1
|
Gelsey FT, Schapiro D, Kosa K, Vass C, Perez-Nieves M, Pierce A, Poon JL, DiBenedetti D, Mansfield C. Perspectives and Preferences of People with Type 2 Diabetes for the Attributes of Weekly Insulin. Diabetes Ther 2024; 15:2367-2379. [PMID: 39347898 PMCID: PMC11467135 DOI: 10.1007/s13300-024-01652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Daily insulin administration can be burdensome for people with type 2 diabetes (PwT2D) and can impact treatment adherence. This study investigated preferences for once-weekly, long-acting basal insulin for treatment of PwT2D. METHODS An online discrete-choice experiment was administered to PwT2D in the USA. Qualitative interviews informed the selection of six attributes: reduction in A1c level after 6 months, amount of time spent in optimal blood sugar range each day, number of serious low blood sugar events, number of nighttime low blood sugar events, change in weight because of the insulin over 6 months, and frequency of administration. Each participant completed eight questions offering a choice between two long-acting insulins; questions varied according to an experimental design. A fixed treatment choice question asked about preferences for daily versus weekly insulin, holding other treatment features constant. Data were analyzed using random-parameters logit models, and heterogeneity was explored through subgroup analyses. RESULTS Four hundred sixty-six PwT2D completed the survey (mean age, 57; mean A1c, 7.5%; 59.0% female); 33.3% of these were currently on a basal/bolus regimen, 34.3% used basal only, and 32.4% were insulin naive. Respondents placed the most importance on avoiding a 10-pound weight change and equal importance on the largest change in the number of serious and nighttime low blood sugar events per year and achieving the longest time in range included in the choice questions. There was significant heterogeneity in preferences by experience: insulin-naive respondents had stronger preferences for scheduled and flexible weekly insulin over daily insulin; 67.6% preferred flexible weekly over daily insulin, all else being equal. CONCLUSION PwT2D valued insulin efficacy and reducing treatment-related adverse events, with heterogeneity in the relative importance of administration frequency. All else being equal, respondents preferred weekly over daily basal insulin. These findings provide insights into the preferences of PwT2D considering weekly long-acting insulin.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Pierce
- RTI Health Solutions, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
2
|
Wang Y, Yan F, Chen Q, Liu F, Xu B, Liu Y, Huo G, Xu J, Li B, Wang S. High-fat diet promotes type 2 diabetes mellitus by disrupting gut microbial rhythms and short-chain fatty acid synthesis. Food Funct 2024; 15:10838-10852. [PMID: 39405046 DOI: 10.1039/d4fo02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diabetes ranks among the top 10 causes of death globally, with over 90% of individuals diagnosed with diabetes having type 2 diabetes mellitus (T2DM). It is acknowledged that a high-fat diet (HFD) poses a serious risk for T2DM. The imbalance of intestinal flora, mediated by HFD, can potentially exacerbate the onset and progression of T2DM. However, the impact of HFD on pathological indicators and the intestinal microbiome in the development of T2DM has not been systematically investigated. Therefore, a HFD mouse model and a T2DM mouse model were established, respectively, in this study. The role of HFD as a driving factor in the development of T2DM was assessed using various measures, including basic pathological indicators of T2DM, lipid metabolism, liver oxidative stress, intestinal permeability, levels of inflammatory factors, gut microbiota, and short-chain fatty acids (SCFAs). The findings indicated that HFD could influence the aforementioned measures to align with T2DM changes, but the contribution of HFD varied across different pathological metrics of T2DM. The impact of HFD on low-density lipoprotein cholesterol, glutathione peroxidase, malondialdehyde, and tumor necrosis factor-α did not show a statistically significant difference from those observed in T2DM during its development. In addition, regarding gut microbes, HFD primarily influenced the alterations in bacteria capable of synthesizing SCFAs. The notable decrease in SCFA content in both serum and cecal matter further underscored the effect of HFD on SCFA-synthesising bacteria in mice. Hence, this research provided a systematic assessment of HFD's propelling role in T2DM's progression. It was inferred that gut microbes, particularly those capable of synthesizing SCFAs, could serve as potential targets for the future prevention and treatment of T2DM instigated by HFD.
Collapse
Affiliation(s)
- Yangrui Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fenfen Yan
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baofeng Xu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinsheng Xu
- Shanghai Binhan International Trade Co., Ltd, Shanghai, 200000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, Shandong, 251200, China
| |
Collapse
|
3
|
Pramanik R, Dey A, Chakrabarty AK, Banerjee D, Narwaria A, Sharma S, Rai RK, Katiyar CK, Dubey SK. Diabetes mellitus and Alzheimer's disease: Understanding disease mechanisms, their correlation, and promising dual activity of selected herbs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118402. [PMID: 38821139 DOI: 10.1016/j.jep.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review explores the link between Type 2 Diabetes Mellitus (T2DM) and diabetes-induced Alzheimer's disease (AD). It emphasizes the shared pathophysiological links and mechanisms between the two conditions, focusing on reduced insulin levels and receptors, impaired glucose metabolism, insulin resistance, mitochondrial dysfunction, and oxidative damage in AD-affected brains-paralleling aspects of T2DM. The review suggests AD as a "diabetes of the brain," supported by cognitive enhancement through antidiabetic interventions. It focuses on the traditionally used Indian herbs as a means to manage both conditions while addressing developmental challenges. AIM OF THE STUDY This study explores the DM-AD connection, reviewing medicinal herbs with protective potential for both ailments, considering traditional uses and developmental challenges. MATERIALS AND METHODS Studied research, reviews, and ethnobotanical and scientific data from electronic databases and traditional books. RESULTS The study analyzes the pathophysiological links between DM and AD, emphasizing their interconnected factors. Eight Ayurvedic plants with dual protective effects against T2DM and AD are thoroughly reviewed with preclinical/clinical evidence. Historical context, phytoconstituents, and traditional applications are explored. Innovative formulations using these plants are examined. Challenges stemming from phytoconstituents' physicochemical properties are highlighted, prompting novel formulation development, including nanotechnology-based delivery systems. The study uncovers obstacles in formulating treatments for these diseases. CONCLUSION The review showcases the dual potential of chosen medicinal herbs against both diseases, along with their traditional applications, endorsing their use. It addresses formulation obstacles, proposing innovative delivery technologies for herbal therapies, while acknowledging their constraints. The review suggests the need for heightened investment and research in this area.
Collapse
Affiliation(s)
- Rima Pramanik
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | | | - Dipankar Banerjee
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Avinash Narwaria
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India.
| |
Collapse
|
4
|
Di Stefano E, Hüttmann N, Dekker P, Tomassen MMM, Oliviero T, Fogliano V, Udenigwe CC. Solid-state fermentation of green lentils by Lactiplantibacillus plantarum leads to formation of distinct peptides that are absorbable and enhances DPP-IV inhibitory activity in an intestinal Caco-2 cell model. Food Funct 2024. [PMID: 39450545 DOI: 10.1039/d4fo03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Food-derived bioactive compounds mimicking the effects of incretin therapies offer promising opportunities for combination therapies with functional foods, where food matrix interactions, gastrointestinal enzyme activity, and in situ bioactivity should be key considerations. In this study, green lentils were solid-state fermented with Lactiplantibacillus plantarum ATCC8014, in vitro digested and exposed to brush border enzymes of a Caco-2 cell monolayer. Intestinal absorption of peptides and DPP-IV inhibitory activity were then investigated. LC-MS/MS profiles showed that peptides mainly originated from parental proteins of the vicilin, convicilin and legumin families. Fermentation led to the formation of more hydrophobic peptides when compared to the unfermented flour and up to 33.6% of them were transported to the basolateral side of a Caco-2 cell monolayer. Peptides with more than 22 amino acids and with a mass greater than 2000 Da were minimally transported. 73 peptides were uniquely identified in the basolateral fraction suggesting that they resulted from the activity of the brush border enzymes. The DPP-IV activity of Caco-2 cells grown as a polarized monolayer was decreased by 37.3% when exposed to in vitro digested 72 h-fermented lentil flour and 10% when exposed to the unfermented one. Inhibition of DPP-IV in the basolateral fluids was improved in a dose-dependent manner and reached 7.9% when 500 mg mL-1 of in vitro digested 72 h fermented lentil flour was used. Glucose absorption and uptake were minimally affected, suggesting that the previously observed hypoglycemic properties of lentils are likely due to activity on DPP-IV rather than on the inhibition of glucose absorption.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 5E3, Canada
| |
Collapse
|
5
|
Vora H, Kaur P. Prediabetes and diabetes in India: An HbA1c based epidemiology study. Diabetes Res Clin Pract 2024; 217:111889. [PMID: 39414085 DOI: 10.1016/j.diabres.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The relentless rise in Type 2 diabetes mellitus (T2DM) and prediabetes presents a complex challenge to India's healthcare system. This study analyses the prevalence and trends of these conditions in adults across Indian states using laboratory data collected during 2023. METHODS HbA1c values from 19,66,449 samples from adults alongside demographic and geographic details were retrospectively analysed. Data were stratified by state, age, and gender and evaluated against national statistics parameters such as food consumption and socio-economic status. RESULTS Substantial regional variation was seen across the country where 22.25% of the tested population was considered having prediabetes, and 27.18% with diabetes. Odisha had the highest rates, while J&K reported the lowest. Gender-specific trends indicate an increase in prevalence of diabetes among males compared to females. Age-wise data stratification shows a significant burden of prediabetes and diabetes in the economically productive age groups. Correlations between disease prevalence and state-specific grain consumption were observed, suggesting dietary influences. CONCLUSIONS The reported prevalence of prediabetes and diabetes higher than previous studies highlights the importance of regular screening. The use of HbA1c for estimation as a long-term average blood sugar marker helps to identify previously undiagnosed diabetes. The correlation of prevalence with food production underscores the importance of diet in disease management.
Collapse
Affiliation(s)
- Hardeep Vora
- Lead, Business Development and Technology Alliances, Thyrocare Technologies Ltd., Navi Mumbai, India.
| | - Preet Kaur
- Vice President, Lab Operations and Quality, Thyrocare Technologies Ltd., Navi Mumbai, India
| |
Collapse
|
6
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
7
|
Donthula G, Daigavane S. Diabetes Mellitus and Neurovascular Pathology: A Comprehensive Review of Retinal and Brain Lesions. Cureus 2024; 16:e70611. [PMID: 39483560 PMCID: PMC11527494 DOI: 10.7759/cureus.70611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by persistent hyperglycemia, which significantly impacts vascular health. This review comprehensively analyzes the neurovascular complications associated with DM, focusing on retinal and brain lesions. Diabetes is categorized into type 1 DM, type 2 DM, and gestational DM, each presenting unique challenges and risks. The condition accelerates vascular damage through mechanisms such as endothelial dysfunction, inflammation, and oxidative stress, leading to severe microvascular complications. Diabetic retinopathy is a primary concern, with its progression from non-proliferative to proliferative stages potentially resulting in vision loss. Concurrently, diabetes contributes to neurovascular damage in the brain, increasing the risk of cognitive decline and cerebrovascular events. This review examines the pathophysiological mechanisms underlying these complications, evaluates current diagnostic and management strategies, and highlights recent advancements in imaging technologies and therapeutic approaches. Integrating these insights is crucial for improving early detection, treatment, and management of diabetes-related neurovascular issues. Future research should focus on innovative preventive measures and therapeutic interventions to mitigate the long-term impact of diabetes on vascular health. By enhancing our understanding of these complex interactions, this review aims to contribute to better clinical practices and improved patient outcomes in diabetes care.
Collapse
Affiliation(s)
- Gayathri Donthula
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
8
|
Rodrigues S, Isabel Patrício A, Cristina C, Fernandes F, Marcelino Santos G, Antunes I, Pintalhão I, Ribeiro M, Lopes R, Moreira S, Oliveira SA, Costa SP, Simões S, Nunes TC, Santiago LM, Rosendo I. Health Literacy and Adherence to Therapy in Type 2 Diabetes: A Cross-Sectional Study in Portugal. Health Lit Res Pract 2024; 8:e194-e203. [PMID: 39378075 DOI: 10.3928/24748307-20240625-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Therapy adherence is a key factor in the control of type 2 diabetes mellitus (T2DM). Optimal self-care requires skills in health literacy (HL). OBJECTIVE This study aims to analyze the relationship between HL and adherence to therapy and to understand the possible influence of other sociodemographic and disease variables. METHODS A multicenter, cross-sectional study was conducted in Portuguese in 13 different primary health care units in both rural and urban environments. A sociodemographic questionnaire and two validated instruments, "Medical Term Recognition Test" and "Summary of Diabetes Self-Care Activities," were applied. The last value of hemoglobin A1c (HbA1c) and the number of chronic medications were collected from clinical records. Descriptive statistics and bivariate correlations were performed as well as multivariable linear regression to assess the association between HL and adherence to therapy. KEY RESULTS Participants (n = 354) were on average age 63.67 ± 10.39 years, 57.1% male and 42.9% female, 68.4% with inadequate HL and an average HbA1c of 7 ± 1.18%. Better HL was correlated with higher adherence to the total of self-care activities, nonpharmacological therapy, and foot care. In multivariable linear regression analyses, better HL (β = 0.176, p = .003), less than minimum wage (β = -0.197, p = .001) and insulin therapy (β = 0.272, p = .001) were independently associated with increased adherence to overall self-care activities. CONCLUSION In a representative sample of people with T2DM in Portugal, HL was a key factor for greater adherence to demanding self-care activities. [HLRP: Health Literacy Research and Practice. 2024;8(4):e194-e203.].
Collapse
|
9
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
10
|
Rugera SP, Tumusiime J, Mudondo H, Naruhura G, Kiconco R, Nkubi Bagenda C. Serum Uric Acid and Microalbuminuria: Predictors of Renal Dysfunction in Type 2 Diabetes Patients in South-Western Uganda. Cureus 2024; 16:e69843. [PMID: 39435249 PMCID: PMC11492550 DOI: 10.7759/cureus.69843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by insulin resistance and high blood glucose levels, which has become a global pandemic in recent decades and is associated with several health complications, including renal dysfunction. Serum uric acid levels are associated with kidney damage and have been linked to various health conditions. Urine microalbumin is a sensitive marker of kidney damage and is commonly used to monitor renal dysfunction in diabetes. The study aimed to compare the predictive value of serum uric acid and urine microalbumin in detecting kidney damage among T2D patients. Method This secondary data analysis used a cross-sectional dataset of 140 diabetic patients from Mbarara Regional Referral Hospital (MRRH) in Mbarara, Uganda. The main outcome was renal dysfunction, defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m². Key variables included serum uric acid, urinary microalbumin, and various demographic and clinical factors. Data were analyzed using logistic regression and receiver operating characteristic (ROC) curve analysis to evaluate predictive performance. Ethics approval was obtained from the Mbarara University Research Ethics Committee. Results This study involved 140 participants with a median age of 53 years (interquartile range (IQR) 44-60.5), predominantly females (95, 67.9%), primarily educated (76, 54.3%), and mostly married (104, 74.3%). Participants with renal dysfunction were older (median age 61 years, IQR 52-69) compared to those without (median age 49, IQR 40-56), with significant differences in urinary microalbumin and serum uric acid levels (p <0.05). Renal dysfunction prevalence was 33.6% (95% CI: 26.2-41.9), higher in participants with diabetes duration ≥5 years, microalbuminuria, certain marital statuses, and higher diastolic blood pressure. Microalbuminuria (adjusted odds ratio (aOR) 4.71, 95% CI: 1.27-17.50, P = 0.021) and serum uric acid (aOR 1.01, 95% CI: 1.0002-1.0153, P = 0.045) were significantly associated with renal dysfunction. Other associated factors included age, female gender, and diastolic hypertension. Both biomarkers had significant predictive power for renal dysfunction (area under the curve (AUC) 0.62 and 0.65, respectively). Conclusion This study confirms the high prevalence of renal dysfunction among T2D patients, with a finding of 33.6%. The significant association between microalbuminuria and renal dysfunction, as well as the predictive capacity of serum uric acid and urinary microalbumin, highlight the importance of these biomarkers in identifying individuals at risk of kidney complications.
Collapse
Affiliation(s)
- Simon Peter Rugera
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Jazira Tumusiime
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Hope Mudondo
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Georgina Naruhura
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Ritah Kiconco
- Department of Biochemistry, Soroti University, Soroti, UGA
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Charles Nkubi Bagenda
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| |
Collapse
|
11
|
Su J, Xu J, Hu S, Ye H, Xie L, Ouyang S. Advances in small-molecule insulin secretagogues for diabetes treatment. Biomed Pharmacother 2024; 178:117179. [PMID: 39059347 DOI: 10.1016/j.biopha.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes, a metabolic disease caused by abnormally high levels of blood glucose, has a high prevalence rate worldwide and causes a series of complications, including coronary heart disease, stroke, peripheral vascular disease, end-stage renal disease, and retinopathy. Small-molecule compounds have been developed as drugs for the treatment of diabetes because of their oral advantages. Insulin secretagogues are a class of small-molecule drugs used to treat diabetes, and include sulfonylureas, non-sulfonylureas, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and other novel small-molecule insulin secretagogues. However, many small-molecule compounds cause different side effects, posing huge challenges to drug monotherapy and drug selection. Therefore, the use of different small-molecule drugs must be improved. This article reviews the mechanism, advantages, limitations, and potential risks of small-molecule insulin secretagogues to provide future research directions on small-molecule drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Jingran Xu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hui Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Lian Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
12
|
Wu T, Chen L, Li Y, Zhang C. Evaluation of subclinical left ventricular systolic dysfunction in patients with type 2 diabetes mellitus by combining myocardial work and triglyceride-glucose index. Echocardiography 2024; 41:e15913. [PMID: 39215435 DOI: 10.1111/echo.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIM Type 2 diabetes mellitus (T2DM) frequently presents subclinical left ventricular systolic dysfunction. The TyG index is a surrogate indicator of insulin resistance and is closely related to heart failure (HF). This study aimed to evaluate subclinical systolic dysfunction in T2DM by combining myocardial work (MW) and the TyG index and to investigate the risk factors for MW. METHODS This study included 102 diabetic patients and 78 healthy control subjects, and the diabetic group was divided into three subgroups based on the TyG index. LV global longitudinal strain (GLS), global myocardial work index (GWI), global constructive work (GCW), global wasted work (GWW), and global myocardial work efficiency (GWE) were measured in all subjects. GLS and MW were compared between the diabetic and control groups and between subgroups. Regression models were applied to analyze the risk factors for MW in diabetic patients. RESULTS GLS, GWI, GCW, and GWE significantly increased, and GWW significantly decreased in the diabetic group (all p < .01). GWI and GCW were significantly lower in the T3 subgroup than in the T1 and T2 subgroups (all p < .05). The TyG index, sex (female), BMI, systolic blood pressure (SBP), and total cholesterol (TC) were independent risk factors for GWI and GCW, and HbA1c was an independent risk factor for GWI. CONCLUSIONS MW accurately revealed subtle changes in subclinical LV systolic dysfunction in T2DM patients. An elevated TyG index was strongly associated with decreased GWI and GCW. The TyG index, sex (female), BMI, SBP, and TC were independent risk factors for GWI and GCW, and HbA1c was an independent risk factor for GWI.
Collapse
Affiliation(s)
- Ting Wu
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Chen
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yin Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Damarov IS, Korbolina EE, Rykova EY, Merkulova TI. Multi-Omics Analysis Revealed the rSNPs Potentially Involved in T2DM Pathogenic Mechanism and Metformin Response. Int J Mol Sci 2024; 25:9297. [PMID: 39273245 PMCID: PMC11394919 DOI: 10.3390/ijms25179297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The goal of our study was to identify and assess the functionally significant SNPs with potentially important roles in the development of type 2 diabetes mellitus (T2DM) and/or their effect on individual response to antihyperglycemic medication with metformin. We applied a bioinformatics approach to identify the regulatory SNPs (rSNPs) associated with allele-asymmetric binding and expression events in our paired ChIP-seq and RNA-seq data for peripheral blood mononuclear cells (PBMCs) of nine healthy individuals. The rSNP outcomes were analyzed using public data from the GWAS (Genome-Wide Association Studies) and Genotype-Tissue Expression (GTEx). The differentially expressed genes (DEGs) between healthy and T2DM individuals (GSE221521), including metformin responders and non-responders (GSE153315), were searched for in GEO RNA-seq data. The DEGs harboring rSNPs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 14,796 rSNPs in the promoters of 5132 genes of human PBMCs. We found 4280 rSNPs to associate with both phenotypic traits (GWAS) and expression quantitative trait loci (eQTLs) from GTEx. Between T2DM patients and controls, 3810 rSNPs were detected in the promoters of 1284 DEGs. Based on the protein-protein interaction (PPI) network, we identified 31 upregulated hub genes, including the genes involved in inflammation, obesity, and insulin resistance. The top-ranked 10 enriched KEGG pathways for these hubs included insulin, AMPK, and FoxO signaling pathways. Between metformin responders and non-responders, 367 rSNPs were found in the promoters of 131 DEGs. Genes encoding transcription factors and transcription regulators were the most widely represented group and many were shown to be involved in the T2DM pathogenesis. We have formed a list of human rSNPs that add functional interpretation to the T2DM-association signals identified in GWAS. The results suggest candidate causal regulatory variants for T2DM, with strong enrichment in the pathways related to glucose metabolism, inflammation, and the effects of metformin.
Collapse
Affiliation(s)
- Igor S Damarov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena E Korbolina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena Y Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Tatiana I Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Sarkar K, Chatterjee A, Bankura B, Bank S, Paul N, Chatterjee S, Das A, Dutta K, Chakraborty S, De S, Al-Masud AA, Khan GA, Chattopadhyay D, Das M. Efficacy of pegylated Graphene oxide quantum dots as a nanoconjugate sustained release metformin delivery system in in vitro insulin resistance model. PLoS One 2024; 19:e0307166. [PMID: 39133725 PMCID: PMC11318915 DOI: 10.1371/journal.pone.0307166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Metformin, the primary therapy for type 2 diabetes mellitus (T2DM), showed limitations such as varying absorption, rapid system clearance, required large amount, resistance, longstanding side effects. Use of Nano formulations for pharmaceuticals is emerging as a viable technique to reduce negative consequences of drug, while simultaneously attaining precise release and targeted distribution. This study developed a Polyethylene Glycol conjugated Graphene Oxide Quantum dots (GOQD-PEG) nanocomposite for the sustained release of metformin. Herein, we evaluated the effectiveness of metformin-loaded nanoconjugate in in vitro insulin resistance model. Results demonstrated drug loaded nanoconjugate successfully restored glucose uptake and reversed insulin resistance in in vitro conditions at reduced dosage compared to free metformin.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | - Sarbashri Bank
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | - Anwesha Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | | | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, India
| | - Alaa A. Al-Masud
- Tissue Biobank Section, Research Department, Natural and Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gausal Azam Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Al ASHA, KSA
| | | | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Sparks JR, Wang X, Lavie CJ, Jakicic JM, Sui X. Non-exercise estimated cardiorespiratory fitness and incident type 2 diabetes in adults. Diabetes Res Clin Pract 2024; 214:111791. [PMID: 39059738 DOI: 10.1016/j.diabres.2024.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIM(S) To examine the association between non-exercise estimated cardiorespiratory fitness (eCRF) and incident type 2 diabetes. METHODS In a sample of 13,616 men and women without diabetes at baseline, incident type 2 diabetes were determined as fasting plasma glucose level ≥ 7 mmol/l (126 mg/dL), self-report, or insulin usage at follow-up. eCRF was calculated in metabolic equivalents (METs) at baseline using sex-specific algorithms, including physical activity, smoking status, age, body mass index, waist circumference, and resting heart rate. Cox regression models were performed, and hazard ratios (HRs), 95 % confidence intervals (CIs), and p values were reported. RESULTS Each 1-MET unit increase in eCRF was associated with an 11 % lower risk of incident type 2 diabetes (p < 0.0001). Men in the upper and middle eCRF tertiles were at 46 % (95 % CI, 0.42-0.68) and 29 % (95 % CI, 0.57-0.88) lower risk of incident type 2 diabetes compared to the lower eCRF tertile (p < 0.0001). For women, there were no significant findings between eCRF tertiles and incident type 2 diabetes (p ≥ 0.11 for all). CONCLUSIONS Higher eCRF was associated with a lower incidence of type 2 diabetes in men. Further research needs to examine the association between eCRF and type 2 diabetes in women.
Collapse
Affiliation(s)
- Joshua R Sparks
- Department of Exercise Science, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Expeditionary and Cognitive Sciences Research Group, Department of Warfighter Performance, Naval Health Research Center, Leidos Inc. (Contract), San Diego, CA, 92106, USA
| | - Xuewen Wang
- Department of Exercise Science, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Carl J Lavie
- Department of Cardiovascular Disease, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, LA, 70121, USA
| | - John M Jakicic
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xuemei Sui
- Department of Exercise Science, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
16
|
Hoekx CA, Straat ME, Bizino MB, van Eyk HJ, Lamb HJ, Smit JWA, Jazet IM, de Jager SCA, Boon MR, Martinez‐Tellez B. Growth differentiation factor 15 is not modified after weight loss induced by liraglutide in South Asians and Europids with type 2 diabetes mellitus. Exp Physiol 2024; 109:1292-1304. [PMID: 38965822 PMCID: PMC11291866 DOI: 10.1113/ep091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists induce weight loss in patients with type 2 diabetes mellitus (T2DM), but the underlying mechanism is unclear. Recently, the mechanism by which metformin induces weight loss could be explained by an increase in growth differentiation factor 15 (GDF15), which suppresses appetite. Therefore, we aimed to investigate whether the GLP-1R agonist liraglutide modifies plasma GDF15 levels in patients with T2DM. GDF15 levels were measured in plasma samples obtained from Dutch Europids and Dutch South Asians with T2DM before and after 26 weeks of treatment with daily liraglutide (n = 44) or placebo (n = 50) added to standard care. At baseline, circulating GDF15 levels did not differ between South Asians and Europids with T2DM. Treatment with liraglutide, compared to placebo, decreased body weight, but did not modify plasma GDF15 levels in all patients, or when data were split by ethnicity. Also, the change in plasma GDF15 levels after treatment with liraglutide did not correlate with changes in body weight or HbA1c levels. In addition, the dose of metformin used did not correlate with baseline plasma GDF15 levels. Compared to placebo, liraglutide treatment for 26 weeks does not modify plasma GDF15 levels in Dutch Europid or South Asian patients with T2DM. Thus, the weight loss induced by liraglutide is likely explained by other mechanisms beyond the GDF15 pathway. HIGHLIGHTS: What is the central question of this study? Growth differentiation factor 15 (GDF15) suppresses appetite and is increased by metformin: does the GLP-1R agonist liraglutide modify plasma GDF15 levels in patients with type 2 diabetes mellitus (T2DM)? What is the main finding and its importance? Plasma GDF15 levels did not differ between South Asians and Europids with T2DM and were not modified by 26 weeks of liraglutide in either ethnicity. Moreover, there was no correlation between the changes in plasma GDF15 levels and dosage of metformin administered, changes in body weight or HbA1c levels. The appetite-suppressing effect of liraglutide is likely exerted via pathways other than GDF15.
Collapse
Affiliation(s)
- Carlijn A. Hoekx
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike E. Straat
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Maurice B. Bizino
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Huub J. van Eyk
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | | | - Johannes W. A. Smit
- Department of MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Ingrid M. Jazet
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Saskia C. A. de Jager
- Laboratory of Translational ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Borja Martinez‐Tellez
- Division of Endocrinology, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS‐1024), CERNEP Research CenterUniversity of AlmeríaAlmeríaSpain
- Biomedical Research UnitTorrecárdenas University HospitalAlmeríaSpain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIGranadaSpain
| |
Collapse
|
17
|
Asadi M, Ahangari MM, Iraji A, Azizian H, Nokhbehzaim A, Bahadorikhalili S, Mojtabavi S, Faramarzi MA, Nasli-Esfahani E, Larijani B, Mahdavi M, Amanlou M. Synthesis, α-glucosidase inhibitory activity, and molecular dynamic simulation of 6-chloro-2-methoxyacridine linked to triazole derivatives. Sci Rep 2024; 14:17338. [PMID: 39069559 PMCID: PMC11284203 DOI: 10.1038/s41598-024-68176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Α-glucosidase inhibition can be useful in the management of carbohydrate-related diseases, especially type 2 diabetes mellitus. Therefore, in this study, a new series of 6-chloro-2-methoxyacridine bearing different aryl triazole derivatives were designed, synthesized, and evaluated as potent α-glucosidase inhibitors. The most potent derivative in this group was 7h bearing para-fluorine with IC50 values of 98.0 ± 0.3 µM compared with standard drug acarbose (IC50 value = 750.0 ± 10.5 μM). A kinetic study of compound 7h revealed that it is a competitive inhibitor against α-glucosidase. Molecular dynamic simulations of the most potent derivative were also executed and indicated suitable interactions with residues of the enzyme which rationalized the in vitro results.
Collapse
Affiliation(s)
- Mehdi Asadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Mehdi Ahangari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Homa Azizian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ali Nokhbehzaim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Somaye Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohamad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
18
|
Aboismaiel MG, Amin MN, Eissa LA. Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α. Biol Res 2024; 57:47. [PMID: 39033184 PMCID: PMC11265012 DOI: 10.1186/s40659-024-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.
Collapse
Affiliation(s)
- Merna G Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
19
|
Luo J, Hou J, Yi J, Li L, Zhao X. Global burden of type 2 diabetes in adolescents from 1990 to 2019. Front Endocrinol (Lausanne) 2024; 15:1405739. [PMID: 39055060 PMCID: PMC11269148 DOI: 10.3389/fendo.2024.1405739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose To evaluate the burden of type 2 diabetes (T2D) among adolescents (15-24 years old) from 1990 to 2019. Methods The age-standardized incidence rate (ASIR) and disability-adjusted life years (DALYs) rate of adolescents were analyzed according to age, sex, geographical location, and sociodemographic index (SDI). The estimated annual percentage change (EAPC) was estimated to quantify the trends. Results From 1990 to 2019, the ASIR (EAPC = 1.07) and age-standardized DALY rate (EAPC = 2.01) of T2D in adolescents showed an increasing trend. The ASIR was higher in males than in females. The burden was greater in the 20-24-year age group. Of the five SDI regions, the highest ASIR and age-standardized DALY rate were found in low-middle-SDI regions, while the greatest increase in these rates was observed in high-SDI regions (EAPC = 3.28 and 3.55, respectively). Of the 21 regions analyzed, the highest ASIR and age-standardized DALY rate were found in Oceania. Of the 204 countries analyzed, the Marshall Islands (651.16) and Kiribati (277.42) had the highest ASIR and DALYs, respectively. The regions with the greatest increase in the ASIR from 1990 to 2019 were Western Europe (EAPC = 4.15), high-income North America (EAPC = 4.72). Conclusions The global burden of T2D in adolescents showed an overall upward trend from 1990 to 2019. It is necessary to strengthen prevention measures related to risk factors for T2D among young people, especially in areas with a low-to-medium SDI.
Collapse
Affiliation(s)
| | | | | | | | - Xinlan Zhao
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
20
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
21
|
Jafari A, Naddafi F, Gholian-Aval M, Tehrani H. Relationship between diabetes health literacy, distress, burnout, social support, complications, self-care behaviors, and quality of life among patients with type 2 diabetes: a path analysis study. Diabetol Metab Syndr 2024; 16:150. [PMID: 38970113 PMCID: PMC11225537 DOI: 10.1186/s13098-024-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Improving the quality of life (QOL) is the most important goal of early diagnosis and treatment in patients with type 2 diabetes (T2D). Numerous studies have indicated the positive effects of health literacy, social support and self-care behaviors and the negative effects of diabetes distress and burnout on the QOL of patients with T2D. Understanding these factors is crucial for people with diabetes. However, no study has investigated the simultaneous effects of these variables on QOL. In this study, our goals were to find out how these variables are related to each other, in addition, which variables play the role of mediating variables, and finally, what is the cumulative effect of these variables in predicting the QOL of patients with T2D. So, this study aimed to examine the relationship between diabetes health literacy (DHL), distress, burnout, social support, complications of diabetes, self-care behaviors, and QOL among patients with T2D by application Path analysis method. METHODS In this study 929 participants were entered to study by cluster sampling method and finally, data were analyzed among 820 participants. Data were gathered by self-report and with seven tools of Demographic section, DHL Scale, Diabetes distress scale, Diabetes Burnout scale, Diabetes Self-Management Questionnaire (DSMQ), Perceived social support, Diabetes Quality of Life (DQOL) Questionnaire. The software's of SPSS version 24 and AMOS version 24 were used for analysis. RESULTS The variables of DHL, social support, diabetes distress, and complications of diabetes predicted 38% variance in diabetes burnout (R2 = 0.38). Greatest impact on diabetes burnout was related to diabetes distress (estimate total effect = 0.539). The variables of DHL, social support, diabetes distress, complications of diabetes, and diabetes burnout predicted 24% variance in self- care behaviors (R2 = 0.24). Greatest impact on self- care behaviors was related to DHL (estimate total effect = 0.354). The variables of DHL, social support, diabetes distress, diabetes burnout, complications of diabetes, and self- care behaviors predicted 49% variance in DQOL (R2 = 0.49). Greatest impact on DQOL was related to variables of diabetes distress (estimate total effect = -0.613), DHL (estimate total effect = 0.225), diabetes burnout (estimate total effect = -0.202), complications of diabetes (estimate total effect = - 0.173), social support (estimate total effect = 0.149), and self -care (estimate total effect = 0.149), respectively. CONCLUSION To improve QOL in patients with T2D, health care providers must develop interventions that increase DHL of diabetic. Because DHL can decrease distress and burnout, enhance self -care skills, create supportive networks, and ultimately improve QOL in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Alireza Jafari
- Department of Health Education and Health Promotion, School of Health, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemehzahra Naddafi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahdi Gholian-Aval
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Tehrani
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Al‐Qahtani AA. Improving outcomes of type 2 diabetes mellitus patients in primary care with Chronic Care Model: A narrative review. J Gen Fam Med 2024; 25:171-178. [PMID: 38966652 PMCID: PMC11221057 DOI: 10.1002/jgf2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 07/06/2024] Open
Abstract
Designed and implemented over two decades ago, the Chronic Care Model is a well-established chronic disease management framework that has steered several healthcare systems in successfully improving the clinical outcomes of patients with type 2 diabetes mellitus. Research evidence cements the role of the Chronic Care Model (with its six key elements of organization of healthcare delivery system, self-management support, decision support, delivery system design, clinical information systems, and community resources and policies) as an integrated framework to revamp the type 2 diabetes mellitus-related clinical practice and care that betters the patient care and clinical outcomes. The current review is an evidence-lit summary of importance of use of Chronic Care Model in primary care and their impact on clinical outcomes for patients afflicted with one of the most debilitating metabolic diseases, type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Arwa Ahmed Al‐Qahtani
- Department of Family Medicine, College of MedicineAl‐Imam Mohammed Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| |
Collapse
|
23
|
Lee M, Tariq AR, Kim M. Gemigliptin, a potent selective dipeptidyl peptidase 4 inhibitor, protects endothelial progenitor cells by oxidative stress via caspase-3 dependent pathway. Biochem Biophys Rep 2024; 38:101673. [PMID: 38444735 PMCID: PMC10914559 DOI: 10.1016/j.bbrep.2024.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are exclusive players in vasculogenesis and endothelial regeneration. EPCs are of two types and their differentiation is mediated by different growth factors. A decrease in EPC number and function causes cardiovascular abnormalities and reduced angiogenesis. Various studies has documented a role of EPCs in diabetes. EPCs treatment with different drugs improve insulin secretion but causes other abnormalities. In vivo and in vitro studies have reported anti glycation effect of gemigliptin but no data is available on in vitro effect of gemigliptin on EPC number and functional credibility. The current study was aimed to find an in vitro effect of gemigliptin on EPC number and function along with an effective treatment dose of gemigliptin. EPCs were isolated, cultured and phenotypically characterized using Dil- AcLDL and ulex-lectin fluorescence staining. EPCs were then treated with different doses of Zemiglo and their viability analyzed with viability assay using water-soluble tetrazolium salt (WST-1), by Annexin V and Propidium Iodide (PI) staining, senescence-associated beta-galactosidase (SA-β-gal) staining, western blot and Flow cytometric analysis of apoptotic signals. The results demonstrated that the isolated EPCs has typical endothelial phenotypes. And these EPCs were of two types based on morphology i.e., early and late EPCs. Gemigliptin dose dependently improved the EPCs morphology and increased EPCs viability, the most effective dose being the 20 μM. Gemigliptin at 10 μM, 20 μM and 50 μM significantly increased the BCL-2 levels and at 20 μM significantly decreased the Caspase-3 levels in EPCs. In conclusion, gemigliptin dose dependently effects the EPCs viability and morphology through Caspase-3 signaling. Our results are the first report of gemigliptin effect on EPC viability and morphology.
Collapse
Affiliation(s)
- Mijung Lee
- Neurology, Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Amna Rashid Tariq
- Neurology, Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Neurology, Seoul National University Hospital, Neuroscience and Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
McCalpin SD, Khemtemourian L, Suladze S, Ivanova MI, Reif B, Ramamoorthy A. Zinc and pH modulate the ability of insulin to inhibit aggregation of islet amyloid polypeptide. Commun Biol 2024; 7:776. [PMID: 38937578 PMCID: PMC11211420 DOI: 10.1038/s42003-024-06388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Aggregation of the human islet amyloid polypeptide (hIAPP) contributes to the development and progression of Type 2 Diabetes (T2D). hIAPP aggregates within a few hours at few micromolar concentration in vitro but exists at millimolar concentrations in vivo. Natively occurring inhibitors of hIAPP aggregation might therefore provide a model for drug design against amyloid formation associated with T2D. Here, we describe the combined ability of low pH, zinc, and insulin to inhibit hIAPP fibrillation. Insulin dose-dependently slows hIAPP aggregation near neutral pH but had less effect on the aggregation kinetics at acidic pH. We determine that insulin alters hIAPP aggregation in two manners. First, insulin diverts the aggregation pathway to large nonfibrillar aggregates with ThT-positive molecular structure, rather than to amyloid fibrils. Second, soluble insulin suppresses hIAPP dimer formation, which is an important early aggregation event. Further, we observe that zinc significantly modulates the inhibition of hIAPP aggregation by insulin. We hypothesize that this effect arose from controlling the oligomeric state of insulin and show that hIAPP interacts more strongly with monomeric than oligomeric insulin.
Collapse
Affiliation(s)
- Samuel D McCalpin
- Biophysics Program, University of Michigan, Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Arbor, MI, 48109, USA
| | - Lucie Khemtemourian
- Institute of Chemistry and Biology of Membranes and Nanoobjects (CBMN), CNRS - UMR 5248, Institut Polytechnique Bordeaux, University of Bordeaux, 33600, Pessac, France
| | - Saba Suladze
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Munich, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Arbor, MI, 48109, USA
- Michigan Neuroscience Institute, University of Michigan, Arbor, MI, 48109, USA
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Munich, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, Arbor, MI, 48109, USA.
- Department of Neurology, University of Michigan, Arbor, MI, 48109, USA.
- Michigan Neuroscience Institute, University of Michigan, Arbor, MI, 48109, USA.
- Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Institute of Molecular Biophysics, Neuroscience, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
25
|
Lo CH, O’Connor LM, Loi GWZ, Saipuljumri EN, Indajang J, Lopes KM, Shirihai OS, Grinstaff MW, Zeng J. Acidic Nanoparticles Restore Lysosomal Acidification and Rescue Metabolic Dysfunction in Pancreatic β-Cells under Lipotoxic Conditions. ACS NANO 2024; 18:15452-15467. [PMID: 38830624 PMCID: PMC11192035 DOI: 10.1021/acsnano.3c09206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 β-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lance M. O’Connor
- College
of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gavin Wen Zhao Loi
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | | | - Jonathan Indajang
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Kaitlynn M. Lopes
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Orian S. Shirihai
- Division
of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90045, United States
- Department
of Molecular and Medical Pharmacology, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Mark W. Grinstaff
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jialiu Zeng
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
26
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
27
|
Nadeem S, Maqbool T, Qureshi JA, Altaf A, Naz S, Azhar MM, Ullah I, Shah TA, Qamar MU, Salamatullah AM. Apolipoprotein E Gene Variation in Pakistani Subjects with Type 2 Diabetes with and without Cardiovascular Complications. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:961. [PMID: 38929578 PMCID: PMC11205396 DOI: 10.3390/medicina60060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Background: Apolipoprotein E (APOE) gene polymorphism has been implicated in the pathogenesis of various metabolic disorders, including type 2 diabetes mellitus (T2DM). Type 2 diabetes mellitus (T2DM) is a major public health concern worldwide, including in Pakistan. Cardiovascular problems linked with T2DM have a significant impact on individuals and society. The goal of this study is to investigate the relationship between Apolipoprotein E (ApoE) genotypes, dyslipidemia, and cardiovascular complications such as ischemic heart disease (IHD) and stroke. Methods: This study was carried out on 260 subjects divided into controls and diabetics. The diabetics were further divided into four subgroups such as D1: diabetics without cardiovascular issues, D2: diabetics with heart disease, D3: diabetics with stroke, and D4: diabetics with both heart disease and stroke. Anthropometric parameters (age, BMI) and risk factors (smoking, diabetes duration, hypertension) were assessed in all groups. Serum levels of TC, TG, LDL, HDL, VLDL, creatinine, BSF, and HbA1c were also measured. Apolipoprotein E gene polymorphism was determined using PCR-RFLP. Results: Hypertension, BMI, and dyslipidemia are defined as elevated levels of total cholesterol, triglycerides, LDL, and VLDL, and decreased levels of HDL. Uncontrolled hyperglycemia (elevated fasting blood sugar and glycated hemoglobin) in T2DM was linked to vascular complications such as IHD and stroke. Hypertension was prevalent in 79.3% of the population. Stage 2 hypertension was more prevalent in all age groups. It was also noted that common genotypes in the Pakistani population are 3/3, 4/4, 2/3, and 3/4. The frequency of genotypes 3/4 and 2/3 is highest in diabetics with stroke. Genotype 3/3 is present frequently in diabetics with IHD/stroke and patients with both these complications. However, genotype 4/4 is most frequently found in diabetics with IHD. Conclusions: It is concluded that BMI, hypertension, hyperglycemia, atherosclerosis, and dyslipidemia are linked with cardiovascular complications of type 2 diabetes. Apolipoprotein E gene polymorphism is associated with cardiovascular disease in patients with diabetes by affecting the lipid profile.
Collapse
Affiliation(s)
- Shehwar Nadeem
- Centre for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (J.A.Q.); (A.A.); (I.U.)
| | - Tahir Maqbool
- Centre for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (J.A.Q.); (A.A.); (I.U.)
| | - Javed Anver Qureshi
- Centre for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (J.A.Q.); (A.A.); (I.U.)
| | - Awais Altaf
- Centre for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (J.A.Q.); (A.A.); (I.U.)
| | - Sadia Naz
- Department of Allied Health Sciences, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (M.M.A.)
| | - Muzammal Mateen Azhar
- Department of Allied Health Sciences, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (M.M.A.)
| | - Inam Ullah
- Centre for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan; (S.N.); (J.A.Q.); (A.A.); (I.U.)
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255049, China;
| | - Muhammad Usman Qamar
- Division of Infectious Disease, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
28
|
Reed J, Higginbotham V, Bain S, Kanamarlapudi V. Comparative Analysis of Orthosteric and Allosteric GLP-1R Agonists' Effects on Insulin Secretion from Healthy, Diabetic, and Recovered INS-1E Pancreatic Beta Cells. Int J Mol Sci 2024; 25:6331. [PMID: 38928038 PMCID: PMC11203424 DOI: 10.3390/ijms25126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.
Collapse
Affiliation(s)
| | | | | | - Venkateswarlu Kanamarlapudi
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (J.R.); (V.H.); (S.B.)
| |
Collapse
|
29
|
Mizani MA, Dashtban A, Pasea L, Zeng Q, Khunti K, Valabhji J, Mamza JB, Gao H, Morris T, Banerjee A. Identifying subtypes of type 2 diabetes mellitus with machine learning: development, internal validation, prognostic validation and medication burden in linked electronic health records in 420 448 individuals. BMJ Open Diabetes Res Care 2024; 12:e004191. [PMID: 38834334 PMCID: PMC11163636 DOI: 10.1136/bmjdrc-2024-004191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION None of the studies of type 2 diabetes (T2D) subtyping to date have used linked population-level data for incident and prevalent T2D, incorporating a diverse set of variables, explainable methods for cluster characterization, or adhered to an established framework. We aimed to develop and validate machine learning (ML)-informed subtypes for type 2 diabetes mellitus (T2D) using nationally representative data. RESEARCH DESIGN AND METHODS In population-based electronic health records (2006-2020; Clinical Practice Research Datalink) in individuals ≥18 years with incident T2D (n=420 448), we included factors (n=3787), including demography, history, examination, biomarkers and medications. Using a published framework, we identified subtypes through nine unsupervised ML methods (K-means, K-means++, K-mode, K-prototype, mini-batch, agglomerative hierarchical clustering, Birch, Gaussian mixture models, and consensus clustering). We characterized clusters using intracluster distributions and explainable artificial intelligence (AI) techniques. We evaluated subtypes for (1) internal validity (within dataset; across methods); (2) prognostic validity (prediction for 5-year all-cause mortality, hospitalization and new chronic diseases); and (3) medication burden. RESULTS Development: We identified four T2D subtypes: metabolic, early onset, late onset and cardiometabolic. Internal validity: Subtypes were predicted with high accuracy (F1 score >0.98). Prognostic validity: 5-year all-cause mortality, hospitalization, new chronic disease incidence and medication burden differed across T2D subtypes. Compared with the metabolic subtype, 5-year risks of mortality and hospitalization in incident T2D were highest in late-onset subtype (HR 1.95, 1.85-2.05 and 1.66, 1.58-1.75) and lowest in early-onset subtype (1.18, 1.11-1.27 and 0.85, 0.80-0.90). Incidence of chronic diseases was highest in late-onset subtype and lowest in early-onset subtype. Medications: Compared with the metabolic subtype, after adjusting for age, sex, and pre-T2D medications, late-onset subtype (1.31, 1.28-1.35) and early-onset subtype (0.83, 0.81-0.85) were most and least likely, respectively, to be prescribed medications within 5 years following T2D onset. CONCLUSIONS In the largest study using ML to date in incident T2D, we identified four distinct subtypes, with potential future implications for etiology, therapeutics, and risk prediction.
Collapse
Affiliation(s)
- Mehrdad A Mizani
- University College London, London, UK
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | | | | | - Qingjia Zeng
- University College London, London, UK
- Peking Union Medical College Hospital, Beijing, China
| | - Kamlesh Khunti
- Diabetes Research Department, University of Leicester, Leicester, UK
| | - Jonathan Valabhji
- NHS England and NHS Improvement London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | | | - He Gao
- AstraZeneca, Cambridge, UK
| | | | - Amitava Banerjee
- University College London, London, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
30
|
Aksoy AN, Abayomi J, Relph N, Butler T. Physiological and psychological determinants of long-term diet-induced type 2 diabetes (T2DM) remission: A narrative review. Obes Rev 2024; 25:e13733. [PMID: 38511597 DOI: 10.1111/obr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disease, causing a heavy burden on healthcare systems worldwide, with related complications and anti-diabetes drug prescriptions. Recently, it was demonstrated that T2DM can be put into remission via significant weight loss using low-carbohydrate diets (LCDs) and very low-energy diets (VLEDs) in individuals with overweight and obesity. Clinical trials demonstrated remission rates of 25-77%, and metabolic improvements such as improved blood lipid profile and blood pressure were observed. In contrast, clinical trials showed that remission rate declines with time, concurrent with weight gain, or diminished weight loss. This review aims to discuss existing literature regarding underlying determinants of long-term remission of T2DM including metabolic adaptations to weight loss (e.g., role of gastrointestinal hormones), type of dietary intervention (i.e., LCDs or VLEDs), maintaining beta (β)-cell function, early glycemic control, and psychosocial factors. This narrative review is significant because determining the factors that are associated with challenges in maintaining long-term remission may help in designing sustainable interventions for type 2 diabetes remission.
Collapse
Affiliation(s)
- Ayse Nur Aksoy
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Julie Abayomi
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Nicola Relph
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Thomas Butler
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
- Cardio-Respiratory Research Centre, Edge Hill University, Ormskirk, UK
| |
Collapse
|
31
|
Yin X, Ni G, Zhang X, Fu S, Li H, Gao Z. Tyrosine nitration of glucagon impairs its function: Extending the role of heme in T2D pathogenesis. J Inorg Biochem 2024; 255:112519. [PMID: 38507994 DOI: 10.1016/j.jinorgbio.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
Collapse
Affiliation(s)
- Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
32
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
33
|
Daley DK, Myrie SB. Diabetes and vitamin D: The effect of insulin sensitivity and gut microbial health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:160-184. [PMID: 38777412 DOI: 10.1016/bs.afnr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Current global estimation suggests that about 10% of adults worldwide have diabetes, thus, various strategies are needed to address the issue, including dietary factors such as vitamin D. Various studies have suggested an inverse associations between vitamin D and the risks and pathogenesis of all forms of diabetes (type 1, type 2 and gestational diabetes). The underlying mechanism is not fully understood; however, the expression of vitamin D receptors in pancreatic beta cells suggests an important physiological role for vitamin D in beta cell function. Vitamin D deficiency may impair blood glucose control and decrease insulin sensitivity by reducing insulin secretion from beta cells. Many studies suggest that vitamin D intervention may be beneficial; however, there is inconclusive evidence of the effectiveness of vitamin D supplementation on reducing the risks or managing the pathogenesis of all forms of diabetes. Part of the pathogenesis of vitamin D for reducing diabetes is thought to be related to its impact on gut microbiota profile, via the suggested prebiotic properties of vitamin D.
Collapse
Affiliation(s)
- Denise K Daley
- Department of Biology, Mount Saint Vincent University, Halifax, NS, Canada; The College of Health Sciences, University of Technology, Kingston, Jamaica
| | - Semone B Myrie
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Fan Z, Li L. Differences in sleep spindle wave density between patients with diabetes mellitus and matched controls: implications for sensing and regulation of peripheral blood glucose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305676. [PMID: 38645123 PMCID: PMC11030297 DOI: 10.1101/2024.04.11.24305676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Brain waves during sleep are involved in sensing and regulating peripheral glucose level. Whether brain waves in patients with diabetes differ from those of healthy subjects is unknown. We examined the hypothesis that patients with diabetes have reduced sleep spindle waves, a form of brain wave implicated in periphery glucose regulation during sleep. Methods From a retrospective analysis of polysomnography (PSG) studies on patients who underwent sleep apnea evaluation, we identified 1,214 studies of patients with diabetes mellitus (>66% type 2) and included a sex- and age-matched control subject for each within the scope of our analysis. We similarly identified 376 patients with prediabetes and their matched controls. We extracted spindle characteristics from artifact-removed PSG electroencephalograms and other patient data from records. We used rank-based statistical methods to test hypotheses. We validated our finding on an external PSG dataset. Results Patients with diabetes mellitus exhibited on average about half the spindle density (median=0.38 spindles/min) during sleep as their matched control subjects (median=0.70 spindles/min) (P<2.2e-16). Compared to controls, spindle loss was more pronounced in female patients than in male patients in the frontal regions of the brain (P=0.04). Patients with prediabetes also exhibited signs of lower spindle density compared to matched controls (P=0.01-0.04). Conclusions Patients with diabetes have fewer spindle waves that are implicated in glucose regulation than matched controls during sleep. Besides offering a possible explanation for neurological complications from diabetes, our findings open the possibility that reversing/reducing spindle loss could improve the overall health of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Zheng Fan
- Division of Sleep Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
35
|
Cao W, Feng H, Yang Y, Wang L, Wang X, Ma Y, Zhao D, Hu X. Trends in antidiabetic drug use and expenditure in public hospitals in Northwest China, 2012-21: a case study of Gansu Province. BMC Health Serv Res 2024; 24:415. [PMID: 38570849 PMCID: PMC10988802 DOI: 10.1186/s12913-024-10917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Since the twenty-first century, the prevalence of diabetes has risen globally year by year. In Gansu Province, an economically underdeveloped province in northwest China, the cost of drugs for diabetes patients accounted for one-third of their total drug costs. To fundamentally reduce national drug expenditures and the burden of medication on the population, the relevant departments of government have continued to reform and improve drug policies. This study aimed to analyse long-term trends in antidiabetic drug use and expenditure in Gansu Province from 2012 to 2021 and to explore the role of pharmaceutical policy. METHODS Data were obtained from the provincial centralised bidding and purchasing (CBP) platform. Drug use was quantified using the anatomical therapeutic chemistry/defined daily dose (ATC/DDD) method and standardised by DDD per 1000 inhabitants per day (DID), and drug expenditure was expressed in terms of the total amount and defined daily cost (DDC). Linear regression was used to analyse the trends and magnitude of drug use and expenditure. RESULTS The overall trend in the use and expenditure of antidiabetic drugs was on the rise, with the use increasing from 1.04 in 2012 to 16.02 DID in 2021 and the expenditure increasing from 48.36 in 2012 to 496.42 million yuan in 2021 (from 7.66 to 76.95 million USD). Some new and expensive drugs changed in the use pattern, and their use and expenditure shares (as the percentage of all antidiabetic drugs) increased from 0 to 11.17% and 11.37%, but insulins and analogues and biguanides remained the most used drug class. The DDC of oral drugs all showed a decreasing trend, but essential medicines (EMs) and medical insurance drugs DDC gradually decreased with increasing use. The price reduction of the bid-winning drugs was over 40%, and the top three drugs were glimepiride 2mg/30, acarbose 50mg/30 and acarbose 100mg/30. CONCLUSIONS The implementation of pharmaceutical policies has significantly increased drug use and expenditure while reducing drug prices, and the introduction of novel drugs and updated treatment guidelines has led to changes in use patterns.
Collapse
Affiliation(s)
- Wenxuan Cao
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Hu Feng
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Yaya Yang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Lei Wang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Xuemei Wang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Yongheng Ma
- Division of Pharmaceutical Procurement, Gansu Public Resources Trading Center, 68# Yanxing Road, Lanzhou, 730000, China
| | - Defang Zhao
- Division of Pharmaceutical Procurement, Gansu Public Resources Trading Center, 68# Yanxing Road, Lanzhou, 730000, China
| | - Xiaobin Hu
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China.
| |
Collapse
|
36
|
Yildirim D, Çiriş Yildiz C, Ergin E, Özbay İ. Hypoglycaemia fear, treatment adherence, and the quality of life in patients with type 2 diabetes and its determinants. Int J Nurs Pract 2024; 30:e13248. [PMID: 38385845 DOI: 10.1111/ijn.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/03/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
AIM This work aims to evaluate the relationship between the fear of hypoglycaemia, treatment adherence, and the quality of life in patients with type 2 diabetes mellitus (T2DM) and its determinants. METHODS This descriptive and cross-sectional study sample recruited 1060 T2DM outpatients in a health centre between January and July 2022. The Hypoglycemia Fear Survey (HFS), Type 2 DM Treatment Patient Compliance Scale, and the 5-Level EuroQol 5-Dimension (EQ-5D-5L) were used for data collection. RESULTS There was a positive correlation between age, duration of T2DM, and the scores obtained from the HFS and its subscales (p < 0.001). There was a positive, moderate correlation between the total HFS score and the TCS (p < 0.001). There was a negative correlation between the scores obtained from the HFS and the EQ-5D-5L (p < 0.001). The multiple regression analysis showed that the quality of life scores of the patients were significantly predicted by hypoglycaemia fear, duration of T2DM diagnosis, and age. (F = 91.691, p < 0.001). Hypoglycaemia fear, duration of T2DM diagnosis, and age explained 38.1% of the quality of life of patients. CONCLUSION We determined that the increase in hypoglycaemia fear resulted in a decrease in treatment adherence. Besides, hypoglycaemia fear increased with increasing age and duration of T2DM diagnosis.
Collapse
Affiliation(s)
- Dilek Yildirim
- Department of Nursing, Faculty of Health Sciences, Istanbul Aydin University, Istanbul, Turkey
| | - Cennet Çiriş Yildiz
- Department of Nursing, Faculty of Health Sciences, Istanbul Aydin University, Istanbul, Turkey
| | - Emine Ergin
- Department of Midwifery, Hamidiye Faculty of Health Sciences, Public Health Nursing, University of Health Sciences, Istanbul, Turkey
| | - İrem Özbay
- Department of Nursing, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| |
Collapse
|
37
|
Tang L, Yang Q, Ma R, Zhou P, Peng C, Xie C, Liang Q, Wu T, Gao W, Yu H, Deng G, Dai Z, Mao N, Xiao X. Association between lactate dehydrogenase and the risk of diabetic kidney disease in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1369968. [PMID: 38567310 PMCID: PMC10985160 DOI: 10.3389/fendo.2024.1369968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Objective This study aims to investigate the association between lactate dehydrogenase (LDH) and the risk of diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). Methods The study enrolled patients with diagnosis of T2D between 2009 and 2018 from the National Nutrition and Health Examination Survey (NHANES) database. Demographic information, laboratory test, and diagnostic data were collected. Restricted cubic spline (RCS) plots were used to assess the dose-effect relationship between LDH levels and the risk of DKD in patients with T2D. Based on LDH levels, individuals were divided into higher and lower groups using dichotomy, and multivariate logistic regression analysis was conducted to explore the relationship between different LDH levels and the risk of DKD in T2D patients. Stratified analysis was performed to assess the consistency of the result. Results A total of 4888 patients were included in the study, with 2976 (60.9%) patients without DKD and 1912 (39.1%) patients with DKD. RCS plots showed that the risk of DKD increased with increasing LDH levels. Multifactorial logistic regression analysis revealed that T2D patients with higher LDH levels had a 45% increased risk of DKD compared to those with lower LDH levels (OR=1.45; 95% CI: 1.11-1.89). Furthermore, each standard deviation increase in LDH level was associated with a 24% increase in DKD incidence among T2D patients (OR=1.24; 95% CI: 1.07-1.44). Stratified analysis consistently supported these findings. Conclusions LDH can serve as a valuable biomarker for screening DKD in patients with T2D.
Collapse
Affiliation(s)
- Linqiao Tang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianyu Yang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Rong Ma
- Department of Nephrology, People’s Hospital of Xindu District, Chengdu, China
| | - Ping Zhou
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Cong Peng
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chunpeng Xie
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Qiyuan Liang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tingyu Wu
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wuyu Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Haiyan Yu
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Guifei Deng
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zhen Dai
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiang Xiao
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
38
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
39
|
Nwagwe OR, Adefegha SA, Oboh G. Antihyperglycemic and aphrodisiac effect of West African Albizia (Albizia zygia) leaves-inclusive diet in diabetes-induced erectile dysfunctional rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117562. [PMID: 38081399 DOI: 10.1016/j.jep.2023.117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE West African Albizia (Albizia zygia DC J. F. Macbr) leaves are a tropical plant that are frequently used in folkloric medicine to treat a number of illnesses, including type 2 diabetes (TY2D) and erectile dysfunction (ED), without having a complete scientific foundation. AIM OF THE STUDY This investigation examined the effect of action of dietary augmentation of Albizia zygia leaves (AZL) on rat sexual functioning and important enzymes related to TY2D and ED. MATERIALS AND METHODS Thirty matured adult Wistar rats of the weight 180-200 g were acclimatized in a lab environmental condition for two weeks prior to experiment given food and water to acclimate. Twenty-four of the rats got high fat diet (HFD) for periods of two weeks before receiving streptozotocin (STZ) intraperitoneally (i.p.), 35 mg/kg body weight single dose. Six rats got basal diets. Type 2 diabetes was identified in rats 72 h after STZ treatment. Rats were then used to evaluate the mounting number, mount delay, intromission number, and intromission latency. RESULTS Following that, meals supplemented with AZL (5% or 10% inclusion) were given to diabetic-ED rats for 14 days. AZL was added. Therefore, in diabetic-ED rats, AZL supplementation could significantly (p0.05) lower blood glucose levels and the activities of alpha amylase, alpha glucosidase, phosphodiesterase-5, and arginase. In the case of diabetic-ED treated rats in consideration with diabetic-ED control group, nitric oxide levels were increased along with sexual function. CONCLUSION Thus, experimental results of this study demonstrated rats that consumed AZL in their diets had less erectile dysfunction. In order to address ED caused by diabetes, AZL could be suggested as functional meals.
Collapse
Affiliation(s)
- Onyinyechi Ruth Nwagwe
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| |
Collapse
|
40
|
Ditmars FS, Kay KE, Broderick TC, Fagg WS. Use of amniotic membrane in hard-to-heal wounds: a multicentre retrospective study. J Wound Care 2024; 33:S44-S50. [PMID: 38457299 DOI: 10.12968/jowc.2024.33.sup3.s44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Hard-to-heal (chronic) wounds negatively impact patients and are a source of significant strain on the healthcare system and economy. These wounds are often resistant to standard of care (SoC) wound healing approaches due to a diversity of underlying pathologies. Cellular, acellular, and matrix-like products, such as amniotic membranes (AM), are a potential solution to these challenges. A growing body of evidence suggests that AM may be useful for treatment-resistant wounds; however, limited information is available regarding the efficacy of dehydrated amniotic membrane (DHAM) on multi-aetiology, hard-to-heal wounds. Therefore, we analysed the efficacy of DHAM treatment in reducing the size of hard-to-heal diabetic and venous leg ulcers (VLUs) that had failed to improve after SoC-based treatments. METHOD In this multicentre retrospective study, we analysed wound size during clinic visits for patients being treated for either diabetic or VLUs. During each visit, the treatment consisted of debridement followed by application of DHAM. Each wound was measured after debridement and prior to DHAM application, and wound volumes over time or number of DHAM applications were compared. RESULTS A total of 18 wounds in 11 patients were analysed as part of this study. Wounds showed a significant reduction in volume after a single DHAM application, and a 50% reduction in wound size was observed after approximately two DHAM applications. These findings are consistent with reports investigating DHAM treatment of diabetic ulcers that were not necessarily resistant to treatment. CONCLUSION To our knowledge, this study is the first to directly compare the efficacy of standalone DHAM application to hard-to-heal diabetic and venous leg ulcers, and our findings indicate that DHAM is an effective intervention for resolving these types of wounds. This suggests that implementing this approach could lead to fewer clinic visits, cost savings and improved patient quality of life. DECLARATION OF INTEREST This research was supported in part by Merakris Therapeutics, US, and facilitated access to deidentified patient datasets, which may represent a perceived conflict of interest; however, the primary data analysis was performed by FSB who is unaffiliated with Merakris Therapeutics. TCB is a founder, employee of and shareholder in Merakris Therapeutics; WSF is a co-founder of, consultant for, and shareholder in Merakris Therapeutics, and was also supported by the National Institutes of Health National Center for Advancing Translational Sciences Clinical and Translational Science Awards Grant KL2 Scholars Program (KL2TR001441). The research was also supported through endowments to WSF from the University of Texas Medical Branch Mimmie and Hallie Smith Endowed Chair of Transplant Research and the John L Hern University Chair in Transplant Surgery.
Collapse
Affiliation(s)
- Frederick S Ditmars
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77551, US
| | - Kristen E Kay
- Department of Internal Medicine, Dell Medical School, Austin, TX 78712, US
| | - T Christopher Broderick
- Merakris Therapeutics, Research Triangle Park, NC 27709, US
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, US
| | - W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77551, US
- Merakris Therapeutics, Research Triangle Park, NC 27709, US
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77551, US
| |
Collapse
|
41
|
Zhen R, Wang S, Chen S. The Relationship Between UA/HDL and Diabetic Peripheral Neuropathy: A Cross-Sectional Analysis. Diabetes Metab Syndr Obes 2024; 17:969-980. [PMID: 38435629 PMCID: PMC10908281 DOI: 10.2147/dmso.s447809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose This study was designed to analyze correlations between the uric acid to high-density lipoprotein cholesterol ratio (UHR) and peripheral nerve conduction velocity (NCV) among type 2 diabetes mellitus (T2DM) patients. Patients and Methods This was a single-center cross-sectional analysis of 324 T2DM patients. All patients were separated into a group with normal NCV (NCVN) and a group with abnormal NCV (NCVA). Patients were also classified into groups with low and high UHR values based on the median UHR in this study cohort. Neurophysiological data including motor and sensory conduction velocity (MCV and SCV, respectively) were measured for all patients. Results Relative to patients with low UHR values, those in the high UHR group presented with greater NCVA prevalence (P = 0.002). UHR remained negatively correlated with bilateral superficial peroneal nerve SCV, bilateral common peroneal nerve MCV, bilateral ulnar nerve SCV, and bilateral right median nerve MCV even after adjustment for confounding factors. UHR was identified as an NCVA-related risk factor, with a 1.370-fold increase in NCVA prevalence for every unit rise in UHR (P < 0.001). Conclusion These results identify UHR as a risk factor associated with NCVA that was independently negatively associated with NCV among T2DM patients.
Collapse
Affiliation(s)
- Ruoxi Zhen
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuqi Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuchun Chen
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
42
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Subramanian V, Bagger JI, Harihar V, Holst JJ, Knop FK, Villsbøll T. An extended minimal model of OGTT: estimation of α- and β-cell dysfunction, insulin resistance, and the incretin effect. Am J Physiol Endocrinol Metab 2024; 326:E182-E205. [PMID: 38088864 PMCID: PMC11193523 DOI: 10.1152/ajpendo.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Loss of insulin sensitivity, α- and β-cell dysfunction, and impairment in incretin effect have all been implicated in the pathophysiology of type 2 diabetes (T2D). Parsimonious mathematical models are useful in quantifying parameters related to the pathophysiology of T2D. Here, we extend the minimum model developed to describe the glucose-insulin-glucagon dynamics in the isoglycemic intravenous glucose infusion (IIGI) experiment to the oral glucose tolerance test (OGTT). The extended model describes glucose and hormone dynamics in OGTT including the contribution of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), to insulin secretion. A new function describing glucose arrival from the gut is introduced. The model is fitted to OGTT data from eight individuals with T2D and eight weight-matched controls (CS) without diabetes to obtain parameters related to insulin sensitivity, β- and α-cell function. The parameters, i.e., measures of insulin sensitivity, a1, suppression of glucagon secretion, k1, magnitude of glucagon secretion, γ2, and incretin-dependent insulin secretion, γ3, were found to be different between CS and T2D with P values < 0.002, <0.017, <0.009, <0.004, respectively. A new rubric for estimating the incretin effect directly from modeling the OGTT is presented. The average incretin effect correlated well with the experimentally determined incretin effect with a Spearman rank test correlation coefficient of 0.67 (P < 0.012). The average incretin effect was found to be different between CS and T2D (P < 0.032). The developed model is shown to be effective in quantifying the factors relevant to T2D pathophysiology.NEW & NOTEWORTHY A new extended model of oral glucose tolerance test (OGTT) has been developed that includes glucagon dynamics and incretin contribution to insulin secretion. The model allows the estimation of parameters related to α- and β-cell dysfunction, insulin sensitivity, and incretin action. A new function describing the influx of glucose from the gut has been introduced. A new rubric for estimating the incretin effect directly from the OGTT experiment has been developed. The effect of glucose dose was also investigated.
Collapse
Affiliation(s)
- Vijaya Subramanian
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Vinayak Harihar
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States
- Biophysics Graduate Group, University of California, Berkeley, California, United States
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Villsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Wang P, Liu Y, Kang SY, Lyu C, Han X, Ho T, Lee KJ, Meng X, Park YK, Jung HW. Clean-DM1, a Korean Polyherbal Formula, Improves High Fat Diet-Induced Diabetic Symptoms in Mice by Regulating IRS/PI3K/AKT and AMPK Expressions in Pancreas and Liver Tissues. Chin J Integr Med 2024; 30:125-134. [PMID: 37118530 DOI: 10.1007/s11655-023-3548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To investigate the effects of Clean-DM1 (C-DM1), a polyherbal formulation of Radix Scrophulariae, Radix Astragali, Rhizoma Atractylodis, and Radix Salviae Miltiorrhizae, on high-fat diet (HFD)-induced diabetes mice. METHODS The information about active components of C-DM1 extract and molecular mechanism was obtained from network pharmacology analysis. Main compounds of C-DM1 extract by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis were conducted for quality control. For in vivo study, mice were induced diabetes by HFD for 12 weeks. The mice in the normal group (Nor) were maintained with a regular diet and treated with saline by gavage. The HFD model mice were randomly divided into 3 groups, including a HFD diabetic model group, a C-DM1 extract-administered group (C-DM1, 500 mg/kg), and metformin-administered groups (Met, 500 mg/kg), 8 mice in each group. Food intake, body weight (BW), and fasting blood glucose (FBG) levels were recorded weekly for 4 weeks. After 4 weeks of treatment, alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood glucose, low-density lipoprotein cholesterol (LDL-C) were determined using an automated clinical chemistry analyzer, and homeostatic model for assessing insulin resistance (HOMA-IR) levels and oral glucose tolerance test (OGTT) were detected. The histopathological changes of liver and pancreatic tissues were observed by hematoxylin-eosin staining. Insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (AKT) and adenosine 5'-monophosphate-activated protein kinase (AMPK) expressions in liver and pancreas tissues were detected by Western blot analysis. RESULTS HPLC-MS identified dihydroisotanshinone, dihydroisotanshinone I, cryptotanshinone, harpagoside, and atractyloside A in C-DM1 extract. The administration of C-DM1 extract significantly decreased body weight, calorie intake, and the levels of blood glucose and insulin in the diabetic mice (P<0.05 or P<0.01). The C-DM1 extract administration improved the impaired glucose tolerance and insulin resistance in the diabetic mice and significantly decreased the levels of LDL-C, ALT and AST (P<0.01). The C-DM1 extract inhibited the histopathological changes of fatty liver and hyperplasia of pancreatic islets in the diabetic mice. The C-DM1 extract significantly increased the phosphorylation of IRS, AKT, and AMPK and the expression of PI3K in pancreas and liver tissues (P<0.05 or P<0.01), which was consistent with the analysis results of network pharmacology. CONCLUSION C-DM1 extract improved diabetes symptoms in long-term HFD-induced mice by regulation of IRS/PI3K/AKT and AMPK expressions in pancreas and liver tissues, suggesting that C-DM1 formulation may help prevent the progression of T2DM.
Collapse
Affiliation(s)
- Piao Wang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Yi Liu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, Korea
| | - Chenzi Lyu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Xiang Han
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Tianjun Ho
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Kyung Jae Lee
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Xianglong Meng
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea.
- Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, Korea.
| |
Collapse
|
45
|
Morgan NG. Insulitis in human type 1 diabetes: lessons from an enigmatic lesion. Eur J Endocrinol 2024; 190:lvae002. [PMID: 38231086 PMCID: PMC10824273 DOI: 10.1093/ejendo/lvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Type 1 diabetes is caused by a deficiency of insulin secretion which has been considered traditionally as the outcome of a precipitous decline in the viability of β-cells in the islets of Langerhans, brought about by autoimmune-mediated attack. Consistent with this, various classes of lymphocyte, as well as cells of the innate immune system have been found in association with islets during disease progression. However, analysis of human pancreas from subjects with type 1 diabetes has revealed that insulitis is often less intense than in equivalent animal models of the disease and can affect many fewer islets than expected, at disease onset. This is especially true in subjects developing type 1 diabetes in, or beyond, their teenage years. Such studies imply that both the phenotype and the number of immune cells present within insulitic lesions can vary among individuals in an age-dependent manner. Additionally, the influent lymphocytes are often mainly arrayed peripherally around islets rather than gaining direct access to the endocrine cell core. Thus, insulitis remains an enigmatic phenomenon in human pancreas and this review seeks to explore the current understanding of its likely role in the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Noel G Morgan
- Department of Clinical and Biomedical Science, Islet Biology Exeter (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| |
Collapse
|
46
|
Lin Z, Zhou X, Yuan C, Fang Y, Zhou H, Wang Z, Dang J, Li G. Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism. Molecules 2024; 29:339. [PMID: 38257252 PMCID: PMC10820209 DOI: 10.3390/molecules29020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Dianthus superbus L. has been extensively studied for its potential medicinal properties in traditional Chinese medicine and is often consumed as a tea by traditional folk. It has the potential to be exploited in the treatment of inflammation, immunological disorders, and diabetic nephropathy. Based on previous studies, this study continued the separation of another subfraction of Dianthus superbus and established reversed-phase/reversed-phase and reversed-phase/hydrophilic (RPLC) two-dimensional (2D) high-performance liquid chromatography (HPLC) modes, quickly separating two C-glycosylflavones, among which 2″-O-rhamnosyllutonarin was a new compound and isomer with 6‴-O-rhamnosyllutonarin. This is the first study to investigate the effects of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin on cellular glucose metabolism in vitro. First, molecular docking was used to examine the effects of 2″-O-rhamnosyllutonarin and 6″-O-rhamnosyllutonarin on AKT and AMPK; these two compounds exhibited relatively high activity. Following this, based on the HepG2 cell model of insulin resistance, it was proved that both of the 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin demonstrated substantial efficacy in ameliorating insulin resistance and were found to be non-toxic. Simultaneously, it is expected that the methods developed in this study will provide a basis for future studies concerning the separation and pharmacological effects of C-glycosyl flavonoids.
Collapse
Affiliation(s)
- Zikai Lin
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Xiaowei Zhou
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Chen Yuan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Yan Fang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Haozheng Zhou
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264003, China; (Z.L.); (X.Z.); (C.Y.); (Y.F.); (H.Z.); (Z.W.)
| |
Collapse
|
47
|
Hamedifar H, Mirfattahi M, Khalili Ghomi M, Azizian H, Iraji A, Noori M, Moazzam A, Dastyafteh N, Nokhbehzaim A, Mehrpour K, Javanshir S, Mojtabavi S, Faramarzi MA, Larijani B, Hajimiri MH, Mahdavi M. Aryl-quinoline-4-carbonyl hydrazone bearing different 2-methoxyphenoxyacetamides as potent α-glucosidase inhibitors; molecular dynamics, kinetic and structure-activity relationship studies. Sci Rep 2024; 14:388. [PMID: 38172167 PMCID: PMC10764907 DOI: 10.1038/s41598-023-50395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Regarding the important role of α-glucosidase enzyme in the management of type 2 diabetes mellitus, the current study was established to design and synthesize aryl-quinoline-4-carbonyl hydrazone bearing different 2-methoxyphenoxyacetamide (11a-o) and the structure of all derivatives was confirmed through various techniques including IR, 1H-NMR, 13C-NMR and elemental analysis. Next, the α-glucosidase inhibitory potentials of all derivatives were evaluated, and all compounds displayed potent inhibition with IC50 values in the range of 26.0 ± 0.8-459.8 ± 1.5 µM as compared to acarbose used as control, except 11f and 11l. Additionally, in silico-induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the newly synthesized compounds over the active site of α-glucosidase.
Collapse
Affiliation(s)
- Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Mahroo Mirfattahi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Noori
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Nokhbehzaim
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Katayoun Mehrpour
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, 1439955991, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Shahabi N, Hosseini Z, Aghamolaei T, Behzad A, Ghanbarnejad A, Dadipoor S. Determinants of Adherence to Treatment in Type 2 Diabetic Patients: A Directed Qualitative Content Analysis Based on Pender's Health Promotion Model. QUALITATIVE HEALTH RESEARCH 2024; 34:114-125. [PMID: 37879042 DOI: 10.1177/10497323231206964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Adherence to the treatment of type 2 diabetes (T2D), which includes the use of prescribed drugs, following a healthy diet, and adopting a physically active lifestyle, is important to control the disease and improve the patients' quality of life. The present study aimed to explain the determinants of adherence to treatment in patients with T2D based on Pender's Health Promotion Model (HPM). The present research used a qualitative content analysis and was based on Pender's HPM. The data were collected through in-depth semi-structured interviews with 20 T2D patients using a purposive sampling in Bandar Abbas, southern Iran. Maximum variation was considered in terms of gender, age, history of diabetes, type of drug used, education, and occupation. The data collection continued until data saturation. At the same time, the collected data were analyzed using the directed content analysis. MAXQDA 10 was used to manage codes and facilitate data analysis. The data analysis led to the extraction of 10 categories and 19 subcategories as the determinants of adherence to the treatment of T2D patients. The participants shared their experiences about personal characteristics and their ecological environment, specific cognition and emotions, and the behavioral results and experience as the determinants of adherence to T2D treatment. The categories extracted from this study in the form of HPM constructs provided a framework to explain treatment adherence. This information can help policy makers and planners in designing future programs.
Collapse
Affiliation(s)
- Nahid Shahabi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hosseini
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Teamur Aghamolaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Behzad
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Ghanbarnejad
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sara Dadipoor
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
49
|
Elfaki I, Mir R, Tayeb F, Alalawy AI, Barnawi J, Dabla PK, Moawadh MS. Potential Association of The Pathogenic Kruppel-like Factor 14 (KLF14) and Adiponectin (ADIPOQ) SNVs with Susceptibility to T2DM. Endocr Metab Immune Disord Drug Targets 2024; 24:1090-1100. [PMID: 38031795 DOI: 10.2174/0118715303258744231117064253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
AIM To evaluate the associations of the pathogenic variants in Kruppel-like Factor 14 (KLF 14) and Adiponectin (ADIPOQ) with susceptibility to type 2 diabetes mellitus (T2DM). BACKGROUND Type 2 diabetes mellitus (T2DM) is a pandemic metabolic disease characterized by increased blood sugar and caused by resistance to insulin in peripheral tissues and damage to pancreatic beta cells. Kruppel-like Factor 14 (KLF-14) is proposed to be a regulator of metabolic diseases, such as diabetes mellitus (DM) and obesity. Adiponectin (ADIPOQ) is an adipocytokine produced by the adipocytes and other tissues and was reported to be involved in T2DM. OBJECTIVES To study the possible association of the KLF-14 rs972283 and ADIPOQ-rs266729 with the risk of T2DM in the Saudi population. METHODS We have evaluated the association of KLF-14 rs972283 C>T and ADIPOQ-rs266729 C>G SNV with the risk to T2D in the Saudi population using the Amplification Refractory Mutation System PCR (ARMS-PCR), and blood biochemistry analysis. For the KLF-14 rs972283 C>T SNV we included 115 cases and 116 healthy controls, and ADIPOQ-rs266729 C>G SNV, 103 cases and 104 healthy controls were included. RESULTS Results indicated that the KLF-14 rs972283 GA genotype and A allele were associated with T2D risk with OR=2.14, p-value= 0.014 and OR=1.99, p-value=0.0003, respectively. Results also ADIPOQ-rs266729 CG genotype and C allele were associated with an elevated T2D risk with an OR=2.53, p=0.003 and OR=1.66, p-value =0.012, respectively. CONCLUSION We conclude that SNVs in KLF-14 and ADIPOQ are potential loci for T2D risk. Future large-scale studies to verify these findings are recommended. These results need further verifications in protein functional and large-scale case control studies before being introduced for genetic testing.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Faris Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research (GIPMER), Associated to Maulana Azad Medical College, Delhi 110002, India
| | - Mamdoh Shafig Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
50
|
González-Devesa D, Otero Rodríguez A, Blanco-Martínez N, Ayán C. Pilates for people with type 2 diabetes: A systematic review. Diabetes Metab Syndr 2024; 18:102922. [PMID: 38142513 DOI: 10.1016/j.dsx.2023.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
|