenzoic acid (3-PBA), a general, nonspecific metabolite of pyrethroids in first-grade children from Montevideo, Uruguay (n = 241, age 80.6 ± 6.4 months, 58.1% boys). EFs were assessed with the Intra-dimensional/Extra-dimensional shift (IED), Spatial Span (SSP), and Stockings of Cambridge (SOC) tests from the Cambridge Neuropsychological Test Automated (CANTAB) Battery. General intellectual ability (GIA) was assessed using the Woodcock-Muñoz Cognitive battery. Median (range) urinary TCPy and 3-PBA levels were 16.7 (1.9, 356.9) ng/mg of creatinine and 3.3 (0.3, 110.6) ng/mg of creatinine, respectively. In multivariable generalized linear models, urinary TCPy was inversely associated with postdimensional errors on the IED task β [95% CI]: -0.11 [-0.17, -0.06]. Urinary 3-PBA was inversely associated with the total number of trials -0.07 [-0.10, -0.04], and the total number of errors -0.12 [-0.18, -0.07] on the IED task. When TCPy and 3-PBA were modeled together, the associations did not differ from single-metabolite models. We found no evidence of effect modification by blood lead level (BLL). Pesticide exposure may affect EF performance in urban children.
Collapse
Affiliation(s)
- Danelly Rodríguez
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
| | - Gabriel Barg
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - Elena I. Queirolo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - James R. Olson
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo 11200, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
| |
Collapse
|
10
|
Dara D, Drabovich AP. Assessment of risks, implications, and opportunities of waterborne neurotoxic pesticides. J Environ Sci (China) 2023; 125:735-741. [PMID: 36375955 DOI: 10.1016/j.jes.2022.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides which have been shown to adversely affect the human nervous system. Studies have shown a link between pesticide exposure and decreased viability, proliferation, migration, and differentiation of murine neural stem cells. Besides human exposure directly through water systems, additional factors such as pesticide bioaccumulation, biomagnification and potential synergism due to co-exposure to other environmental contaminants must be considered. A possible avenue to investigate the molecular mechanisms and biomolecules impacted by the various classes of pesticides includes the field of -omics. Discovery of the precise molecular mechanisms behind pesticide-mediated neurodegenerative disorders may facilitate development of targeted therapeutics. Likewise, discovery of pesticide biodegradation pathways may enable novel approaches for water system bioremediation using genetically engineered microorganisms. In this mini-review, we discuss recently established harmful impacts of various categories of pesticides on the nervous system and the application of -omics field for discovery, validation, and mitigation of pesticide neurotoxicity.
Collapse
Affiliation(s)
- Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada.
| |
Collapse
|
11
|
Jokanović M, Oleksak P, Kuca K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 2023; 484:153407. [PMID: 36543276 DOI: 10.1016/j.tox.2022.153407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
This article reviews available data regarding the possible association of organophosphorus (OP) pesticides with neurological disorders such as dementia, attention deficit hyperactivity disorder, neurodevelopment, autism, cognitive development, Parkinson's disease and chronic organophosphate-induced neuropsychiatric disorder. These effects mainly develop after repeated (chronic) human exposure to low doses of OP. In addition, three well defined neurotoxic effects in humans caused by single doses of OP compounds are discussed. Those effects are the cholinergic syndrome, the intermediate syndrome and organophosphate-induced delayed polyneuropathy. Usually, the poisoning can be avoided by an improved administrative control, limited access to OP pesticides, efficient measures of personal protection and education of OP pesticide applicators and medical staff.
Collapse
Affiliation(s)
- Milan Jokanović
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech republic.
| |
Collapse
|
12
|
Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2718-2755. [PMID: 34663153 DOI: 10.1080/09603123.2021.1987396] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Following the introduction and application of pesticides in human life, they have always been along with health concerns both in acute poisoning and chronic toxicities. Neurotoxicity of pesticides in chronic exposures has been known as one of the most important human health problems, as most of these chemicals act through interacting with some elements of nervous system. Pesticide-induced neurotoxicity can be defined in different categories of neurological disorders including neurodegenerative (Alzheimer, Parkinson, amyotrophic lateral sclerosis, multiple sclerosis), neurodevelopmental (attention deficit hyperactivity disorder, autism spectrum disorders, developmental delay, and intellectual disability), neurobehavioral and neuropsychiatric (depression/suicide attempt, anxiety/insomnia, and cognitive impairment) disorders some of which are among the most debilitating human health problems. In this review, neurotoxicity of pesticides in the mentioned categories and sub-categories of neurological diseases have been systematically presented in relation to different route of exposures including general, occupational, environmental, prenatal, postnatal, and paternal.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
13
|
Bemanalizadeh M, Khoshhali M, Goli P, Abdollahpour I, Kelishadi R. Parental Occupational Exposure and Neurodevelopmental Disorders in Offspring: a Systematic Review and Meta-analysis. Curr Environ Health Rep 2022; 9:406-422. [PMID: 35522387 DOI: 10.1007/s40572-022-00356-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Parental occupational exposures might be associated with neurodevelopmental disorders (NDDs) in offspring. We aimed to conduct a systematic review and meta-analysis to summarize and synthesize the current literature and to estimate the pooled magnitude of the underlying association(s) between parental occupational exposures and subsequent risk of NDDs. RECENT FINDINGS In the meta-analysis of 20 included studies, significant associations were found between parental occupational exposure to pesticides or solvents and the risk of attention deficit hyperactivity disorder in offspring. Prenatal occupational exposure to pesticides was significantly associated with motor development or cognition disorders in children. Furthermore, some evidence showed that metals might have a role in the development of autism spectrum disorders. Further studies need to identify the level of parental occupational exposures that can be significantly associated with NDDs. Moreover, utilizing standardized outcome and exposure scales is recommended to incorporate paternal, maternal, and parental as well as both prenatal and postnatal exposure in future studies.
Collapse
Affiliation(s)
- Maryam Bemanalizadeh
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Goli
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Abdollahpour
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Skomal AE, Zhang J, Yang K, Yen J, Tu X, Suarez-Torres J, Lopez-Paredes D, Calafat AM, Ospina M, Martinez D, Suarez-Lopez JR. Concurrent urinary organophosphate metabolites and acetylcholinesterase activity in Ecuadorian adolescents. ENVIRONMENTAL RESEARCH 2022; 207:112163. [PMID: 34627797 PMCID: PMC9138777 DOI: 10.1016/j.envres.2021.112163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Organophosphates are insecticides that inhibit the enzymatic activity of acetylcholinesterase (AChE). Because of this, AChE is considered a physiological marker of organophosphate exposure in agricultural settings. However, limited research exists on the associations between urinary organophosphate metabolites and AChE activity in children. METHODS This study included 526 participants from 2 exams (April and July-October 2016) of ages 12-17 years living in agricultural communities in Ecuador. AChE activity was measured at both examinations, and organophosphate metabolites, including para-nitrophenol (PNP), 3,5,6-trichloro-2-pyridinol (TCPy), and malathion dicarboxylic acid (MDA) were measured in urine collected in July-October. We used generalized estimating equation generalized linear model (GEEGLM), adjusting for hemoglobin, creatinine, and other demographic and anthropometric covariates, to estimate associations of urinary metabolite concentrations with AChE activity (July-October) and AChE% change between April and July-October. RESULTS The mean (SD) of AChE and AChE% change (April vs July-October) were 3.67 U/mL (0.54) and -2.5% (15.4%), respectively. AChE activity was inversely associated with PNP concentration, whereas AChE% change was inversely associated with PNP and MDA. There was evidence of a threshold: difference was only significant above the 80th percentile of PNP concentration (AChE difference per SD increase of metabolite = -0.12 U/mL [95%CI: 0.20, -0.04]). Likewise, associations with AChE% change were significant only above the 80th percentile of TCPy (AChE % change per SD increase of metabolite = -1.38% [95%CI: 2.43%, -0.32%]) and PNP -2.47% [95%CI: 4.45%, -0.50%]). PNP concentration at ≥80th percentile was associated with elevated ORs for low AChE activity of 2.9 (95% CI: 1.5, 5.7) and for AChE inhibition of ≤ -10% of 3.7 (95% CI: 1.4, 9.8). CONCLUSIONS Urinary organophosphate metabolites, including PNP, TCPy and MDA, particularly at concentrations above the 80th percentile, were associated with lower AChE activity among adolescents. These findings bring attention to the value of using multiple constructs of pesticide exposure in epidemiologic studies.
Collapse
Affiliation(s)
- Ana E Skomal
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Jasen Zhang
- Herbert Wertheim School of Public Health, University of California-San Diego, La Jolla, CA, USA
| | - Kun Yang
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Jessica Yen
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Xin Tu
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | | | - Antonia M Calafat
- National Center for Environmental Health, Division of Laboratory Sciences of the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- National Center for Environmental Health, Division of Laboratory Sciences of the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jose R Suarez-Lopez
- Herbert Wertheim School of Public Health, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Espinosa da Silva C, Gahagan S, Suarez-Torres J, Lopez-Paredes D, Checkoway H, Suarez-Lopez JR. Time after a peak-pesticide use period and neurobehavior among ecuadorian children and adolescents: The ESPINA study. ENVIRONMENTAL RESEARCH 2022; 204:112325. [PMID: 34740618 PMCID: PMC9138759 DOI: 10.1016/j.envres.2021.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Limited evidence exists regarding transient neurobehavioral alterations associated with episodic pesticide exposures or agricultural pesticide spray periods. We previously observed that children examined soon after a pesticide spray period (the Mother's Day flower harvest [MDH]) had lower neurobehavioral performance than children examined later. The present study builds on our previous work by incorporating longitudinal analyses from childhood through adolescence. METHODS We examined participants in agricultural communities in Ecuador (ESPINA study) during three periods: July-August 2008 (N = 313, 4-9-year-olds); April 2016 (N = 330, 11-17-year-olds); July-October 2016 (N = 535, 11-17-year-olds). Participants were examined primarily during a period of low floricultural production. Neurobehavior was assessed using the NEPSY-II (domains: Attention/Inhibitory Control, Language, Memory/Learning, Visuospatial Processing, and Social Perception). Linear regression and generalized linear mixed models were used to examine cross-sectional and longitudinal associations between examination date (days) after the MDH and neurobehavioral outcomes, adjusting for demographic, anthropometric, and socio-economic variables. RESULTS Participants were examined between 63 and 171 days after the MDH. Mean neurobehavioral domain scores ranged from 1.0 to 17.0 (SDrange = 2.1-3.1) in 2008 and 1.0 to 15.5 (SDrange = 2.0-2.3) in 2016. In cross-sectional analyses (2016 only; N = 523), we found significant or borderline positive associations between time after the MDH and Attention/Inhibitory Control (difference/10 days [β] = 0.22 points [95% CI = 0.03, 0.41]) and Language (β = 0.16 points [95% CI = -0.03, 0.34]). We also observed positive, longitudinal associations (2008-2016) with Attention/Inhibitory Control (β = 0.19 points [95% CI = 0.04, 0.34]) through 112 days after the harvest and Visuospatial Processing (β = 3.56, β-quadratic = -0.19 [95% CI: -0.29, -0.09]) through 92 days. CONCLUSIONS Children examined sooner after the harvest had lower neurobehavioral performance compared to children examined later, suggesting that peak pesticide spray seasons may transiently affect neurobehavior followed by recovery during low pesticide-use periods. Reduction of pesticide exposure potential for children during peak pesticide-use periods is advised.
Collapse
Affiliation(s)
- C Espinosa da Silva
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - S Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, Department of Pediatrics, University of California, San Diego. 9500 Gilman Drive #0832, La Jolla, CA, 92093-0832, USA
| | - J Suarez-Torres
- Fundación Cimas del Ecuador, Quito, Ecuador. De los Olivos E15-18 y las Minas, Quito, Ecuador
| | - D Lopez-Paredes
- Fundación Cimas del Ecuador, Quito, Ecuador. De los Olivos E15-18 y las Minas, Quito, Ecuador
| | - H Checkoway
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA; University of California, San Diego, Department of Neurosciences, 9500 Gilman Drive, #0949, La Jolla, CA, 92093-0949, USA
| | - J R Suarez-Lopez
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA.
| |
Collapse
|
16
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
17
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
18
|
Pereira PCG, Parente CET, Carvalho GO, Torres JPM, Meire RO, Dorneles PR, Malm O. A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117817. [PMID: 34333268 DOI: 10.1016/j.envpol.2021.117817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
In several countries, flower import regulations are restricted to food security, by establishing maximum residue limits (MRL) for pesticides in flower-based food products and biosafety, in order to limit the circulation of vectors, pests and exotic species across borders. In this context, the lack of limits on pesticides in flower-products for ornamental purposes can influence the pesticide overuse in production areas, as well as the transfer of contaminated products between countries. Therefore, the purpose of this review was to discuss possible adverse effects on human and environmental health of pesticides used in floriculture, evaluating regulations on the use of these pesticides in the main importing and flower-producing countries. This review included 92 documents. The use of 201 compounds was identified by interviews and analytical measurements. Among them, 93 are banned by the European Union (EU), although 46.3 % of these compounds have been identified in samples from European countries. Latin American countries have a large number of scientific publications on pesticides in flower production (n = 51), while the EU and China have less studies (n = 24) and the United States and Japan have no studies. Regarding adverse health effects, poorer neurobehavioral development, reproductive disorders, congenital malformations and genotoxicity have been reported for residents of flower production areas and workers throughout the flower production cycle. Studies including water samples show overuse of pesticides, while environmental impacts are related to water and air contamination, soil degradation and adverse effects on the reproduction and development of non-target organisms. This review points out that the absence of MRL for non-edible flowers can be crucial for the trade of contaminated products across borders, including pesticides banned in importing countries. Furthermore, setting limits on flowers could reduce the use of pesticides in producing countries.
Collapse
Affiliation(s)
- Patrícia C G Pereira
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Cláudio E T Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gabriel O Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - João P M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, Rio de Janeiro, 21941-902, Brazil.
| | - Rodrigo O Meire
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Paulo R Dorneles
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho S/n, Bloco G, Sala 060, Subsolo, 21941-902, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Gonzaga CWP, Baldo MP, Caldeira AP. Exposure to pesticides or agroecological practices: suicidal ideation among peasant farmers in Brazil's semi-arid region. CIENCIA & SAUDE COLETIVA 2021; 26:4243-4252. [PMID: 34586275 DOI: 10.1590/1413-81232021269.09052020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Health risks faced by peasant farmers may vary depending on the type of agriculture they practice. This study examined the association between suicide ideation and exposure to pesticides by comparing two groups of peasant farmers of both sexes living in the semi-arid region of the north of Minas Gerais, Brazil: exposed to pesticides and adopting agroecological practices without the use of pesticides. Group participants were selected using convenience sampling and data was collected using a previously validated questionnaire administered through face-to-face interviews. Bivariate analysis was performed, followed by logistic regression. A total of 547 peasant farmers were interviewed (311 in the group exposed to pesticides and 236 in the group adopting agroecological practices). Respondents from the group exposed to pesticides were more likely to report suicidal ideation (OR=2.30; 95%CI 1.16-4.56), harmful alcohol consumption (OR=2.30; 95%CI 1.18-4.48), and lifetime acute pesticide poisoning (OR=8.58; 95%CI 2.98-24.72). The findings suggest that agricultural practices that lead to chronic pesticide exposure are associated with a greater likelihood of suicide ideation, regardless of previous episodes of acute pesticide poisoning or harmful alcohol consumption.
Collapse
Affiliation(s)
| | - Marcelo Perim Baldo
- Universidade Estadual de Montes Claros. Av. Prof. Rui Braga s/n, Vila Mauriceia. 39401-089 Montes Claros MG Brasil.
| | - Antônio Prates Caldeira
- Universidade Estadual de Montes Claros. Av. Prof. Rui Braga s/n, Vila Mauriceia. 39401-089 Montes Claros MG Brasil.
| |
Collapse
|
20
|
Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Sullivan AJ, Romano ME, Karagas MR, Chen A, Yolton K, Lanphear BP, Braun JM. Chemical mixture exposures during pregnancy and cognitive abilities in school-aged children. ENVIRONMENTAL RESEARCH 2021; 197:111027. [PMID: 33744271 PMCID: PMC9022783 DOI: 10.1016/j.envres.2021.111027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Gestational exposure to chemical mixtures, which is prevalent among pregnant women, may be associated with adverse childhood neurodevelopment. However, few studies have examined relations between gestational chemical mixture exposure and children's cognitive abilities. METHODS In a cohort of 253 pregnant women and their children from Cincinnati, OH (enrolled 2003-2006), we quantified biomarker concentrations of 43 metals, phthalates, phenols, polybrominated diphenyl ethers, organophosphate and organochlorine pesticides, polychlorinated biphenyls, perfluoroalkyl substances, and environmental tobacco smoke in blood or urine. Using k-means clustering and principal component (PC) analysis, we characterized chemical mixtures among pregnant women. We assessed children's cognitive abilities using the Wechsler Preschool and Primary Scale of Intelligence-III and Wechsler Intelligence Scale for Children-IV at ages 5 and 8 years, respectively. We estimated covariate-adjusted differences in children's cognitive ability scores ]=cross clusters, and with increasing PC scores and individual biomarker concentrations. RESULTS Geometric mean biomarker concentrations were generally highest, intermediate, and lowest among women in clusters 1, 2, and 3, respectively. Children born to women in clusters 1 and 2 had 5.1 (95% CI: 9.4,-0.8) and 2.0 (95% CI: 5.5, 1,4) lower performance IQ scores compared to children in cluster 3, respectively. PC scores and individual chemical biomarker concentrations were not associated with cognitive abilities. CONCLUSIONS In this cohort, combined prenatal exposure to phenols, certain phthalates, pesticides, and perfluoroalkyl substances was inversely associated with children's cognition, but some individual chemical biomarker concentrations were not. Additional studies should determine if the aggregate impact of these chemicals on cognition is different from their individual effects.
Collapse
Affiliation(s)
- Geetika Kalloo
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | | | | | | | - Andreas Sjodin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam J Sullivan
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Megan E Romano
- Department of Epidemiology, Dartmouth College, Hanover, NH, USA
| | | | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Vernet C, Johnson M, Kogut K, Hyland C, Deardorff J, Bradman A, Eskenazi B. Organophosphate pesticide exposure during pregnancy and childhood and onset of juvenile delinquency by age 16 years: The CHAMACOS cohort. ENVIRONMENTAL RESEARCH 2021; 197:111055. [PMID: 33766567 PMCID: PMC8191343 DOI: 10.1016/j.envres.2021.111055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Though prenatal organophosphate pesticide (OP) exposure has been associated with lower intellectual quotient and behavioral disorders in childhood, factors related to later delinquency, no research has directly evaluated the impact of OPs on delinquency. OBJECTIVE To evaluate the association between prenatal and childhood OP exposure and juvenile delinquency in Mexican-American youth in the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS). METHODS We measured dialkyl phosphate (DAPs) urinary metabolites of OPs in two prenatal maternal samples and in five child samples collected between six months and five years of age. Youth completed delinquency questionnaires at 16 years. We examined associations of prenatal and childhood DAPs with several delinquency outcomes (n = 313) using survival and generalized linear models. RESULTS Almost 60% of youth reported delinquent acts (mostly minor), and 8% reported a police arrest. We observed largely null results of prenatal or childhood DAP concentrations and delinquency outcomes, with some isolated associations. A ten-fold increase in maternal dimethylphosphate (DM) concentrations measured after 20 weeks gestation was associated with an earlier age of first delinquent act (Hazard Ratio = 1.38, 95% CI: 1.01, 1.88) and an increased Odds Ratio (OR) of having committed 1-3 or ≥4 delinquent acts, compared to the no delinquency reference group (OR = 1.77, 95% CI: 1.01-3.08 and 2.17, 95% CI: 1.13-4.17, respectively). Higher childhood diethylphosphate (DE) concentrations were associated with a later age of first delinquent act (HR: 0.67; 95% CI: 0.46-0.97). DISCUSSION We did not find strong evidence of association between prenatal or childhood OP exposure and juvenile delinquency in the present cohort. There is an increasing literature that relates OP exposure to neurobehavioral impairments in childhood, and there is a need to understand long-term potential neurodevelopmental effects of early-life OP exposure.
Collapse
Affiliation(s)
- Celine Vernet
- School of Public Health, University of California, Berkeley, CA, 94704, USA; UMRESTTE, Univ Lyon, Univ Gustave Eiffel, IFSTTAR, Bron, France
| | - Megan Johnson
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Katherine Kogut
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Carly Hyland
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Julianna Deardorff
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Asa Bradman
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, CA, 94704, USA.
| |
Collapse
|
22
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
23
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Jensen A, Laurienti PJ. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144233. [PMID: 33385842 PMCID: PMC7855950 DOI: 10.1016/j.scitotenv.2020.144233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Personal pesticide exposure is not well characterized among children in vulnerable, immigrant communities. We used silicone wristbands in 2018-2019 to assess pesticide exposure in 8 year old Latinx boys and girls in rural, farmworker families (n = 73) and urban, non-farmworker families (n = 60) living in North Carolina who were enrolled in the PACE5 Study, a community-based participatory research study. We determined the detection and concentrations (ng/g) of 75 pesticides and pesticide degradation products in the silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry. Differences by personal and family characteristics were tested using analysis of variance or Wilcoxon Rank Sum tests when necessary. Pesticide concentrations above the limit of detection were analyzed, and reported as geometric means and 95% confidence intervals (CI). The most frequently detected pesticide classes were organochlorines (85.7%), pyrethroids (65.4%), and organophosphates (59.4%), with the most frequently detected specific pesticides being alpha-chlordane (69.2%), trans-nonachlor (67.7%), gamma-chlordane (66.2%), chlorpyrifos (54.9%), cypermethrin (49.6%), and trans-permethrin (39.1%). More of those children in urban, non-farmworker families had detections of organochlorines (93.3% vs. 79.5, p = 0.0228) and pyrethroids (75.0% vs. 57.5%, p = 0.0351) than did those in rural, farmworker families; more children in rural, farmworker families had detections for organophosphates (71.2% vs. 45.0%, p= 0.0022). Children in urban, non-farmworker families had greater concentrations of alpha-chlordane (geometric mean (GM) 18.98, 95% CI 14.14, 25.47 vs. 10.25, 95% CI 7.49, 14.03; p= 0.0055) and dieldrin (GM 17.38, 95% CI 12.78 23.62 vs. 8.10, 95% CI 5.47, 12.00; p= 0.0034) than did children in rural, farmworker families. These results support the position that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities, and argue for greater effort in documenting the widespread nature of pesticide exposure among children, with greater effort to reduce pesticide exposure.
Collapse
Affiliation(s)
- Thomas A Arcury
- Department of Family and Community Medicine, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jennifer W Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Anna Jensen
- North Carolina Farmworkers Project, 1238 NC Highway 50 S, Benson, NC 27504, USA.
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
24
|
Phillips S, Suarez-Torres J, Checkoway H, Lopez-Paredes D, Gahagan S, Suarez-Lopez JR. Acetylcholinesterase activity and thyroid hormone levels in Ecuadorian adolescents living in agricultural settings where organophosphate pesticides are used. Int J Hyg Environ Health 2021; 233:113691. [PMID: 33581413 PMCID: PMC7965258 DOI: 10.1016/j.ijheh.2021.113691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Organophosphates are frequently applied insecticides that inhibit acetylcholinesterase (AChE) activity resulting in cholinergic overstimulation. Limited evidence suggests that organophosphates may alter thyroid hormone levels, although studies have yielded inconsistent findings. We aimed to test the associations between AChE activity, a physiological marker of organophosphate exposure, and thyroid function in adolescents. METHODS We included information of 80 adolescent participants (ages 12-17y in 2016, 53% male) growing up in agricultural settings in Ecuador. We measured fingerstick erythrocytic AChE activity and hemoglobin concentration, and concurrent serum thyroid stimulating hormone (TSH) and free-T4 (fT4) concentrations. General linear models were used to test associations which adjusted for demographic and anthropometric variables. TSH associations were further adjusted for fT4. RESULTS The mean (SD) AChE, TSH and fT4 levels were 3.77 U/mL (0.55), 2.82 μIU/ml (1.49) and 1.11 ng/dl (0.13), respectively. Lower AChE activity, indicating greater organophosphate exposure, was marginally associated with greater fT4 concentrations (difference per SD decrease in AChE activity (β) = 0.03 ng/dL, [90% CI: 0.00, 0.06]) but not with TSH (β = -0.01 μIU/ml, [-0.38, 0.36]). Gender modified the AChE-TSH association (p = 0.03). In girls, lower AChE activity was associated with higher fT4 levels (β=0.05 ng/dL [0.01, 0.10]) and lower TSH concentrations (β = -0.51 μIU/ml, [-1.00, -0.023]). No associations were observed in boys. DISCUSSION These cross-sectional findings suggest that alterations in the cholinergic system from organophosphate exposures can increase fT4 levels coupled with a beyond-compensatory downregulation of TSH in female adolescents. This is the first study to characterize these associations in adolescents.
Collapse
Affiliation(s)
- Simone Phillips
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Harvey Checkoway
- Herbert Wertheim School of Public Health and Human Longevity Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Sheila Gahagan
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jose Ricardo Suarez-Lopez
- School of Medicine, University of California, San Diego, La Jolla, CA, USA; Herbert Wertheim School of Public Health and Human Longevity Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Suarez-Lopez JR, Nguyen A, Klas J, Gahagan S, Checkoway H, Lopez-Paredes D, Noble M. Associations of acetylcholinesterase inhibition between pesticide spray seasons with depression and anxiety symptoms in adolescents, and the role of sex and adrenal hormones on gender moderation. EXPOSURE AND HEALTH 2021; 13:51-64. [PMID: 33748533 PMCID: PMC7968045 DOI: 10.1007/s12403-020-00361-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cholinesterase inhibitor pesticides, especially organophosphates, are endocrine disruptors and a few existing studies have linked self-reports of exposure with increased depression and anxiety. Some evidence suggests that associations may be stronger in women, but the mechanism of this gender difference is unclear. We assessed whether acetylcholinesterase (AChE) inhibition between 2 time points (reflecting greater cholinesterase inhibitor exposure) during different agricultural seasons in the year was associated with anxiety/depression symptoms. METHODS We examined 300 adolescents (ages 11-17y, 51% female) living near agricultural settings in Ecuador (ESPINA study) twice in 2016: April and July-October. We assessed AChE activity (finger stick), estradiol, testosterone, dehydroepiandrosterone, cortisol (saliva) and anxiety and depression scales (CDI-2 and MASC-2). RESULTS The mean (SD) depression and anxiety scores were 52.8 (9.3) and 58.1 (9.6), respectively. The median (25th, 75th percentile) AChE change (July-October vs April) was -3.94% (-10.45%, 5.13%). For every 10% decrease in AChE activity, there was a 0.96 unit (95%CI: 0.01, 1.90) increase in depression symptoms and an OR of elevated depression score of 1.67 (1.04, 2.66). These associations were stronger in girls (OR=2.72 [1.23, 6.00]) than boys (1.18 [0.59, 2.37]). Adjustment for cortisol, testosterone and dehydroepiandrosterone reduced gender differences by 18-62%. No associations were observed with anxiety. DISCUSSION Inhibition of AChE activity at 2 points in time during different pesticide spray periods was associated with greater depression symptoms, affecting girls more than boys. Gender differences may be partly explained by endocrine disruption. These findings suggest that AChE inhibition may transiently affect the mood of adolescents.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew Nguyen
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joel Klas
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Madison Noble
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Hutter HP, Poteser M, Lemmerer K, Wallner P, Kundi M, Moshammer H, Weitensfelder L. Health Symptoms Related to Pesticide Use in Farmers and Laborers of Ecological and Conventional Banana Plantations in Ecuador. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031126. [PMID: 33514015 PMCID: PMC7908553 DOI: 10.3390/ijerph18031126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/09/2023]
Abstract
Conventional banana farming is pesticide-intensive and leads to high exposure of farmworkers. Ecuador is the world’s biggest exporter of bananas. In this field study in 5 communities in Ecuador, we recorded potentially pesticide-associated subjective health symptoms in farmworkers and compared pesticide users to workers in organic farming. With one exception, symptom rates were always higher in the pesticide-exposed group. Significance was reached in 8 out of 19 investigated symptoms with the highest odds ratios (and smallest p-values) for local irritation like skin and eye irritation (OR = 3.58, CI 1.10–11.71, and 4.10, CI 1.37–12.31, respectively) as well as systemic symptoms like dizziness (OR = 4.80, CI 1.55–14.87) and fatigue (OR = 4.96, CI 1.65–14.88). Moreover, gastrointestinal symptoms were reported more frequently by pesticide users: nausea (OR = 7.5, CI 1.77–31.77) and diarrhea (OR = 6.43, CI 1.06–30.00). The majority of farmworkers were not adequately protected from pesticide exposure. For example, only 3 of 31 farmworkers that had used pesticides recently reported using gloves and only 6 reported using masks during active spraying. Improved safety measures and a reduction in pesticide use are necessary to protect the health of banana farmworkers.
Collapse
Affiliation(s)
- Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| | - Michael Poteser
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| | - Kathrin Lemmerer
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| | - Peter Wallner
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
- Department of Hygiene, Medical University of Karakalpakstan, Nukus 230100, Uzbekistan
- Correspondence: ; Tel.: +43-1-401-603-4935
| | - Lisbeth Weitensfelder
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria; (H.-P.H.); (M.P.); (K.L.); (P.W.); (M.K.); (L.W.)
| |
Collapse
|
27
|
Dórea JG. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. ENVIRONMENTAL RESEARCH 2021; 192:110199. [PMID: 32941839 DOI: 10.1016/j.envres.2020.110199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Environmental (and occupational) exposure to neurotoxic substances is a worldwide problem that can affect children's neurodevelopment (ND). In Latin American and Caribbean (LAC) countries there are over 300 million children living under the threat of neurodevelopmental delays due to toxic environmental exposure. Large industrial centers, intense mining and agricultural activities, along with changing complex ecosystems constitute a mosaic that drives contamination of air, water and the food chain. Neurotoxic contaminants such as pesticides (organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, and manganese fungicides), chemicals of industrial use (phthalates), and metals (Hg, Pb, Al, As, F, Cd, Mo, Mn) are at the center of environmental exposure studies. Exposure to neurotoxic substances singly or in combination with other compounds or socioeconomic stressors (maternal education, socio-economic and nutritional status) intertwined with occupational and para-occupational exposure can affect ND (motor, cognition, behavior) of children. Significant negative effects of pesticides and neurotoxic elements on ND were found in all studied countries, affecting especially the less-privileged children from laboring families. Studies showed that exposures to the neurotoxicants in human milk are secondary to their more lasting effects during prenatal exposure. This review integrates exposure (prenatal and breastfeeding), metabolism, and ND effects of neurotoxicants. It highlights the overwhelming evidence showing that current levels of exposures are hazardous and detrimental to children's ND in LAC countries. The evidence indicates that a reduction in neurotoxicant exposure is essential to protect children's ND. Therefore, it is urgent to adopt policies and actions that prevent and remediate region-specific children's ND issues.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
28
|
Zhang J, Guo J, Wu C, Qi X, Jiang S, Zhou T, Xiao H, Li W, Lu D, Feng C, Liang W, Chang X, Zhang Y, Cao Y, Wang G, Zhou Z. Early-life carbamate exposure and intelligence quotient of seven-year-old children. ENVIRONMENT INTERNATIONAL 2020; 145:106105. [PMID: 32919260 DOI: 10.1016/j.envint.2020.106105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Early-life carbamate exposure during developmental period has been linked with adverse health effects and attracted attention. METHODS Three hundred and three children at age of seven were included in the current study. Urinary carbofuranphenol concentrations were measured using gas chromatography-tandem mass spectrometry. Verbal, performance and full-scale intelligence quotients (IQV, IQP, and IQFS) were assessed using Wechsler Intelligence Scale for Children-Chinese Revised. Generalized linear models were used to explore the associations between carbofuranphenol levels and IQs. Generalized estimating equations were used to explore long-term health effect and sensitive time window. RESULTS Carbofuranphenol was detected in 96.6% of the seven-year-old urinary samples, the geometric mean, median, and inter quartile range of the carbofuranphenol concentrations were 0.67 μg/L, 0.30 μg/L, and 0.09-3.72 μg/L, respectively, which were similar with the level of three-year-old children from the SMBCS cohort. Seven-year-old carbofuranphenol level was negatively associated with IQP [β = -0.044; 95% confidence interval (CI): -0.087, -0.001; p = 0.045]. Three-year-old carbofuranphenol level was negatively associated with IQP (β = -0.100; 95% CI: -0.186, -0.014; p = 0.022) and IQFS (β = -0.087; 95% CI: -0.173, -0.001; p = 0.047). Carbamate exposure of maternal and children at both three and seven years old had negative associations with IQP (β = -0.089; 95% CI: -0.171, -0.007; p = 0.034), and IQFS (β = -0.064; 95% CI: -0.127, -0.000; p = 0.049) of children at age of seven. CONCLUSION Results of the present study verify that children in an agricultural region of China were widely exposed to carbamate pesticides. Carbamate exposure in utero and at three and seven years may adversely impact children's neurodevelopment.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou 310051, China
| | - Shuai Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Tong Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Hongxi Xiao
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Wenting Li
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai 200336, China
| | - Chao Feng
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai 200336, China
| | - Weijiu Liang
- Changning District Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai 200051, China
| | - Xiuli Chang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden
| | - Guoquan Wang
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
29
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
30
|
Suarez-Lopez JR, Nazeeh N, Kayser G, Suárez-Torres J, Checkoway H, López-Paredes D, Jacobs DR, Cruz FDL. Residential proximity to greenhouse crops and pesticide exposure (via acetylcholinesterase activity) assessed from childhood through adolescence. ENVIRONMENTAL RESEARCH 2020; 188:109728. [PMID: 32798937 PMCID: PMC7483309 DOI: 10.1016/j.envres.2020.109728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Off-target drift of pesticides from farms increases the risk of pesticide exposure of people living nearby. Cholinesterase inhibitors (i.e. organophosphates and carbamates) are frequently used in agriculture and inhibit acetylcholinesterase (AChE) activity. Greenhouse agriculture is an important production method, but it is unknown how far pesticide drift from greenhouses can extend and expose people living nearby. METHODS This study included 1156 observations from 3 exams (2008, Apr, 2016 and Jul-Oct 2016) of 623 children aged 4-to-17 years living in agricultural communities in Ecuador. AChE, a physiological marker of cholinesterase inhibitor exposure, was measured in blood. Geographic positioning of greenhouses and homes were obtained using GPS receivers and satellite imagery. Distances between homes and the nearest greenhouse edge, and areas of greenhouse crops within various buffer zones around homes were calculated. Repeated-measures regression adjusted for hemoglobin and other covariates estimated change in AChE relative to distance from greenhouses. RESULTS The pooled mean (SD) of AChE activity was 3.58 U/mL (0.60). The median (25th-75th %tile) residential distance to crops was 334 m (123, 648) and crop area within 500 m of homes (non-zero values only) was 18,482 m2 (7115, 61,841). Residential proximity to greenhouse crops was associated with lower AChE activity among children living within 275 m of crops (AChE difference per 100 m of proximity [95% CI] = -0.10 U/mL [-0.20, -0.006]). Lower AChE activity was associated with greater crop area within 500 m of homes (AChE difference per 1000 m2 [95% CI] = -0.026 U/mL [-0.040, -0.012]) and especially within 150 m (-0.037 U/mL [-0.065, -0.007]). CONCLUSIONS Residential proximity to floricultural greenhouses, especially within 275 m, was associated with lower AChE activity among children, reflecting greater cholinesterase inhibitor exposure from pesticide drift. Analyses of residential proximity and crop areas near homes yielded complementary findings. Mitigation of off-target drift of pesticides from crops onto nearby homes is recommended.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA.
| | - Noor Nazeeh
- Department of Epidemiology, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Georgia Kayser
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | | | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | | | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
31
|
Nazeeh N, Suárez-López JR. Summary data of home proximity to the nearest greenhouse (floricultural) crops and areas of greenhouse crops around various distances from homes in agricultural settings in Ecuador. Data Brief 2020; 31:105980. [PMID: 32685635 PMCID: PMC7358380 DOI: 10.1016/j.dib.2020.105980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/24/2022] Open
Abstract
This article presents data of 623 children (1156 observations) between 4 and 17 years of age living in floricultural communities of Ecuador from 3 examination periods (2008, Apr 2016, and Jul-Oct 2016) as part of the study of Secondary Exposure to Pesticides among Children and Adolescents (ESPINA).We present geospatial data of residential distance to the nearest greenhouse crop and areas within various buffer sizes around homes of participants which is data used in the original research article: Suarez-Lopez JR, et al. "Residential proximity to greenhouse crops and pesticide exposure (via acetylcholinesterase activity) assessed from childhood through adolescence". These geospatial variables are related but different constructs of the potential for off-target drift of pesticides from crops onto homes nearby (via acetylcholinesterase activity) Understanding the associations between these distance and crop area variables is important as a growing number of investigations are using these constructs of off-target pesticide drift to characterize their associations with both exposure biomarkers and outcome measures. Geographic positioning of greenhouses and homes were obtained using GPS receivers and satellite imagery. Distances between homes and the nearest greenhouse edge, and areas of greenhouse crops within various buffer zones (0-150 m, 151-300 m, 310-500 m, 501-750 m, and 751-1000 m) around homes were calculated using Geographic Information System software. Beyond the dataset, we present demographic and anthropometric characteristics, and indicators of pesticide exposure of participants across categories of areas of greenhouse crops around homes for buffer sizes of 0-150 m around homes. We also present the distribution of areas of flower crops within various buffer zone sizes around children's homes and the correlation coefficients between household proximity to the nearest treated greenhouse crops and areas of flower crops within various buffer zones within 1000 m of homes.
Collapse
Affiliation(s)
- Noor Nazeeh
- Department of Epidemiology, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - José R. Suárez-López
- Department of Family Medicine and Public Health, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA 92093-0725, USA
| |
Collapse
|
32
|
Friedman E, Hazlehurst MF, Loftus C, Karr C, McDonald KN, Suarez-Lopez JR. Residential proximity to greenhouse agriculture and neurobehavioral performance in Ecuadorian children. Int J Hyg Environ Health 2020; 223:220-227. [PMID: 31607631 PMCID: PMC6915969 DOI: 10.1016/j.ijheh.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Children living near greenhouse agriculture may have an increased risk of pesticide exposure due to drift or direct contact with pesticide-treated areas. However, little is known about whether this increased potential for chronic exposure may impair their neurodevelopment. METHODS We examined 307 children aged 4-9 years, living in agricultural communities in Ecuador (ESPINA study). The two exposures calculated were residential distance from the nearest flower plantation perimeter and flower plantation surface area within 100 m of homes. Five neurobehavioral domains were assessed: Attention/Inhibitory Control, Memory/Learning, Visuospatial processing and Sensorimotor (higher values reflect better performance). Low scores were defined according to the test's cut-offs. Models were adjusted for demographic, socio-economic and growth variables. RESULTS The mean (SD) residential distance to the nearest flower plantation was 446 m (344). Living 100 m closer to crops was associated with increased odds (OR [95% CI]) of low scores in the domains of Memory/Learning (1.24 [1.05, 1.46]) and Language (1.09 [1.00, 1.19]). Associations were strongest among children living within 50 m, having significantly lower scores in Language (-1.28 which is ~50% of a SD [-2.50, -0.06]), Attention/Inhibitory Control (-1.24 units, [-2.45, -0.04]), and Memory/Learning (-0.91, [-1.99, 0.17]), compared to children living farther than 500 m. Analyses of areas of flower crops near homes concurred with these findings. CONCLUSIONS Close residential proximity to greenhouse floricultural crops was associated with adverse neurobehavioral performance in Attention/Inhibitory Control, Language and Memory/Learning among children. This highlights the importance of reducing pesticide drift from plantations to nearby homes.
Collapse
Affiliation(s)
- Elizabeth Friedman
- School of Medicine, Department of Environmental & Occupational Health Sciences, University of Washington, United States.
| | - Marnie F Hazlehurst
- Department of Epidemiology, School of Public Health, University of Washington, United States.
| | - Christine Loftus
- Department of Pediatrics, University of Washington School of Medicine, Departments of Environmental & Occupational Health Sciences and Epidemiology, School of Public Health, University of Washington, United States.
| | - Catherine Karr
- Department of Pediatrics, University of Washington School of Medicine, Departments of Environmental & Occupational Health Sciences and Epidemiology, School of Public Health, University of Washington, United States.
| | | | - Jose Ricardo Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, United States.
| |
Collapse
|
33
|
Oya N, Ito Y, Ebara T, Kato S, Hioki K, Aoi A, Ueyama J, Oguri T, Shoji N, Sugiura-Ogasawara M, Saitoh S, Kamijima M. Exposure levels of organophosphate pesticides in Japanese diapered children: Contributions of exposure-related behaviors and mothers' considerations of food selection and preparation. ENVIRONMENT INTERNATIONAL 2020; 134:105294. [PMID: 31731003 DOI: 10.1016/j.envint.2019.105294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate (OP) pesticide exposure is a public health issue due to its potential link to neurodevelopmental problems in children. This study aimed to examine the exposure levels of OP pesticides in Japanese toddlers and explore the possible contributions of their exposure-related behaviors and their mothers' considerations of food selection and preparation to their exposure levels to OP pesticides. We recruited diapered children participating in the Japan Environment and Children's Study and collected used disposable diapers from 1037 children between June 2015 and August 2016. Six dialkylphosphates (DAPs) were measured in the urine extracted from the diapers. The geometric means of urinary creatinine (Cr)-unadjusted and Cr-adjusted concentrations of the sum of the six DAPs (ΣDAP) were 120 nmol/L and 243 nmol/g Cr, respectively. A receiver operating characteristic curve analysis for propensity scores of exposure-related factors revealed that discriminatory powers determining whether Cr-unadjusted and Cr-adjusted ΣDAP concentrations exceeded the 95th percentile values were lower for the exposure-related behaviors (areas under the curve, 0.72 and 0.69, respectively) and the mothers' considerations of food selection and preparation (0.55 and 0.57, respectively) than those for the foodstuffs ingested on the survey day (0.75 and 0.81, respectively). Some exposure-related behaviors, namely the use of insecticides, herbicides, and insect repellent sprays, were found to be associated with increased Cr-unadjusted ΣDAP concentrations (odds ratio, 2.0-2.6) via multivariate analysis. In contrast, only the use of a fragrance or deodorant was associated with increased Cr-adjusted ΣDAP concentrations (odds ratio, 2.3). This is the first report on the exposure levels of OP pesticides in a large number of Japanese toddlers. Some household chemical product use was related to OP common metabolite DAP levels. Japanese toddlers were widely exposed to OP pesticide.
Collapse
Affiliation(s)
- Naoko Oya
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keisuke Hioki
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Arisa Aoi
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Tomoko Oguri
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoto Shoji
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
34
|
Jaacks LM, Diao N, Calafat AM, Ospina M, Mazumdar M, Ibne Hasan MOS, Wright R, Quamruzzaman Q, Christiani DC. Association of prenatal pesticide exposures with adverse pregnancy outcomes and stunting in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2019; 133:105243. [PMID: 31675560 PMCID: PMC6863610 DOI: 10.1016/j.envint.2019.105243] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pesticide exposure during pregnancy is thought to adversely affect fetal growth, which in turn may impact child growth, but results have been inconsistent across studies and few have explored these effects in developing countries. OBJECTIVES To quantify urinary concentrations of pesticide biomarkers in early pregnancy (<16 weeks' gestation), and to estimate the association of these concentrations with preterm birth, low birth weight, small for gestational age, and stunting at ~1 and 2 years of age. METHODS Eight pesticide biomarkers were quantified in urine collected from 289 pregnant women (aged 18-40 years) participating in a birth cohort study in Bangladesh. Anthropometry measurements were conducted on the index child at birth and approximately 1 and 2 years of age. A directed acyclic graph was used to identify minimal sufficient adjustment sets. Log-binomial regression was used to estimate the relative risk (RR) with 95% confidence intervals (CI). RESULTS 3,5,6-trichloro-2-pyridinol (TCPY), a metabolite of chlorpyrifos and chlorpyrifos methyl, and 4-nitrophenol, a metabolite of parathion and methyl parathion, were detected in nearly all women with geometric mean (95% CI) values of 3.17 (2.82-3.56) and 18.66 (17.03-20.46) µg/g creatinine, respectively. 3-phenoxybenzoic acid (3-PBA), a non-specific metabolite of several pyrethroids, and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY), a diazinon metabolite, were detected in 19.8% and 16.1% of women, respectively. The remaining four pesticide biomarkers were detected in <10% of women. Women in the highest quartile of 4-nitrophenol were more than 3 times more likely to deliver preterm than women in the lowest quartile: unadjusted RR (95% CI), 3.57 (1.65, 7.73). Women in the highest quartile of 4-nitrophenol were also at increased risk of having a child born small for gestational age: RR (95% CI) adjusted for household income, maternal education, and maternal total energy and meat intake, 3.81 (1.10, 13.21). Women with detectable concentrations of IMPY were at increased risk of having a child born with low birth weight compared to women with non-detectable concentrations: adjusted RR (95% CI), 2.13 (1.12, 4.08). We observed no association between any of the pesticide biomarkers and stunting at 1 or 2 years of age. DISCUSSION Exposure to the insecticides parathion and diazinon during early pregnancy may increase the risk of adverse birth outcomes.
Collapse
Affiliation(s)
- Lindsay M Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nancy Diao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Robert Wright
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
35
|
Zhang J, Guo J, Wu C, Qi X, Jiang S, Lu D, Feng C, Liang W, Chang X, Zhang Y, Cao Y, Wang G, Zhou Z. Exposure to carbamate and neurodevelopment in children: Evidence from the SMBCS cohort in China. ENVIRONMENTAL RESEARCH 2019; 177:108590. [PMID: 31352300 DOI: 10.1016/j.envres.2019.108590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Carbamate pesticides exposure have been linked with adverse health effects during developmental period. Based on 377 mother-child pairs from Sheyang Mini Birth Cohort Study, the present study aimed to assess carbofuranphenol exposure of three-year-old children and explore the associations between prenatal or postnatal carbofuranphenol exposures and neurodevelopmental indicators. METHODS Urinary carbofuranphenol concentrations were measured by gas chromatography-tandem mass spectrometry. Neural developmental quotient (DQ) of children was evaluated using Gesell Developmental Schedules. Generalized linear models were used to examine the associations between carbofuranphenol concentrations and neurodevelopment. RESULTS Geometric mean, geometric standard deviation, median, inter quartile range of postnatal urinary carbofuranphenol concentrations were 0.653 μg/L, 9.345 μg/L, 0.413 μg/L, 0.150-1.675 μg/L, respectively. Postnatal carbofuranphenol level showed negatively significant trend in language DQ [beta (β) = -0.121; 95% confidence interval (95% CI): 0.212, -0.031; p value (p) = 0.008] and total average DQ (β = -0.059, 95% CI: 0.115, -0.003; p = 0.035). Prenatal carbofuranphenol level showed negative correlations with children's adaptive DQ (β = -0.755; 95% CI: 1.257, -0.254; p = 0.003), social DQ (β = -0.341; 95% CI: 0.656, -0.027; p = 0.032) and total average DQ (β = -0.349; 95% CI: 0.693, -0.005; p = 0.047). CONCLUSION The results of the present study supposed children in agricultural region of China are widely exposed to carbamate pesticides, and both prenatal and postnatal exposure to carbamate pesticides may lead to neurodevelopmental effect.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiaojuan Qi
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310051, China.
| | - Shuai Jiang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Changning District, Shanghai, 200336, China.
| | - Chao Feng
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Changning District, Shanghai, 200336, China.
| | - Weijiu Liang
- Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Changning District, Shanghai, 200051, China.
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Yubin Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, 70182, Sweden.
| | - Guoquan Wang
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Changning District, Shanghai, 200336, China.
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
36
|
Suarez-Lopez JR, Amchich F, Murillo J, Denenberg J. Blood pressure after a heightened pesticide spray period among children living in agricultural communities in Ecuador. ENVIRONMENTAL RESEARCH 2019; 175:335-342. [PMID: 31150932 PMCID: PMC6571166 DOI: 10.1016/j.envres.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Agricultural pesticide spray periods increase the pesticide exposure potential of children living nearby and growing evidence indicates that they may affect children's health. We examined the association of time following a heightened agricultural production period, the Mother's Day flower harvest (May), with children's blood pressure (BP). METHODS We included cross-sectional information of 313 children ages 4-9 years in Ecuadorian agricultural communities (the ESPINA study). Examinations occurred during a period of low flower production, but within 63-100 days (mean = 81.5, SD = 10.9) following the Mother's Day harvest. BP was measured twice using a pediatric sphygmomanometer and BP percentiles appropriate for age, gender and height were calculated. RESULTS Participants were 51% male, 1.6% hypertensive and 7.7% had elevated BP. The mean (SD) BP percentiles were: systolic: 51.7 (23.9); diastolic: 33.3 (20.3). There was an inverse relationship between of time after the spray season with percentiles of systolic (difference [β] per 10.9 days after the harvest: -4.3 [95%CI: -6.9, -1.7]) and diastolic BP (β: -7.5 [-9.6, -5.4]) after adjusting for race, heart rate and BMI-for-age z-score. A curvilinear association with diastolic BP was observed. For every 10.9 days that a child was examined sooner after the harvest, the OR of elevated BP/hypertension doubled (OR: 2.0, 95% CI: 1.3, 3.1). Time after the harvest was positively associated with acetylcholinesterase. CONCLUSIONS Children examined sooner after a heightened pesticide spray period had higher blood pressure and pesticide exposure markers than children examined later. Further studies with multiple exposure-outcome measures across pesticide spray periods are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA.
| | | | - Jonathan Murillo
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA.
| | - Julie Denenberg
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA.
| |
Collapse
|
37
|
Suarez-Lopez JR, Hood N, Suárez-Torres J, Gahagan S, Gunnar MR, López-Paredes D. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int J Hyg Environ Health 2019; 222:981-990. [PMID: 31202795 PMCID: PMC6679983 DOI: 10.1016/j.ijheh.2019.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/09/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The cholinergic system has an important role in mood regulation. Cholinesterase inhibitor pesticides (e.g. organophosphates) appear to increase depression and anxiety symptoms in the few existing animal and human studies. Human studies have not described such associations using biomarkers of exposure and studies among children are needed. METHODS We studied 529 adolescents (ages 11-17y) in agricultural communities in the Ecuadorian Andes (ESPINA study). Acetylcholinesterase (AChE) activity was measured in a finger-stick sample. Anxiety and depression symptoms were assessed using the CDI-2 and MASC-2 (greater scores reflect greater internalizing symptoms). Models adjusted for age, gender, hemoglobin, income among others. RESULTS The median age was 14.38y and 51% were female. The mean (SD) of the following parameters were: AChE 3.7 U/mL (0.55), depression T-score 53.0 (9.4) and anxiety T-score: 57.6 (9.8). Lower AChE activity (reflecting greater cholinesterase inhibitor exposure) was associated with higher depression symptoms (difference per SD decrease of AChE [β [95% CI:]]: 1.09 [0.02, 2.16]), was stronger among girls (β = 1.61) than boys (β = 0.69), and among younger (<14.38y, β = 1.61) vs. older children (β = 0.57). The associations were strongest among girls <14.38y (β = 3.30 [0.54, 6.05], OR for elevated symptoms per SD decrease in AChE = 2.58 [1.26, 5.27]). No associations were observed with anxiety scores. Analyses of AChE change between 2008 and 2016 concurred with these findings. DISCUSSION We observed associations between a biomarker of pesticide exposure and children's depression symptoms. Lower AChE activity may create risk for depression in teenagers, particularly among girls during early adolescence.
Collapse
Affiliation(s)
| | - Naomi Hood
- University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Sheila Gahagan
- University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | | |
Collapse
|
38
|
Sapbamrer R, Hongsibsong S. Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18267-18290. [PMID: 31041704 DOI: 10.1007/s11356-019-05126-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Exposure to pesticides is a major factor in the cause of dysfunction in the nervous system and neurodevelopment disorders in children at critical periods of great vulnerability. The aim of this study was to review scientific evidence published on neurodevelopmental effects of prenatal and postnatal exposure to organophosphate pesticides (OPs) in different stages, including neonates, infants, toddlers, preschool children, and school-age children. Full-text articles published in PubMed, Scopus, and ISI databases between 1973 and 2019 were reviewed and the scientific evidence was evaluated. Results: Fifty studies were eligible for inclusion in this quantitative synthesis. Fifteen of these papers evaluated the effects on neonates and infants, 18 on the effects on toddlers and preschool children, and 24 the effects on school-age children. Considerable evidence suggests that prenatal exposure to OPs contributes to child neurodevelopment disorders in all stages, whereas data about the effects of postnatal exposure are limited. Therefore, the available evidence supports the theory that sensitive time-windows occur prenatally rather than postnatally. Although 45 out of the total 50 selected articles found an association between OP exposure and child neurodevelopment, some of the evidence is controversial. A standardized methodology is needed to enable the comparison of the results in several studies, and further research studies are needed to warrant firmer conclusions. A systematic review of this evidence should be performed continuously to update the state of knowledge regarding neurodevelopmental effects associated with OP exposure.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Subdistrict, Muang District, Chiang Mai, 50200, Thailand.
| | - Surat Hongsibsong
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| |
Collapse
|
39
|
Suarez-Lopez JR, Hong V, McDonald KN, Suarez-Torres J, López D, De La Cruz F. Home proximity to flower plantations and higher systolic blood pressure among children. Int J Hyg Environ Health 2018; 221:1077-1084. [PMID: 30131222 DOI: 10.1016/j.ijheh.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pesticide drift from agricultural plantations increases the chemical exposure potential of people living nearby. Some studies have described positive associations between pesticide exposures and blood pressure (BP) in adults, whereas limited evidence in children suggests negative associations. This study characterized the association between home proximity to plantations and BP among children living in a flower-growing county in Ecuador. METHODS We included 310 4-9-year-old children living in Pedro Moncayo County, Ecuador as part of The ESPINA study. We calculated age, gender and height-specific BP z-scores. Geographic coordinates of homes and flower plantations were collected using GPS receivers and satellite imagery. Exposure-outcome associations were analyzed using linear regression. RESULTS The mean home distance to the nearest flower plantation was 449 m (SD: 347) and the median plantation area within 150 m of participants' homes was 989 m2 (25th-75Th percentile: 492-3164) among those with non-zero values. Children living closer to plantations had lower AChE activity. Systolic BP z-score increased with greater residential proximity to plantations (0.24 SD per 1000 m [95% CI: 0.01, 0.47]) and with greater areas of flower plantations within 150 m of homes (0.03 SD per 1000 m2 [0.00, 0.06]), after adjusting for socio-economic, anthropometric and other factors. Further adjustment for acetylcholinesterase and hemoglobin strengthened these associations. CONCLUSIONS Proximity of homes to flower plantations and greater plantation areas within 150 m from homes were associated with higher systolic BP, independent of cholinesterase activity. This suggests that non-cholinesterase inhibitor pesticide drift from agricultural plantations may be sufficient to induce physiologic changes on children living nearby.
Collapse
Affiliation(s)
| | - Vennis Hong
- University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | | | | | | | |
Collapse
|
40
|
Cartier C, Warembourg C, Monfort C, Rouget F, Limon G, Durand G, Cordier S, Saint-Amour D, Chevrier C. Children’s contrast sensitivity function in relation to organophosphate insecticide prenatal exposure in the mother-child PELAGIE cohort. Neurotoxicology 2018; 67:161-168. [DOI: 10.1016/j.neuro.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/11/2023]
|
41
|
Tamaro CM, Smith MN, Workman T, Griffith WC, Thompson B, Faustman EM. Characterization of organophosphate pesticides in urine and home environment dust in an agricultural community. Biomarkers 2018; 23:174-187. [PMID: 29047308 DOI: 10.1080/1354750x.2017.1395080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CONTEXT Organophosphorus insecticides (OPs) have been used to control agricultural pests found in Washington state. Farmworkers (FW) have higher exposure to OP pesticides than non-farmworkers (NFW), and FW children may in turn have higher exposure than NFW children. OBJECTIVE To examine the association between the concentration in house dust of five OPs used commonly in pome fruit orchards and the concentration in urine of dialkylphosphate metabolites (DAP), in a cohort of Hispanic FW and NFW and their children. METHODS Parents and children participated in three data collection periods over the course of one year. Urine samples were evaluated for the DAPs characteristic of OP exposure, and dust from homes and vehicles was evaluated for intact OP residues. RESULTS Geometric mean (GM) concentrations of OPs in house and vehicle dust were higher in FW households than NFW households in all agricultural seasons. GM concentration of urinary DAPs was higher for children in FW households than NFW households. DISCUSSION Regression analysis found a positive association between OP residues in house dust and the children's urinary DAPs. CONCLUSIONS To our knowledge, this study is the first to report an association between pesticides in house dust and their biological metabolites in urine.
Collapse
Affiliation(s)
- Catherine M Tamaro
- a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA.,b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA
| | - Marissa N Smith
- a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA.,b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA
| | - Tomomi Workman
- a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA.,b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA
| | - William C Griffith
- a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA.,b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA
| | - Beti Thompson
- c Cancer Prevention Program , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Elaine M Faustman
- a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA.,b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA
| |
Collapse
|
42
|
Lekei E, Ngowi AV, London L. Acute Pesticide Poisoning in Children: Hospital Review in Selected Hospitals of Tanzania. J Toxicol 2017; 2017:4208405. [PMID: 29441090 PMCID: PMC5758850 DOI: 10.1155/2017/4208405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute pesticide poisoning (APP) is a serious problem worldwide. Because the burden of childhood APP is unknown in Tanzania, this study describes the distribution, circumstances, and patterns of APP involving children under 18 years in Tanzania. METHODOLOGY A 12-month prospective study was conducted in 10 Tanzanian healthcare facilities in 2006 using a data collection tool for surveillance. RESULTS Of 53 childhood poisoning cases identified, 56.6% were female. The most common poisoning circumstances were accidents (49.1%) and suicide (30.2%). The most vulnerable children were 16-17 years old (30.2%). Suicide was significantly more common in females (PRR females/males = 1.66; 95% CI = 1.03-2.68) and accidental cases were more common in children aged 10 years or younger. Suicide was concentrated in children over 10 years, comprising 53% of cases in this age group. Organophosphates (OPs), zinc phosphide, and endosulfan were common amongst reported poisoning agents. The annual APP incidence rate was 1.61/100,000. CONCLUSION APP is common among children in this region of Tanzania. Prevention of suicide in older children should address mental health issues and control access to toxic pesticides. Prevention of accidents in younger children requires safer storage and hygiene measures. Diverse interventions are needed to reduce pesticide poisoning among children in Tanzania.
Collapse
Affiliation(s)
- Elikana Lekei
- Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Aiwerasia V. Ngowi
- School of Public Health and Social Sciences, Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. Box 65015, Dar es Salaam, Tanzania
| | - Leslie London
- School of Public Health & Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
43
|
Dhuriya YK, Srivastava P, Shukla RK, Gupta R, Singh D, Parmar D, Pant AB, Khanna VK. Prenatal exposure to lambda-cyhalothrin alters brain dopaminergic signaling in developing rats. Toxicology 2017; 386:49-59. [PMID: 28495607 DOI: 10.1016/j.tox.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/28/2017] [Indexed: 11/25/2022]
Abstract
The present study is focused to decipher the molecular mechanisms associated with dopaminergic alterations in corpus striatum of developing rats exposed prenatally to lambda-cyhalothrin (LCT), a new generation type II synthetic pyrethroid. There was no significant change in the mRNA and protein expression of DA-D1 receptors at any of the doses of LCT (0.5, 1 and 3mg/kg body weight) in corpus striatum of developing rats exposed prenatally to LCT on PD22 and PD45. Prenatal exposure to LCT (1 and 3mg/kg body weight) resulted to decrease the levels of mRNA and protein of DA-D2 receptors in corpus stratum of developing rats on PD22 as compared to controls. Decrease in the binding of 3H-Spiperone in corpus striatum, known to label DA-D2 receptors was also distinct in developing rats on PD22. These rats also exhibited decrease in the expression of proteins - TH, DAT and VMAT2 involved in pre-dopaminergic signaling. Further, decrease in the expression of DARPP-32 and pCREB associated with increased expression of PP1α was evident in developing rats on PD22 as compared to controls. Interestingly, a trend of recovery in the expression of these proteins was observed in developing rats exposed to LCT at moderate dose (1.0mg/kg body weight) while alteration in the expression of these proteins continued to persist in those exposed at high dose (3.0mg/kg body weight) on PD45 as compared to respective controls. No significant change in the expression of any of these proteins was observed in corpus striatum of developing rats prenatally exposed to LCT at low dose (0.5mg/kg body weight) on PD22 and PD45 as compared to respective controls. The results provide interesting evidence that alterations in dopaminergic signaling on LCT exposure are due to selective changes in DA-D2 receptors in corpus striatum of developing rats. Further, these changes could be attributed to impairment in spontaneous motor activity on LCT exposure in developing rats.
Collapse
Affiliation(s)
- Yogesh K Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Lucknow Campus, India
| | - Pranay Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Rajendra K Shukla
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Richa Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Animal Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Aditya B Pant
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Vinay K Khanna
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India.
| |
Collapse
|
44
|
Suarez-Lopez JR, Checkoway H, Jacobs DR, Al-Delaimy WK, Gahagan S. Potential short-term neurobehavioral alterations in children associated with a peak pesticide spray season: The Mother's Day flower harvest in Ecuador. Neurotoxicology 2017; 60:125-133. [PMID: 28188819 PMCID: PMC5447476 DOI: 10.1016/j.neuro.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Exposures to cholinesterase inhibitor pesticides (e.g. organophosphates) have been associated with children's neurobehavioral alterations, including attention deficit and impulsivity. Animal studies have observed transient alterations in neurobehavioral performance in relation to cholinesterase inhibitor pesticide exposures; however, limited evidence exists regarding transient effects in humans. METHODS We estimated the associations between neurobehavioral performance and time after Mother's Day flower harvest (the end of a heightened pesticide usage period) among 308 4-to 9-year-old children living in floricultural communities in Ecuador in 2008 who participated in the ESPINA study. Children's neurobehavior was examined once (NEPSY-II: 11 subtests covering 5 domains), between 63 and 100days (SD: 10.8days) after Mother's Day harvest (blood acetylcholinesterase activity levels can take 82days to normalize after irreversible inhibition with organophosphates). RESULTS The mean (SD) neurobehavioral scaled scores across domains ranged from 6.6 (2.4) to 9.9 (3.3); higher values reflect greater performance. Children examined sooner after Mother's Day had lower neurobehavioral scores than children examined later, in the domains of (score difference per 10.8days, 95%CI): Attention/Inhibitory Control (0.38, 0.10-0.65), Visuospatial Processing (0.60, 0.25-0.95) and Sensorimotor (0.43, 0.10-0.77). Scores were higher with longer time post-harvest among girls (vs. boys) in Attention/Inhibitory Control. CONCLUSIONS Our findings, although cross-sectional, are among the first in non-worker children to suggest that a peak pesticide use period may transiently affect neurobehavioral performance, as children examined sooner after the flower harvest had lower neurobehavioral performance than children examined later. Studies assessing pre- and post-exposure measures are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA; Fundacion Cimas del Ecuador, De los Olivos E14-226 y las Minas, Quito, Pichincha, Ecuador.
| | - Harvey Checkoway
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA.
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, 1300 South 2nd Street, Suite 300, Minneapolis, MN 55454, USA.
| | - Wael K Al-Delaimy
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, Department of Pediatrics, University of California, 9500 Gilman Drive #0832, La Jolla, CA 92024-0832, USA.
| |
Collapse
|
45
|
Gómez-Giménez B, Llansola M, Hernández-Rabaza V, Cabrera-Pastor A, Malaguarnera M, Agusti A, Felipo V. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food Chem Toxicol 2017; 99:135-148. [DOI: 10.1016/j.fct.2016.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022]
|
46
|
Vester A, Caudle WM. The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. TOXICS 2016; 4:toxics4030018. [PMID: 29051423 PMCID: PMC5606656 DOI: 10.3390/toxics4030018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies.
Collapse
Affiliation(s)
- Aimee Vester
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Cartier C, Warembourg C, Le Maner-Idrissi G, Lacroix A, Rouget F, Monfort C, Limon G, Durand G, Saint-Amour D, Cordier S, Chevrier C. Organophosphate Insecticide Metabolites in Prenatal and Childhood Urine Samples and Intelligence Scores at 6 Years of Age: Results from the Mother-Child PELAGIE Cohort (France). ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:674-80. [PMID: 26394442 PMCID: PMC4858392 DOI: 10.1289/ehp.1409472] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/17/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Several studies suggest that exposure to organophosphate insecticides (OP) during pregnancy impairs neurodevelopment in children. OBJECTIVES We evaluated associations between biomarkers of prenatal and postnatal OP exposure and cognitive function of 6-year-olds in a French longitudinal birth cohort. METHODS In 2002-2006, the PELAGIE mother-child cohort enrolled pregnant women from Brittany. For a random subcohort, we measured nonspecific dialkylphosphate metabolites (DAP) of OP in one maternal urine sample, collected before 19 weeks' gestation, and in one urine sample collected from their 6-year-old children. Six subtests of the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV) were administered when the children were 6 years of age to evaluate cognitive function (n = 231). Linear regression models controlling for factors including maternal intelligence and the Home Observation for Measurement of the Environment score were used. RESULTS WISC-IV scores were not significantly associated with prenatal or childhood total DAP metabolites. WISC verbal comprehension score was significantly higher in association with the highest maternal urinary concentrations of diethylphosphate (DE) metabolites (5.5; 95% CI: 0.8, 10.3 for > 13.2 nmol/L vs. < LOQ), whereas WISC working memory score was significantly lower in association with the highest urinary concentrations of DE metabolites at age 6 years (-3.6; 95% CI: -7.8, -0.6 for > 11.1 nmol/L vs. < LOD). CONCLUSION We found no evidence that prenatal OP exposure adversely affected cognitive function in 6-year-olds, perhaps because of the population's socioeconomic status, which was higher than in previous studies, though other causal and noncausal explanations are also possible. The negative association between WISC score and concurrent DE urinary concentrations requires replication by longitudinal studies investigating childhood OP exposure. CITATION Cartier C, Warembourg C, Le Maner-Idrissi G, Lacroix A, Rouget F, Monfort C, Limon G, Durand G, Saint-Amour D, Cordier S, Chevrier C. 2016. Organophosphate insecticide metabolites in prenatal and childhood urine samples and intelligence scores at 6 years of age: results from the mother-child PELAGIE cohort (France). Environ Health Perspect 124:674-680; http://dx.doi.org/10.1289/ehp.1409472.
Collapse
Affiliation(s)
- Chloé Cartier
- INSERM U1085-IRSET, Université Rennes I, Rennes, France
- Département de psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | - Gaïd Le Maner-Idrissi
- Centre de Recherches en Psychologie, Cognition et communication (CRPCC EA 1285), Université Rennes 2, Rennes, France
| | - Agnès Lacroix
- Centre de Recherches en Psychologie, Cognition et communication (CRPCC EA 1285), Université Rennes 2, Rennes, France
| | - Florence Rouget
- INSERM U1085-IRSET, Université Rennes I, Rennes, France
- ”Bien Naître en Ille et Vilaine” network, Rennes, France
| | | | | | | | - Dave Saint-Amour
- Département de psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de recherche et département d’ophtalmologie, CHU Sainte-Justine, Montréal, Québec, Canada
| | | | - Cécile Chevrier
- INSERM U1085-IRSET, Université Rennes I, Rennes, France
- Address correspondence to C. Chevrier, INSERM U1085-IRSET, Avenue du Prof. Léon Bernard, CS74312, 35043 RENNES Cedex. Telephone: (33) 223236126. E-mail:
| |
Collapse
|
48
|
Gashu D, Stoecker BJ, Bougma K, Adish A, Haki GD, Marquis GS. Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutr J 2016; 15:38. [PMID: 27067274 PMCID: PMC4828825 DOI: 10.1186/s12937-016-0155-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anthropometric characteristics and iron status affect cognitive performance in children. In addition, selenium can influence cognitive outcomes; protection of the brain from oxidative stress and its role in thyroid hormone metabolism are putative mechanisms. METHODS To investigate their association with cognitive performance, anthropometric indicators, iron biomarkers, and serum selenium of children (n = 541) of 54-60mo of age from rural Ethiopia were assessed. Cognitive assessment was conducted with the administration of two reasoning subtests of the Wechsler Preschool and Primary Scale of Intelligence and the school readiness test. RESULTS Stunting was found in 41.4 % of children, 28.7 % were underweight, and 6.3 % were wasted. The mean score of stunted children was lower than that of non-stunted children on non-verbal reasoning (7.0 ± 3.2vs7.9 ± 3.1; p = 0.01) and the school readiness tests (4.3 ± 2.2 vs 3.3 ± 2.1; p < 0.001). Compared to non-anemic children, anemic children had lower score for the verbal reasoning test (9.5 ± 1.7 vs 8.9 ± 2.2; p = 0.02). However, except for hemoglobin, none of the iron biomarkers had significant associations with the cognitive score of the study children (p > 0.05). Selenium deficient children had lower scores on all cognitive tests than normal children (p < 0.05). CONCLUSION The present study finding linking chronic undernutrition and micronutrient deficiency to cognitive deficits suggests the need for designing effective intervention programmes to control for protein energy malnutrition and micronutrient deficiency and address cognitive development in children.
Collapse
Affiliation(s)
- Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Karim Bougma
- School of Dietetics and Human Nutrition, McGill University, 21111 Lakeshore Road, CINE Building, Sainte Anne-de-Bellevue, QC, H9X 3 V9, Canada
| | | | - Gulelat D Haki
- Department of Food Science and Technology, University of Botswana, Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana
| | - Grace S Marquis
- School of Dietetics and Human Nutrition, McGill University, 21111 Lakeshore Road, CINE Building, Sainte Anne-de-Bellevue, QC, H9X 3 V9, Canada
| |
Collapse
|
49
|
Cabrera LY, Tesluk J, Chakraborti M, Matthews R, Illes J. Brain matters: from environmental ethics to environmental neuroethics. Environ Health 2016; 15:20. [PMID: 26880112 PMCID: PMC4754959 DOI: 10.1186/s12940-016-0114-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The ways in which humans affect and are affected by their environments have been studied from many different perspectives over the past decades. However, it was not until the 1970s that the discussion of the ethical relationship between humankind and the environment formalized as an academic discipline with the emergence of environmental ethics. A few decades later, environmental health emerged as a discipline focused on the assessment and regulation of environmental factors that affect living beings. Our goal here is to begin a discussion specifically about the impact of modern environmental change on biomedical and social understandings of brain and mental health, and to align this with ethical considerations. We refer to this focus as Environmental Neuroethics, offer a case study to illustrate key themes and issues, and conclude by offering a five-tier framework as a starting point of analysis.
Collapse
Affiliation(s)
- Laura Y Cabrera
- National Core for Neuroethics, Division of Neurology, Department of Medicine, University of British Columbia, 2211 Wesbrook Mall, Koerner S124, Vancouver, V6T 2B5, B.C., Canada.
- Center for Ethics & Humanities in the Life Sciences, Department of Translational Science and Molecular Medicine, Michigan State University, East Fee Hall, 965 Fee Road, Rm C211, East Lansing, MI, 48823, USA.
| | - Jordan Tesluk
- National Core for Neuroethics, Division of Neurology, Department of Medicine, University of British Columbia, 2211 Wesbrook Mall, Koerner S124, Vancouver, V6T 2B5, B.C., Canada.
- Department of Sociology, University of British Columbia, Vancouver, B.C., Canada.
| | - Michelle Chakraborti
- National Core for Neuroethics, Division of Neurology, Department of Medicine, University of British Columbia, 2211 Wesbrook Mall, Koerner S124, Vancouver, V6T 2B5, B.C., Canada.
| | - Ralph Matthews
- Department of Sociology, University of British Columbia, Vancouver, B.C., Canada.
| | - Judy Illes
- National Core for Neuroethics, Division of Neurology, Department of Medicine, University of British Columbia, 2211 Wesbrook Mall, Koerner S124, Vancouver, V6T 2B5, B.C., Canada.
| |
Collapse
|
50
|
Butler-Dawson J, Galvin K, Thorne PS, Rohlman DS. Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community. Neurotoxicology 2016; 53:165-172. [PMID: 26820522 DOI: 10.1016/j.neuro.2016.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/29/2023]
Abstract
Children living in agricultural communities have a greater risk from pesticides due to para-occupational pathways. The goal of this study was to assess the impact of exposure to organophosphorus pesticides on the neurobehavioral performance of school-aged Latino children over time. Two exposure measures were used to estimate children's pesticide exposure: parent's occupation (agricultural or non-agricultural) and organophosphate residues in home carpet dust samples. During 2008-2011, 206 school-aged children completed a battery of neurobehavioral tests two times, approximately one year apart. The associations between both exposure measures and neurobehavioral performance were examined. Pesticide residues were detected in dust samples from both agricultural and non-agricultural homes, however, pesticides were detected more frequently and in higher concentrations in agricultural homes compared to non-agricultural homes. Although few differences were found between agricultural and non-agricultural children at both visits, deficits in learning from the first visit to the second visit, or less improvement, was found in agricultural children relative to non-agricultural children. These differences were significant for the Divided Attention and Purdue Pegboard tests. These findings are consistent with previous research showing deficits in motor function. A summary measure of organophosphate residues was not associated with neurobehavioral performance. Results from this study indicate that children in agricultural communities are at increased risk from pesticides as a result of a parent working in agricultural. Our findings suggest that organophosphate exposure may be associated with deficits in learning on neurobehavioral performance, particularly in tests of with motor function. In spite of regulatory phasing out of organophosphates in the U.S., we still see elevated levels and higher detection rates of several organophosphates in agricultural households than non-agricultural households, albeit lower levels than prior studies.
Collapse
Affiliation(s)
- Jaime Butler-Dawson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States
| | - Kit Galvin
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States; Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|