1
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Wang Y, Zhu Y, Wu Y, Shi L, Yang Y, Liu X, Li J. Association of household chemicals use with cognitive function among Chinese older adults. Heliyon 2024; 10:e37765. [PMID: 39391473 PMCID: PMC11466578 DOI: 10.1016/j.heliyon.2024.e37765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background The paucity of empirical evidence supporting a correlation between the utilization of household chemicals and cognitive decline in Chinese older adults. Methods The data utilized for this study originated from the Chinese Longitudinal Healthy Longevity Survey (CLHLS 2018). Using regression models to investigate the relationship between exposure to household chemicals and cognitive decline, and evaluate the impact of different fields on cognitive function. Results The use of household chemicals was associated with a decline in cognitive function (anti-caries agent, OR = 1.68, P = 0.040; air freshener, OR = 2.48, P = 0.002; disinfectant, OR = 1.40, P = 0.033). The more frequent the use of household chemicals, the worse the cognitive function (Model1: OR = 2.54, P = 0.024; Model2: OR = 3.23, P = 0.006; Model3: OR = 3.59, P = 0.003). Conclusion The study has uncovered a correlation between the utilization of household chemicals and cognitive decline in individuals aged 65 years and over in China.
Collapse
Affiliation(s)
- Yanrong Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Yongbin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Yueping Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Liping Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Yue Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Xiaojuan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| |
Collapse
|
3
|
Mallah MA, Hill JW, Neupane B, Ahmad MZ, Ali M, Bibi J, Akhtar MF, Naveed M, Zhang Q. Urinary polycyclic aromatic hydrocarbons and adult obesity among the US population: NHANES 2003-2016. Clin Obes 2024; 14:e12687. [PMID: 38965765 DOI: 10.1111/cob.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.
Collapse
Affiliation(s)
| | - Jennifer W Hill
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Bidusha Neupane
- Transcultural Psychosocial Organization Nepal (TPO Nepal), Kathmandu, Nepal
| | - Muhammad Zia Ahmad
- Faculty of Social Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mukhtiar Ali
- Faculty of Science, Quaid-e-Awam University of Engineering, Science & Technology, Nawab Shah, Sindh, Pakistan
| | - Jannat Bibi
- School of Physical Education, Beijing Sport University, Beijing, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
TatahMentan M, Nyachoti S, Godebo TR. Elemental composition of toxic and essential elements in rice-based baby foods from the United States and other countries: A probabilistic risk analysis. Food Chem Toxicol 2024; 188:114677. [PMID: 38641042 DOI: 10.1016/j.fct.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Consumption of rice-based foods provides essential nutrients required for infants and toddlers' growth. However, they could contain toxic and excess essential elements that may affect human health. The study aims to determine the composition of rice-based baby foods in the USA and outside and conduct a multiple-life stages probabilistic exposure and risk assessment of toxic and essential elements in children. Elemental concentrations were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in thirty-three rice-based baby foods. This includes 2 infant formulas, 11 rice baby cereals, and 20 rice snacks produced primarily in the United States, China, and other countries. A probabilistic risk assessment was conducted to assess risks of adverse health effects. Results showed that infant formula had higher median concentrations of selenium (Se), copper (Cu), zinc (Zn), sodium (Na), magnesium (Mg), calcium (Ca), and potassium (K) compared to rice baby cereal and rice snacks. On the contrary, rice snacks had the highest median concentration of Arsenic (As) (127 μg/kg) while rice baby cereals showed the highest median concentration of Cd (7 μg/kg). A higher lifetime estimated daily intake was observed for samples manufactured in the USA compared to those from China and other countries. Hazard quotient (HQ < 1) values were suggestive of minimal adverse health effects. However, lifetime carcinogenic risk analysis based on total As indicated an unacceptable cancer risk (>1E-04). These findings show a need for ongoing monitoring of rice-based foods consumed by infants and toddlers as supplementary and substitutes for breast milk or weaning food options. This can be useful in risk reduction and mitigation of early life exposure to improve health outcomes.
Collapse
Affiliation(s)
- Mom TatahMentan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Syprose Nyachoti
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Koshta K, Chauhan A, Singh S, Gaikwad AN, Kumar M, Srivastava V. Altered Igf2 imprint leads to accelerated adipogenesis and early onset of metabolic syndrome in male mice following gestational arsenic exposure. CHEMOSPHERE 2024; 352:141493. [PMID: 38368966 DOI: 10.1016/j.chemosphere.2024.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Developmental exposure to environmental pollutants has been shown to promote adverse health outcomes in offspring. Exposure to heavy metals such as arsenic which also has endocrine-disrupting activity is being increasingly linked with cancers, diabetes, and lately with Metabolic Syndrome (MetS). In this work, we have assessed the effects of preconceptional plus gestational arsenic exposure on the developmental programming of MetS in offspring. In our study, only gestational arsenic exposure led to reduced birth weight, followed by catch-up growth, adiposity, elevated serum triglycerides levels, and hyperglycemia in male offspring. Significant adipocyte dysfunction was observed in offspring with increased hypertrophy, insulin resistance, and chronic inflammation in epididymal white adipose tissue. Adipose tissue regulates the metabolic health of individuals and its dysfunction resulted in elevated serum levels of metabolism-regulating adipokines (Leptin, Resistin) and pro-inflammatory cytokines (PAI-1, TNFα). The progenitor adipose-derived stem cells (AdSCs) from exposed progeny had increased proliferation and adipogenic potential with excess lipid accumulation. We also found increased activation of Akt, ERK1/2 & p38 MAPK molecules in arsenic-exposed AdSCs along with increased levels of phospho-Insulin-like growth factor-1 receptor (p-IGF1R) and its upstream activator Insulin-like growth factor-2 (IGF2). Overexpression of Igf2 was found to be due to arsenic-mediated DNA hypermethylation at the imprinting control region (ICR) located -2kb to -4.4 kb upstream of the H19 gene which caused a reduction in the conserved zinc finger protein (CTCF) occupancy. This further led to persistent activation of the MAPK signaling cascade and enhanced adipogenesis leading to the early onset of MetS in the offspring.
Collapse
Affiliation(s)
- Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Nilkanth Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mahadeo Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Drug and Chemical Toxicology, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
7
|
Ghasemzadeh Hasankolaei M, Elcombe CS, Powls S, Lea RG, Sinclair KD, Padmanabhan V, Evans NP, Bellingham M. Preconceptional and in utero exposure of sheep to a real-life environmental chemical mixture disrupts key markers of energy metabolism in male offspring. J Neuroendocrinol 2024; 36:e13358. [PMID: 38087451 PMCID: PMC10841670 DOI: 10.1111/jne.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
Over recent decades, an extensive array of anthropogenic chemicals have entered the environment and have been implicated in the increased incidence of an array of diseases, including metabolic syndrome. The ubiquitous presence of these environmental chemicals (ECs) necessitates the use of real-life exposure models to the assess cumulative risk burden to metabolic health. Sheep that graze on biosolids-treated pastures are exposed to a real-life mixture of ECs such as phthalates, per- and polyfluoroalkyl substances, heavy metals, pharmaceuticals, pesticides, and metabolites thereof, and this EC exposure can result in metabolic disorders in their offspring. Using this model, we evaluated the effects of gestational exposure to a complex EC mixture on plasma triglyceride (TG) concentrations and metabolic and epigenetic regulatory genes in tissues key to energy regulation and storage, including the hypothalamus, liver, and adipose depots of 11-month-old male offspring. Our results demonstrated a binary effect of EC exposure on gene expression particularly in the hypothalamus. Principal component analysis revealed two subsets (B-S1 [n = 6] and B-S2 [n = 4]) within the biosolids group (B, n = 10), relative to the controls (C, n = 11). Changes in body weight, TG levels, and in gene expression in the hypothalamus, and visceral and subcutaneous fat were apparent between biosolid and control and the two subgroups of biosolids animals. These findings demonstrate that gestational exposure to an EC mixture results in differential regulation of metabolic processes in adult male offspring. Binary effects on hypothalamic gene expression and altered expression of lipid metabolism genes in visceral and subcutaneous fat, coupled with phenotypic outcomes, point to differences in individual susceptibility to EC exposure that could predispose vulnerable individuals to later metabolic dysfunction.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | - Samantha Powls
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P. Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
8
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Samon S, Herkert N, Ghassabian A, Liu H, Hammel SC, Trasande L, Stapleton HM, Hoffman K. Measuring semi-volatile organic compound exposures during pregnancy using silicone wristbands. CHEMOSPHERE 2023; 339:139778. [PMID: 37567263 PMCID: PMC10552498 DOI: 10.1016/j.chemosphere.2023.139778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Silicone wristbands were utilized as personal passive samplers in a sub-cohort of 92 women, who participated in New York University Children's Health and Environment Study, to assess exposure to semi-volatile organic compounds (SVOCs). Wristbands were analyzed for 77 SVOCs, including halogenated and non-halogenated organophosphate esters (OPEs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and brominated flame retardants (BFRs) (e.g. polybrominated diphenyl ethers (PBDEs)). This study aimed to look for patterns in chemical exposure utilizing participant demographics gathered from a questionnaire, and chemical exposure data across multiple timepoints during pregnancy. Analysis focused on 27 compounds detected in at least 80% of the wristbands examined. The chemicals detected most frequently included two pesticides, eight phthalates, one phthalate alternative, seven BFRs, and nine OPEs, including isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs). Co-exposure to different SVOCs was most prominent in compounds that were within the same chemical class or were used in similar consumer applications such as phthalates and OPEs, which are often used as plasticizers. Pre-pregnancy BMI was positively associated with multiple compounds, and there were both positive and negative associations between women's parity and SVOC exposure. Outdoor temperature was not correlated with the wristband concentrations over a five-day sampling period. Lastly, significant and moderately high Intraclass Correlation Coefficient (ICC) (0.66-0.84) values for phthalate measurementsacross pregnancy indicate chronic exposure and suggest that using wristbands during one sampling period may reliably predict exposure. However, multiple sampling periods may be necessary to accurately determine indoor exposure to other SVOCs including OPEs and BFRs.
Collapse
Affiliation(s)
- Samantha Samon
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Hongxiu Liu
- New York University Grossman School of Medicine, New York, NY, USA
| | | | | | | | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Zhang H, Hu L, Zheng P, Jia G. Application of wearable devices for monitoring cardiometabolic dysfunction under the exposome paradigm. Chronic Dis Transl Med 2023; 9:200-209. [PMID: 37711864 PMCID: PMC10497849 DOI: 10.1002/cdt3.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 09/16/2023] Open
Abstract
Environmental factors, including chemical/physical pollutants, as well as lifestyle and psychological factors, contribute greatly to the pathways leading to cardiometabolic diseases with a heavy disease burden and economic loss. The concept of exposomes provides a novel paradigm for combining all exposure characteristics to evaluate disease risk. A solution-like exposome requires technological support to provide continuous data to monitor vital signs and detect abnormal fluctuations. Wearable devices allow people to conveniently monitor signals during their daily routines. These new technologies empower users to more actively prevent and manage cardiometabolic disease by reviewing risk factors of the disease, especially lifestyle factors, such as sleeping time, screen time, and mental health condition. Devices with multiple sensors can monitor electrocardiography data, oxygen saturation, intraocular pressure, respiratory rate, and heart rate to enhance the exposome study and provide precise suggestions for disease prevention and management.
Collapse
Affiliation(s)
- Haodong Zhang
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| | - Lingming Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| |
Collapse
|
12
|
Rodriguez PM, Ondarza PM, Miglioranza KSB, Ramirez CL, Vera B, Muntaner C, Guiñazú NL. Pesticides exposure in pregnant Argentinian women: Potential relations with the residence areas and the anthropometric neonate parameters. CHEMOSPHERE 2023; 332:138790. [PMID: 37142107 DOI: 10.1016/j.chemosphere.2023.138790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Intrauterine environment is the first chemical exposure scenario in life, through transplacental transfer. In this study, the aim was to determine concentrations of organochlorine pesticides (OCPs) and selected current use pesticides in the placentas of pregnant women from Argentina. Socio-demographic information, the mother's lifestyle and neonatal characteristics were also analysed and related to pesticides residue concentrations. Thus, 85 placentas were collected at birth, from an area of intensive fruit production for the international market, in Patagonia Argentina. Concentrations of 23 pesticides including, trifluralin (herbicide), the fungicides chlorothalonil and HCB, and the insecticides chlorpyrifos, HCHs, endosulfans, DDTs, chlordanes, heptachlors, drins and metoxichlor, were determined by GC-ECD and GC-MS. Results were first analysed all together and then grouped by their residential settings, in urban and rural groups. Total mean pesticide concentration was 582.6 ± 1034.4 ng/g lw, where DDTs (325.9 ± 950.3 ng/g lw) and chlorpyrifos (188.4 ± 365.4 ng/g lw) showed a high contribution. Pesticide levels found exceeded those reported in low, middle and high income countries from Europe, Asia and Africa. In general, pesticides concentrations were not associated with neonatal anthropometric parameters. When the results were analysed by residence place, significantly higher concentrations of total pesticides and chlorpyrifos (Mann Whitney test p = 0.0003 and p = 0.032, respectively) were observed in placentas collected from mothers living in rural settings compared to urban areas. Rural pregnant women presented the highest pesticide burden (5.9 μg), where DDTs and chlorpyrifos were the major constituents. These results suggested that all pregnant women are highly exposed to complex pesticide mixtures, including banned OCPs and the widely used chlorpyrifos. Based on the pesticide concentrations found, our results warn of possible health impacts from prenatal exposure through transplacental transfer. This is one of the first reports of both chlorpyrifos and chlorothalonil concentrations in placental tissue, and contributes to the knowledge of current pesticide exposure in Argentina.
Collapse
Affiliation(s)
- Piuque M Rodriguez
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Critina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Berta Vera
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Celeste Muntaner
- Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Natalia L Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Departamento de Ciencias Del Ambiente, Facultad de Ciencias Del Ambiente y la Salud, Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| |
Collapse
|
13
|
Lian CY, Wei S, Li ZF, Zhang SH, Wang ZY, Wang L. Glyphosate-induced autophagy inhibition results in hepatic steatosis via mediating epigenetic reprogramming of PPARα in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121394. [PMID: 36906059 DOI: 10.1016/j.envpol.2023.121394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate (Gly) is the most widely used herbicide with well-defined hepatotoxic effects, but the underlying mechanisms of Gly-induced hepatic steatosis remain largely unknown. In this study, a rooster model combined with primary chicken embryo hepatocytes was established to dissect the progresses and mechanisms of Gly-induced hepatic steatosis. Data showed that Gly exposure caused liver injury with disrupted lipid metabolism in roosters, manifested by significant serum lipid profile disorder and hepatic lipid accumulation. Transcriptomic analysis revealed that PPARα and autophagy-related pathways played important roles in Gly-induced hepatic lipid metabolism disorders. Further experimental results suggested that autophagy inhibition was involved in Gly-induced hepatic lipid accumulation, which was confirmed by the effect of classic autophagy inducer rapamycin (Rapa). Moreover, data substantiated that Gly-mediated autophagy inhibition caused nuclear increase of HDAC3, which altered epigenetic modification of PPARα, leading to fatty acid oxidation (FAO) inhibition and subsequently lipid accumulation in the hepatocytes. In summary, this study provides novel evidence that Gly-induced autophagy inhibition evokes the inactivation of PPARα-mediated FAO and concomitant hepatic steatosis in roosters by mediating epigenetic reprogramming of PPARα.
Collapse
Affiliation(s)
- Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Sheng Wei
- Experimental Center, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Zi-Fa Li
- Experimental Center, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Shu-Hui Zhang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
14
|
Deshpande SN, Simkin DR. Complementary and Integrative Approaches to Prevention and Treatment of Child and Adolescent Obesity. Child Adolesc Psychiatr Clin N Am 2023; 32:395-419. [PMID: 37147044 DOI: 10.1016/j.chc.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Childhood obesity is a significant global challenge with increasing prevalence. It is associated with long-term health risks. Interventions especially early on can be effective in the prevention and reducing the impact on health in children. In children, dysbiosis and inflammation are associated with obesity. Studies demonstrate that intensive lifestyle interventions in form of parent education, motivational interviewing to improve diet and exercise as well as mindfulness, and sleep improvement can help alleviate the risk. The article outlines the current research describing complementary and integrative approaches to the prevention and treatment of obesity in children.
Collapse
Affiliation(s)
- Swapna N Deshpande
- Department of Psychiatry, Oklahoma State University, 5310 E 31st St, Tulsa, OK 74135, USA.
| | - Deborah R Simkin
- Department of Psychiatry, Emory University School of Medicine, 4641 Gulfstarr Dr., Suite 106, Destin, FL 32541, USA
| |
Collapse
|
15
|
Eskenazi B, Gunier RB, Rauch S, Kogut K, Perito ER, Mendez X, Limbach C, Holland N, Bradman A, Harley KG, Mills PJ, Mora AM. Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37001. [PMID: 36856429 PMCID: PMC9976611 DOI: 10.1289/ehp11721] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The prevalence of liver disorders and metabolic syndrome has increased among youth. Glyphosate, the most widely used herbicide worldwide, could contribute to the development of these conditions. OBJECTIVE We aimed to assess whether lifetime exposure to glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), is associated with elevated liver transaminases and metabolic syndrome among young adults. METHODS We conducted a prospective cohort study (n = 480 mother-child dyads) and a nested case-control study (n = 60 cases with elevated liver transaminases and 91 controls) using data from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS). We measured glyphosate and AMPA concentrations in urine samples collected during pregnancy and at child ages 5, 14, and 18 y from cases and controls. We calculated glyphosate residue concentrations: [glyphosate + ( 1.5 × AMPA ) ]. We estimated the amount of agricultural-use glyphosate applied within a 1 - km radius of every residence from pregnancy to age 5 y for the full cohort using California Pesticide Use Reporting data. We assessed liver transaminases and metabolic syndrome at 18 y of age. RESULTS Urinary AMPA at age 5 y was associated with elevated transaminases [relative risk (RR) per 2 - fold increase = 1.27 , 95% confidence interval (CI): 1.06, 1.53] and metabolic syndrome (RR = 2.07 , 95% CI: 1.38, 3.11). Urinary AMPA and glyphosate residues at age 14 y were associated with metabolic syndrome [RR = 1.80 (95% CI: 1.10, 2.93) and RR = 1.88 (95% CI: 1.03, 3.42), respectively]. Overall, a 2-fold increase in urinary AMPA during childhood was associated with a 14% and a 55% increased risk of elevated liver transaminases and metabolic syndrome, respectively. Living near agricultural glyphosate applications during early childhood (birth to 5 y of age) was also associated with metabolic syndrome at age 18 y in the case-control group (RR = 1.53 , 95% CI: 1.16, 2.02). DISCUSSION Childhood exposure to glyphosate and AMPA may increase risk of liver and cardiometabolic disorders in early adulthood, which could lead to more serious diseases later in life. https://doi.org/10.1289/EHP11721.
Collapse
Affiliation(s)
- Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Robert B. Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emily R. Perito
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Xenia Mendez
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Public Health, University of California, Merced, Merced, California, USA
| | - Kim G. Harley
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Paul J. Mills
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
| | - Ana M. Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Zhou HL, Su GH, Zhang RY, Di DS, Wang Q. Association of volatile organic compounds co-exposure with bone health indicators and potential mediators. CHEMOSPHERE 2022; 308:136208. [PMID: 36041527 DOI: 10.1016/j.chemosphere.2022.136208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Limited evidence was found in the associations of volatile organic compound (VOC) exposure with bone health indicators. This study aimed to explore the associations of individual and combined metabolites of VOCs (mVOCs) in urine, a representative of the internal exposure level of VOCs, with bone mineral density (BMD), osteoporosis (OP) and fracture, and potential mediators. Data of the National Health Examination and Nutrition Survey 2005-2006 and 2013-2014 was used. Multiple linear and logistic regression modeling were performed to analyze the associations of individual mVOC with bone health indicators. The least absolute shrinkage and selection operator (LASSO) regression was adopted to select mVOCs that were more relevant to bone health indicators for further weight quantile sum (WQS) analysis used for analyzing the associations between multiple VOC co-exposure and bone health indicators. Mediation analysis was used to identify potential mediators. Seventeen mVOC members with detection rate of >50% in urine of all 3478 participants aged ≥20 years (1829 females) were involved. Levels of most mVOCs were higher in women than men. Eight mVOCs were negatively associated with BMDs, and two and four mVOCs were positively associated with OP and fracture risks, respectively. WQS regression revealed decreased femoral neck BMD (β = -0.010 g/cm2, 95% CI: -0.020, -0.0001) and total spine BMD (β = -0.015 g/cm2, 95% CI: -0.028, -0.002) in response to increasing mVOC mixture levels. And alkaline phosphatase (ALP), body mass index (BMI), fasting insulin (FI) and high-density lipoprotein (HDL), were mediators in the associations with proportions of mediating effect ranging from 4.6% to 10.2%. Individual and combined VOC (co-)exposure were associated with reduced BMDs in American adults. ALP, BMI, FI and HDL were demonstrated to be mediators in the association of multiple VOC co-exposure with BMD.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guan-Hua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
18
|
Liu L, Li X, Wu M, Yu M, Wang L, Hu L, Li Y, Song L, Wang Y, Mei S. Individual and joint effects of metal exposure on metabolic syndrome among Chinese adults. CHEMOSPHERE 2022; 287:132295. [PMID: 34563779 DOI: 10.1016/j.chemosphere.2021.132295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence suggests that metal exposure contributes to metabolic syndrome (MetS), but little is known about the effects of combined exposure to metal mixtures. This cross-sectional study included 3748 adults who were recruited from the Medical Physical Examination Center of Tongji Hospital, Wuhan, China. The levels of 21 metal(loid)s in urine were measured by inductively coupled plasma mass spectrometry. MetS was diagnosed according to National Cholesterol Education Program's Adult Treatment Panel III recommendations. Multivariate logistic regression model was uesd to explore the effects of single-metal and multi-metal exposures. The elastic net (ENET) regularization with an environmental risk score (ERS) was performed to estimate the joint effects of exposure to metal mixtures. A total of 636 participants (17%) were diagnosed with MetS. In single metal models, MetS was positively associated with zinc (Zn) and negatively associated with nickel (Ni). In multiple metal models, the associations remained significant after adjusting for the other metals. In the joint association analysis, the ENET models selected Zn as the strongest predictor of MetS. Compared to the lowest quartile, the highest quartile of ERS was associated with an elevated risk of MetS (OR = 3.72; 95% CI: 2.77, 5.91; P-trend < 0.001). Overall, we identified that the combined effect of multiple metals was related to an increased MetS risk, with Zn being the major contributor. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
19
|
Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13047. [PMID: 34948652 PMCID: PMC8701112 DOI: 10.3390/ijerph182413047] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden among the European population. Current knowledge supports the notion that endocrine-disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemiological studies focusing on the association between MetS or its individual components (e.g., obesity, insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances (bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far, human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures on the development of individual MetS components. The strength of the association varies between the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and heterogeneous, and mainly represent studies from North America and Asia, highlighting the need for well-conducted and harmonized HBM programmes among the European population. Rigorous and ongoing HBM in combination with health monitoring can help to identify the most concerning EDC exposures, to guide future risk assessment and policy actions.
Collapse
Affiliation(s)
- Elsi Haverinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| | - Mariana F. Fernandez
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Vicente Mustieles
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| |
Collapse
|
20
|
Gao P, Snyder M. Exposome-wide Association Study for Metabolic Syndrome. Front Genet 2021; 12:783930. [PMID: 34950191 PMCID: PMC8688998 DOI: 10.3389/fgene.2021.783930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
21
|
The Beneficial Role of Natural Endocrine Disruptors: Phytoestrogens in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3961445. [PMID: 34527172 PMCID: PMC8437597 DOI: 10.1155/2021/3961445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with a growing incidence rate primarily among the elderly. It is a neurodegenerative, progressive disorder leading to significant cognitive loss. Despite numerous pieces of research, no cure for halting the disease has been discovered yet. Phytoestrogens are nonestradiol compounds classified as one of the endocrine-disrupting chemicals (EDCs), meaning that they can potentially disrupt hormonal balance and result in developmental and reproductive abnormalities. Importantly, phytoestrogens are structurally, chemically, and functionally akin to estrogens, which undoubtedly has the potential to be detrimental to the organism. What is intriguing, although classified as EDCs, phytoestrogens seem to have a beneficial influence on Alzheimer's disease symptoms and neuropathologies. They have been observed to act as antioxidants, improve visual-spatial memory, lower amyloid-beta production, and increase the growth, survival, and plasticity of brain cells. This review article is aimed at contributing to the collective understanding of the role of phytoestrogens in the prevention and treatment of Alzheimer's disease. Importantly, it underlines the fact that despite being EDCs, phytoestrogens and their use can be beneficial in the prevention of Alzheimer's disease.
Collapse
|
22
|
Zhang F, Liu L, Zhang C, Ji S, Mei Z, Li T. Association of Metabolic Syndrome and Its Components With Risk of Stroke Recurrence and Mortality: A Meta-analysis. Neurology 2021; 97:e695-e705. [PMID: 34321360 DOI: 10.1212/wnl.0000000000012415] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Because metabolic syndrome is a significant risk factor for cardio-cerebrovascular diseases and the relationship between metabolic syndrome (including its components) and the prognosis of stroke is controversial, this study was conducted to evaluate whether metabolic syndrome is associated with a high recurrence and mortality of stroke. METHODS This study was registered in the PROSPERO database (CRD42020177118). We searched for relevant observational cohort studies published from inception to April 23, 2020, using PubMed, Embase, and the Cochrane Library. Effect estimates with 95% confidence intervals (CIs) were pooled using the random-effects model. The primary and secondary outcomes were stroke recurrence and all-cause mortality, respectively. Leave-one-out sensitivity analyses and nonparametric trim-and-fill method were used to identify the stability of the results. RESULTS Thirteen cohort studies comprising 59,919 participants >60 years of age were included for analysis. Overall, metabolic syndrome was significantly associated with stroke recurrence (relative risk [RR] 1.46, 95% CI 1.07-1.97, p = 0.02). Among the metabolic syndrome components, low levels of high-density lipoprotein cholesterol (HDL-C) (RR 1.32, 95% CI 1.11-1.57, p = 0.002) and ≥2 metabolic syndrome components (RR 1.68, 95% CI 1.44-1.94, p < 0.001) significantly predicted stroke recurrence, whereas elevated triglycerides, elevated waist circumference, hyperglycemia, and hypertension failed to account for risk factors for stroke recurrence. Moreover, metabolic syndrome, not its components, was significantly associated with all-cause mortality (RR 1.27, 95% CI 1.18-1.36, p < 0.001). The stability of these results was further confirmed by the leave-one-out sensitivity analyses and nonparametric trim-and-fill method. CONCLUSIONS The present study indicates that metabolic syndrome and some of its components (low HDL-C and number of metabolic syndrome components) seem to be risk factors for stroke recurrence. Although metabolic syndrome is also associated with all-cause mortality, the role of its components in predicting all-cause mortality deserves further study.
Collapse
Affiliation(s)
- Fangfang Zhang
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China
| | - Lili Liu
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China
| | - Chundong Zhang
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China
| | - Shiliang Ji
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China
| | - Zubing Mei
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China.
| | - Tian Li
- From the Second Department of Neurology (F.F.), Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University; National Clinical Research Center for Metabolic Diseases (L.L.), Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha; Department of Gastrointestinal Surgery (C.Z.), The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Pharmacy (S.J.), The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou; Department of Anorectal Surgery (Z.M.), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital (Z.M.), Shanghai, China, and School of Basic Medicine (T.L.), Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Perinatal effects of persistent organic pollutants on thyroid hormone concentration in placenta and breastmilk. Mol Aspects Med 2021; 87:100988. [PMID: 34238594 DOI: 10.1016/j.mam.2021.100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Thyroid hormones (TH) are known to play a critical role in regulating many biological processes including growth and development, energy homeostasis, thermogenesis, lipolysis and metabolism of cholesterol. Severe TH deficiency especially during fetal development results in cretinism, but can also lead to an imbalance in metabolism with, among others, an alteration in body weight composition. Over the past two decades, increasing evidence has shown that certain persistent organic pollutants (POP) can interfere with the endocrine system. These POP referred to as "endocrine disrupting chemicals" are widely present in the environment and populations are exposed globally. Moreover, epidemiological studies have shown that a particularly sensitive period is the pre- and postnatal time. Indeed, perinatal exposure to such chemicals could lead to the onset diseases in later life. It is known, that, maternal thyroid hormones are transported by the placenta to the fetus from 6 weeks of gestation and it seems that during the first trimester, and part of the second, the fetus is entirely dependent on maternal TH supply for its development. Interferences in the TH-network as a consequence of the exposure to such pollutants could cause variations in TH concentration. Only small changes in maternal thyroid hormone levels in early stages of pregnancy can influence fetal neurological and cardiovascular development, as well as according to recent studies, have effect on childhood body composition. With this review, we will report the most recent and important studies concerning the association between thyroid hormone concentration and POP levels measured during the perinatal period. We will mostly focus on the data recently reported on placenta and breastmilk as main sources for understanding the potential consequences of exposure. The possible link between exposure to pollutants, TH dysregulation and possible adverse outcome will also be briefly discussed. From our literature search, several studies support the hypothesis that pre- and postnatal exposure to different pollutants might play a role in causing variation in thyroid hormone concentration. However, few research papers have so far studied the relationship linking exposure to pollutants, TH concentration and possible health consequences. Therefore, this review highlights the need for further research in this direction.
Collapse
|
24
|
Prenatal nicotine exposure leads to decreased histone H3 lysine 9 (H3K9) methylation and increased p66shc expression in the neonatal pancreas. J Dev Orig Health Dis 2021; 13:156-160. [PMID: 34047687 DOI: 10.1017/s2040174421000283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prenatal exposure to nicotine, tobacco's major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.
Collapse
|
25
|
Hu J, Lesseur C, Miao Y, Manservisi F, Panzacchi S, Mandrioli D, Belpoggi F, Chen J, Petrick L. Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota. Sci Rep 2021; 11:3265. [PMID: 33547360 PMCID: PMC7864973 DOI: 10.1038/s41598-021-82552-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glyphosate-based herbicides (GBHs) can disrupt the host microbiota and influence human health. In this study, we explored the potential effects of GBHs on urinary metabolites and their interactions with gut microbiome using a rodent model. Glyphosate and Roundup (equal molar for glyphosate) were administered at the USA glyphosate ADI guideline (1.75 mg/kg bw/day) to the dams and their pups. The urine metabolites were profiled using non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). Our results found that overall urine metabolite profiles significantly differed between dams and pups and between female and male pups. Specifically, we identified a significant increase of homocysteine, a known risk factor of cardiovascular disease in both Roundup and glyphosate exposed pups, but in males only. Correlation network analysis between gut microbiome and urine metabolome pointed to Prevotella to be negatively correlated with the level of homocysteine. Our study provides initial evidence that exposures to commonly used GBH, at a currently acceptable human exposure dose, is capable of modifying urine metabolites in both rat adults and pups. The link between Prevotella-homocysteine suggests the potential role of GBHs in modifying the susceptibility of homocysteine, which is a metabolite that has been dysregulated in related diseases like cardiovascular disease or inflammation, through commensal microbiome.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Yu Miao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
- Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Kale OE, Vongdip M, Ogundare TF, Osilesi O. The use of combined high-fructose diet and glyphosate to model rats type 2 diabetes symptomatology. Toxicol Mech Methods 2021; 31:126-137. [PMID: 33138673 DOI: 10.1080/15376516.2020.1845889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
An ideal food-chemical combination that will promote insulin resistance and its consequent development of pancreatic beta-cell dysfunction may open a new vista for Type 2 diabetes (T2D) research. Thus, we investigated the modulatory effects of a high-fructose diet (FRC) combined with glyphosate (GP). Male albino Wistar rats were randomly divided into five groups of eight/group and received distilled water, FRC, GP, and their combinations orally for eight consecutive weeks. We assessed the changes in fasting blood glucose levels (FBGLs), biochemical indices, oxidative stress parameters, and organ histopathology. From the results obtained, FBGLs and serum insulin levels were increased in the FRC-GP (2.3-3.1 and 1.9-2.2 folds) treated rats compared with the control baseline group. Also, the FRC-GP high dose increased FBGLs (1.9 folds), insulin (1.4 folds), triglycerides (1.5 folds), and uric acid (2 folds) levels compared with the FRC group. Malondialdehyde levels increased in the pancreas (54% and 78%) and liver (31.3% and 56.6%) of the FRC-GP treated rats. The FRC-GP treatments reduced serum high-density lipoprotein (57%), total protein (47%), and antioxidant parameters (non-enzymatic and enzymatic, 1.6-1.9 folds) respectively in the treated animals. The weight of the pancreas relative to the body increased (2-3 folds) while we observed mild inflammation and vascular congestion in vital organs in the treated rats. Overall, these results demonstrate the potential of FRC-GP-diet to induce conditions of rats T2D. Also, this novel finding suggests a cost-effective GP as an alternative in this model type and provides further insight into understanding FRC-GP interactions.
Collapse
Affiliation(s)
- Oluwafemi Ezekiel Kale
- Department of Pharmacology, Babcock University Benjamin S Carson Senior School of Medicine, Ilishan-Remo, Nigeria
| | - Mary Vongdip
- Biochemistry, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ikeja, Nigeria
| | - Temitope Funmi Ogundare
- Department of Pharmacology, Babcock University Benjamin S Carson Senior School of Medicine, Ilishan-Remo, Nigeria
| | - Odutola Osilesi
- Biochemistry, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ikeja, Nigeria
| |
Collapse
|
27
|
Xu P, Liu A, Li F, Tinkov AA, Liu L, Zhou JC. Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116480. [PMID: 33486246 DOI: 10.1016/j.envpol.2021.116480] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Four most concerned heavy metal pollutants, arsenic, cadmium, lead, and mercury may share common mechanisms to induce metabolic syndrome (MetS). However, recent studies exploring the relationships between MetS and metal exposure presented inconsistent findings. We aimed to clarify the relationship between heavy metal exposure biomarkers and MetS using a meta-analysis and systematic review approach. Literature search was conducted in international and the Chinese national databases up to June 2020. Of selected studies, we extracted the relevant data and evaluated the quality of each study's methodology. We then calculated the pooled effect sizes (ESs), standardized mean differences (SMDs), and their 95% confidence intervals (CIs) using a random-effect meta-analysis approach followed by stratification analyses for control of potential confounders. Involving 55,536 participants, the included 22 articles covered 52 observational studies reporting ESs and/or metal concentrations on specific metal and gender. Our results show that participants with MetS had significantly higher levels of heavy metal exposure [pooled ES = 1.16, 95% CI: 1.09, 1.23; n = 42, heterogeneity I2 = 75.6%; and SMD = 0.22, 95% CI: 0.15, 0.29; n = 32, I2 = 94.2%] than those without MetS. Pooled ESs in the subgroups stratified by arsenic, cadmium, lead, and mercury were 1.04 (95% CI: 0.97, 1.10; n = 8, I2 = 61.0%), 1.10 (0.95, 1.27; 11, 45.0%), 1.21 (1.00, 1.48; 12, 82.9%), and 1.26 (1.06, 1.48; 11, 67.7%), respectively. Pooled ESs in the subgroups stratified by blood, urine, and the other specimen were 1.22 (95% CI: 1.08, 1.38; n = 26, I2 = 75.8%), 1.06 (1.00, 1.13; 14, 58.1%), and 2.41 (1.30, 4.43; 2, 0.0%), respectively. In conclusion, heavy metal exposure was positively associated with MetS. Further studies are warranted to examine the effects of individual metals and their interaction on the relationship between MetS and heavy metals.
Collapse
Affiliation(s)
- Ping Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China
| | - Aiping Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China
| | - Fengna Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China
| | - Alexey A Tinkov
- Yaroslavl State University, 150003, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China; Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Muciño-Sandoval K, Ariza AC, Ortiz-Panozo E, Pizano-Zárate ML, Mercado-García A, Wright R, Maria Téllez-Rojo M, Sanders AP, Tamayo-Ortiz M. Prenatal and Early Childhood Exposure to Lead and Repeated Measures of Metabolic Syndrome Risk Indicators From Childhood to Preadolescence. Front Pediatr 2021; 9:750316. [PMID: 34778140 PMCID: PMC8586085 DOI: 10.3389/fped.2021.750316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Exposure to lead (Pb) during the early life stages has been associated with the development of metabolic syndrome (MetS). Longitudinal studies of Pb exposure in critical developmental windows in children are limited. Methods: Our study included 601 mother-child dyads from the PROGRESS (Programming Research in Obesity, Growth, Environment and Social Stressors) birth cohort. Blood lead levels (BLLs) were assessed during the second and third gestational trimesters, in cord blood at delivery, and at ages 1, 2, and 4 years. Bone lead levels in the patella and tibia were assessed at 1 month postpartum and evaluated in separate models. To account for cumulative exposure (prenatal, postnatal, and cumulative), we dichotomized the BLLs at each stage visit and determined the following: "higher" if a BLL was at least once above the median (HPb) and "lower" if all BLLs were below the median (LPb). We analyzed fasting glucose, HbA1c, triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (cHDL), low-density lipoprotein cholesterol (cLDL), body mass index, waist circumference (WC), body fat percentage, and systolic (SBP) and diastolic blood pressure (DBP) at two study visits between 6 and 12 years of age and created cutoff points based on the clinical guidelines for each indicator. Mixed effects models were used to analyze each outcome longitudinally for each BLL score, adjusting for child's sex, size for gestational age, child's age, maternal parity, mother's age, and socioeconomic status. Results: We observed associations for HPb exposure and TC in all stages (OR = 0.53, 95%CI = 0.32-0.86) and postnatally (OR = 0.59, 95%CI = 0.36-0.94) and for prenatal HPb and TGs (OR = 0.65, 95%CI = 0.44-0.95). HPb at all stages was associated with WC (OR = 0.27, 95%CI = 0.08-0.86), BMI (OR = 0.33, 95%CI = 0.11-0.99), SBP (OR = 0.53, 95%CI = 0.32-0.85), and DBP (OR = 0.57, 95%CI = 0.34-0.95). Pb levels in the patella were associated with cHDL (OR = 1.03, 95%CI = 1.00-1.07) and those in the tibia with TGs (OR = 0.95, 95%CI = 0.91-0.99). Conclusion: Early life exposure to Pb may alter early indicators of MetS. A follow-up of these children will allow for more definition on the impact of longer-term exposures.
Collapse
Affiliation(s)
- Karla Muciño-Sandoval
- Research Center for Health and Nutrition, National Institute of Public Health, Cuernavaca, Mexico
| | - Ana Carolina Ariza
- Research Center for Health and Nutrition, National Institute of Public Health, Cuernavaca, Mexico
| | - Eduardo Ortiz-Panozo
- Research Center for Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - María Luisa Pizano-Zárate
- Division for Research and Community Interventions, National Institute of Perinatology, Mexico City, Mexico
| | - Adriana Mercado-García
- Research Center for Health and Nutrition, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert Wright
- Departments of Environmental Medicine and Public Health and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martha Maria Téllez-Rojo
- Research Center for Health and Nutrition, National Institute of Public Health, Cuernavaca, Mexico
| | - Alison P Sanders
- Departments of Environmental Medicine and Public Health and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| |
Collapse
|
29
|
Nowicki GJ, Ślusarska B, Naylor K, Prystupa A, Rudnicka-Drożak E, Halyuk U, Pokotylo P. The Relationship Between the Metabolic Syndrome and the Place of Residence in the Local Community on the Example of the Janów Lubelski District in Eastern Poland: A Population-Based Study. Diabetes Metab Syndr Obes 2021; 14:2041-2056. [PMID: 33986605 PMCID: PMC8110259 DOI: 10.2147/dmso.s301639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The aim of this study was to estimate the incidence concerning metabolic syndrome (MetS) in a local community with a low socioeconomic status and a medium and high cardiovascular risk on the example of residents of Janów Lubelski district, eastern Poland. The second goal of the research was to analyze the relationship between residence and the occurrence of MetS. METHODS We conducted a cross-sectional study of 4040 people living in eastern Poland. A group of 3046 people with medium and high cardiovascular risk was selected among the respondents and included in further analyzes. The research adopted the definition criteria proposed by the National Cholesterol Education Program - Third Adult Treatment Panel (NCEP ATP III) to implement diagnostic evaluation of MetS. RESULTS It was observed that metabolic syndrome was significantly more frequent among the inhabitants of rural areas (40.56%; n=810) compared to those living in the city (35.27%; n=370) p=0.005. Among the inhabitants of rural areas, the percentage of people with elevated glucose levels was significantly higher, fasting blood glucose (FGB) p<0.001, elevated blood pressure (HBP) p<0.001, elevated serum triglycerides (TGs) p=0.01, and abnormal waist circumference (WC) p=0.003 compared to urban inhabitants. After adjusting for potential confounding variables (age, education, smoking, marital status, and level of physical activity), in both women and men, the odds of developing metabolic syndrome were approximately 30% higher in rural areas compared to urban residents (women: odds ratio (OR)=1.25, 95% confidence intervals (CI)=1.01-1.56; men: OR=1.30, 95% CI=1.01-1.67). CONCLUSION AND RECOMMENDATIONS A higher incidence of metabolic syndrome was observed among respondents living in rural areas than those living in cities. Similarly, across the gender strata, metabolic syndrome is more commonly diagnosed among men and women living in rural areas. Healthcare workers, especially in rural areas, should engage in education, prevention, and the promotion of a healthy lifestyle.
Collapse
Affiliation(s)
- Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, Lublin, Poland
- Correspondence: Grzegorz Józef Nowicki Department of Family Medicine and Community Nursing, Medical University of Lublin, Staszica 6 Street, PL-20-081, Lublin, PolandTel +48 81448 6810Fax +48 81448 6811 Email
| | - Barbara Ślusarska
- Department of Family Medicine and Community Nursing, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Naylor
- Department of Didactics and Medical Simulation, Medical University of Lublin, Lublin, Poland
| | - Andrzej Prystupa
- Department of Internal Medicine, Medical University of Lublin, Lublin, Poland
| | | | - Ulyana Halyuk
- Department of Normal Anatomy, Lviv National Medical University, Lviv, Ukraine
| | - Petro Pokotylo
- Department of Normal Anatomy, Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
30
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Smith L, Klément W, Dopavogui L, de Bock F, Lasserre F, Barretto S, Lukowicz C, Fougerat A, Polizzi A, Schaal B, Patris B, Denis C, Feuillet G, Canlet C, Jamin EL, Debrauwer L, Mselli-Lakhal L, Loiseau N, Guillou H, Marchi N, Ellero-Simatos S, Gamet-Payrastre L. Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. ENVIRONMENT INTERNATIONAL 2020; 144:106010. [PMID: 32745781 DOI: 10.1016/j.envint.2020.106010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.
Collapse
Affiliation(s)
- Lorraine Smith
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Wendy Klément
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Léonie Dopavogui
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Frédéric de Bock
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Frédéric Lasserre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Sharon Barretto
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Benoist Schaal
- Developmental Ethology Laboratory, Centre for Taste, Smell and Feeding Behavior Science, CNRS-UBFC-INRAE-ASD, 21000 Dijon, France
| | - Bruno Patris
- Developmental Ethology Laboratory, Centre for Taste, Smell and Feeding Behavior Science, CNRS-UBFC-INRAE-ASD, 21000 Dijon, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|
32
|
Kozlova EV, Chinthirla BD, Pérez PA, DiPatrizio NV, Argueta DA, Phillips AL, Stapleton HM, González GM, Krum JM, Carrillo V, Bishay AE, Basappa KR, Currás-Collazo MC. Maternal transfer of environmentally relevant polybrominated diphenyl ethers (PBDEs) produces a diabetic phenotype and disrupts glucoregulatory hormones and hepatic endocannabinoids in adult mouse female offspring. Sci Rep 2020; 10:18102. [PMID: 33093533 PMCID: PMC7582149 DOI: 10.1038/s41598-020-74853-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Pedro A Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | | | - Gwendolyn M González
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Karthik R Basappa
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Margarita C Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
33
|
Klement W, Oliviero F, Gangarossa G, Zub E, De Bock F, Forner-Piquer I, Blaquiere M, Lasserre F, Pascussi JM, Maurice T, Audinat E, Ellero-Simatos S, Gamet-Payrastre L, Mselli-Lakhal L, Marchi N. Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience 2020; 446:225-237. [PMID: 32736067 DOI: 10.1016/j.neuroscience.2020.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of β-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.
Collapse
Affiliation(s)
- Wendy Klement
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | | | - Emma Zub
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic De Bock
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Isabel Forner-Piquer
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Jean-Marc Pascussi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|
34
|
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations†. Biol Reprod 2020; 101:635-644. [PMID: 31077281 DOI: 10.1093/biolre/ioz081] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. Likewise, exposures to endocrine disruptors during developmental periods are particularly concerning because programming during development can be adversely impacted by hormone level changes. Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
35
|
Young JL, Cai L. Implications for prenatal cadmium exposure and adverse health outcomes in adulthood. Toxicol Appl Pharmacol 2020; 403:115161. [PMID: 32721433 DOI: 10.1016/j.taap.2020.115161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Cadmium is a ubiquitous, non-essential metal that has earned a spot on the World Health Organizations top 10 chemicals of major public health concern. The mechanisms of cadmium-induced adverse health outcomes, such as cardiovascular disease, renal toxicity and cancer, are well studied in adults. However, the implications for early life exposures to low-level cadmium leading to increased risk of developing diseases in adulthood remains elusive. Epidemiological investigation of the long term implications of cadmium-associated adverse birth outcomes are limited and studies do not extend into adulthood. This review will summarize the literature on the non-lethal, adverse health effects associated with prenatal and early life exposure to cadmium and the implications of these exposures in the development of diseases later in life. In addition, this review will highlight possible mechanisms responsible for these outcomes as well as address the inconsistencies in the literature. More recent studies have addressed sex as a biological variable, showing prenatal cadmium exposure elicits sex-specific outcomes that would otherwise be masked by pooling male and female data. Furthermore, researchers have begun to investigate the role of prenatal and early life cadmium exposures in the development of diet-induced diseases with evidence of altered essential metal homeostasis as a likely mechanism for cadmium-enhanced, diet-induced diseases. Although novel experimental models are beginning to be established to study the association between prenatal cadmium exposure and adverse health outcomes in adulthood, the studies are few, highlighting a major need for further investigation.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Departments of Pediatrics and Radiation Oncology, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
36
|
Chronic kidney disease in pregnant mothers affects maternal and fetal disposition of mercury. Reprod Toxicol 2020; 93:137-145. [PMID: 32084500 DOI: 10.1016/j.reprotox.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) affects over 15 % of the adults in the United States. Pregnant women with CKD present an additional challenge in that they are at increased risk for adverse events such as preterm birth. Exposure to environmental toxicants, such as methylmercury, may exacerbate maternal disease and increase the risk of adverse fetal outcomes. We hypothesized that fetuses of mothers with CKD are more susceptible to accumulation of methylmercury than fetuses of healthy mothers. The current data show that when mothers are in a state of renal insufficiency, uptake of mercury in fetal kidneys is enhanced significantly. Accumulation of Hg in fetal kidneys may be related to the flow of amniotic fluid, maternal handling of Hg, and/or underdeveloped mechanisms for cellular export and urinary excretion. The results of this study indicate that renal insufficiency in mothers leads to significant alterations in the way toxicants such as mercury are handled by maternal and fetal organs.
Collapse
|
37
|
Ibrahim MA, Ibrahem MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY 2020; 35:300-308. [PMID: 31675142 DOI: 10.1002/tox.22863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to explore the possible deleterious impacts of acrylamide (ACR) on catfish (Clarias gariepinus). The estimation of mortalities, the examination of the clinical picture, the evaluation of blood parameters, oxidative stress, DNA damage, and the histopathological picture were performed in the liver, kidney, and brain samples of the experimentally ACR-exposed catfish. The 96 hours LC50 value was estimated to be 133 mg/L by the hydrostatic method. Fish were reared in water containing four different concentrations of ACR as follows: 20%, 40%, 60%, and 80% of the estimated LC50 for 2 weeks. Abnormal behavioral, clinical, and postmortem responses were depicted. The anemic response including significant decreases in red blood cells, hemoglobin, and packed cell volume following the ascending concentrations of ACR were recorded. The malondialdehyde was significantly increased, whereas reduced glutathione level, superoxide dismutase, and total antioxidant capacity were significantly decreased. The DNA fragmentation assay illustrated a clear laddering pattern in all the tested organs. Notably, the brain was the most influenced organ. It is presumed that ACR contamination showed adverse impacts on the catfish.
Collapse
Affiliation(s)
- Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mai D Ibrahem
- Department of Public health, Faculty of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
38
|
Gomez SD, Bustos PS, Sánchez VG, Ortega MG, Guiñazú N. Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology 2020; 431:152363. [DOI: 10.1016/j.tox.2020.152363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
|
39
|
Liu Y, Ettinger AS, Téllez-Rojo M, Sánchez BN, Zhang Z, Cantoral A, Hu H, Peterson KE. Prenatal Lead Exposure, Type 2 Diabetes, and Cardiometabolic Risk Factors in Mexican Children at Age 10-18 Years. J Clin Endocrinol Metab 2020; 105:dgz038. [PMID: 31608940 PMCID: PMC7037075 DOI: 10.1210/clinem/dgz038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Several cross-sectional studies have assessed the association of lead exposure with type 2 diabetes and cardiometabolic risk factors in adults; however, studies of such associations in childhood are rare. OBJECTIVE We assessed the prospective associations of prenatal exposure to lead with type 2 diabetes and cardiometabolic risk factors in children. DESIGN The Early Life Exposure in Mexico to Environmental Toxicants is a birth cohort study of pregnant women and their offspring. SETTING Public hospitals in Mexico City. PATIENTS OR OTHER PARTICIPANTS Women were recruited during pregnancy; their offspring were recruited for a follow-up visit at age 10 to 18 years (n = 369). MAIN OUTCOME MEASURES We measured fasting serum markers of type 2 diabetes and cardiometabolic risk factors in children, including fasting glucose, insulin, and lipids. The index of insulin resistance was calculated. RESULTS The geometric mean of maternal blood lead levels (BLLs) during pregnancy was 4.3 µg/dL (95% confidence interval [CI]): 4.0-4.6 µg/dL) in the entire sample. In boys, those with maternal BLLs ≥ 5 µg/dL (compared with those with BLLs < 5 µg/dL) had significantly lower z scores for total cholesterol (β = -0.41, 95% CI: -0.71, -0.12), high-density lipoprotein cholesterol (β = -0.32, 95% CI: -0.59, -0.05), and low-density lipoprotein cholesterol (β = -0.52, 95% CI: -0.81, -0.22), adjusting for covariates. No associations were detected in girls. CONCLUSIONS In our study, we found that higher prenatal exposure to lead was associated with lower levels of cholesterol in children following a sex-specific pattern. Further studies with a larger sample size that examine whether sex is a potential modifier are needed to confirm our findings.
Collapse
Affiliation(s)
- Yun Liu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Adrienne S Ettinger
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Martha Téllez-Rojo
- Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Zhenzhen Zhang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Alejandra Cantoral
- Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Howard Hu
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
40
|
Vancamp P, Demeneix BA. Is the Observed Decrease in Body Temperature During Industrialization Due to Thyroid Hormone-Dependent Thermoregulation Disruption? Front Endocrinol (Lausanne) 2020; 11:470. [PMID: 32793119 PMCID: PMC7387406 DOI: 10.3389/fendo.2020.00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023] Open
|
41
|
|
42
|
Association of urinary polycyclic aromatic hydrocarbons and obesity in children aged 3-18: Canadian Health Measures Survey 2009-2015. J Dev Orig Health Dis 2019; 11:623-631. [PMID: 31806062 DOI: 10.1017/s2040174419000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may contribute to obesity. Childhood obesity is a strong predictor of adult obesity and morbidity; however, the relationship between PAHs and obesity in young children (e.g., aged 3-5) has not been studied. We examined the association between urinary PAH metabolites and measures of obesity in children. We analyzed data from 3667 children aged 3-18 years who participated in the Canadian Health Measures Survey (CHMS, 2009-2015). We ran separate multivariable linear models to estimate the association between quartiles of PAH metabolites and each of body mass index (BMI) percentile, waist circumference (WC), and waist-to-height ratio (WHtR) in the total population, as well as in the age subgroups 3-5, 6-11, and 12-18, adjusting for age, sex, ethnicity, education, income quintile, diet, creatinine, and exposure to environmental tobacco smoke. A multinomial logistic regression model estimated adjusted odds ratios for risk of central obesity. BMI, WC, and WHtR were positively associated with total PAH and naphthalene metabolites in the total population aged 3-18 and in age groups 6-11 and 12-18. In 3-5 year olds, WHtR, but not BMI, was significantly associated with total PAH, naphthalene, and phenanthrene metabolites. Overall, those in the highest quartile for naphthalene or total PAH metabolites had three times greater odds of having central obesity compared with those in the lowest quartile. Urinary PAH metabolites are associated with WHtR, an indicator of central obesity and predictor of health risks associated with obesity, in children as young as 3-5.
Collapse
|
43
|
Wang G, DiBari J, Bind E, Steffens AM, Mukherjee J, Bartell TR, Bellinger DC, Hong X, Ji Y, Wang MC, Wills-Karp M, Cheng TL, Wang X. In utero exposure to mercury and childhood overweight or obesity: counteracting effect of maternal folate status. BMC Med 2019; 17:216. [PMID: 31775748 PMCID: PMC6882077 DOI: 10.1186/s12916-019-1442-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Low-dose mercury (Hg) exposure has been associated with cardiovascular diseases, diabetes, and obesity in adults, but it is unknown the metabolic consequence of in utero Hg exposure. This study aimed to investigate the association between in utero Hg exposure and child overweight or obesity (OWO) and to explore if adequate maternal folate can mitigate Hg toxicity. METHODS This prospective study included 1442 mother-child pairs recruited at birth and followed up to age 15 years. Maternal Hg in red blood cells and plasma folate levels were measured in samples collected 1-3 days after delivery (a proxy for third trimester exposure). Adequate folate was defined as plasma folate ≥ 20.4 nmol/L. Childhood OWO was defined as body mass index ≥ 85% percentile for age and sex. RESULTS The median (interquartile range) of maternal Hg levels were 2.11 (1.04-3.70) μg/L. Geometric mean (95% CI) of maternal folate levels were 31.1 (30.1-32.1) nmol/L. Maternal Hg levels were positively associated with child OWO from age 2-15 years, independent of maternal pre-pregnancy OWO, diabetes, and other covariates. The relative risk (RR = 1.24, 95% CI 1.05-1.47) of child OWO associated with the highest quartile of Hg exposure was 24% higher than those with the lowest quartile. Maternal pre-pregnancy OWO and/or diabetes additively enhanced Hg toxicity. The highest risk of child OWO was found among children of OWO and diabetic mothers in the top Hg quartile (RR = 2.06; 95% CI 1.56-2.71) compared to their counterparts. Furthermore, adequate maternal folate status mitigated Hg toxicity. Given top quartile Hg exposure, adequate maternal folate was associated with a 34% reduction in child OWO risk (RR = 0.66, 95% CI 0.51-0.85) as compared with insufficient maternal folate. There was a suggestive interaction between maternal Hg and folate levels on child OWO risk (p for interaction = 0.086). CONCLUSIONS In this US urban, multi-ethnic population, elevated in utero Hg exposure was associated with a higher risk of OWO in childhood, and such risk was enhanced by maternal OWO and/or diabetes and reduced by adequate maternal folate. These findings underscore the need to screen for Hg and to optimize maternal folate status, especially among mothers with OWO and/or diabetes.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| | - Jessica DiBari
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, 5600 Fishers Ln, Rockville, MD, 20852, USA
| | - Eric Bind
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Andrew M Steffens
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Jhindan Mukherjee
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Tami R Bartell
- Mary Ann & J. Milburn Smith Child Health Research, Outreach and Advocacy Center, Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, 2430 N Halsted St, Chicago, IL, 60614, USA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Tina L Cheng
- Department of Pediatrics, Johns Hopkins School of Medicine, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| |
Collapse
|
44
|
Wang G, DiBari J, Bind E, Steffens AM, Mukherjee J, Azuine RE, Singh GK, Hong X, Ji Y, Ji H, Pearson C, Zuckerman BS, Cheng TL, Wang X. Association Between Maternal Exposure to Lead, Maternal Folate Status, and Intergenerational Risk of Childhood Overweight and Obesity. JAMA Netw Open 2019; 2:e1912343. [PMID: 31577354 PMCID: PMC6777254 DOI: 10.1001/jamanetworkopen.2019.12343] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPORTANCE The first pediatric lead screening typically occurs at 1-year well-child care visits. However, data on the extent of maternal lead exposure and its long-term consequences for child health are lacking. OBJECTIVE To investigate the associations between maternal red blood cell (RBC) lead levels and intergenerational risk of overweight or obesity (OWO) and whether adequate maternal folate status is associated with a reduction in OWO risk. DESIGN, SETTING, AND PARTICIPANTS Prospective birth cohort study. The analysis was conducted from July 14, 2018, to August 2, 2019, at Johns Hopkins Bloomberg School of Public Health. This study included 1442 mother-child pairs recruited at birth from October 27, 2002, to October 10, 2013, and followed up prospectively at Boston Medical Center. MAIN OUTCOMES AND MEASURES Child body mass index (BMI) z score, calculated according to US national reference data, and OWO, defined as BMI at or exceeding the 85th percentile for age and sex. Maternal RBC lead levels and plasma folate levels were measured in samples obtained 24 to 72 hours after delivery; child whole-blood lead level was obtained from the first pediatric lead screening. RESULTS The mean (SD) age of mothers and children was 28.6 (6.5) years and 8.1 (3.1) years, respectively; 50.1% of children were boys. The median maternal RBC lead level and plasma folate level were 2.5 (interquartile range [IQR], 1.7-3.8) μg/dL and 32.2 (IQR, 22.1-44.4) nmol/L, respectively. The median child whole-blood lead level and child BMI z score were 1.4 (IQR, 1.4-2.0) μg/dL and 0.78 (IQR, -0.08 to 1.71), respectively. Maternal RBC lead level was associated with child OWO risk in a dose-response fashion, with an odds ratio (OR) of 1.65 (95% CI, 1.18-2.32) for high maternal RBC lead level (≥5.0 μg/dL) compared with low maternal RBC lead level (<2.0 μg/dL). Child OWO was highest among children of OWO mothers with high RBC lead levels (adjusted OR, 4.24; 95% CI, 2.64-6.82) compared with children of non-OWO mothers with low RBC lead levels. Children of OWO mothers with high RBC lead levels had 41% lower OWO risk (OR, 0.59; 95% CI, 0.36-0.95; P = .03) if their mothers had adequate plasma folate levels (≥20.4 nmol/L) compared with their counterparts. CONCLUSIONS AND RELEVANCE In this sample of a US urban population, findings suggest that maternal elevated lead exposure was associated with increased risk of intergenerational OWO independent of postnatal blood lead levels. Adequate maternal folate status appeared to be associated with lower OWO risk. If confirmed by additional studies, these findings have implications for prenatal lead screening and management to minimize adverse health consequences on children.
Collapse
Affiliation(s)
- Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessica DiBari
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Eric Bind
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Andrew M. Steffens
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Jhindan Mukherjee
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Romuladus E. Azuine
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Gopal K. Singh
- Office of Health Equity, Health Resources and Services Administration, Rockville, Maryland
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barry S. Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Tina L. Cheng
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Abstract
Experimental data have suggested that some contaminants in the environment may increase the risk of obesity. Infants can be exposed to chemicals either prenatally, by trans-placental passage of chemicals, or postnatally by their own diet and by other external pathways (air inhalation, dust, hand-to-mouth exposure) after birth. To provide a review of epidemiological evidence on the association between prenatal exposure to chemicals and prenatal and postnatal growth, we present the literature from systematic review articles and international meta-analyses, when available, or recent research articles when summarizing articles were not available. The most studied contaminants in this field were persistent organic pollutants (e.g. organochlorinated pesticides, polychlorinated biphenyls), non-persistent pollutants (e.g. phthalates, bisphenol A), toxic heavy metals (i.e. cadmium, lead and mercury), arsenic, mycotoxins and acrylamide. Mounting evidence suggests that child's growth may be associated with prenatal or postnatal exposures to environmental contaminants. Improving exposure assessment and studying the contaminants as mixtures should allow to gain knowledge about the environmental determinants of growth and obesity.
Collapse
|
46
|
Early life exposure of a biocide, CMIT/MIT causes metabolic toxicity via the O-GlcNAc transferase pathway in the nematode C. elegans. Toxicol Appl Pharmacol 2019; 376:1-8. [PMID: 31100289 DOI: 10.1016/j.taap.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Unusual cases of fatal lung injury, later determined to be a result of exposure to chemicals used as humidifier disinfectants, were reported among Korean children from 2006 to 2011. This resulted in considerable study of the pulmonary toxicity of humidifier disinfectant chemicals to establish the causal relationship between exposure and lung disease. However, the systemic toxicity of the former and health effects other than lung disease are not fully understood. Here, we investigated the effect of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), among the humidifier disinfectants used in the accidents, on the development of metabolic toxicity in the model organism, Caenorhabditis elegans using an exposure scenario comparison. We screened the potential of CMIT/MIT to induce metabolic toxicity using C. elegans oga-1(ok1207) and ogt-1(ok1474) mutants. We also performed a pathway analysis based on C. elegans transcription factor RNAi library screening to identify the underlying toxicity mechanisms. Finally, to understand the critical window of exposure for metabolic toxicity, responses to exposure during different periods in the life cycles of the worms were compared. We determined that CMIT/MIT could induce metabolic toxicity through O-linked N-acetylglucosamine transferase and early life seems to be the critical window for exposure for metabolic toxicity for this substance. The O-linked N-acetylglucosamine transferase pathway is conserved from worms to humans; our results thus insinuate that early-life exposure to CMIT/MIT could cause metabolic health problems during adult life in humans. We therefore suggest that a systemic toxicity approach should be considered to comprehensively understand the adverse health effects of humidifier disinfectant misuse.
Collapse
|
47
|
Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr Environ Health Rep 2019; 5:110-124. [PMID: 29460222 DOI: 10.1007/s40572-018-0182-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. RECENT FINDINGS Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Adrian Green
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA. .,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.
| |
Collapse
|
48
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
49
|
Li P, Tang T, Chang X, Fan X, Chen X, Wang R, Fan C, Qi K. Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Mol Nutr Food Res 2019; 63:e1800399. [PMID: 30576063 DOI: 10.1002/mnfr.201800399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/22/2018] [Indexed: 12/11/2022]
Abstract
SCOPE To investigate the effects of calcium status in early life on adult body weight and the underlying mechanisms involved in gut microbiota and related lipid metabolism. METHODS AND RESULTS Three to four-week-old C57BL/6J female mice were fed diets with normal, insufficient, and excessive calcium respectively throughout pregnancy and lactation. The weaning male pups were fed with a high-fat diet for 16 weeks, with a normal-fat diet to the normal calcium group as control. The offspring fecal microbiota was analyzed by 16S rRNA high-throughput sequencing, and mRNA expressions of genes were determined by the real-time RT-PCR. Maternal insufficient or excessive calcium intake exacerbated offspring obesity, with expressional changes in the Fasn, Acc1, LPL, Fiaf, and PPAR-α genes in the liver or fat. The dysbiosis in gut microbiota in obese offspring was exacerbated by maternal imbalanced calcium intake, with increased Firmicutes and decreased Bacteroidetes in calcium insufficiency, and decreased Verrucomicrobia in calcium excess. Several genera, including Bacteroides, were reduced, and Lachnospiraceae and Lactobacillus were increased by maternal insufficient or excessive calcium intake. CONCLUSION Imbalance in maternal calcium intake promotes body weight gain in offspring, which may be mediated by calcium's modulation on the gut microbiota and lipid metabolism.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuelian Chang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoyu Chen
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chaonan Fan
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| |
Collapse
|
50
|
Dietary calcium status during maternal pregnancy and lactation affects lipid metabolism in mouse offspring. Sci Rep 2018; 8:16542. [PMID: 30410113 PMCID: PMC6224457 DOI: 10.1038/s41598-018-34520-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Calcium plays important roles in lipid metabolism and adipogenesis, but whether its status in early life affects later lipid profiles needs to be clarified. Three to four-week old C57BL/6J female mice were fed with three different reproductive diets containing normal, low (insufficient) and high (excessive) calcium concentrations respectively throughout pregnancy and lactation. At postnatal 21 days, the weaning male and female pups from each group were sacrificed for experiments and the remaining were fed with the normal chow diet for 16 weeks. Meanwhile, some of the weaning female pups from maternal low calcium diet group were fed with the normal calcium, low calcium and high calcium mature diets respectively for 8 weeks. Maternal insufficient or excessive calcium status during pregnancy and lactation programmed an abnormal expression of hepatic and adipose genes (PPAR-γ, C/EBP-α, FABP4, Fasn, UCP2, PPAR-α, HMG-Red1, Acc1, and SREBP-1c) in the offspring and this may lead to dyslipidemia and accumulation of hepatic triglyceride (TG) and total cholesterol (TC) in later life. The effects of maternal calcium status on lipid metabolism were found only in the female adult offspring, but were similar between offspring males and females at postnatal 21 days. Additionally, the dyslipidemia and hepatic lipid accumulation caused by insufficient calcium status in early life may be reversed to some extent by dietary calcium supplementation in later life.
Collapse
|