1
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2025; 169:e16225. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kokhan VS, Pikalov VA, Chaprov K, Gulyaev MV. Combined Ionizing Radiation Exposure by Gamma Rays and Carbon-12 Nuclei Increases Neurotrophic Factor Content and Prevents Age-Associated Decreases in the Volume of the Sensorimotor Cortex in Rats. Int J Mol Sci 2024; 25:6725. [PMID: 38928431 PMCID: PMC11203503 DOI: 10.3390/ijms25126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of NRC “Kurchatov Institute”, 142281 Protvino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Mikhail V. Gulyaev
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Yin G, Wang Q, Lv T, Liu Y, Peng X, Zeng X, Huang J. The Radioprotective Effect of LBP on Neurogenesis and Cognition after Acute Radiation Exposure. Curr Radiopharm 2024; 17:257-265. [PMID: 38204264 PMCID: PMC11327742 DOI: 10.2174/0118744710274008231220055033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Radiation exposure has been linked to the development of brain damage and cognitive impairment, but the protective effect and mechanism of Lycium barbarum pills (LBP) on radiation-induced neurological damage remains to be clarified. METHODS Behavioral tests and immunohistochemical studies were conducted to evaluate the protective effects of LBP extract (10 g/kg orally daily for 4 weeks) against radiation-induced damage on neurogenesis and cognitive function in Balb/c mice exposed to 5.5 Gy X-ray acute radiation. RESULTS The results showed that the LBP extract significantly improved body weight loss, locomotor activity and spatial learning and memory. Immunohistochemical tests revealed that the LBP extract prevented the loss of proliferating cells, newly generated neurons and interneurons, especially in the subgranular area of the dentate gyrus. CONCLUSION The findings suggest that LBP is a potential neuroprotective drug for mitigating radiation-induced neuropsychological disorders.
Collapse
Affiliation(s)
- Gang Yin
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Qinqi Wang
- Department of Internal Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xianqin Zeng
- Department of Gynaecology and Obstetrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangrong Huang
- Department of Integrative Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Iacono D, Murphy EK, Stimpson CD, Perl DP, Day RM. Low-dose brain radiation: lowering hyperphosphorylated-tau without increasing DNA damage or oncogenic activation. Sci Rep 2023; 13:21142. [PMID: 38036591 PMCID: PMC10689500 DOI: 10.1038/s41598-023-48146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Brain radiation has been medically used to alter the metabolism of cancerous cells and induce their elimination. Rarely, though, brain radiation has been used to interfere with the pathomechanisms of non-cancerous brain disorders, especially neurodegenerative disorders. Data from low-dose radiation (LDR) on swine brains demonstrated reduced levels of phosphorylated-tau (CP13) and amyloid precursor protein (APP) in radiated (RAD) versus sham (SH) animals. Phosphorylated-tau and APP are involved in Alzheimer's disease (AD) pathogenesis. We determined if the expression levels of hyperphosphorylated-tau, 3R-tau, 4R-tau, synaptic, intraneuronal damage, and DNA damage/oncogenic activation markers were altered in RAD versus SH swine brains. Quantitative analyses demonstrated reduced levels of AT8 and 3R-tau in hippocampus (H) and striatum (Str), increased levels of synaptophysin and PSD-95 in frontal cortex (FCtx), and reduced levels of NF-L in cerebellum (CRB) of RAD versus SH swine. DNA damage and oncogene activation markers levels did not differ between RAD and SH animals, except for histone-H3 (increased in FCtx and CRB, decreased in Str), and p53 (reduced in FCtx, Str, H and CRB). These findings confirm the region-based effects of sLDR on proteins normally expressed in larger mammalian brains and support the potential applicability of LDR to beneficially interfere against neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA.
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Cheryl D Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
6
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
7
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Britten RA, Limoli CL. New Radiobiological Principles for the CNS Arising from Space Radiation Research. Life (Basel) 2023; 13:1293. [PMID: 37374076 DOI: 10.3390/life13061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Charles L Limoli
- Department Radiation Oncology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
10
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
11
|
Blackwell AA, Tracz JA, Fesshaye AS, Tidmore A, Osterlund Oltmanns JR, Schaeffer EA, Lake RI, Wallace DG, Britten RA. Fine motor deficits exhibited in rat string-pulling behavior following exposure to sleep fragmentation and deep space radiation. Exp Brain Res 2023; 241:427-440. [PMID: 36574036 DOI: 10.1007/s00221-022-06527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Deep space flight missions will expose astronauts to multiple stressors, including sleep fragmentation and space radiation. There is debate over whether sleep disruptions are an issue in deep space. While these stressors independently impair sensorimotor function, the combined effects on performance are currently unknown. String-pulling behavior involves highly organized bimanual reach-to-grasp and withdraw movements. This behavior was examined under rested wakeful conditions and immediately following one session of sleep fragmentation in Sham and irradiated rats 3 months after exposure (10 cGy 4Helium or 5-ion simulated Galactic Cosmic Radiation). Sleep fragmentation disrupted several aspects of string-pulling behavior, such that rats' ability to grasp the string was reduced, reach endpoint concentration was more variable, and distance traveled by the nose increased in the Y-range compared to rested wakeful performance. Overall, irradiated rats missed the string more than Sham rats 3 months post-exposure. Irradiated rats also exhibited differential impairments at 3 months, with additional deficits unveiled after sleep fragmentation. 4Helium-exposed rats took longer to approach the string after sleep fragmentation. Further, rats exposed to 4Helium traveled shorter withdraw distances 3 months after irradiation, while this only emerged in the other irradiated group after sleep fragmentation. These findings identify sleep fragmentation as a risk for fine motor dysfunction in Sham and irradiated conditions, in addition to radiation exposure. There may be complex temporal alterations in performance that are stressor- and ion-dependent. Thus, it is critical to implement appropriate models of multi-flight stressors and performance assessments in preparation for future deep space flight missions.
Collapse
Affiliation(s)
- Ashley A Blackwell
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA. .,Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Jovanna A Tracz
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Arriyam S Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA
| | - Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA
| | | | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Rami I Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA.,Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|
12
|
Yun S, Soler I, Tran F, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525756. [PMID: 36747871 PMCID: PMC9900985 DOI: 10.1101/2023.01.26.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities which are disrupted in many brain disorders. Better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on integrity of the hippocampal dentate gyrus (DG) which both receive glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). Inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here we asked if the activity of LEC fan cells that directly project to the DG (LEC➔DG neurons) regulates behavioral pattern separation or cognitive flexibility. C57BL6/J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA); this approach increases the activity of LEC➔DG neurons. Four weeks later, mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based Location Discrimination Reversal [LDR] task) and innate fear of open spaces (elevated plus maze [EPM]) followed by counting of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). TRIP8b and SCR shRNA mice performed similarly in general touchscreen training and LDR training. However, in late LDR testing, TRIP8b shRNA mice reached the first reversal more quickly and had more accurate discrimination vs. SCR shRNA mice, specifically when pattern separation was challenging (lit squares close together or "small separation"). Also, TRIP8b shRNA mice achieved more reversals in late LDR testing vs. SCR shRNA mice. Supporting a specific influence on cognitive behavior, SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis vs. SCR shRNA mice. This work advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival - behavioral pattern separation and cognitive flexibility - and suggests the activity of LEC➔DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
|
13
|
Peter JS, Schuemann J, Held KD, McNamara AL. Nano-scale simulation of neuronal damage by galactic cosmic rays. Phys Med Biol 2022; 67:10.1088/1361-6560/ac95f4. [PMID: 36172820 PMCID: PMC9951267 DOI: 10.1088/1361-6560/ac95f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The effects of realistic, deep space radiation environments on neuronal function remain largely unexplored.In silicomodeling studies of radiation-induced neuronal damage provide important quantitative information about physico-chemical processes that are not directly accessible through radiobiological experiments. Here, we present the first nano-scale computational analysis of broad-spectrum galactic cosmic ray irradiation in a realistic neuron geometry. We constructed thousands ofin silicorealizations of a CA1 pyramidal neuron, each with over 3500 stochastically generated dendritic spines. We simulated the entire 33 ion-energy beam spectrum currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim) using the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits. We then assessed the resulting nano-scale dosimetry, physics processes, and fluence patterns. Additional comparisons were made to a simplified 6 ion-energy spectrum (SimGCRSim) also used in NASA experiments. For a neuronal absorbed dose of 0.5 Gy GCRSim, we report an average of 250 ± 10 ionizations per micrometer of dendritic length, and an additional 50 ± 10, 7 ± 2, and 4 ± 2 ionizations per mushroom, thin, and stubby spine, respectively. We show that neuronal energy deposition by proton andα-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose for each ion-energy beam. We also find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim spectra. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim spectra. These results may be used as inputs to theoretical models, aid in the interpretation of experimental results, and help guide future study designs.
Collapse
Affiliation(s)
- Jonah S Peter
- Biophysics Program, Harvard University, Boston, MA 02115, United States of America
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
14
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
15
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
16
|
Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022; 40:111279. [PMID: 36070701 PMCID: PMC10503492 DOI: 10.1016/j.celrep.2022.111279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 02/03/2023] Open
Abstract
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | - Roberta M Dolling-Boreham
- Department of Electrical and Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Blue Marble Space Institute of Science, Seattle, WA 94035, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA; Blue Marble Space Institute of Science, Seattle, WA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA; Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL 32114, USA
| | - Rachel Gilbert
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew Jensen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Santhosh Girirajan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Biological and Physical Sciences Division, NASA Headquarters, Washington DC 20024, USA.
| |
Collapse
|
17
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Ton ST, Laghi JR, Tsai SY, Blackwell AA, Adamczyk NS, Oltmanns JRO, Britten RA, Wallace DG, Kartje GL. Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiat Res 2022; 198:28-39. [DOI: 10.1667/rade-21-00021.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the center nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats. Since these tasks rely at least in part on the proper functioning of the striatum, we examined striatal microglial cells in these same subjects. Using morphometric analysis, we found that 28Si exposure increased activated microglial cells in the striatum. The majority of these striatal Iba1+ microglia were ED1–, indicating that they were in an alternatively activated state, where microglia do not have phagocytic activity but may be releasing cytokines that could negatively impact neuronal function. In the other areas studied, Iba1+ microglial cells were increased in the subventricular zone (SVZ), but not in the dentate gyrus (DG). Additionally, we examined the relationship between the microglial response and neurogenesis. An analysis of new neurons in the DG revealed an increase in doublecortin-positive (DCX+) hilar ectopic granule cells (hEGC) which correlated with Iba1+ cells, suggesting that microglial cells contributed to this aberrant distribution which may adversely affect hippocampal function. Taken together, these results indicate that a single dose of 28Si radiation results in persistent cellular effects in the CNS that may impact astronauts both in the short and long-term following deep space missions.
Collapse
Affiliation(s)
- Son T. Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Julia R. Laghi
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | | | | | | | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, Illinois
| | - Gwendolyn L. Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| |
Collapse
|
19
|
Kiffer FC, Luitel K, Tran FH, Patel RA, Guzman CS, Soler I, Xiao R, Shay JW, Yun S, Eisch AJ. Effects of a 33-ion sequential beam galactic cosmic ray analog on male mouse behavior and evaluation of CDDO-EA as a radiation countermeasure. Behav Brain Res 2022; 419:113677. [PMID: 34818568 PMCID: PMC9755463 DOI: 10.1016/j.bbr.2021.113677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
In long-term spaceflight, astronauts will face unique cognitive loads and social challenges which will be complicated by communication delays with Earth. It is important to understand the central nervous system (CNS) effects of deep spaceflight and the associated unavoidable exposure to galactic cosmic radiation (GCR). Rodent studies show single- or simple-particle combination exposure alters CNS endpoints, including hippocampal-dependent behavior. An even better Earth-based simulation of GCR is now available, consisting of a 33-beam (33-GCR) exposure. However, the effect of whole-body 33-GCR exposure on rodent behavior is unknown, and no 33-GCR CNS countermeasures have been tested. Here astronaut-age-equivalent (6mo-old) C57BL/6J male mice were exposed to 33-GCR (75cGy, a Mars mission dose). Pre-/during/post-Sham or 33-GCR exposure, mice received a diet containing a 'vehicle' formulation alone or with the antioxidant/anti-inflammatory compound CDDO-EA as a potential countermeasure. Behavioral testing beginning 4mo post-irradiation suggested radiation and diet did not affect measures of exploration/anxiety-like behaviors (open field, elevated plus maze) or recognition of a novel object. However, in 3-Chamber Social Interaction (3-CSI), CDDO-EA/33-GCR mice failed to spend more time exploring a holder containing a novel mouse vs. a novel object (empty holder), suggesting sociability deficits. Also, Vehicle/33-GCR and CDDO-EA/Sham mice failed to discriminate between a novel stranger vs. familiarized stranger mouse, suggesting blunted preference for social novelty. CDDO-EA given pre-/during/post-irradiation did not attenuate the 33-GCR-induced blunting of preference for social novelty. Future elucidation of the mechanisms underlying 33-GCR-induced blunting of preference for social novelty will improve risk analysis for astronauts which may in-turn improve countermeasures.
Collapse
Affiliation(s)
- Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX, USA, 75390
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Riya A Patel
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Catalina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104
| | - Rui Xiao
- Department of Pediatrics Division of Biostatistics, CHOP Research Institute, Philadelphia, PA, USA, 19104,Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX, USA, 75390
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, USA, 19104,Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA, 19104
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Iwasa K, Yamamoto S, Yamashina K, Yagishita-Kyo N, Maruyama K, Awaji T, Takei Y, Hirasawa A, Yoshikawa K. A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD 2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus. J Neuroinflammation 2021; 18:304. [PMID: 34961526 PMCID: PMC8711188 DOI: 10.1186/s12974-021-02361-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinflammatory mediators. We previously reported that a surge in prostaglandin D2 (PGD2) production and PGD2-induced microglial activation could provoke neuroinflammation. We also reported that a lipid sensor GPR120 (free fatty acid receptor 4), which is expressed in intestine, could be activated by polyunsaturated fatty acids (PUFA), thereby mediating secretion of glucagon-like peptide-1 (GLP-1). Dysfunction of GPR120 results in obesity in both mice and humans. METHODS To reveal the relationship between PGD2-microglia-provoked neuroinflammation and intestinal PUFA/GPR120 signaling, we investigated neuroinflammation and neuronal function with gene and protein expression, histological, and behavioral analysis in GPR120 knockout (KO) mice. RESULTS In the current study, we discovered notable neuroinflammation (increased PGD2 production and microglial activation) and neurodegeneration (declines in neurogenesis, hippocampal volume, and cognitive function) in GPR120 KO mice. We also found that Hematopoietic-prostaglandin D synthase (H-PGDS) was expressed in microglia, microglia were activated by PGD2, H-PGDS expression was upregulated in GPR120 KO hippocampus, and inhibition of PGD2 production attenuated this neuroinflammation. GPR120 KO mice exhibited reduced intestinal, plasma, and intracerebral GLP-1 contents. Peripheral administration of a GLP-1 analogue, liraglutide, reduced PGD2-microglia-provoked neuroinflammation and further neurodegeneration in GPR120 KO mice. CONCLUSIONS Our results suggest that neurological phenotypes in GPR120 KO mice are probably caused by dysfunction of intestinal GPR120. These observations raise the possibility that intestinal GLP-1 secretion, stimulated by intestinal GPR120, may remotely contributed to suppress PGD2-microglia-provoked neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Nan Yagishita-Kyo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|
21
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
22
|
Boutros SW, Zimmerman B, Nagy SC, Lee JS, Perez R, Raber J. Amifostine (WR-2721) Mitigates Cognitive Injury Induced by Heavy Ion Radiation in Male Mice and Alters Behavior and Brain Connectivity. Front Physiol 2021; 12:770502. [PMID: 34867479 PMCID: PMC8637850 DOI: 10.3389/fphys.2021.770502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sydney C. Nagy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne S. Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, United States
| |
Collapse
|
23
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
24
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Klein PM, Alaghband Y, Doan NL, Ru N, Drayson OGG, Baulch JE, Kramár EA, Wood MA, Soltesz I, Limoli CL. Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. Int J Mol Sci 2021; 22:9020. [PMID: 34445726 PMCID: PMC8396607 DOI: 10.3390/ijms22169020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.
Collapse
Affiliation(s)
- Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Olivia G. G. Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| |
Collapse
|
26
|
Ohnishi T, Kiyama Y, Arima‐Yoshida F, Kadota M, Ichikawa T, Yamada K, Watanabe A, Ohba H, Tanaka K, Nakaya A, Horiuchi Y, Iwayama Y, Toyoshima M, Ogawa I, Shimamoto‐Mitsuyama C, Maekawa M, Balan S, Arai M, Miyashita M, Toriumi K, Nozaki Y, Kurokawa R, Suzuki K, Yoshikawa A, Toyota T, Hosoya T, Okuno H, Bito H, Itokawa M, Kuraku S, Manabe T, Yoshikawa T. Cooperation of LIM domain-binding 2 (LDB2) with EGR in the pathogenesis of schizophrenia. EMBO Mol Med 2021; 13:e12574. [PMID: 33656268 PMCID: PMC8033514 DOI: 10.15252/emmm.202012574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.
Collapse
|
27
|
Life-long brain compensatory responses to galactic cosmic radiation exposure. Sci Rep 2021; 11:4292. [PMID: 33619310 PMCID: PMC7900210 DOI: 10.1038/s41598-021-83447-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Galactic cosmic radiation (GCR) composed of high-energy, heavy particles (HZE) poses potentially serious hazards to long-duration crewed missions in deep space beyond earth’s magnetosphere, including planned missions to Mars. Chronic effects of GCR exposure on brain structure and cognitive function are poorly understood, thereby limiting risk reduction and mitigation strategies to protect against sequelae from exposure during and after deep-space travel. Given the selective vulnerability of the hippocampus to neurotoxic insult and the importance of this brain region to learning and memory, we hypothesized that GCR-relevant HZE exposure may induce long-term alterations in adult hippocampal neurogenesis, synaptic plasticity, and hippocampal-dependent learning and memory. To test this hypothesis, we irradiated 3-month-old male and female mice with a single, whole-body dose of 10, 50, or 100 cGy 56Fe ions (600 MeV, 181 keV/μm) at Brookhaven National Laboratory. Our data reveal complex, dynamic, time-dependent effects of HZE exposure on the hippocampus. Two months post exposure, neurogenesis, synaptic plasticity and learning were impaired compared to sham-irradiated, age-matched controls. By six months post-exposure, deficits in spatial learning were absent in irradiated mice, and synaptic potentiation was enhanced. Enhanced performance in spatial learning and facilitation of synaptic plasticity in irradiated mice persisted 12 months post-exposure, concomitant with a dramatic rebound in adult-born neurons. Synaptic plasticity and spatial learning remained enhanced 20 months post-exposure, indicating a life-long influence on plasticity and cognition from a single exposure to HZE in young adulthood. These findings suggest that GCR-exposure can persistently alter brain health and cognitive function during and after long-duration travel in deep space.
Collapse
|
28
|
Iacono D, Murphy EK, Avantsa SS, Perl DP, Day RM. Reduction of pTau and APP levels in mammalian brain after low-dose radiation. Sci Rep 2021; 11:2215. [PMID: 33500491 PMCID: PMC7838187 DOI: 10.1038/s41598-021-81602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Brain radiation can occur from treatment of brain tumors or accidental exposures. Brain radiation has been rarely considered, though, as a possible tool to alter protein levels involved in neurodegenerative disorders. We analyzed possible molecular and neuropathology changes of phosphorylated-Tau (pTau), all-Tau forms, β-tubulin, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (IBA-1), myelin basic protein (MBP), and GAP43 in Frontal Cortex (FC), Hippocampus (H) and Cerebellum (CRB) of swine brains following total-body low-dose radiation (1.79 Gy). Our data show that radiated-animals had lower levels of pTau in FC and H, APP in H and CRB, GAP43 in CRB, and higher level of GFAP in H versus sham-animals. These molecular changes were not accompanied by obvious neurohistological changes, except for astrogliosis in the H. These findings are novel, and might open new perspectives on brain radiation as a potential tool to interfere with the accumulation of specific proteins linked to the pathogenesis of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA. .,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA. .,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA. .,Complex Neurodegenerative Disorders, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA
| | - Soundarya S Avantsa
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
29
|
Kokhan VS, Mariasina S, Pikalov VA, Abaimov DA, Somasundaram SG, Kirkland CE, Aliev G. Neurokinin-1 receptor antagonist reverses functional CNS alteration caused by combined γ-rays and carbon nuclei irradiation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:278-289. [PMID: 33480350 DOI: 10.2174/1871527320666210122092330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho-emotional balance, primarily an anxiogenic effect of IR. In our recent work we hypothesized that the neurokinin-1 (NK1) receptor may be instrumental for such alterations. OBJECTIVE The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats. METHOD Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. A high-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by Western blotting technique. RESULTS Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5-HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats. CONCLUSION Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow. Russian Federation
| | - Sofia Mariasina
- M.V. Lomonosov Moscow State University, Moscow. Russian Federation
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino. Russian Federation
| | | | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991. Russian Federation
| |
Collapse
|
30
|
Klein PM, Parihar VK, Szabo GG, Zöldi M, Angulo MC, Allen BD, Amin AN, Nguyen QA, Katona I, Baulch JE, Limoli CL, Soltesz I. Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiol Dis 2021; 151:105252. [PMID: 33418069 DOI: 10.1016/j.nbd.2021.105252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
Collapse
Affiliation(s)
- Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America.
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - Miklós Zöldi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Amal N Amin
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States of America
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America; Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA 94305, United States of America
| |
Collapse
|
31
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Blackwell AA, Schell BD, Osterlund Oltmanns JR, Whishaw IQ, Ton ST, Adamczyk NS, Kartje GL, Britten RA, Wallace DG. Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation ( 28Si) exposure. Behav Brain Res 2020; 400:113010. [PMID: 33181183 DOI: 10.1016/j.bbr.2020.113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior. For example, focal cortical damage has been previously shown to disrupt the topographic (i.e., path circuity) and kinematic (i.e., moment-to-moment speed) organization of rat string-pulling behavior count to compromise task accuracy. In the current study, rats were exposed to a ground-based model of simulated space radiation (5 cGy 28Silicon), and string-pulling behavior was used to assess fine motor control. Irradiated rats initially took longer to pull an unweighted string into a cage, exhibited impaired accuracy in grasping the string, and displayed postural deficits. Once rats were switched to a weighted string, some deficits lessened but postural instability remained. These results demonstrate that a single exposure to a low dose of space radiation disrupts skilled hand movements and posture, suggestive of neural impairment. This work establishes a foundation for future studies to investigate the neural structures and circuits involved in fine motor control and to examine the effectiveness of counter measures to attenuate the effects of space radiation on fine motor control.
Collapse
Affiliation(s)
- Ashley A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States.
| | - Brandi D Schell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| | | | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Son T Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Natalie S Adamczyk
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, United States
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| |
Collapse
|
33
|
Limoli C. Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain? Br J Radiol 2020; 93:20200245. [PMID: 32970457 DOI: 10.1259/bjr.20200245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Not surprisingly, our knowledge of the impact of radiation on the brain has evolved considerably. Decades of work have struggled with identifying the critical cellular targets in the brain, the latency of functional change and understanding how irradiation alters the balance between excitatory and inhibitory circuits. Radiation-induced cell kill following clinical fractionation paradigms pointed to both stromal and parenchymal targets but also defined an exquisite sensitivity of neurogenic populations of newly born cells in the brain. It became more and more apparent too, that acute (days) events transpiring after exposure were poorly prognostic of the late (months-years) waves of radiation injury believed to underlie neurocognitive deficits. Much of these gaps in knowledge persisted as NASA became interested in how exposure to much different radiation types, doses and dose rates that characterize the space radiation environment might impair central nervous system functionality, with possibly negative implications for deep space travel. Now emerging evidence from researchers engaged in clinical, translational and environmental radiation sciences have begun to fill these gaps and have uncovered some surprising similarities in the response of the brain to seemingly disparate exposure scenarios. This article highlights many of the commonalities between the vastly different irradiation paradigms that distinguish clinical treatments from occupational exposures in deep space.
Collapse
Affiliation(s)
- Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, United States
| |
Collapse
|
34
|
Collett G, Craenen K, Young W, Gilhooly M, Anderson RM. The psychological consequences of (perceived) ionizing radiation exposure: a review on its role in radiation-induced cognitive dysfunction. Int J Radiat Biol 2020; 96:1104-1118. [PMID: 32716221 DOI: 10.1080/09553002.2020.1793017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Exposure to ionizing radiation following environmental contamination (e.g., the Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious effects of high doses (≥1.0 Gy) on cognitive functioning are fairly well-understood, while the consequences of low (≤0.1 Gy) and moderate doses (0.1-1.0 Gy) have been receiving more research interest over the past decade. In addition to any impact of actual exposure on cognitive functioning, the persistent psychological stress arising from perceived exposure, particularly following nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdisciplinary stance on the cognitive impact of radiation exposure, considering psychological and epidemiological observations of different exposure scenarios such as atomic bombings, nuclear accidents, occupational and medical exposures while accounting for differences in dose, rate of exposure and exposure type. The purpose is to address the question that perceived radiation exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e., radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction. In all, we offer a comprehensive and objective review addressing the potential for cognitive defects in the context of low- and moderate-dose IR exposures. CONCLUSIONS Overall the evidence shows prenatal exposure to low and moderate doses to be detrimental to brain development and subsequent cognitive functioning, however the evidence for adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psychological stress following accidental exposure to low-doses in adulthood may pose a greater threat to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g., astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless, the psychosocial consequences of low- and moderate-dose exposure must be carefully considered when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when planning public health response strategies.
Collapse
Affiliation(s)
- George Collett
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Kai Craenen
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - William Young
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mary Gilhooly
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rhona M Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
35
|
Allen BD, Syage AR, Maroso M, Baddour AAD, Luong V, Minasyan H, Giedzinski E, West BL, Soltesz I, Limoli CL, Baulch JE, Acharya MM. Mitigation of helium irradiation-induced brain injury by microglia depletion. J Neuroinflammation 2020; 17:159. [PMID: 32429943 PMCID: PMC7236926 DOI: 10.1186/s12974-020-01790-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions. Methods Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (4He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4–6 weeks later. Results PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected. Conclusions Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Amber R Syage
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Mattia Maroso
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Valerie Luong
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Harutyun Minasyan
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA, USA.
| |
Collapse
|
36
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
37
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
38
|
Whoolery CW, Yun S, Reynolds RP, Lucero MJ, Soler I, Tran FH, Ito N, Redfield RL, Richardson DR, Shih HY, Rivera PD, Chen BPC, Birnbaum SG, Stowe AM, Eisch AJ. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep 2020; 10:2737. [PMID: 32066765 PMCID: PMC7026431 DOI: 10.1038/s41598-020-59419-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.
Collapse
Affiliation(s)
- Cody W Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melanie J Lucero
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Soler
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naoki Ito
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Rachel L Redfield
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biology, Hope College, Holland, MI, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Indices of dentate gyrus neurogenesis are unaffected immediately after or following withdrawal from morphine self-administration compared to saline self-administering control male rats. Behav Brain Res 2019; 381:112448. [PMID: 31870778 DOI: 10.1016/j.bbr.2019.112448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Opiates - including morphine - are powerful analgesics with high abuse potential. In rodents, chronic opiate exposure or self-administration negatively impacts hippocampal-dependent function, an effect perhaps due in part to the well-documented opiate-induced inhibition of dentate gyrus (DG) precursor proliferation and neurogenesis. Recently, however, intravenous (i.v.) morphine self-administration (MSA) was reported to enhance the survival of new rat DG neurons. To reconcile these disparate results, we used rat i.v. MSA to assess 1) whether a slightly-higher dose MSA paradigm also increases new DG neuron survival; 2) how MSA influences cells in different stages of DG neurogenesis, particularly maturation and survival; and 3) if MSA-induced changes in DG neurogenesis persist through a period of abstinence. To label basal levels of proliferation, rats received the S-phase marker bromodeoxyuridine (BrdU, i.p.) 24 -h prior to 21 days (D) of i.v. MSA or saline self-administration (SSA). Either immediately after SA (0-D) or after 4 weeks in the home cage (28-D withdrawal), stereology was used to quantify DG proliferating precursors (or cells in cell cycle; Ki67+ cells), neuroblast/immature neurons (DCX+ cells), and surviving DG granule cells (BrdU+ cells). Analysis revealed the number of DG cells immunopositive for these neurogenesis-relevant markers was similar between MSA and SSA rats at the 0-D or 28-D timepoints. These negative data highlight the impact experimental parameters, timepoint selection, and quantification approach have on neurogenesis results, and are discussed in the context of the large literature showing the negative impact of opiates on DG neurogenesis.
Collapse
|
40
|
Acharya MM, Baulch JE, Klein PM, Baddour AAD, Apodaca LA, Kramár EA, Alikhani L, Garcia C, Angulo MC, Batra RS, Fallgren CM, Borak TB, Stark CEL, Wood MA, Britten RA, Soltesz I, Limoli CL. New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. eNeuro 2019; 6:ENEURO.0094-19.2019. [PMID: 31383727 PMCID: PMC6709229 DOI: 10.1523/eneuro.0094-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×105 higher than those actually encountered in space. Using a new, low dose-rate neutron irradiation facility, we have uncovered that realistic, low dose-rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low-dose (18 cGy) and dose rate (1 mGy/d) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, California 94305
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Lauren A Apodaca
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Leila Alikhani
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Camillo Garcia
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Raja S Batra
- Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Christine M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Thomas B Borak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Marcello A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, California 94305
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697
| |
Collapse
|
41
|
Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019; 9:12118. [PMID: 31431669 PMCID: PMC6702228 DOI: 10.1038/s41598-019-48615-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer’s disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-β levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin X Le
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shuyan Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shipra Dubey
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey L Frost
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Holton
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lee Trojanczyk
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Paul A Jones
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - William Trigg
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Paul Lorello
- Harvard Medical School Mouse Behavior Core, Boston, MA, 02115, USA
| | | | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment. J Neurosurg Anesthesiol 2019; 31:151-162. [PMID: 30767941 DOI: 10.1097/ana.0000000000000541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a large body of preclinical literature suggesting that exposure to general anesthetic agents during early life may have harmful effects on brain development. Patients in intensive care settings are often treated for prolonged periods with sedative medications, many of which have mechanisms of action that are similar to general anesthetics. Using in vivo studies of the mouse hippocampus and an in vitro rat cortical neuron model we asked whether there is evidence that repeated, long duration exposure to midazolam, a commonly used sedative in pediatric intensive care practice, has the potential to cause lasting harm to the developing brain. We found that mice that underwent midazolam sedation in early postnatal life exhibited deficits in the performance on Y-maze and fear-conditioning testing at young adult ages. Labeling with a nucleoside analog revealed a reduction in the rate of adult neurogenesis in the hippocampal dentate gyrus, a brain region that has been shown to be vulnerable to developmental anesthetic neurotoxicity. In addition, using immunohistochemistry for synaptic markers we found that the number of presynaptic terminals in the dentate gyrus was reduced, while the number of excitatory postsynaptic terminals was increased. These findings were replicated in a midazolam sedation exposure model in neurons in culture. We conclude that repeated, long duration exposure to midazolam during early development has the potential to result in persistent alterations in the structure and function of the brain.
Collapse
|
43
|
Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:1-21. [PMID: 31101151 PMCID: PMC7150604 DOI: 10.1016/j.lssr.2019.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/04/2023]
Abstract
As NASA prepares for the first manned mission to Mars in the next 20 years, close attention has been placed on the cognitive welfare of astronauts, who will likely endure extended durations in confinement and microgravity and be subjected to the radioactive charged particles travelling at relativistic speeds in interplanetary space. The future of long-duration manned spaceflight, thus, depends on understanding the individual hazards associated with the environment beyond Earth's protective magnetosphere. Ground-based single-particle studies of exposed mice and rats have, in the last 30 years, overwhelmingly reported deficits in their cognitive behaviors. However, as particle-accelerator technologies at NASA's Space Radiation Laboratory continue to progress, more realistic representations of space radiation are materializing, including multiple-particle exposures and, eventually, at multiple energy distributions. These advancements help determine how to best mitigate possible hazards due to space radiation. However, risk models will depend on delineating which particles are most responsible for specific behavioral outcomes and whether multiple-particle exposures produce synergistic effects. Here, we review the literature on animal exposures by particle, energy, and behavioral assay to inform future mixed-field radiation studies of possible behavioral outcomes.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Antiño Allen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
44
|
Raber J, Yamazaki J, Torres ERS, Kirchoff N, Stagaman K, Sharpton T, Turker MS, Kronenberg A. Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Front Physiol 2019; 10:179. [PMID: 30914962 PMCID: PMC6422905 DOI: 10.3389/fphys.2019.00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
The radiation environment in deep space includes the galactic cosmic radiation with different proportions of all naturally occurring ions from protons to uranium. Most experimental animal studies for assessing the biological effects of charged particles have involved acute dose delivery for single ions and/or fractionated exposure protocols. Here, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice 2 months following rapidly delivered, sequential irradiation with protons (1 GeV, 60%), 16O (250 MeV/n, 20%), and 28Si (263 MeV/n, 20%) at 0, 25, 50, or 200 cGy at 4-6 months of age. Cortical BDNF, CD68, and MAP-2 levels were analyzed 3 months after irradiation or sham irradiation. During the dark period, male mice irradiated with 50 cGy showed higher activity levels in the home cage than sham-irradiated mice. Mice irradiated with 50 cGy also showed increased depressive behavior in the forced swim test. When cognitive performance was assessed, sham-irradiated mice of both sexes and mice irradiated with 25 cGy showed normal responses to object recognition and novel object exploration. However, object recognition was impaired in female and male mice irradiated with 50 or 200 cGy. For cortical levels of the neurotrophic factor BDNF and the marker of microglial activation CD68, there were sex × radiation interactions. In females, but not males, there were increased CD68 levels following irradiation. In males, but not females, there were reduced BDNF levels following irradiation. A significant positive correlation between BDNF and CD68 levels was observed, suggesting a role for activated microglia in the alterations in BDNF levels. Finally, sequential beam irradiation impacted the diversity and composition of the gut microbiome. These included dose-dependent impacts and alterations to the relative abundance of several gut genera, such as Butyricicoccus and Lachnospiraceae. Thus, exposure to rapidly delivered sequential proton, 16O ion, and 28Si ion irradiation significantly affects behavioral and cognitive performance, cortical levels of CD68 and BDNF in a sex-dependent fashion, and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Neurology, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States.,Department of Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Joy Yamazaki
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Nicole Kirchoff
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S Turker
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
45
|
Kiffer F, Alexander T, Anderson JE, Groves T, Wang J, Sridharan V, Boerma M, Allen AR. Late Effects of 16O-Particle Radiation on Female Social and Cognitive Behavior and Hippocampal Physiology. Radiat Res 2019; 191:278-294. [PMID: 30664396 DOI: 10.1667/rr15092.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The radiation environment in space remains a major concern for manned space exploration, as there is currently no shielding material capable of fully protecting flight crews. Additionally, there is growing concern for the social and cognitive welfare of astronauts, due to prolonged radiation exposure and confinement they will experience on a mission to Mars. In this artice, we report on the late effects of 16O-particle radiation on social and cognitive behavior and neuronal morphology in the hippocampus of adult female mice. Six-month-old mice received 16O-particle whole-body irradiation at doses of either 0.25 or 0.1 Gy (600 MeV/n; 18-33 cGy/min) at the NASA's Space Radiation Laboratory in Upton, NY. At nine months postirradiation, the animals underwent behavioral testing in the three-chamber sociability, novel object recognition and Y-maze paradigms. Exposure to 0.1 or 0.25 Gy 16O significantly impaired object memory, a 0.25 Gy dose impaired social novelty learning, but neither dosage impaired short-term spatial memory. We observed significant decreases in mushroom spine density and dendrite morphology in the dentate gyrus, cornu ammonis 3, 2 and 1 of the hippocampus, which are critical areas for object novelty and sociability processing. Our data suggest exposure to 16O modulates hippocampal pyramidal and granular neurons and induces behavioral deficits at a time point of nine months after exposure in females.
Collapse
Affiliation(s)
- Frederico Kiffer
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Julie E Anderson
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jing Wang
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Vijayalakshmi Sridharan
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
46
|
Short and Long-Term Changes in Social Odor Recognition and Plasma Cytokine Levels Following Oxygen ( 16O) Ion Radiation Exposure. Int J Mol Sci 2019; 20:ijms20020339. [PMID: 30650610 PMCID: PMC6359552 DOI: 10.3390/ijms20020339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Future long-duration space missions will involve travel outside of the Earth’s magnetosphere protection and will result in astronauts being exposed to high energy and charge (HZE) ions and protons. Exposure to this type of radiation can result in damage to the central nervous system and deficits in numerous cognitive domains that can jeopardize mission success. Social processing is a cognitive domain that is important for people living and working in groups, such as astronauts, but it has received little attention in terms of HZE ion exposure. In the current study, we assessed the effects of whole-body oxygen ion (16O; 1000 MeV/n) exposure (1 or 10 cGy) on social odor recognition memory in male Long-Evans rats at one and six months following exposure. Radiation exposure did not affect rats’ preferences for a novel social odor experienced during Habituation at either time point. However, rats exposed to 10 cGy displayed short and long-term deficits in 24-h social recognition. In contrast, rats exposed to 1 cGy only displayed long-term deficits in 24-h social recognition. While an age-related decrease in Ki67+ staining (a marker of cell proliferation) was found in the subventricular zone, it was unaffected by radiation exposure. At one month following exposure, plasma KC/GRO (CXCL1) levels were elevated in the 1 cGy rats, but not in the 10 cGy rats, suggesting that peripheral levels of this cytokine could be associated with intact social recognition at earlier time points following radiation exposure. These results have important implications for long-duration missions and demonstrate that behaviors related to social processing could be negatively affected by HZE ion exposure.
Collapse
|
47
|
Central Nervous System Responses to Simulated Galactic Cosmic Rays. Int J Mol Sci 2018; 19:ijms19113669. [PMID: 30463349 PMCID: PMC6275046 DOI: 10.3390/ijms19113669] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
In preparation for lunar and Mars missions it is essential to consider the challenges to human health that are posed by long-duration deep space habitation via multiple stressors, including ionizing radiation, gravitational changes during flight and in orbit, other aspects of the space environment such as high level of carbon dioxide, and psychological stress from confined environment and social isolation. It remains unclear how these stressors individually or in combination impact the central nervous system (CNS), presenting potential obstacles for astronauts engaged in deep space travel. Although human spaceflight research only within the last decade has started to include the effects of radiation transmitted by galactic cosmic rays to the CNS, radiation is currently considered to be one of the main stressors for prolonged spaceflight and deep space exploration. Here we will review the current knowledge of CNS damage caused by simulated space radiation with an emphasis on neuronal and glial responses along with cognitive functions. Furthermore, we will present novel experimental approaches to integrate the knowledge into more comprehensive studies, including multiple stressors at once and potential translation to human functions. Finally, we will discuss the need for developing biomarkers as predictors for cognitive decline and therapeutic countermeasures to prevent CNS damage and the loss of cognitive abilities.
Collapse
|
48
|
Selvaraj UM, Zuurbier KR, Whoolery CW, Plautz EJ, Chambliss KL, Kong X, Zhang S, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW, Stowe AM. Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology 2018; 159:3848-3859. [PMID: 30256928 PMCID: PMC6203892 DOI: 10.1210/en.2018-00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kielen R Zuurbier
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cody W Whoolery
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiangmei Kong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
49
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
50
|
Mange A, Cao Y, Zhang S, Hienz RD, Davis CM. Whole-Body Oxygen (16O) Ion-Exposure-Induced Impairments in Social Odor Recognition Memory in Rats are Dose and Time Dependent. Radiat Res 2018; 189:292-299. [DOI: 10.1667/rr14849.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ami Mange
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuqing Cao
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - SiYuan Zhang
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - Robert D. Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institutes for Behavior Resources, Baltimore, Maryland
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|