1
|
Zhang X, Mai Z, Gao Y, Zhao X, Zhang Y. Selecting potential biomarkers of plasma proteins in mares with endometritis. Equine Vet J 2024; 56:660-669. [PMID: 38616335 DOI: 10.1111/evj.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Endometritis is a common condition in mares that causes significant economic loss. Lacking obvious clinical signs, the clinical diagnosis of endometritis in mares relies on case-by-case clinical examinations, which can be particularly inefficient in large-scale farms. Therefore, the identification of potential biomarkers can serve as a non-invasive and efficient screening technique for endometritis in mares. OBJECTIVES To compare the blood proteome between fertile mares and mares with endometritis to identify biomarkers potentially associated with the development of endometritis and validate their predictive potential. STUDY DESIGN Observational and experimental study. METHODS Differentially expressed proteins were identified via Data Independent Acquisition (DIA) proteomic profiling in a screening cohort composed of eight healthy mares and eight mares with endometritis. Subsequently, enzyme-linked immunosorbent assay was employed that included a validation cohort of 40 healthy mares and 40 mares with endometritis to verify the accuracy and sensitivity of the identified proteins, thereby establishing a diagnostic threshold. RESULTS In the screening cohort, 12 proteins were significantly differentially expressed between endometritis mares and healthy controls (p < 0.05, outside the 1/1.2 to 1.2-fold). In the validation experiment, all six screened proteins were assessed with area under the curve (AUC) >0.8. MAIN LIMITATIONS The samples displayed certain levels of individual heterogeneity, and the number of samples analysed was limited. Additionally, the identified biomarkers were primarily associated with generalised inflammation, which potentially limited their specificity for endometritis. CONCLUSION Levels of plasma proteins are sensitive indicators of equine endometritis and potential tools for endometritis screening. In plasma, fetuin B, von Willebrand factor, vitamin K-dependent protein C, insulin-like growth factor binding protein 3, interleukin 1 receptor accessory protein, and type II cell cytoskeleton showed great predictive ability, with fetuin B being the best predictor (AUC = 0.93, 95% CI: 0.89-0.98), which performs better when combined with all six detected proteins (AUC = 1, 95% CI: 0.99-1.00).
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
2
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
3
|
Liang J, Li R, Liu C, Cai Y, Liu Y, Chen P, Zeng K, Li C. A novel heterozygous frameshift mutation in the KRT6A gene responsible for an uncommon phenotype of pachyonychia congenita: One case report and review of literature. Heliyon 2024; 10:e27195. [PMID: 38468954 PMCID: PMC10926126 DOI: 10.1016/j.heliyon.2024.e27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Pachyonychia congenita is an uncommon autosomal dominant skin disorder characterized by hypertrophic nail dystrophy, palmoplantar keratoderma, oral leukokeratosis, and cutaneous cysts. And fissured tongue is rarely reported in patients with pachyonychia congenita. The disease is primarily associated with mutations in five keratin genes, namely KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Herein we report a 9-year-old Chinese girl who has thickened nails, keratinized plaques, and fissured tongue since birth. To investigate the underlying genetic cause, whole-exome sequencing and Sanger sequencing were performed in this patient and her family members. We identified a candidate variant c.1460-2_1460del (p.S487Lfs*21) in the KRT6A gene (NM_005554.4) by whole-exome sequencing. Sanger sequencing revealed the absence of the mutation in both parents, indicating that it is a de novo variant. Thus, the novel heterozygous frameshift mutation c.1460-2_1460del (p.S487Lfs*21) within exon 9 of KRT6A was identified as the genetic cause of the patient. Our study identified a rare de novo heterozygous frameshift mutation in the KRT6A gene in a patient with pachyonychia congenita presenting fissured tongue. Our findings expand the KRT6A gene mutation spectrum of Pachyonychia congenita, and will contribute to the future genetic counseling and gene therapy for this disease.
Collapse
Affiliation(s)
- Jiali Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ronghua Li
- Department of Dermatology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362002, China
| | - Chenmei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yan Cai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yifei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
4
|
Ge M, Ji C, Li H, Huang H. De Novo Mutation in KRT1 Leads to Epidermolytic Palmoplantar Keratoderma: from Chinese Traditional Treatment to Prenatal Diagnosis Using Whole-Exome Sequencing-Plus. DNA Cell Biol 2023; 42:645-652. [PMID: 37566479 DOI: 10.1089/dna.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Congenital skin disorders are a class of complex genetic diseases that are difficult to diagnose and treat. We developed trio whole-exome sequencing-plus (WES-plus) for detecting de novo mutations and evaluated the use of traditional Chinese medicine (TCM) for treating congenital skin disorders. In this study, we successively performed panel-based next-generation sequencing (NGS) and Trio WES-plus in a child with frequent large blisters. Panel-based NGS revealed no pathogenic mutations. Trio WES-plus for resequencing based on cutaneous keratosis of the palms and feet detected a missense mutation (c.1436T>A, p.Ile479Asn) in the coding region of KRT1 in the child but not in his parents. Following prenatal diagnosis, a healthy second baby without the mutation was born. The disease symptoms of epidermolytic palmoplantar keratoderma (EPPK) application were improved by TCM and Western medicine. Our study revealed the pathogenicity of a de novo mutation in human KRT1, which expands the mutation spectrum of EPPK. Trio WES-plus is useful for diagnosing genetic diseases and providing genetic guidance from prenatal diagnosis to treatment.
Collapse
Affiliation(s)
- Mengdi Ge
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunmin Ji
- Department of Obstetrics and Gynecology, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Huanzhen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Whole exome sequencing in Alopecia Areata identifies rare variants in KRT82. Nat Commun 2022; 13:800. [PMID: 35145093 PMCID: PMC8831607 DOI: 10.1038/s41467-022-28343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E−07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity. Common variants have been discovered to be associated with Alopecia Areata; however, rare variants have been less well studied. Here, the authors use whole-exome sequencing to identify associated rare variants in the hair keratin gene KRT82. Further, they find that individuals with Alopecia Areata have reduced expression of KRT82 in the skin and hair follicle.
Collapse
|
6
|
Guo Y, Zhang H, Zhao Z, Luo X, Zhang M, Bu J, Liang M, Wu H, Yu J, He H, Zong R, Chen Y, Liu Z, Li W. Hyperglycemia Induces Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 35072689 PMCID: PMC8802017 DOI: 10.1167/iovs.63.1.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Patients diagnosed with diabetes are inclined to have abnormalities on stability of tear film and disorder of meibomian gland (MG). This study aims to explore the pathological change of MG induced by diabetes in a rat model. Methods Sprague-Dawley (SD) rats were intraperitoneally injected with streptozotocin (STZ) to establish a diabetic animal model. Lipid accumulation in MG was detected by Oil Red O staining and LipidTox staining. Cell proliferation status was determined by Ki67 and P63 immunostaining, whereas cell apoptosis was confirmed by TUNEL assay. Gene expression of inflammatory cytokines and adhesion molecules IL-1α, IL-1β, ELAM1, ICAM1, and VCAM1 were detected by RT-PCR. Activation of ERK, NF-κB, and AMPK signaling pathways was determined by Western Blot analysis. Oxidative stress-related factors NOX4, 4HNE, Nrf2, HO-1, and SOD2 were detected by immunostaining or Western Blot analysis. Tom20 and Tim23 immunostaining and transmission electron microscopy were performed to evaluate the mitochondria functional and structure change. Results Four months after STZ injection, there was acini dropout in MG of diabetic rats. Evident infiltration of inflammatory cells, increased expression of inflammatory factors, and adhesion molecules, as well as activated ERK and NF-κB signaling pathways were identified. Oxidative stress of MG was evident in 4-month diabetic rats. Phospho-AMPK was downregulated in MG of 2-month diabetic rats and more prominent in 4-month rats. After metformin treatment, phospho-AMPK was upregulated and the morphology of MG was well maintained. Moreover, inflammation and oxidative stress of MG were alleviated after metformin intervention. Conclusions Long-term diabetes may lead to Meibomian gland dysfunction (MGD). AMPK may be a therapeutic target of MGD induced by diabetes.
Collapse
Affiliation(s)
- Yuli Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Houjian Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Luo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Minjie Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jinghua Bu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Minghui Liang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Han Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jingwen Yu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Hui He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| |
Collapse
|
7
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Kim YB, Hlavaty D, Maycock J, Lechler T. Roles for Ndel1 in keratin organization and desmosome function. Mol Biol Cell 2021; 32:ar2. [PMID: 34319758 PMCID: PMC8684757 DOI: 10.1091/mbc.e21-02-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Keratin intermediate filaments form dynamic polymer networks that organize in specific ways dependent on the cell type, the stage of the cell cycle, and the state of the cell. In differentiated cells of the epidermis, they are organized by desmosomes, cell–cell adhesion complexes that provide essential mechanical integrity to this tissue. Despite this, we know little about how keratin organization is controlled and whether desmosomes locally regulate keratin dynamics in addition to binding preassembled filaments. Ndel1 is a desmosome-associated protein in the differentiated epidermis, though its function at these structures has not been examined. Here, we show that Ndel1 binds directly to keratin subunits through a motif conserved in all intermediate filament proteins. Further, Ndel1 was necessary for robust desmosome–keratin association and sufficient to reorganize keratins at distinct cellular sites. Lis1, a Ndel1 binding protein, was required for desmosomal localization of Ndel1, but not for its effects on keratin filaments. Finally, we use mouse genetics to demonstrate that loss of Ndel1 results in desmosome defects in the epidermis. Our data thus identify Ndel1 as a desmosome-associated protein that promotes local assembly/reorganization of keratin filaments and is essential for robust desmosome formation.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Present Address - Institute of Immuno-Metabolic Disorders, ReCerise Therapeutics Inc., Seoul 07573, Republic of Korea
| | - Daniel Hlavaty
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| | - Jeff Maycock
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA
| | - Terry Lechler
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| |
Collapse
|
9
|
Hollis AN, Culton DA, Rose AS, Morrell DS. A 15-month-old boy with white plaques on the oral mucosa. Pediatr Dermatol 2020; 37:e87-e88. [PMID: 33283931 DOI: 10.1111/pde.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/12/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Alison N Hollis
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Austin S Rose
- Department of Otolaryngology-Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dean S Morrell
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Buckley RM, Gandolfi B, Creighton EK, Pyne CA, Bouhan DM, LeRoy ML, Senter DA, Gobble JR, Abitbol M, Lyons LA. Werewolf, There Wolf: Variants in Hairless Associated with Hypotrichia and Roaning in the Lykoi Cat Breed. Genes (Basel) 2020; 11:E682. [PMID: 32580512 PMCID: PMC7348984 DOI: 10.3390/genes11060682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Connor A. Pyne
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Delia M. Bouhan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Michelle L. LeRoy
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | - David A. Senter
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | | | - Marie Abitbol
- NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Faculty of Medicine, Rockefeller, Claude Bernard Lyon I University, 69008 Lyon, France;
- VetAgro Sup, University of Lyon, Marcy-l’Etoile, 69280 Lyon, France
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | | |
Collapse
|
11
|
Pleiotropic Functions of FoxN1: Regulating Different Target Genes during Embryogenesis and Nymph Molting in the Brown Planthopper. Int J Mol Sci 2020; 21:ijms21124222. [PMID: 32545786 PMCID: PMC7353072 DOI: 10.3390/ijms21124222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/22/2023] Open
Abstract
FoxN1 gene belongs to the forkhead box gene family that comprises a diverse group of “winged helix” transcription factors that have been implicated in a variety of biochemical and cellular processes. In the brown planthopper (BPH), FoxN1 is highly expressed in the ovaries and newly laid eggs, where it acted as an indispensable gene through its molecular targets to regulate early embryonic development. Moreover, the results of the RNAi experiments indicated that Nilaparvata lugensFoxN1 (NlFoxN1) exhibited pleiotropism: they not only affected the embryogenesis, but also played an important role in molting. RNA-seq and RNAi were further used to reveal potential target genes of NlFoxN1 in different stages. In the eggs, ten downregulated genes were defined as potential target genes of NlFoxN1 because of the similar expression patterns and functions with NlFoxN1. Knockdown of NlFoxN1 or any of these genes prevented the development of the eggs, resulting in a zero hatchability. In the nymphs, NlFoxN1 regulated the expression of a keratin gene, type I cytoskeletal keratin 9 (NlKrt9), to participate in the formation of an intermediate filament framework. Depletion of NlFoxN1 or NlKrt9 in nymphs, BPHs failed to shed their old cuticle during nymph-to-nymph or nymph-to-adult molting and the mortality was almost 100%. Altogether, the pleiotropic roles of NlFoxN1 during embryogenesis and nymph molting were supported by the ability to coordinate the temporal and spatial gene expression of their target genes.
Collapse
|
12
|
Li Y, Tang L, Han Y, Zheng L, Zhen Q, Yang S, Gao M. Genetic Analysis of KRT9 Gene Revealed Previously Known Mutations and Genotype-Phenotype Correlations in Epidermolytic Palmoplantar Keratoderma. Front Genet 2019; 9:645. [PMID: 30666268 PMCID: PMC6330350 DOI: 10.3389/fgene.2018.00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Epidermolytic palmoplantar keratoderma (EPPK, OMIM 144200) is an autosomal dominant inherited disease, clinically characterized by diffuse yellowish thickening of the skin on the palms and soles, usually with erythematous borders developing during the first weeks or months after birth. Pathogenesis of EPPK is determined by mutations in the keratin gene (KRT9). Thirty three mutations in the KRT9 gene from 100 EPPK families have been identified. Among these, 23 mutations are located in the 1A region (a mutation hot spot region), 7 are located in the 2B region, and the remaining 3 are synonymous mutations. In this study, three heterozygous mutations (p.N161S, p.R163W, and p.R163Q), located in regions of the gene encoding the conserved central a-helix rod domain, were detected in the KRT9 gene of the three large Chinese families. This study confirms that codon 163 (48 of 100 cases) is a hot spot mutation site for KRT9. Additional findings identified p.N161S (4%) and p.R163W (4%) as potential hot spot mutations for EPPK associated with knuckle pads, and p.R163Q (15 of 100 cases) as the hot spot mutation of EPPK not occurring in combination with knuckle pads. In conjunction with future studies, this research may help lay the foundation for genetics counseling, prenatal diagnosis and clinical treatment of EPPK.
Collapse
Affiliation(s)
- Yuwei Li
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lili Tang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yang Han
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Liyun Zheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Zhen
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China
| | - Min Gao
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Hefei, China
| |
Collapse
|
13
|
Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H. Keratins and epidermolysis bullosa simplex. J Cell Physiol 2018; 234:289-297. [PMID: 30078200 DOI: 10.1002/jcp.26898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Medical Immunology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology and Laser Surgery, Clinical Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Ghazawi FM, Hassani-Ardakani K, Henriques L, Jafarian F. Identification of a novel substitution mutation (R103C) in the rod domain of the keratin 17 gene associated with pachyonychia congenita type 2. Int J Dermatol 2018; 58:233-236. [PMID: 29904921 DOI: 10.1111/ijd.14082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Feras M Ghazawi
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Lisa Henriques
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Fatemeh Jafarian
- Division of Dermatology, McGill University Health Center, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Yeo J, Jung G, Tarakanova A, Martín-Martínez FJ, Qin Z, Cheng Y, Zhang YW, Buehler MJ. Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. EXTREME MECHANICS LETTERS 2018; 20:112-124. [PMID: 33344740 PMCID: PMC7745951 DOI: 10.1016/j.eml.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases. Computational characterization of these mutations has proven to be extremely valuable in identifying the intricate structure-function relationships of scleroproteins from the molecular scale up, especially if combined with multiscale experimental analysis and the synthesis of model proteins to test specific structure-function relationships. In this work, we review numerous critical diseases that are related to keratin, collagen, and elastin, and through several case studies, we propose ways of extensively utilizing multiscale modeling, from atomistic to coarse-grained molecular dynamics simulations, to uncover the molecular origins for some of these diseases and to aid in the development of novel cures and therapies. As case studies, we examine the effects of the genetic disease Epidermolytic Hyperkeratosis (EHK) on the structure and aggregation of keratins 1 and 10; we propose models to understand the diseases of Osteogenesis Imperfecta (OI) and Alport syndrome (AS) that affect the mechanical and aggregation properties of collagen; and we develop atomistic molecular dynamics and elastic network models of elastin to determine the role of mutations in diseases such as Cutis Laxa and Supravalvular Aortic Stenosis on elastin's structure and molecular conformational motions and implications for assembly.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - GangSeob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Mao B, Zhang J, You Y, Xiao J, Zhao X. Mutations in the highly conserved 1A rod domain of keratin 9 responsible for epidermolytic palmoplantar keratoderma in four Chinese families. J Dermatol 2017; 45:e45-e46. [PMID: 29044727 DOI: 10.1111/1346-8138.14087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bin Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jifang Xiao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Chen N, Sun J, Song Y, Wei X, Shi Y, Zhang L. A novel mutation of KRT9 gene in a Chinese Han pedigree with epidermolytic palmoplantar keratoderma. J Cosmet Dermatol 2016; 16:402-406. [PMID: 27726289 DOI: 10.1111/jocd.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations of keratin 9 (KRT9) gene is a hot research area of epidermolytic palmoplantar keratoderma (EPPK). AIMS To identify the genes caused the EPPK of a Chinese family. PATIENTS/METHODS Three cases of lesions were collected for pathological examination. Genomic DNA was extracted from peripheral blood samples of six patients and five healthy individuals and 100 unrelated individuals. Polymerase chain reaction (PCR) was used to amplify exons 1 of KRT9 gene. PCR products were sequenced to identify potential mutations. RESULTS The lesion pathology of the proband and two ill relatives diagnosed EPPK. A new heterozygous missense mutation (488G>T) was identified in the 488 site of exon 1 of KRT9 gene in all six patients, which resulted in substitution of thymine for guanine, and substitution of leucine acid for arginine acid at position 163 of the KRT9 protein. The same mutation was not found in the five healthy individuals of the family and 100 unrelated individuals. CONCLUSIONS The new heterozygous missense mutation (488G>T) of KRT9 gene is probably the cause of EPPK in this Chinese family.
Collapse
Affiliation(s)
- Nan Chen
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Jingying Sun
- Institute of Dermatology and Department of Dermatology, Anhui Medical University, Hefei, China
| | - Yali Song
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xinjing Wei
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Yan Shi
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
18
|
Miao R, Ding B, Zhang Y, Xia Q, Li Y, Zhu B. Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: a comparative analysis. J Thorac Dis 2016; 8:439-50. [PMID: 27076939 DOI: 10.21037/jtd.2016.02.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Silicosis is a severe occupational disease characterized by pulmonary fibrosis, whereas chronic bronchitis (CB) is an acute inflammation of the airways. Differences in the mechanisms of pathogenesis of these diseases are not well understood, therefore we performed proteomic profiling of silicosis and CB patients and, compared the results. METHODS Two-dimensional gel electrophoresis and MALDI-TOF-MS (matrix assisted laser desorption ionization time of flight mass spectrometry) were used to identify differentially accumulated proteins in stage I of silicosis (SI), stage II of silicosis (SII) and CB. Enzyme linked immunosorbent assay (ELISA) was employed to validate protein expression data. RESULTS A total of 28 and 10 proteins were up- and down-regulated in SI, and 21 and 9 proteins were up- and down-regulated SII, compared with CB. Transforming growth factor beta-1 precursor and interferon beta precursor were up-regulated in CB, while interleukin 6, tumor necrosis factor (TNF) and a variant TNF receptor 13B were down-regulated in CB. Additionally, glycoprotein- and apolipoprotein-associated proteins including apolipoprotein A-IV and α-1-B-glycoprotein were up-regulated in CB, indicating an involvement in the pathogenesis of CB but not silicosis. By contrast, HLA-DRB1, medullasin and the proto-oncogene c-Fos were up-regulated in CB. CONCLUSIONS The immune, metabolism and apolipoprotein-related proteins were identified as playing specific and different roles in silicosis and CB. These proteomic profiling differences would facilitate further studies on the mechanisms underlying silicosis and CB, and may also prove useful to disease diagnosis and treatments.
Collapse
Affiliation(s)
- Rongming Miao
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Bangmei Ding
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Yingyi Zhang
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Qian Xia
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Yong Li
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Baoli Zhu
- 1 The People's Hospital of Wuxi, Wuxi 214011, China ; 2 Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| |
Collapse
|
19
|
Abstract
Epidermolytic ichthyosis (EI) is a rare autosomal dominant genodermatosis that presents at birth as a bullous disease, followed by a lifelong ichthyotic skin disorder. Essentially, it is a defective keratinization caused by mutations of keratin 1 (KRT1) or keratin 10 (KRT10) genes, which lead to skin fragility, blistering, and eventually hyperkeratosis. Successful management of EI in the newborn period can be achieved through a thoughtful, directed, and interdisciplinary or multidisciplinary approach that encompasses family support. This condition requires meticulous care to avoid associated morbidities such as infection and dehydration. A better understanding of the disrupted barrier protection of the skin in these patients provides a basis for management with daily bathing, liberal emollients, pain control, and proper nutrition as the mainstays of treatment. In addition, this case presentation will include discussions on the pathophysiology, complications, differential diagnosis, and psychosocial and ethical issues.
Collapse
|
20
|
Abstract
White sponge nevus (WSN) in the oral mucosa is a rare autosomal dominant genetic disease. The involved mucosa is white or greyish, thickened, folded and spongy. The genes associated with WSN include mutant cytokeratin keratin 4 (KRT4) and keratin 13 (KRT13). In recent years, new cases of WSN and associated mutations have been reported. Here, we summarise the recent progress in our understanding of WSN, including clinical reports, genetics, animal models, treatment, pathogenic mechanisms and future directions. Gene-based diagnosis and gene therapy for WSN may become available in the near future and could provide a reference and instruction for treating other KRT-associated diseases.
Collapse
|
21
|
|
22
|
Bilousova G, Roop DR. Induced pluripotent stem cells in dermatology: potentials, advances, and limitations. Cold Spring Harb Perspect Med 2014; 4:a015164. [PMID: 25368014 DOI: 10.1101/cshperspect.a015164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology.
Collapse
Affiliation(s)
- Ganna Bilousova
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
23
|
Ke HP, Jiang HL, Lv YS, Huang YZ, Liu RR, Chen XL, Du ZF, Luo YQ, Xu CM, Fan QH, Zhang XN. KRT9 gene mutation as a reliable indicator in the prenatal molecular diagnosis of epidermolytic palmoplantar keratoderma. Gene 2014; 546:124-8. [PMID: 24862219 DOI: 10.1016/j.gene.2014.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/23/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
Abstract
Epidermolytic palmoplantar keratoderma (EPPK) is the most frequent form of such keratodermas. It is inherited in an autosomal dominant pattern and is clinically characterized by diffuse yellowish thickening of the skin on the palms and soles with erythematous borders during the first weeks or months after birth. EPPK is generally caused by mutations of the KRT9 gene. More than 26 KRT9 gene mutations responsible for EPPK have been described (Human Intermediate Filament Database, www.interfil.org), and many of these variants are located within the highly-conserved coil 1A region of the α-helical rod domain of keratin 9. Unfortunately, there is no satisfactory treatment for EPPK. Thus, prenatal molecular diagnosis or pre-pregnancy diagnosis is crucial and benefits those affected who seek healthy descendants. In the present study, we performed amniotic fluid-DNA-based prenatal testing for three at-risk pregnant EPPK women from three unrelated southern Chinese families who carried the KRT9 missense mutations p.Arg163Trp and p.Arg163Gln, and successfully helped two families to bear normal daughters. We suggest that before the successful application of preimplantation genetic diagnosis (PGD), and noninvasive prenatal diagnosis of EPPK that analyzes fetal cells or cell-free DNA in maternal blood, prenatal genetic diagnosis by amniocentesis or chorionic villus sampling (CVS) offers a quite acceptable option for EPPK couples-at-risk to avoid the birth of affected offspring, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Hai-Ping Ke
- Department of Biology, Ningbo College of Health Sciences, Ningbo, Zhejiang Province 315100, China; Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Hu-Ling Jiang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Ya-Su Lv
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yi-Zhou Huang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Rong-Rong Liu
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiao-Ling Chen
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Zhen-Fang Du
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yu-Qin Luo
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Chen-Ming Xu
- Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Qi-Hui Fan
- Department of Gynaecology and Obstetrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province 315012, China
| | - Xian-Ning Zhang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
24
|
Cai W, Chen Z, Jiang B, Yu F, Xu P, Wang M, Wan R, Liu J, Xue Z, Yang J, Liu S, Wang X. Keratin 13 mutations associated with oral white sponge nevus in two Chinese families. Meta Gene 2014; 2:374-83. [PMID: 25606422 PMCID: PMC4287858 DOI: 10.1016/j.mgene.2014.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 01/11/2023] Open
Abstract
White sponge nevus (WSN) is an autosomal dominant hereditary disease. Keratin 4 (KRT4) and Keratin 13 (KRT13) gene mutations were involved in the WSN. We recruited two WSN Chinese families, and oral lesion biopsy with hematoxylin and eosin staining showed that patients had significant pathological characteristics. The mutations of KRT4 and KRT13 gene were detected by PCR and direct sequencing. The multiple alignments of KRT13 from 23 diverse species homology analyses were performed by the ClustalW program. The KRT13 expression was measured by Real-Time RT-PCR and Western blot analysis. Sequencing analysis revealed two mutations of KRT13 gene: one mutation was 332T>C and amino acid change was Leu111Pro. Another mutation was 340C>T and amino acid change was Arg114Cys. The sequence of KRT13 was highly conserved. Real-Time RT-PCR and Western blot analysis results show that KRT13 expression level is lower in patient but keep almost no change in mRNA level. When cells were treated with MG132, KRT13 protein level was increased and kept almost the same in normal and patient cells. We identified two heritable mutations in the KRT13 gene, which were associated with the development of WSN. The abnormal degradation of KRT13 protein of WSN may probably associate with the abnormal ubiquitination process.
Collapse
Affiliation(s)
- Wenping Cai
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Zhenghu Chen
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Beizhan Jiang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P. R. China
| | - Fang Yu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P. R. China
| | - Ping Xu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P. R. China
| | - Mu Wang
- School of Stomatology, Central South University, Xiangya Road, Changsha 410078, P. R. China
| | - Rui Wan
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Junjun Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Jianhua Yang
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Shangfeng Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| | - Xiaoping Wang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
25
|
O′Neill DG, Church DB, McGreevy PD, Thomson PC, Brodbelt DC. Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS One 2014; 9:e90501. [PMID: 24594665 PMCID: PMC3942437 DOI: 10.1371/journal.pone.0090501] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 01/17/2023] Open
Abstract
Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein.
Collapse
Affiliation(s)
- Dan G. O′Neill
- Veterinary Epidemiology, Economics and Public Health, Royal Veterinary College, London, United Kingdom
| | - David B. Church
- Small Animal Medicine and Surgery Group, Royal Veterinary College, London, United Kingdom
| | - Paul D. McGreevy
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Peter C. Thomson
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Dave C. Brodbelt
- Veterinary Epidemiology, Economics and Public Health, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
26
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
27
|
Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol 2013; 134:754-763. [PMID: 23962810 PMCID: PMC3923277 DOI: 10.1038/jid.2013.356] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 11/12/2022]
Abstract
Keratin 9 (K9) is a type I intermediate filament protein whose expression is confined to the suprabasal layers of the palmoplantar epidermis. Although mutations in the K9 gene are known to cause epidermolytic palmoplantar keratoderma, a rare dominant-negative skin disorder, its functional significance is poorly understood. To gain insight into the physical requirement and importance of K9, we generated K9-deficient (Krt9−/−) mice. Here, we report that adult Krt9−/−mice develop calluses marked by hyperpigmentation that are exclusively localized to the stress-bearing footpads. Histological, immunohistochemical, and immunoblot analyses of these regions revealed hyperproliferation, impaired terminal differentiation, and abnormal expression of keratins K5, K14, and K2. Furthermore, the absence of K9 induces the stress-activated keratins K6 and K16. Importantly, mice heterozygous for the K9-null allele (Krt9+/−) show neither an overt nor histological phenotype, demonstrating that one Krt9 allele is sufficient for the developing normal palmoplantar epidermis. Together, our data demonstrate that complete ablation of K9 is not tolerable in vivo and that K9 is required for terminal differentiation and maintaining the mechanical integrity of palmoplantar epidermis.
Collapse
|
28
|
Abstract
Nail alterations are frequently seen in daily practice, but they are often difficult to interpret. Basic knowledge of the anatomy and biology of the nail facilitates their diagnosis as this frequently allows their development and morphology to be explained. The following short review gives hints at the most important infections, inflammatory nail diseases and tumors.
Collapse
Affiliation(s)
- E Haneke
- Dermatologische Praxis Dermaticum, Schlippehof 5, 79110, Freiburg, Deutschland.
| |
Collapse
|
29
|
Kykalos S, Dimitroulis D, Ntikoudi E, Karayiannakis A. The clinical significance of apoptosis and M30 expression in colonic cancer progression. J Recept Signal Transduct Res 2013; 33:255-9. [DOI: 10.3109/10799893.2013.802804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Wu J, Lin Y, Xu W, Li Z, Fan W. A mutation in the type II hair keratin KRT86 gene in a Han family with monilethrix. J Biomed Res 2013; 25:49-55. [PMID: 23554671 PMCID: PMC3596676 DOI: 10.1016/s1674-8301(11)60006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/12/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Monilethrix, a congenital disease of hair, is usually associated with mutations in keratin genes, like KRT81, KRT83 and KRT86. We conducted this study to investigate the mutation of type II human basic hair keratin hHb/KRT gene in a Han family with monilethrix and obtain information for potential pathogenic mechanism study of monilethrix. Peripheral blood samples were drawn for genomic DNA detection. Exon 1 and exon 7 of the KRT81, KRT83 and KRT86 genes were amplified by PCR. All PCR products were sequenced directly using an ABI 310 DNA sequencer. These sequences were aligned with the standard sequences in GenBank using the BLAST software. PCR products were digested with restriction endonuclease and restriction fragment length polymorphism (RFLP) analysis was performed. In this study, we identified one novel mutation, which is a heterozygous transitional mutation of G→A at position 1,289 in exon 7 of the KRT86 gene [R430Q (KRT86)]. RFLP assays for the novel mutation excluded the possibility of polymorphism. The R430Q mutation of the KRT86 gene may be pathogenic for monilethrix. Meanwhile, we did not find any novel mutation or recurrent mutation in exons 1 and 7 of KRT81 and KRT83 and exon 1 of KRT86. There is a potential pathogenic gene in the subjects and our results expand the spectrum of mutations in the hHb6 gene.
Collapse
Affiliation(s)
- Jin Wu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
31
|
Sung JY, Oh SW, Kim SE, Kim SC. Mild phenotype of epidermolytic hyperkeratosis mimicking ichthyosis bullosa of Siemens is related to specific mutation in 2B domain of KRT1. J Dermatol Sci 2013; 70:220-2. [PMID: 23623204 DOI: 10.1016/j.jdermsci.2013.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
|
32
|
Dermatoscopy of hair shaft disorders. J Am Acad Dermatol 2013; 68:473-81. [DOI: 10.1016/j.jaad.2012.06.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/30/2012] [Accepted: 06/10/2012] [Indexed: 01/15/2023]
|
33
|
Differentiation of human induced pluripotent stem cells into a keratinocyte lineage. Methods Mol Biol 2013; 1195:1-12. [PMID: 24510784 DOI: 10.1007/7651_2013_64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) provides an opportunity to develop novel personalized treatment options for numerous diseases and to advance current approaches for cell-based drug discoveries and disease modeling. The ability to differentiate iPSCs into relevant cell types is an important prerequisite for the successful development of iPSC-based treatment and modeling strategies. Here, we describe a protocol for the efficient differentiation of human iPSCs into functional keratinocytes. The protocol employs treating iPSCs with retinoic acid and bone-morphogenetic protein-4 to induce differentiation toward a keratinocyte lineage, which is then followed by the growth of differentiated iPSCs on collagen type I- and collagen type IV-coated dishes to enrich for iPSC-derived keratinocytes.
Collapse
|
34
|
Ang-Tiu CU, Nicolas MEO. Ichthyosis bullosa of Siemens. J Dermatol Case Rep 2012; 6:78-81. [PMID: 23091584 DOI: 10.3315/jdcr.2012.1107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/27/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ichthyosis bullosa of Siemens (IBS) is a rare hyperkeratotic blistering condition caused by mutations in keratin 2e gene. MAIN OBSERVATIONS This is a case of a 18-year-old female with generalized blisters, erosions and thickened skin since she was 3 months old. As she aged, there was decrease in development of blisters and erosions, with accompanying increase in severity of hyperkeratosis. Skin punch biopsy showed overlying basket weave hyperkeratosis and acanthosis, prominent vacuolization of the granular cell layer, and intraepidermal blisters with the split at the granular layer. The patient was treated with emollients, with marked improvement. CONCLUSIONS Mutations in the different keratin genes have been shown to underlie a wide range of disorders of keratinization. Epidermolytic hyperkeratosis and ichthyosis bullosa of Siemens are distinct disorders with mutations in different genes. Although molecular genetic testing should ideally be done for confirmation of diagnosis, ichthyosis bullosa of Siemens could be diagnosed in this patients based on key clinical characteristics.
Collapse
Affiliation(s)
- Charlene U Ang-Tiu
- Section of Dermatology, Department of Medicine, UP-Philippine General Hospital, Manila, Philippines
| | | |
Collapse
|
35
|
Ng CS, Wu P, Foley J, Foley A, McDonald ML, Juan WT, Huang CJ, Lai YT, Lo WS, Chen CF, Leal SM, Zhang H, Widelitz RB, Patel PI, Li WH, Chuong CM. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet 2012; 8:e1002748. [PMID: 22829773 PMCID: PMC3400578 DOI: 10.1371/journal.pgen.1002748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/19/2012] [Indexed: 12/15/2022] Open
Abstract
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. With the availability of a sequenced chicken genome, the reservoir of variant plumage genes found in domestic chickens can provide insight into the molecular mechanisms underlying the diversity of feather forms. In this paper, we identify the molecular basis of the distinctive frizzle (F) feather phenotype that is caused by a single autosomal incomplete dominant gene in which heterozygous individuals show less severe phenotypes than homozygous individuals. Feathers in frizzle chickens curve backward. We used computer-assisted analysis to establish that the rachis of the frizzle feather was irregularly kinked and more severely bent than normal. Moreover, microscopic evaluation of regenerating feathers found reduced proliferating cells that give rise to the frizzle rachis. Analysis of a pedigree of frizzle chickens showed that the phenotype is linked to two single-nucleotide polymorphisms in a cluster of keratin genes within the linkage group E22C19W28_E50C23. Sequencing of the gene cluster identified a 69-base pair in-frame deletion of the protein coding sequence of the α-keratin-75 gene. Forced expression of the mutated gene in normal chickens produced a twisted rachis. Although chicken feathers are primarily composed of beta-keratins, our findings indicate that alpha-keratins have an important role in establishing the structure of feathers.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Anne Foley
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Merry-Lynn McDonald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wen-Tau Juan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- Department of Animal Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Suzanne M. Leal
- Department of Dermatology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, Michigan, United States of America
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pragna I. Patel
- Institute for Genetic Medicine and Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (W-HL); (C-MC)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (W-HL); (C-MC)
| |
Collapse
|
36
|
De Cruz R, Horev L, Green J, Babay S, Sladden M, Zlotogorski A, Sinclair R. A novel monilethrix mutation in coil 2A of KRT86 causing autosomal dominant monilethrix with incomplete penetrance. Br J Dermatol 2012; 166 Suppl 2:20-6. [DOI: 10.1111/j.1365-2133.2012.10861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Leslie Pedrioli DM, Fu DJ, Gonzalez-Gonzalez E, Contag CH, Kaspar RL, Smith FJ, Irwin McLean W. Generic and Personalized RNAi-Based Therapeutics for a Dominant-Negative Epidermal Fragility Disorder. J Invest Dermatol 2012; 132:1627-35. [DOI: 10.1038/jid.2012.28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Rosenblum EB, Poorten TJ, Settles M, Murdoch GK. Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 2012; 21:3110-20. [PMID: 22332717 DOI: 10.1111/j.1365-294x.2012.05481.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And do different host species have a similar response to Bd infection? Here, we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely related endangered frog species (Rana muscosa and Rana sierrae) and analyse whole genome expression profiles from frogs in controlled Bd infection experiments. We integrate the Rana results with a comparable data set from a more distantly related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.
Collapse
|
39
|
Makino T, Furuichi M, Asano Y, Shimizu T. Novel mutation of the KRT 10 gene in a Japanese patient with epidermolytic hyperkeratosis. J Dermatol 2011; 39:87-9. [PMID: 21463361 DOI: 10.1111/j.1346-8138.2011.01234.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Mao L, Yang P, Hou S, Li F, Kijlstra A. Label-free proteomics reveals decreased expression of CD18 and AKNA in peripheral CD4+ T cells from patients with Vogt-Koyanagi-Harada syndrome. PLoS One 2011; 6:e14616. [PMID: 21297967 PMCID: PMC3030555 DOI: 10.1371/journal.pone.0014616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/03/2011] [Indexed: 01/29/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) syndrome is a systemic autoimmune disease. CD4+ T cells have been shown to be involved in autoimmune diseases including VKH syndrome. To screen aberrantly expressed membrane proteins in CD4+ T cell from patients with active VKH syndrome, blood samples were taken from five patients with active VKH syndrome and five healthy individuals. A label-free quantitative proteomic strategy was used to identify the differently expressed proteins between the two groups. The results revealed that the expression of 102 peptides was significantly altered (p<0.05) between two groups and matched amino acid sequences of proteins deposited in the international protein index (ipi.HUMAN.v3.36.fasta). The identified peptides corresponded to 64 proteins, in which 30 showed more than a 1.5-fold difference between the two groups. The decreased expression of CD18 and AKNA transcription factor (AKNA), both being three-fold lower than controls in expression identified by the label-free method, was further confirmed in an additional group of five active VKH patients and six normal individuals using the Western blot technique. A significantly decreased expression of CD18 and AKNA suggests a role for both proteins in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Liming Mao
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peizeng Yang
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- * E-mail:
| | - Shengping Hou
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Fuzhen Li
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Aize Kijlstra
- The Department of Ophthalmology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
41
|
Mizuno Y, Fujita Y, Takatama M, Okamoto K. Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis. J Neurol Sci 2011; 302:14-8. [PMID: 21241994 DOI: 10.1016/j.jns.2010.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/13/2022]
Abstract
Peripherin is a type III intermediate filament protein expressed with low levels in spinal motor neurons. Amyotrophic lateral sclerosis (ALS) is characterized by the presence of Bunina bodies, skein-like inclusions, and Lewy body-like inclusions (LBLIs) in the remaining anterior horn cells, where the first and third structures are detected by Hematoxylin-Eosin (H & E) staining. We examined paraffin sections of lumbar spinal cords from six ALS patients, using H & E staining and immunostaining for human peripherin. The results demonstrated that there were a total of 73 anterior horn cells containing one or more Bunina bodies, and that twelve of these cells (approximately 16.4%) demonstrated peripherin-positive Bunina bodies. In fact, some part of chain-like Bunina bodies showed peripherin-positive reaction, although there were a much higher number of non-immunoreacitive Bunina bodies in each neuron. LBLIs were clearly immunostained for peripherin corresponding to the core, while some of them showed different types of immunoreactivities due to oblique cutting of inclusions. Our findings suggest that although the mechanisms underlying peripherin co-localization in Bunina bodies are unknown, peripherin could be involved in forming these inclusions. Furthermore, following cystatin C and transferrin, peripherin is the third most prevalent protein that partially localizes in Bunina bodies.
Collapse
Affiliation(s)
- Yuji Mizuno
- Department of Neurology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | |
Collapse
|
42
|
Hickerson RP, Leachman SA, Pho LN, Gonzalez-Gonzalez E, Smith FJD, McLean WHI, Contag CH, Leake D, Milstone LM, Kaspar RL. Development of quantitative molecular clinical end points for siRNA clinical trials. J Invest Dermatol 2010; 131:1029-36. [PMID: 21191405 DOI: 10.1038/jid.2010.372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism that results in specific gene inhibition at the mRNA level. The discovery that short interfering RNAs (siRNAs) are selective, potent, and can largely avoid immune surveillance has resulted in keen interest to develop these inhibitors as therapeutics. A single nucleotide-specific siRNA (K6a_513a.12, also known as TD101) was recently evaluated in a phase 1b clinical trial for the rare skin disorder, pachyonychia congenita (PC). To develop a clinical trial molecular end point for this type of trial, methods were developed to: (1) isolate total RNA containing amplifiable mRNA from human skin and callus material; (2) quantitatively distinguish the single-nucleotide mutant mRNA from wild-type K6a mRNA in both patient-derived keratinocytes and patient callus; and (3) demonstrate that repeated siRNA treatment results in sustained inhibition of mutant K6a mRNA in patient-derived keratinocyte cultures. These methods allow noninvasive sampling and monitoring of gene expression from patient-collected shavings and may be useful in evaluating the effectiveness of RNAi-based therapeutics, including inhibitors that specifically target single-nucleotide mutations.
Collapse
|
43
|
Gandolfi B, Outerbridge CA, Beresford LG, Myers JA, Pimentel M, Alhaddad H, Grahn JC, Grahn RA, Lyons LA. The naked truth: Sphynx and Devon Rex cat breed mutations in KRT71. Mamm Genome 2010; 21:509-15. [PMID: 20953787 PMCID: PMC2974189 DOI: 10.1007/s00335-010-9290-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/13/2010] [Indexed: 01/25/2023]
Abstract
Hair is a unique structure, characteristic of mammals, controlling body homeostasis, as well as cell and tissue integration. Previous studies in dog, mouse, and rat have identified polymorphisms in Keratin 71 (KRT71) as responsible for the curly/wavy phenotypes. The coding sequence and the 3′ UTR of KRT71 were directly sequenced in randomly bred and pedigreed domestic cats with different pelage mutations, including hairless varieties. A SNP altering a splice site was identified in the Sphynx breed and suggested to be the hairless (hr) allele, and a complex sequence alteration, also causing a splice variation, was identified in the Devon Rex breed and suggested to be the curly (re) allele. The polymorphisms were genotyped in approximately 200 cats. All the Devon Rex were homozygous for the complex alterations and most of the Sphynx were either homozygous for the hr allele or compound heterozygotes with the Devon-associated re allele, suggesting that the phenotypes are a result of the identified SNPs. Two Sphynx carrying the proposed hr mutation did not carry the Devon-associated alteration. No other causative mutations for eight different rexoid and hairless cat phenotypes were identified. The allelic series KRT71+ > KRT71hr > KRT71re is suggested.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Catherine A. Outerbridge
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California—Davis, Davis, CA 95616 USA
| | - Leslie G. Beresford
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jeffrey A. Myers
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Monica Pimentel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jennifer C. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| |
Collapse
|
44
|
Abstract
Keratins are the intermediate filament (IF)-forming proteins of epithelial cells. Since their initial characterization almost 30 years ago, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Keratins are obligate heteropolymers and, similarly to other IFs, they contain a dimeric central α-helical rod domain that is flanked by non-helical head and tail domains. The 10-nm keratin filaments participate in the formation of a proteinaceous structural framework within the cellular cytoplasm and, as such, serve an important role in epithelial cell protection from mechanical and non-mechanical stressors, a property extensively substantiated by the discovery of human keratin mutations predisposing to tissue-specific injury and by studies in keratin knockout and transgenic mice. More recently, keratins have also been recognized as regulators of other cellular properties and functions, including apico-basal polarization, motility, cell size, protein synthesis and membrane traffic and signaling. In cancer, keratins are extensively used as diagnostic tumor markers, as epithelial malignancies largely maintain the specific keratin patterns associated with their respective cells of origin, and, in many occasions, full-length or cleaved keratin expression (or lack there of) in tumors and/or peripheral blood carries prognostic significance for cancer patients. Quite intriguingly, several studies have provided evidence for active keratin involvement in cancer cell invasion and metastasis, as well as in treatment responsiveness, and have set the foundation for further exploration of the role of keratins as multifunctional regulators of epithelial tumorigenesis.
Collapse
Affiliation(s)
- V Karantza
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
45
|
Trost A, Desch P, Wally V, Haim M, Maier RH, Reitsamer HA, Hintner H, Bauer JW, Onder K. Aberrant heterodimerization of keratin 16 with keratin 6A in HaCaT keratinocytes results in diminished cellular migration. Mech Ageing Dev 2010; 131:346-53. [PMID: 20403371 DOI: 10.1016/j.mad.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/15/2010] [Accepted: 04/09/2010] [Indexed: 11/28/2022]
Abstract
Keratin filaments form obligatory heterodimers consisting of one type I and one type II keratin that build the intermediate filaments. In keratinocytes, type II keratin 6 (K6) interacts with type I keratin 16 (K16). We previously showed that the intermediate filament protein K16 is up-regulated in aged human skin. Here, we report that there is an obvious imbalance of K16 to K6 mRNA in in vivo and in vitro aging, which possibly leads to cellular effects. To unveil a possible biological function of K16 overexpression we investigated the migration potential of keratinocytes having up-regulated K16 expression in vitro. Two cell lines were established by transfection of human keratinocytes (HaCaT cells) with K16 or control vectors and subsequent fluorescence-activated cell sorting. By performing migration assays we were able to show a 90% reduction in the migration ability of the K16-overexpressing keratinocytes. In addition, a delay in wound closure associated with K16-overexpressing cells was shown by scratch assays. Transient overexpression of K6A in K16-overexpressing keratinocytes partially corrected the cell-migration defect. By real-time PCR we excluded co-regulation of the annotated interaction partner, K6, in the K16 cell line. Finally, we observed a decreased level of tyrosine phosphorylation in K16-overexpressing cells. Taken together, these data highlight the possibility of a physiological role for K6/K16 heterodimers in keratinocyte cell migration, in addition to the heterodimer's known functions in cell differentiation and mechanical resilience.
Collapse
Affiliation(s)
- A Trost
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, A-5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shimomura Y, Wajid M, Weiser J, Kraemer L, Christiano AM. Mutations in the keratin 9 gene in Pakistani families with epidermolytic palmoplantar keratoderma. Clin Exp Dermatol 2009; 35:759-64. [PMID: 19874353 DOI: 10.1111/j.1365-2230.2009.03700.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Keratins are heteropolymeric proteins that form the intermediate filament cytoskeleton in epithelial cells. The common basic structure of all keratins is organized in a central α-helical rod domain flanked by nonhelical, variable head and tail regions. Most mutations in keratins are found in the central α-helical rod domain. Keratin 9 (K9) is expressed only in the suprabasal layers of palmoplantar epidermis. Mutations in the keratin 9 gene (KRT9) have been shown to cause epidermolytic palmoplantar keratoderma (EPPK; OMIM 144200), an autosomal dominant genodermatosis characterized clinically by diffuse hyperkeratosis limited to the palms and soles, and histologically by epidermolysis in suprabasal layers of the epidermis. AIM To elucidate the genetic basis of EPPK in five Pakistani families. METHODS Using microsatellite markers localized to the areas around the type I keratin gene cluster on chromosome 17q21, genotyping of these families was performed, followed by sequencing of the KRT9 gene. RESULTS The analysis resulted in the identification of two novel (p.M157K and p.Y454H) and two recurrent (p.M157T and p.R163Q) mutations in the KRT9 of all five families. All mutations occurred within the highly conserved helix initiation or termination motif of K9. CONCLUSIONS The affected members of all five families possess mutations in the KRT9 gene that severely affect heterodimer formation with the type II keratin partner. The results of our study further underscore the crucial role of K9 protein in the palmoplantar epidermis.
Collapse
Affiliation(s)
- Y Shimomura
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
There is a growing awareness that natural vitamins (with the only exception of pantothenic acid) positively or negatively modulate the synthesis of some cytokines and growth factors in the CNS, and various mammalian cells and organs. As natural vitamins are micronutrients in the human diet, studying their effects can be considered a part of nutritional genomics or nutrigenomics. A given vitamin selectively modifies the synthesis of only a few cytokines and/or growth factors, although the same cytokine and/or growth factor may be regulated by more than one vitamin. These effects seem to be independent of the effects of vitamins as coenzymes and/or reducing agents, and seem to occur mainly at genomic and/or epigenetic level, and/or by modulating NF-kappaB activity. Although most of the studies reviewed here have been based on cultured cell lines, but their findings have been confirmed by some key in vivo studies. The CNS seems to be particularly involved and is severely affected by most avitaminoses, especially in the case of vitamin B(12). However, the vitamin-induced changes in cytokine and growth factor synthesis may initiate a cascade of events that can affect the function, differentiation, and morphology of the cells and/or structures not only in the CNS, but also elsewhere because most natural vitamins, cytokines, and growth factors cross the blood-brain barrier. As cytokines are essential to CNS-immune and CNS-hormone system communications, natural vitamins also interact with these circuits. Further studies of such vitamin-mediated effects could lead to vitamins being used for the treatment of diseases which, although not true avitaminoses, involve an imbalance in cytokine and/or growth factor synthesis.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Laboratory of Neuropathology, 'Città Studi' Department, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.
| |
Collapse
|
48
|
Rosenblum EB, Poorten TJ, Settles M, Murdoch GK, Robert J, Maddox N, Eisen MB. Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 2009; 4:e6494. [PMID: 19701481 PMCID: PMC2727658 DOI: 10.1371/journal.pone.0006494] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022] Open
Abstract
Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd) infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus) tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen) following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing efforts to understand differences in response to Bd between susceptible and resistant frog species and the effects of chytridiomycosis in natural populations.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.
| | | | | | | | | | | | | |
Collapse
|
49
|
Guerra L, Dellambra E, Panacchia L, Paionni E. Tissue Engineering for Damaged Surface and Lining Epithelia: Stem Cells, Current Clinical Applications, and Available Engineered Tissues. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:91-112. [DOI: 10.1089/ten.teb.2008.0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Liliana Guerra
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Elena Dellambra
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Laura Panacchia
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Emanuel Paionni
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| |
Collapse
|
50
|
Pujal J, Huch M, José A, Abasolo I, Rodolosse A, Duch A, Sánchez-Palazón L, Smith FJD, McLean WHI, Fillat C, Real FX. Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells in vitro and in vivo. FASEB J 2009; 23:1366-75. [PMID: 19124560 DOI: 10.1096/fj.08-115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Keratin 7 is expressed in simple epithelia but is expressed at low or undetectable levels in gastrointestinal epithelial cells. In the pancreas, it is present in ductal but not in acinar cells. K7 mRNA is overexpressed in pancreatic cancers. Here we use luciferase reporter assays to analyze the tissue-specific regulatory elements of murine keratin 7 (Krt7) promoter in vitro and in vivo. All elements required for appropriate cell and tissue specificity in reporter assays are present within the Krt7 -234 bp sequence. This fragment appears more selective to pancreatic ductal cells than the Krt19 promoter. GC-rich sequences corresponding to putative Sp1, AP-2 binding sites are essential for in vitro activity. Krt7-LacZ transgenic mice were generated to analyze in vivo activity. Sequences located 1.5 or 0.25 kb upstream of the transcription initiation site drive reporter expression to ductal, but not acinar, cells in transgenic mice. LacZ mRNA was detected in the pancreas as well as in additional epithelial tissues--such as the intestine and the lung--using both promoter constructs. An AdK7Luc adenovirus was generated to assess targeting selectivity in vivo by intravenous injection to immunocompetent mice and in a xenograft model of pancreatic cancer. The -0.25 kb region showed pancreatic selectivity, high activity in pancreatic cancers, and sustained transgene expression in xenografts. In conclusion, the krt7 promoter is useful to target pancreatic ductal adenocarcinoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Judit Pujal
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|