1
|
Han J, Ren Y, Zhang P, Fang C, Yang L, Zhou S, Ji Z. The effectiveness of treatment with probiotics in preventing necrotizing enterocolitis and related mortality: results from an umbrella meta-analysis on meta-analyses of randomized controlled trials. BMC Gastroenterol 2025; 25:245. [PMID: 40217146 PMCID: PMC11987312 DOI: 10.1186/s12876-025-03788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Probiotic supplementation has been proposed as a preventive measure for necrotizing enterocolitis (NEC) in preterm infants. This umbrella meta-analysis assesses the effects of probiotics, including single-strain and multi-strain formulations, on NEC and related mortality. METHODS A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase for studies up to August 2024. The AMSTAR2 tool assessed the quality of included studies. Meta-analysis studies were selected based on the PICOS framework, focusing on preterm neonates (< 37-week gestation), probiotic supplementation (single-strain or multi-strain), placebo or standard care comparison, and outcomes of NEC and mortality. Pooled relative risks (RR) and odds ratios (OR) with 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Overall, 35 eligible studies were included into the study. Twenty-six and 32 probiotic intervention arms used single- and multi-strain probiotics, respectively. The findings revealed that probiotics decreased NEC significantly (ESRR: 0.51; 95% CI: 0.46, 0.55, p < 0.001, and ESOR: 0.59; 95%CI: 0.48, 0.72, P < 0.001), and mortality rate (ESRR: 0.72; 95% CI: 0.68, 0.76, P < 0.001, and ESOR: 0.77; 95%CI: 0.70, 0.84, p < 0.001). CONCLUSION The present review suggests that supplementation with probiotics reduced NEC and related mortality. Probiotic supplementation can be recognized as a NEC-preventing approach in preterm and very preterm infants, particularly Multi-strain probiotics.
Collapse
Affiliation(s)
- Jiaju Han
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Yufeng Ren
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China.
| | - Peini Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Zhiqing Ji
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| |
Collapse
|
2
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
3
|
Ahmad, Zhang C, Wang Y, Ullah H, Rahman AU, Wei J, Qin YH, Wang G, Wang B, Li X. Saccharomyces boulardii (CNCM I-745) alleviates collagen-induced arthritis by partially maintaining intestinal mucosal integrity through TLR2/MYD88/NF-κB pathway inhibition. Int Immunopharmacol 2024; 139:112738. [PMID: 39053232 DOI: 10.1016/j.intimp.2024.112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Rheumatoid arthritis, a condition characterized by inflammation, has a substantial influence on both the worldwide economy and public health. Prior studies indicate that probiotics have the potential to enhance the composition of gut microbiota in instances of intestinal dysbiosis resulting from different disorders and contribute to the regulation of inflammation. The objective of this study is to investigate the impact of Saccharomyces boulardii on the gut microbiome in arthritis and its implications on inflammation. METHODS The study utilized the Collagen Induced Arthritis (CIA) Sprague-Dawley (SD) rat model. After administering Saccharomyces boulardii (150 mg/kg/day) six days a week and Methotrexate (MTX) (0.2 mg/week) treatment for eight weeks, microbial DNA from the feces was sequenced using 16S rRNA. The evaluation of histopathology, bone loss, and cartilage degradation was conducted using histology, immunohistology assays, and micro-computed tomography (µCT) examinations. The enzyme-linked immunosorbent assay (ELISA) was used to analyze proinflammatory cytokines, while the western blot technique was applied to detect protein in the gut and in cell lines. The quantification of gene expression in gut,joint and cell lines was performed using real-time polymerase chain reaction. The cell lines were activated and then treated with the culture supernatant of S. boulardii for an in vitro investigation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was utilized to assess cell proliferationand viability. Cellular motility was measured in a wound healing experiment, whereas apoptotic proteins were analyzed using Western blotting. RESULTS S. boulardii has been found to enhance bone and joint integrity, modulate gut microbiota, and mitigate proinflammatory cytokine levels in rats with arthritis. It decreases the permeability of the intestines and promotes the production of gut tight-junction proteins. The administration of S. boulardii inhibits the proliferation of T-helper-17 (Th17) and Type 3 innate lymphoid cells (ILC3). Additionally, it elicits apoptosis in MH7A cell lines and hinders their migratory activity. CONCLUSION This study provides valuable insights into the therapeutic potential of S. boulardii for treating and preventing arthritis in rats with collagen-induced arthritis by modulating gut microbiota and inflammation.
Collapse
Affiliation(s)
- Ahmad
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Yi Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Atta Ur Rahman
- Multidisciplinary Neuroprotection Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Jing Wei
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Yuan Hua Qin
- Department of Parasite, College of Basic Medical Sciences, Dalian Medical University, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, China.
| |
Collapse
|
4
|
Campos LL, Oliveira SRM, Amaral MNS, Gallotti B, Oliveira AF, Arantes RME, Ribeiro-Souza S, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Oral Treatment with Saccharomyces cerevisiae CNCM I-3856 Mitigates the Inflammatory Response Experimentally Induced by Salmonella enterica subsp. enterica Serovar Typhimurium in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10359-4. [PMID: 39243351 DOI: 10.1007/s12602-024-10359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Salmonella spp. are intracellular, Gram-negative pathogens responsible for a range of diarrheal diseases, which can present either as self-limited (gastroenteritis) or as a systemic form (typhoid fever), characterizing a serious public health problem. In this study, we investigated the therapeutic effects of oral administration of Saccharomyces cerevisiae CNCM I-3856 in a murine model infected with Salmonella Typhimurium (ST). This yeast species has previously demonstrated the potential to support immune function and reduce inflammation and the ability to exert antimicrobial activity, which is important considering the increasing prevalence of antibiotic-resistant bacteria. Our findings revealed that mice infected with ST and only treated with sterile saline exhibited a higher mortality rate and body weight loss. In contrast, mice treated with I-3856 showed a notable reduction in these adverse outcomes. The yeast demonstrated a high capacity for co-aggregation with the pathogen. Furthermore, the significant amounts of yeast found in the feces of treated mice suggest that intestinal colonization was effective, which was associated with several beneficial effects, including reduced intestinal permeability, which likely limits bacterial translocation to extraintestinal organs. Additionally, the administration of I-3856 reduced levels of sIgA and resulted in a decrease in the recruitment of neutrophils and eosinophils to infection sites, indicating a modulation of the inflammatory response. Histological analyses showed attenuated liver and intestinal lesions in the yeast-treated mice, corroborating the protective effects of the yeast. In conclusion, the results suggest that S. cerevisiae CNCM I-3856 has the potential to control the inflammatory response experimentally induced by S. Typhimurium when administered to mice.
Collapse
Affiliation(s)
- Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline F Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha Ribeiro-Souza
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Liu D, Hu L, Yang Y, Wang Y, Li Y, Su J, Wang G, Gong S. Saccharomyces boulardii alleviates allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner. Immunol Lett 2024; 267:106853. [PMID: 38513836 DOI: 10.1016/j.imlet.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.
Collapse
Affiliation(s)
- Da Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Lang Hu
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yue Yang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yayong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Su
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Guyi Wang
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Garrigues Q, Mugnier A, Chastant S, Sicard F, Martin JC, Svilar L, Castex M, Ramis-Vidal MG, Rovere N, Michaud L, David P, Mansalier E, Rodiles A, Mila H, Apper E. The supplementation of female dogs with live yeast Saccharomyces cerevisiae var. boulardii CNCM I-1079 acts as gut stabilizer at whelping and modulates immunometabolic phenotype of the puppies. Front Nutr 2024; 11:1366256. [PMID: 38680531 PMCID: PMC11048480 DOI: 10.3389/fnut.2024.1366256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Time around parturition is a stressful period for both bitches and their puppies. The use of probiotics has been proposed, e.g., in pigs, to improve health status of sows, their reproductive performances and in turn, the health and performance of their progeny. The objective of the present study was to evaluate the impact, on both dams and puppies, of a supplementation of bitches with the live yeast Saccharomyces cerevisiae var. boulardii CNCM I-1079 (SB-1079) during the second part of the gestation and the lactation period. A total of 36 bitches of medium and large-sized breeds were enrolled. They were divided into two groups, one of which received 1.3 × 109 colony forming units of live yeast per day. At dam's level, SB-1079 yeast shaped a different microbiota structure between the two groups just after whelping, impacted alpha diversity and some plasma metabolites related to energy metabolism. Regarding reproductive performances, SB-1079 improved gross energy of the colostrum (1.4 vs. 1.2 kcal of ME/g) as well as the concentration of protein in milk at Day 7 after parturition (10.4 vs. 7.6%). SB-1079 also reduced the odds of having low birth weight in the litter. At puppy's level, a modulation of immunometabolic phenotype is suggested by the observation of increased growth rates during the early pediatric period (i.e., between 21 and 56 days of life, 225 vs. 190%) and a decrease of the IL-8:IL-10 ratio after vaccination against rabies (4.2 vs. 16.9). Our findings suggest that SB-1079 supplementation during gestation and lactation has the potential to enhance health of bitches and in turn health of puppies through maternal programming.
Collapse
Affiliation(s)
| | | | | | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- CriBioM, Aix Marseille Université, Marseille, France
| | | | - Ljubica Svilar
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- CriBioM, Aix Marseille Université, Marseille, France
| | | | - Manuel Guillermo Ramis-Vidal
- Department of Animal Production, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
- Instituo Murciano de Investigación en Biomedicina (IMIB), Murcia, Spain
| | - Nicoletta Rovere
- Department of HASFS, VESPA, University of Veterinary, Milan, Italy
| | | | - Pauline David
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
7
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
9
|
Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, Yue X. Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review. Foods 2024; 13:151. [PMID: 38201179 PMCID: PMC10778471 DOI: 10.3390/foods13010151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Jiaqi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Yamchi A, Rahimi M, Javan B, Abdollahi D, Salmanian M, Shahbazi M. Evaluation of the impact of polypeptide-p on diabetic rats upon its cloning, expression, and secretion in Saccharomyces boulardii. Arch Microbiol 2023; 206:37. [PMID: 38142245 DOI: 10.1007/s00203-023-03773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/25/2023]
Abstract
This study was designed to evaluate the effectiveness of recombinant polypeptide-p derived from Momordica charantia on diabetic rats. In this research, the optimized sequence of polypeptide-p gene fused to a secretion signal tag was cloned into the expression vector and transformed into probiotic Saccharomyces boulardii. The production of recombinant secretion protein was verified by western blotting, HPLC, and mass spectrometry. To assay recombinant yeast bioactivity in the gut, diabetic rats were orally fed wild-type and recombinant S. boulardii, in short SB and rSB, respectively, at two low and high doses as well as glibenclamide as a reference drug. In untreated diabetic and treated diabetic + SB rats (low and high doses), the blood glucose increased from 461, 481, and 455 (mg/dl), respectively, to higher than 600 mg/dl on the 21st day. Whereas glibenclamide and rSB treatments showed a significant reduction in the blood glucose level. The result of this study promised a safe plant-source supplement for diabetes through probiotic orchestration.
Collapse
Affiliation(s)
- Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Genetic Engineering and Molecular Genetics, Gorgan University of Agricultural Science and Natural Resources, P.O. Box: 4934174515, Gorgan, Iran.
| | - Maryam Rahimi
- Department of Horticulture, University of Zabol, Zabol, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Dorsa Abdollahi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mojgan Salmanian
- Department of Animal Science and Poultry Nutrition, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
11
|
Gu P, Liu R, Yang Q, Xie L, Wei R, Li J, Mei F, Chen T, Zeng Z, He Y, Zhou H, Peng H, Nandakumar KS, Chu H, Jiang Y, Gong W, Chen Y, Schnabl B, Chen P. A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis. Cell Mol Immunol 2023; 20:1156-1170. [PMID: 37553429 PMCID: PMC10541433 DOI: 10.1038/s41423-023-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.
Collapse
Affiliation(s)
- Peng Gu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Department of Environment and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Ji J, Wu L, Wei J, Wu J, Guo C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 2023; 11:174-187. [PMID: 36406312 PMCID: PMC9647110 DOI: 10.14218/jcth.2022.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and is proposed to replace the previous name, nonalcoholic fatty liver disease (NAFLD). Globally, MAFLD/NAFLD is the most common liver disease, with an incidence rate ranging from 6% to 35% in adult populations. The pathogenesis of MAFLD/NAFLD is closely related to insulin resistance (IR), and the genetic susceptibility to acquired metabolic stress-associated liver injury. Similarly, the gut microbiota in MAFLD/NAFLD is being revaluated by scientists, as the gut and liver influence each other via the gut-liver axis. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis has a key role in the pathological progression of MAFLD/NAFLD, and inhibition of ferroptosis may become a novel therapeutic strategy for the treatment of NAFLD. This review focuses on the main mechanisms behind the promotion of MAFLD/NAFLD occurrence and development by the intestinal microbiota and ferroptosis. It outlines new strategies to target the intestinal microbiota and ferroptosis to facilitate future MAFLD/NAFLD therapies.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| |
Collapse
|
13
|
Madel MB, Halper J, Ibáñez L, Claire L, Rouleau M, Boutin A, Mahler A, Pontier-Bres R, Ciucci T, Topi M, Hue C, Amiaud J, Iborra S, Sancho D, Heymann D, Garchon HJ, Czerucka D, Apparailly F, Duroux-Richard I, Wakkach A, Blin-Wakkach C. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife 2023; 12:e82037. [PMID: 36848406 PMCID: PMC9977286 DOI: 10.7554/elife.82037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Julia Halper
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU UniversityValenciaSpain
| | | | - Matthieu Rouleau
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Antoine Boutin
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Adrien Mahler
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Majlinda Topi
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Christophe Hue
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT. School of Medicine, Universidad Complutense de MadridMadridSpain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’OuestSaint HerblainFrance
| | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
- Genetics Division, Ambroise Paré Hospital, AP-HPBoulogne-BillancourtFrance
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | | | | | - Abdelilah Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Claudine Blin-Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| |
Collapse
|
14
|
Ivashkin VТ, Ulyanin AI, Mayev IV, Kozlov RS, Livzan MA, Abdulkhakov SR, Alekseyeva OP, Alekseyenko SA, Bordin DS, Dekhnich NN, Korochyanskaya NV, Lapina TL, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Sheptulin AA. Modern Approaches to <i>H. pylori</i> Eradication Therapy in Adults (Literature Review and Resolution of Experts Council). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:7-19. [DOI: https:/doi.org/10.22416/1382-4376-2022-32-6-7-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aim: to analyze current approaches to H. pylori eradication therapy in adults and present the materials of Experts Council held on December 9, 2022 in Moscow.General statements. H. pylori infection is the main etiological factor of gastritis, peptic ulcer, and gastric cancer. Eradication of H. pylori is recognized as a necessary measure to reduce the incidence of these diseases. The approaches to selecting an eradication regimen should be optimized to take into account epidemiological trends and achieve better treatment outcomes. The updated Maastricht VI Consensus Report presents the means to overcome the difficulties in selecting an approach to the treatment of H. pylori infection. However, eradication therapy remains challenging due to adverse events (primarily antibiotic-associated diarrhea), poor treatment tolerance and patient compliance. Eradication therapy can be optimized by supplementing treatment regimens with strain-specific probiotics that reduce adverse events, improve patient compliance and eradication rates, such as Saccharomyces boulardii CNCM I-745 strain with established efficacy.Conclusion. The inclusion of certain probiotics in eradication regimens improves treatment tolerance, reduces the risk of adverse events, improves patient compliance and eradication rates.
Collapse
Affiliation(s)
- V. Т. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Mayev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - S. R. Abdulkhakov
- Gastroenterology Center of the Volga Federal District, N.A. Semashko Regional Clinical Hospital of Nizhny Novgorod; Kazan (Volga Region) Federal University
| | | | | | - D. S. Bordin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; A.S. Loginov Moscow Clinical Scientific Center; Tver State Medical University
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, an autonomous branch of the Research Institute of Medical Problems of the North
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
15
|
Ivashkin VТ, Ulyanin AI, Mayev IV, Kozlov RS, Livzan MA, Abdulkhakov SR, Alekseyeva OP, Alekseyenko SA, Bordin DS, Dekhnich NN, Korochyanskaya NV, Lapina TL, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Sheptulin AA. Modern Approaches to <i>H. pylori</i> Eradication Therapy in Adults (Literature Review and Resolution of Experts Council). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:7-19. [DOI: 10.22416/1382-4376-2022-32-6-7-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Aim: to analyze current approaches to H. pylori eradication therapy in adults and present the materials of Experts Council held on December 9, 2022 in Moscow.General statements. H. pylori infection is the main etiological factor of gastritis, peptic ulcer, and gastric cancer. Eradication of H. pylori is recognized as a necessary measure to reduce the incidence of these diseases. The approaches to selecting an eradication regimen should be optimized to take into account epidemiological trends and achieve better treatment outcomes. The updated Maastricht VI Consensus Report presents the means to overcome the difficulties in selecting an approach to the treatment of H. pylori infection. However, eradication therapy remains challenging due to adverse events (primarily antibiotic-associated diarrhea), poor treatment tolerance and patient compliance. Eradication therapy can be optimized by supplementing treatment regimens with strain-specific probiotics that reduce adverse events, improve patient compliance and eradication rates, such as Saccharomyces boulardii CNCM I-745 strain with established efficacy.Conclusion. The inclusion of certain probiotics in eradication regimens improves treatment tolerance, reduces the risk of adverse events, improves patient compliance and eradication rates.
Collapse
Affiliation(s)
- V. Т. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Mayev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - S. R. Abdulkhakov
- Gastroenterology Center of the Volga Federal District, N.A. Semashko Regional Clinical Hospital of Nizhny Novgorod; Kazan (Volga Region) Federal University
| | | | | | - D. S. Bordin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; A.S. Loginov Moscow Clinical Scientific Center; Tver State Medical University
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, an autonomous branch of the Research Institute of Medical Problems of the North
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
16
|
Lee KJ, Ryoo E, Lee YM, Yoon JM, Jang HJ, Choi SY, Choi YJ, Kim HJ, Chung JY, Shim JO. Saccharomyces boulardii and Lactulose for Childhood Functional Constipation: A Multicenter Randomized Controlled Trial. J Neurogastroenterol Motil 2022; 28:454-462. [PMID: 35799239 PMCID: PMC9274472 DOI: 10.5056/jnm21130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background/Aims The effects of probiotics in children vary based on diseases and probiotic strains. We aim to investigate the effectiveness of Saccharomyces boulardii and lactulose for treating childhood functional constipation. Methods This open-label randomized controlled trial was conducted at 10 university hospitals in Korea. Children who were diagnosed with functional constipation were allocated to 3 groups (lactulose monotherapy, combination therapy, and S. boulardii monotherapy). The primary outcome was treatment success rate that was accordingly defined as ≥ 3 bowel movements without incontinence at week 12. The cumulative successful maintenance and drug maintenance rates without drug changes were calculated throughout the study period. We compared stool frequency, incontinence, consistency, and painful defecation at week 2 among the 3 groups. Results Overall, 187 children were assigned to the lactulose monotherapy (n = 69), combination therapy (n = 68), or S. boulardii monotherapy (n = 50) groups. The primary outcome was significantly higher in the lactulose monotherapy group (26.1%) or combination therapy group (41.2%) than in the S. boulardii monotherapy group (8.0%). The S. boulardii monotherapy group showed a significantly lower cumulative successful maintenance and drug maintenance rate than the other 2 groups. There were no significant intergroup differences in the frequency of defecation, incontinence, painful defecation, or stool consistency during the follow-up at week 2. Conclusion S. boulardii monotherapy was not superior to lactulose monotherapy or combination therapy and showed a higher drug change rate, supporting the current recommendation of probiotics in the treatment of childhood functional constipation.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea (Current address)
| | - Eell Ryoo
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Yoo Min Lee
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Gyeonggi-do, Korea
| | - Jung Min Yoon
- Department of Pediatrics, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Hyo-Jeong Jang
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University College of Medicine, Daegu, Korea
| | - So Yoon Choi
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pediatrics, Haeundaepaik Hospital, Inje University College of Medicine, Busan, Korea
| | - You Jin Choi
- Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Gyeonggi-do, Korea
| | - Hyun Jin Kim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Ju Young Chung
- Department of Pediatrics, Sanggye-Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
17
|
Ivashkin VT, Maev IV, Alekseeva OP, Alekseenko SA, Korochanskaya NV, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Shifrin OS, Lapina TL, Maslennikov RV, Ulyanin AI. Determination of Probiotics Prescription Indications in Patients with Irritable Bowel Syndrome (Materials of the Expert Council and Literature Review). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:9-18. [DOI: 10.22416/1382-4376-2022-32-2-9-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Aim. To review the main indications for probiotics prescription in patients with irritable bowel syndrome and to present the materials of an Expert Council, which was held on 18 March 2022 in Moscow.Key points. Gut microbiota disturbance is an integral part of irritable bowel syndrome (IBS) pathogenesis. Changes of colonic microbiota composition are associated with its functional potential modification, which leads to an increasing of the pro-inflammatory immune response, as well as to an exacerbation of the disease symptoms and quality of life decreasing in patients with IBS. The novel coronavirus infection (COVID-19) is an independent risk factor for both exacerbation and onset of IBS, which predispose to increase IBS incidence. Correction of gut microbiota composition with probiotics seems to be a promising therapeutic target for IBS treatment optimizing. The optimal probiotic should be effective, safe, strain-specific, and its dose and duration of administration should be confirmed by the results of clinical studies. Some of the probiotics with proven efficacy in IBS are Alflorex® and Enterol®.Conclusion. Prescription of certain probiotics in IBS is advisable to normalize the frequency and consistency of stools, relieve abdominal pain and bloating, as well as improve patients’ quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | - E. A. Poluektova
- Sechenov First Moscow State Medical University (Sechenov
University)
| | | | - A. S. Trukhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Research Institute for Medical Problems in the North — Division of Krasnoyarsk Scientific Centre of the Siberian Branch of the RAS
| | - O. S. Shifrin
- Sechenov First Moscow State Medical University (Sechenov University)
| | - T. L. Lapina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - R. V. Maslennikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
18
|
Kocot AM, Jarocka-Cyrta E, Drabińska N. Overview of the Importance of Biotics in Gut Barrier Integrity. Int J Mol Sci 2022; 23:ijms23052896. [PMID: 35270039 PMCID: PMC8911280 DOI: 10.3390/ijms23052896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine, Collegium Medicum University of Warmia and Mazury, Regional Specialized Children’s Hospital, Żołnierska St. 18A, 10-561 Olsztyn, Poland;
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
19
|
Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest 2022; 132:155786. [PMID: 35229726 PMCID: PMC8884899 DOI: 10.1172/jci155786] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is at the center of inflammatory bowel disease (IBD) pathogenesis and disease activity. While this has mainly been studied in the context of the bacterial microbiome, recent advances have provided tools for the study of host genetics and metagenomics of host-fungal interaction. Through these tools, strong evidence has emerged linking certain fungal taxa, such as Candida and Malassezia, with cellular and molecular pathways of IBD disease biology. Mouse models and human fecal microbial transplant also suggest that some disease-participatory bacteria and fungi may act not via the host directly, but via their fungal-bacterial ecologic interactions. We hope that these insights, and the study design and multi-omics strategies used to develop them, will facilitate the inclusion of the fungal community in basic and translational IBD research.
Collapse
Affiliation(s)
- David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
20
|
The impact of Saccharomyces boulardii adjuvant supplementation on alternation of gut microbiota after H. pylori eradication; a metagenomics analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Phuna ZX, Madhavan P. A CLOSER LOOK AT THE MYCOBIOME IN ALZHEIMER'S DISEASE: FUNGAL SPECIES, PATHOGENESIS AND TRANSMISSION. Eur J Neurosci 2022; 55:1291-1321. [DOI: 10.1111/ejn.15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| |
Collapse
|
22
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
23
|
Kadja L, Dib AL, Lakhdara N, Bouaziz A, Espigares E, Gagaoua M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. BIOLOGY 2021; 10:biology10111194. [PMID: 34827188 PMCID: PMC8615081 DOI: 10.3390/biology10111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Currently, probiotics are used as growth promoters on a large scale to improve the productivity of several animals’ species within the aim of reducing the presence of antibiotic residues in animal products consumed by humans. Several reports evidenced the positive effect of probiotic supplementation on the growth performances and health of rabbits, mainly through the balance of the intestinal microbiota of the host animal. Therefore, certain probiotics, including Lactobacilli, Bifidobacteria, Saccharomyces, can improve the biochemical and haematological profiles, especially in production animals. In this context, this study was performed on rabbits for the economic importance they play as a source of meat proteins in developing countries and their use as experimental models in research and biomedicine. This study then aimed to evaluate the effect of three strains of probiotics: Lactobacillus rhamnosus GG Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the biochemical and haematological parameters and their influence on the rabbit’s weight of the ITELV2006 strain. The findings evidenced that the probiotic strain affected the biochemical and haematological parameters. Further, the strains showed a positive effect on the weight gain of the rabbits. Abstract This study aimed to investigate the effects of three strains of probiotics, these being Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the body weight, animal performances and blood parameters of rabbits (male and female) of the ITELV2006 strain. The supplementation of the feed of the rabbits with the three probiotic strains allowed observing positive effects on most of the biochemical and haematological parameters investigated during a period of 60 days (30 days of supplementation and 30 days without treatment). Further, there was a significant improvement in the body weight of the rabbits at the end of the experiment. The effect of the three probiotics investigated in this trial was found to be related to the sex of the rabbits and to the intake period (duration). Ultimately, these findings raise the possibility of using probiotics to investigate in an in-depth and specific manner based on fixed factors such as the strain, the gender and age of the animals, the main underlying mechanisms and effects, which would allow achieving optimal and adapted health benefits and sustainable production. In the context of animal production, it is worth investigating in a targeted study the effect of the three strains on muscle growth and development and finding evidence of the possible consequences on meat quality traits of the rabbits supplemented with probiotics.
Collapse
Affiliation(s)
- Louiza Kadja
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Amira Leila Dib
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Nedjoua Lakhdara
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Assia Bouaziz
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Elena Espigares
- Department of Preventive Medicine and Public Health, Faculty of pharmacy, University of Granada, 18071 Granada, Spain;
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
- Correspondence: or
| |
Collapse
|
24
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Lu C, Yan Y, Jian F, Ning C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front Cell Infect Microbiol 2021; 11:751481. [PMID: 34660347 PMCID: PMC8517481 DOI: 10.3389/fcimb.2021.751481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
As a common parasitic disease in animals, coccidiosis substantially affects the health of the host, even in the absence of clinical symptoms and intestinal tract colonization. Gut microbiota is an important part of organisms and is closely related to the parasite and host. Parasitic infections often have adverse effects on the host, and their pathogenic effects are related to the parasite species, parasitic site and host-parasite interactions. Coccidia-microbiota-host interactions represent a complex network in which changes in one link may affect the other two factors. Furthermore, coccidia-microbiota interactions are not well understood and require further research. Here, we discuss the mechanisms by which coccidia interact directly or indirectly with the gut microbiota and the effects on the host. Understanding the mechanisms underlying coccidia-microbiota-host interactions is important to identify new probiotic strategies for the prevention and control of coccidiosis.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To review the components of the intestinal barrier, the practical measurements of intestinal permeability, and the clinical conditions associated with altered intestinal barrier function, and to summarize the effects of dietary substances that fortify or weaken the intestinal barrier. RECENT FINDINGS The intestinal barrier includes surface mucus, epithelial layer, and immune defense mechanisms. Transport across the epithelium may result from increased paracellular transport, apoptosis, or transcellular permeability. Assessment of the intestinal barrier requires measurements beyond the transport across the epithelial layer or the measurement of tight junction expression. Barrier function is most meaningfully tested in vivo using orally administered probe molecules; other approaches are performed in vitro using mucosal biopsies from humans, or exposing colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from patients. Dietary factors can influence intestinal leakiness: fortifying the barrier with vitamins A and D, zinc, short-chain fatty acids, methionine, glutamine, and probiotics; weakening of the barrier has been reported with fat, bile acids, emulsifiers, and gliadin. Intestinal mucosal leakiness in 'stress' disorders such as major burns is reversed with enteral glutamine. SUMMARY Inflammatory or ulcerating intestinal diseases result in leakiness of the gut barrier; however, no such disease has been cured by simply normalizing intestinal barrier function. Similarly, it is still unproven that restoring barrier function (reversing 'leaky gut') can ameliorate clinical manifestations in nonulcerating gastrointestinal disease or systemic or neurological diseases. On the other hand, dietary and enteral interventions can fortify the intestinal barrier in stress-associated states.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Mu Z, Yang Y, Xia Y, Wang F, Sun Y, Yang Y, Ai L. Probiotic yeast BR14 ameliorates DSS-induced colitis by restoring the gut barrier and adjusting the intestinal microbiota. Food Funct 2021; 12:8386-8398. [PMID: 34355721 DOI: 10.1039/d1fo01314a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The probiotic Saccharomyces boulardii has been widely used in colitis treatment; however, the beneficial effects of other yeast species are rarely studied. Saccharomyces cerevisiae with great stress tolerance and potential in colitis treatment was investigated in this study. Among 16 yeast strains, BR14, BR54, and BR174 strains showed good stress-resistant capacity, anti-inflammatory activity, and little toxicity to macrophages. As for the colitis mice, BR14 inhibited weight loss the most, as well as the disease activity index and colon shortening. After treatment with BR14, the expression levels of genes related to histological damage were all upregulated. BR14 significantly attenuated the expression levels of TNF-α and IL-6, while the expression of IL-10 was upregulated. Additionally, BR14 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Muribaculaceae, Lactobacillus and Rikenellaceae and decreasing the abundance of Turicibacter, Escherichia-Shigella, Desulfovibrio, and Lachnospiraceae. In summary, BR14 exhibited great potential in alleviating colitis through restoring the gut barrier and adjusting the intestinal microbiota.
Collapse
Affiliation(s)
- Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China. and School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Fukang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Yiwei Sun
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
28
|
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 2021; 236:113411. [PMID: 33811908 DOI: 10.1016/j.physbeh.2021.113411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Saccharomyces boulardii, a probiotic yeast is well prescribed for various gastrointestinal disorders accompanied by gut dysbiosis such as inflammatory bowel disease, bacterial diarrhea and antibiotic associated diarrhea. Gut dysbiosis has been associated with central nervous system via gut brain axis primarily implied in the modulation of psychiatric conditions. In the current study we use Saccharomyces boulardii as a therapeutic agent against gut dysbiosis associated cognitive decline. In mice, gut dysbiosis was induced by oral Ampicillin Na (250 mg/kg twice-daily) for 14 days. While in the treatment group S. boulardii (90 mg/kg once a day) was administered orally for 21 days along with 14 days of antibiotic treatment. Gene expression studies revealed antibiotic mediated decrease in the Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were restored by S. boulardii treatment. Cognitive behavioral studies showed a parallel reduction in fear conditioning, spatial as well as recognition memory which were reversed upon S. boulardii treatment in these animals. S. boulardii treatment reduced myeloperoxidase enzyme, an inflammatory marker, in colon as well as brain which was increased after antibiotic administration. Similarly, S. boulardii reduced the brain acetylcholine esterase, oxidative stress and inflammatory cytokines and chemokines which were altered due to antibiotic treatment. S. boulardii treatment also protected hippocampal neuronal damage and restored villus length and crypt depth thus normalizing gut permeability in antibiotic treated animals. Hence, we conclude that S. boulardii prevented antibiotic associated gut dysbiosis leading to reduced intestinal and brain inflammation and oxidative stress thus preventing hippocampal neuronal damage and eventually reversing gut dysbiosis associate cognitive decline in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Abhishek Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Maria Adhikary
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
29
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
30
|
Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation in finishing male pigs helps to cope with heat stress through feeding behaviour and gut microbiota modulation. Br J Nutr 2021; 127:353-368. [PMID: 34039449 DOI: 10.1017/s0007114521001756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigs subjected to heat stress (HS) decrease their feed intake and growth. The objectives of the experiment were to determine the effects of live yeast (LY) supplementation (Saccharomyces cerevisiae var boulardii CNCM I-1079) on feeding behaviour, energy metabolism and faecal microbiota composition of finishing boars (n 10) housed in a respiration chamber at thermoneutrality (7 d at 22°C) or during HS (seven plus six days at 28°C). Dietary LY supplementation increased DM intake (P = 0·01) whatever the ambient temperature, whereas HS decreased feed intake whatever the dietary supplementation (P = 0·01). Dietary LY supplementation increased the number of meals (P = 0·02). Energy retention was higher with dietary LY supplementation (P < 0·01) but decreased during HS (P < 0·01). The skin temperature of the supplemented pigs was lower at thermoneutrality and increased during HS to a lesser extent than that of non-supplemented pigs (P < 0·01). Faecal microbiota composition was determined using 16S rRNA gene sequencing. Treponema, Christensenellaceae R-7, Ruminococcaceae UCG-002, Rikenellaceae RC9, Clostridium sensu stricto 1 and Romboutsia genera and some bacteria belonging to Alloprevotella, Oxalobacter and Anaeroplasma genera were more abundant under HS. LY supplementation attenuated HS effects on Romboutsia abundance, while decreasing the abundance of some bacteria from Ruminoccocus, Coprococcus, Peptococcus and Oxalobacter genera and increasing the abundance of beneficial bacteria from Lactococcus and Subdoligranulum genera. Our results suggest that higher level of the keystone species Ruminococcus bromii at thermoneutrality may be one of the causes for higher energy retention observed under subsequent HS.
Collapse
|
31
|
Luo S, Terciolo C, Neves M, Puel S, Naylies C, Lippi Y, Pinton P, Oswald IP. Comparative sensitivity of proliferative and differentiated intestinal epithelial cells to the food contaminant, deoxynivalenol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116818. [PMID: 33752036 DOI: 10.1016/j.envpol.2021.116818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The intestinal epithelium is a functional and physical barrier formed by a cell monolayer that constantly differentiates from a stem cell in the crypt. This is the first target for food contaminants, especially mycotoxins. Deoxynivalenol (DON) is one of the most prevalent mycotoxins. This study compared the effects of DON (0-100 μM) on proliferative and differentiated intestinal epithelial cells. Three cell viability assays (LDH release, ATP content and neutral red uptake) indicated that proliferative Caco-2 cells are more sensitive to DON than differentiated ones. The establishment of transepithelial electrical resistance (TEER), as a read out of the differentiation process, was delayed in proliferative cells after exposure to 1 μM DON. Transcriptome analysis of proliferative and differentiated exposure to 0-3 μM DON for 24 h revealed 4862 differentially expressed genes (DEG) and indicated an effect of both the differentiation status and the DON treatment. KEGG enrichment analysis indicated involvement of metabolism, ECM receptors and tight junctions in the differentiation process, while ribosome biogenesis, mRNA surveillance, and the MAPK pathway were involved in the response to DON. The number of differentially expressed genes and the amplitude of the effect were higher in proliferative cells exposed to DON than that in differentiated cells. In conclusion, our study shows that proliferative cells are more susceptible than differentiated ones to DON and that the mycotoxin delays the differentiation process.
Collapse
Affiliation(s)
- Su Luo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Chloe Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Manon Neves
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
32
|
Lenka S, Singh D, Paul S, Gayen A, Chandra M. S. boulardii Fails to Hold Its Cell Wall Integrity against Nonpathogenic E. coli: Are Probiotic Yeasts Losing the Battle? ACS Infect Dis 2021; 7:733-745. [PMID: 33703881 DOI: 10.1021/acsinfecdis.0c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Probiotic yeast Saccharomyces boulardii exerts direct probiotic action on pathogenic E. coli by trapping them on surfaces and inactivating toxic lipopolysaccharides. Using optical dark-field microscopy, we show that nonpathogenic E. coli cells also readily bind probiotic S. boulardii. More importantly, the adhered nonpathogenic E. coli progressively damage S. boulardii cell walls and lyse them. Co-cultured methylene blue-supplemented agar-plate assay indicates that rough lipopolysaccharides might be playing a key role in S. boulardii cell wall damage. When experiments are repeated with lipopolysaccharide-depleted E. coli and also lipopolysaccharide-deficient E. coli, adhesion decreases substantially. The co-cultured assay further reveals that free lipopolysaccharides, released from E. coli, are also causing damage to S. boulardii walls like adhered E. coli. These new findings contradict the known S. boulardii-E. coli interaction mechanisms. We confirm that E. coli cells do not bind or damage human erythrocyte cell walls; therefore, they have not developed pathogenicity. The combined results demonstrate the first example of nonpathogenic E. coli being harmful to probiotic yeast S. boulardii. This finding is important because gut microbial flora contain large numbers of nonpathogenic E. coli. If they bind or damage probiotic S. boulardii cell walls, then the probiotic efficiency toward pathogenic E. coli will be compromised.
Collapse
Affiliation(s)
- Satyajit Lenka
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Deepak Singh
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Sandip Paul
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Anindita Gayen
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Manabendra Chandra
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| |
Collapse
|
33
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Silva L, Schmidt G, Alves L, Oliveira V, Laureano-Melo R, Stutz E, Martins J, Paula B, Luchese R, Guerra A, Rodrigues P. Use of probiotic strains to produce beers by axenic or semi-separated co-culture system. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Konda PY, Poondla V, Jaiswal KK, Dasari S, Uyyala R, Surtineni VP, Egi JY, Masilamani AJA, Bestha L, Konanki S, Muthulingam M, Lingamgunta LK, Aloor BP, Tirumalaraju S, Sade A, Ratnam Kamsala V, Nagaraja S, Ramakrishnan R, Natesan V. Pathophysiology of high fat diet induced obesity: impact of probiotic banana juice on obesity associated complications and hepatosteatosis. Sci Rep 2020; 10:16894. [PMID: 33037249 PMCID: PMC7547728 DOI: 10.1038/s41598-020-73670-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
The high fat diet alters intestinal microbiota due to increased intestinal permeability and susceptibility to microbial antigens leads to metabolic endotoxemia. But probiotic juices reported for various health benefits. In this background we hypothesized that pectinase treated probiotic banana juice has diverse effects on HFD induced obesity and non-alcoholic steatohepatitis. 20 weeks fed HFD successfully induced obesity and its associated complications in experimental rats. The supplementation of probiotic banana juice for 5 months at a dose of 5 mL/kg bw/day resulted significant decrease (p < 0.05) in body weight (380 ± 0.34), total fat (72 ± 0.8), fat percentage (17 ± 0.07) and fat free mass (165 ± 0.02). Reduction (p < 0.05) in insulin resistance (5.20 ± 0.03), lipid profile (TC 120 ± 0.05; TG 160 ± 0.24; HDL 38 ± 0.03), liver lipid peroxidation (0.7 ± 0.01), hepatic enzyme markers (AST 82 ± 0.06; ALT 78 ± 0.34; ALP 42 ± 0.22), and hepatic steatosis by increasing liver antioxidant potential (CAT 1.4 ± 0.30; GSH 1.04 ± 0.04; SOD 0.82 ± 0.22) with normal hepatic triglycerides (15 ± 0.02) and glycogen (0.022 ± 0.15) contents and also showed normal liver size, less accumulation of lipid droplets with only a few congestion. It is concluded that the increased intestinal S. cerevisiae yeast can switch anti-obesity, antidiabetic, antioxidative stress, antioxidant and anti-hepatosteatosis effect. This study results will have significant implications for treatment of NAFLD.
Collapse
Affiliation(s)
| | - Vijayakumar Poondla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, India
| | | | | | - Reddemma Uyyala
- Department of Biochemistry, Krijan Biotech, Malleshwaram, Bangalore, India
- Department of Organic Chemistry, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | | | | | - Lakshmi Bestha
- Department of Zoology, Sri Krishnadevaraya University, Anantapur, India
| | - Sreenath Konanki
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, India
| | | | | | | | - Sridevi Tirumalaraju
- Mahatma Gandhi National Institute of Research and Social Action, Banjara Hills, Hyderabad, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, India
| | | | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, India.
| |
Collapse
|
36
|
Xiong B, Liu M, Zhang C, Hao Y, Zhang P, Chen L, Tang X, Zhang H, Zhao Y. Alginate oligosaccharides enhance small intestine cell integrity and migration ability. Life Sci 2020; 258:118085. [DOI: 10.1016/j.lfs.2020.118085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023]
|
37
|
Kunyeit L, K A AA, Rao RP. Application of Probiotic Yeasts on Candida Species Associated Infection. J Fungi (Basel) 2020; 6:jof6040189. [PMID: 32992993 PMCID: PMC7711718 DOI: 10.3390/jof6040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023] Open
Abstract
Superficial and life-threatening invasive Candida infections are a major clinical challenge in hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is exacerbated by the limited availability of antifungals and their associated side-effects. In the current review, we discuss the application of probiotic yeasts as a potential alternative/ combination therapy against Candida infections. Preclinical studies have identified several probiotic yeasts that effectively inhibit virulence of Candida species, including Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida krusei and Candida auris. However, Saccharomyces cerevisiae var. boulardii is the only probiotic yeast commercially available. In addition, clinical studies have further confirmed the in vitro and in vivo activity of the probiotic yeasts against Candida species. Probiotics use a variety of protective mechanisms, including posing a physical barrier, the ability to aggregate pathogens and render them avirulent. Secreted metabolites such as short-chain fatty acids effectively inhibit the adhesion and morphological transition of Candida species. Overall, the probiotic yeasts could be a promising effective alternative or combination therapy for Candida infections. Additional studies would bolster the application of probiotic yeasts.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; (L.K.); (A.K.A.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Anu-Appaiah K A
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; (L.K.); (A.K.A.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reeta P. Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: ; Tel.: +1-508-831-5000
| |
Collapse
|
38
|
Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr Microbiol 2020; 77:1987-1996. [PMID: 32472262 PMCID: PMC7415030 DOI: 10.1007/s00284-020-02053-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
The yeast Saccharomyces boulardii CNCM I-745 is a unique, non-bacterial microorganism classified as a probiotic agent. In this review article, at first, we briefly summarized the mechanisms responsible for its probiotic properties, e.g. adhesion to and elimination of enteropathogenic microorganisms and their toxins; extracellular cleavage of pathogens’ virulent factors; trophic and anti-inflammatory effects on the intestinal mucosa. The efficacy of S. boulardii administration was tested in variety of human diseases. We discussed the results of S. boulardii CNCM I-745 use in the treatment or prevention of Helicobacter pylori infections, diarrhoea (Clostridium difficile infections, antibiotic-associated diarrhoea, and traveller’s diarrhoea), inflammatory bowel diseases, irritable bowel syndrome, candidiasis, dyslipidemia, and small intestine bacterial overgrowth in patients with multiple sclerosis. In case of limited number of studies regarding this strain, we also presented studies demonstrating properties and efficacy of other strains of S. boulardii. Administration of S. boulardii CNCMI I-745 during antibiotic therapy has certain advantage over bacterial probiotics, because—due to its fungal natural properties—it is intrinsically resistant to the antibiotics and cannot promote the spread of antimicrobial resistance. Even though cases of fungemia following S. boulardii CNCM I-745 administration were reported, it should be treated as a widely available and safe probiotic strain.
Collapse
|
39
|
Selig DJ, DeLuca JP, Li Q, Lin H, Nguyen K, Scott SM, Sousa JC, Vuong CT, Xie LH, Livezey JR. Saccharomyces boulardii CNCM I-745 probiotic does not alter the pharmacokinetics of amoxicillin. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmpt-2019-0032/dmpt-2019-0032.xml. [PMID: 32134728 DOI: 10.1515/dmpt-2019-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
Abstract
Background Probiotics are live microbial organisms that provide benefit to the host while co-habitating in the gastrointestinal tract. Probiotics are safe, available over the counter, and have clinical benefit by reducing the number of antibiotic-associated diarrhea days. Prescriptions from providers and direct consumer demand of probiotics appear to be on the rise. Several recent animal studies have demonstrated that probiotics may have significant effect on absorption of co-administered drugs. However, to date, most probiotic-drug interaction studies in animal models have been limited to bacterial probiotics and nonantibiotic drugs. Methods We performed a traditional pharmacokinetic mouse study examining the interactions between a common commercially available yeast probiotic, Saccharomyces boulardii CNCM I-745 (Florastor®) and an orally administered amoxicillin. Results We showed that there were no significant differences in pharmacokinetic parameters (half-life, area under the curve, peak concentrations, time to reach maximum concentration, elimination rate constant) of amoxicillin between the probiotic treated and untreated control groups. Conclusions Altogether, our findings suggest that coadministration or concurrent use of S. boulardii probiotic and amoxicillin would not likely alter the efficacy of amoxicillin therapy.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA, Phone: (+301) 319-9807, Fax: 301-319-9449
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Qigui Li
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Hsiuling Lin
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Ken Nguyen
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Shaylyn M Scott
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jason C Sousa
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Chau T Vuong
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Lisa H Xie
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jeffrey R Livezey
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| |
Collapse
|
40
|
Cárdenas PA, Garcés D, Prado-Vivar B, Flores N, Fornasini M, Cohen H, Salvador I, Cargua O, Baldeón ME. Effect of Saccharomyces boulardii CNCM I-745 as complementary treatment of Helicobacter pylori infection on gut microbiome. Eur J Clin Microbiol Infect Dis 2020; 39:1365-1372. [PMID: 32125555 DOI: 10.1007/s10096-020-03854-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
Conventional therapy for H. pylori infection includes the combination of antibiotics and a proton-pump inhibitor. Addition of probiotics as adjuvants for H. pylori antibiotic treatment can increase eradication rate and decrease treatment side effects. Although many studies show the benefits of S. boulardii CNCM I-745 in the treatment of H. pylori infection, the mechanism by which those benefits are achieved is unknown. Here, we report clinical characteristics and fecal microbiota changes comparing conventional anti-H. pylori therapy versus conventional therapy supplemented with S. boulardii CNCM I-745. A total of 74 patients were included in the current study; patients positive for H. pylori (n = 63) were randomly assigned to 2 groups: 34 patients received conventional therapy and 29 antibiotic therapy plus 750 mg of S. boulardii CNCM I-745 daily, for 2 weeks. Eleven patients negative for H. pylori infection were also studied. Patients provided 3 fecal samples: before initiating the antibiotic treatment, upon its completion, and 1 month after treatment. Patients were contacted every 72 h to inquire about side effects and compliance. DNA was extracted, and 16S rRNA was amplified and sequenced on Illumina MiSeq. Bioinformatic analysis was performed using QIIME2. Patients who received the probiotic had a significantly lower frequency of associated gastrointestinal symptoms (P = 0.028); higher number of bacterial diversity evenness (P = 0.0156); higher abundance of Enterobacteria; and lower abundance of Bacteroides and Clostridia upon treatment completion. Addition of S. boulardii CNCM I-745 induced a lower frequency of gastrointestinal symptoms that could be related to changes in gut microbiota.
Collapse
Affiliation(s)
- Paúl A Cárdenas
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador. .,Centro de Bioinformática, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Daniela Garcés
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Belén Prado-Vivar
- Centro de Bioinformática, Universidad San Francisco de Quito, Quito, Ecuador
| | - Nancy Flores
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Marco Fornasini
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Henry Cohen
- Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Iván Salvador
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Oswaldo Cargua
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Manuel E Baldeón
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
41
|
Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn's disease patients and their interactions with the gut microbiome. J Transl Autoimmun 2020; 3:100036. [PMID: 32743520 PMCID: PMC7388382 DOI: 10.1016/j.jtauto.2020.100036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Investigation of the fungal communities in animal models of Inflammatory Bowel Diseases (IBD) showed a controversial role of Saccharomyces cerevisiae and Candida spp. In health and disease. These conflicting observations could be ascribed to immunogenic differences among co-specific strains. To assess the relevance of intra-strains differences on yeast immunogenicity and impact on the microbiota, we screened S. cerevisiae and Candida spp. Strains isolated from fecal samples of IBD patients. We compared the cytokine profiles, obtained upon stimulation of Peripheral Blood Mononuclear Cells (PBMCs) and Dendritic Cells with different yeast strains, and evaluated the relationship between strain’s cell wall sugar amount and immune response. Moreover, the gut microbiota composition was explored in relation to fungal isolation from fecal samples by metabarcoding analysis. The comparison of cytokine profiles showed strain dependent rather than species-dependent differences in immune responses. Differences in immunogenicity correlated with the cell wall composition of S. cerevisiae intestinal strains. Stimulation of human healthy PBMCs with different strains showed a pro-inflammatory IL-6 response counterbalanced by IL-10 production. Interestingly, Crohn’s (CD) patients responded differently to “self” and “non-self” strains, eliciting pure Th1 or Th17 cytokine patterns. The differences observed in vitro were recapitulated in vivo, where different strains contributed in dramatically different ways to local epithelial activity and to the inflammation of wild type and Interleukin-deficient mice. Furthermore, we observed that the gut microbiota profiles significantly differentiated according to the presence of Saccharomyces or Candida spp. or the absence of fungal isolates in fecal samples. Our results show the importance to deepen metagenomics and immunophenotyping analyses to the strain level, to elucidate the role of fungal and bacterial communities in health and disease. Previous studies indicated an involvement of gut mycobiome in IBD pathogenesis. We screened for immunomodulatory properties S. cerevisiae and Candida strains from IBD patients. The fungal immunomodulation depends on strain-rather than species-specific traits. Differences in immunogenicity correlate with the cell wall composition of gut strains. CD patients responded differently to “self” and “non-self” strains.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Probiotics are promising remedial treatments for symptoms of small intestine (SI) diseases and promoters of overall good health. Probiotics play an important role in supporting a healthy SI microbiome (eubiosis), and in preventing establishment of unhealthy microbiota. SI eubiosis promotes optimal nutrient uptake, and optimal nutritional status maintains a healthy SI, reducing the likelihood of SI diseases. It is important to understand the advantages and limitations of probiotic therapies. RECENT FINDINGS Microbial dysbiosis decreases the capacity of the small bowel to utilize and absorb dietary compounds. In some studies, probiotic supplements containing lactic acid bacteria and Bifidobacterium have been demonstrated effective in supporting beneficial microbes in the SI while improving barrier integrity and reducing nutrient malabsorption and SI disease-related pathology. Strain-specific probiotic therapy may be a natural and effective approach to restoring SI barrier integrity and eubiosis, resulting in improved nutrient absorption and better health, including reducing the incidence of and severity of SI diseases.
Collapse
Affiliation(s)
- Taylor C Judkins
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | - Douglas L Archer
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | | | - Rebecca J Solch
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA.
| |
Collapse
|
43
|
Fan L, Zuo S, Tan H, Hu J, Cheng J, Wu Q, Nie S. Preventive effects of pectin with various degrees of esterification on ulcerative colitis in mice. Food Funct 2020; 11:2886-2897. [DOI: 10.1039/c9fo03068a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Low esterified or amidated low esterified pectin displayed better preventive effects on acute colitis over high esterified pectin.
Collapse
Affiliation(s)
- Linlin Fan
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Quanyong Wu
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang
- People's Republic of China
| |
Collapse
|
44
|
Luo S, Terciolo C, Bracarense APFL, Payros D, Pinton P, Oswald IP. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. ENVIRONMENT INTERNATIONAL 2019; 132:105082. [PMID: 31400600 DOI: 10.1016/j.envint.2019.105082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and cadmium (Cd), a widespread environmental pollutant, are common food contaminants. They exert adverse effects on different organs including kidney, liver, and intestine. The intestine is a common target of DON and Cd when they are ingested. Most studies have focused on their individual effects whereas their combined toxicity has rarely been studied. The aim of this study was thus to evaluate their individual and combined effects on the intestinal barrier function in vitro and in vivo. In vitro, Caco-2 cells were treated with increasing concentrations of DON and Cd (1-30 μM). In vivo, Wistar rats were used as controls or exposed to DON contaminated feed (8.2 mg/kg feed), Cd-contaminated water (5 mg/l) or both for four weeks. In Caco-2 cells, DON, Cd and the DON+Cd mixture reduced transepithelial electrical resistance (TEER) and increased paracellular permeability in a dose-dependent manner. Impairment of the barrier function was associated with a decrease in the amount of E-cadherin and occludin after exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was observed in rats exposed to the two contaminants alone or combined, whereas occludin expression only decreased in animals exposed to DON and DON+Cd. Jejunal crypt depth was reduced in rats exposed to DON or Cd, whereas villi height was not affected. In vitro and in vivo results showed that the effects of exposure to combined DON and Cd on the intestinal barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was similar to the effects of each individual contaminant. This suggests that regulations for each individual contaminant are sufficiently protective for consumers.
Collapse
Affiliation(s)
- Su Luo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Chloe Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Delphine Payros
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
45
|
de Paula BP, Chávez DWH, Lemos Junior WJF, Guerra AF, Corrêa MFD, Pereira KS, Coelho MAZ. Growth Parameters and Survivability of Saccharomyces boulardii for Probiotic Alcoholic Beverages Development. Front Microbiol 2019; 10:2092. [PMID: 31552002 PMCID: PMC6747048 DOI: 10.3389/fmicb.2019.02092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/26/2019] [Indexed: 01/26/2023] Open
Abstract
The aim of this research was to optimize the growth parameters (pH, ethanol tolerance, initial cell concentration and temperature) for Saccharomyces boulardii and its tolerance to in vitro gastrointestinal conditions for probiotic alcoholic beverage development. Placket-Burman screening was used to select only statistically significant variables, and the polynomial mathematical model for yeast growth was obtained by central composite rotatable design. Confirmation experiments to determine the kinetic parameters for yeast growth were carried out by controlling the temperature and pH. Soon after, the survivability of yeast was tested under in vitro conditions mimicking the human upper gastrointestinal transit. S. boulardii had suitable resistance to alcohol and gastrointestinal conditions for probiotic alcoholic beverage development.
Collapse
Affiliation(s)
- Breno Pereira de Paula
- Coordenadoria do Curso de Engenharia de Alimentos, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Valença, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - André Fioravante Guerra
- Coordenadoria do Curso de Engenharia de Alimentos, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Valença, Brazil
| | | | | | - Maria Alice Zarur Coelho
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019; 68:1516-1526. [PMID: 31076401 PMCID: PMC6790068 DOI: 10.1136/gutjnl-2019-318427] [Citation(s) in RCA: 617] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Molendijk I, van der Marel S, Maljaars PWJ. Towards a Food Pharmacy: Immunologic Modulation through Diet. Nutrients 2019; 11:nu11061239. [PMID: 31159179 PMCID: PMC6627620 DOI: 10.3390/nu11061239] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Patients frequently wonder whether their dietary pattern influences the course of inflammatory bowel disease (IBD). Many patients even avoid certain foods that aggravate their symptoms. Although interest in nutritional interventions is rising among physicians, the current application of nutritional interventions in the IBD population is limited due to the lack of scientific evidence from clinical trials. Several studies, however, have identified associations between diet, gut microbiota, intestinal epithelial integrity, and mucosal immune responses. In patients consuming predominantly a Western diet high in n-6 poly-unsaturated fatty acids (PUFAs), sugars, and meat, and low in fruits and vegetables, an impaired gut epithelial barrier and disturbances in the intestinal microbiota have been observed, resulting in a chronic mucosal inflammation. An anti-inflammatory diet may restore this disbalance. In this review, we discuss the effects of diet on the composition of the microbiota, the gut epithelial barrier function, and the mucosal immune system.
Collapse
Affiliation(s)
- Ilse Molendijk
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2313 ZA Leiden, The Netherlands.
| | - Sander van der Marel
- Department of Gastroenterology and Hepatology, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands.
| | - P W Jeroen Maljaars
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2313 ZA Leiden, The Netherlands.
| |
Collapse
|