1
|
Contreras-Soto MB, Castro-Del Campo N, Chaidez C, Velázquez-García FE, González-Gómez JP, Martínez-Rodríguez CI, Gaxiola-Montoya J, Castro-Del Campo N. Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70002. [PMID: 39868813 DOI: 10.1002/wer.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025]
Abstract
The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment. This study assessed the microbiological quality of treated wastewater for irrigation and evaluated ozone effectiveness in inactivating C. parvum oocysts. All samples contained Cryptosporidium spp., with 163 to 850 oocysts 100 L-1, and 50% contained viable oocysts. When C. parvum was exposed to different ozone residual concentrations (0.1, 0.8, and 1.3 mg L-1), oocyst viability reduction of 73%, 85%, and 99% and infectivity of 0.8, 1.36, and 2 Log10 was achieved. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, representing absolute counts of infective oocysts after ozone treatment. These findings demonstrate ozone's effectiveness in inactivating C. parvum in treated wastewater, supporting its potential for safe water reuse. PRACTITIONER POINTS: All wastewater samples contained Cryptosporidium spp., with 163 to 850 oocysts per 100 L. Wastewater had 50% contained viable oocysts. Ozone concentrations (0.1, 0.8, 1.3 mg/l) achieved oocyst viability of 73.33%, 85.0%, and 99.4%, respectively. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, respectively for each ozone concentration.
Collapse
Affiliation(s)
- María B Contreras-Soto
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Nohemí Castro-Del Campo
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Flavio E Velázquez-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Jean P González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Célida I Martínez-Rodríguez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Joel Gaxiola-Montoya
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| |
Collapse
|
2
|
Jahne MA, Schoen ME, Garland JL, Nappier SP, Soller JA. Microbial Treatment Targets for Potable and Nonpotable Water Reuse - A Comprehensive Update and Harmonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1175-1181. [PMID: 39877124 PMCID: PMC11770559 DOI: 10.1021/acs.estlett.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Increasing pressures on traditional sources of water have accelerated the adoption of water reuse throughout the world. A key consideration for communities pursuing water reuse is understanding the amount of treatment that is needed to ensure adequate human health protection. Several U.S. EPA documents describe the importance of managing acute microbial risks and highlight the utility of quantitative microbial risk assessment for developing "fit-for-purpose" treatment targets based on the source of water and end-use. However, there are no U.S. federal water reuse regulations and states are currently considering microbial treatment targets for various applications. Previous publications have yet to address this need by using an updated and consistent set of input parameters to present risk-based microbial treatment targets across a wide range of sources of water, end-use applications, and health benchmarks. This work combines the most current modeling inputs and dose-response parameter values to provide probability of infection and disease burden-based microbial treatment targets for untreated municipal wastewater, untreated onsite wastewater, graywater, stormwater, and roof runoff water used for potable reuse, indoor nonpotable use, and landscape irrigation applications.
Collapse
Affiliation(s)
- Michael A Jahne
- United States and DevelopmentEnvironmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Mary E Schoen
- Soller Environmental, Berkeley, California 94703, United States
| | - Jay L Garland
- United States and DevelopmentEnvironmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sharon P Nappier
- United States Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, D.C. 20460, United States
| | | |
Collapse
|
3
|
Skiendzielewski K, Burch T, Stokdyk J, McGinnis S, McLoughlin S, Firnstahl A, Spencer S, Borchardt M, Murphy HM. Two risk assessments: Evaluating the use of indicator HF183 Bacteroides versus pathogen measurements for modelling recreational illness risks in an urban watershed. WATER RESEARCH 2024; 259:121852. [PMID: 38889662 DOI: 10.1016/j.watres.2024.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The purpose of this study was to evaluate the performance of HF183 Bacteroides for estimating pathogen exposures during recreational water activities. We compared the use of Bacteroides-based exposure assessment to exposure assessment that relied on pathogen measurements. We considered two types of recreational water sites: those impacted by combined sewer overflows (CSOs) and those not impacted by CSOs. Samples from CSO-impacted and non-CSO-impacted urban creeks were analysed by quantitative polymerase chain reaction (qPCR) for HF183 Bacteroides and eight human gastrointestinal pathogens. Exposure assessment was conducted two ways for each type of site (CSO-impacted vs. non-CSO impacted): 1) by estimating pathogen concentrations from HF183 Bacteroides concentrations using published ratios of HF183 to pathogens in sewage and 2) by estimating pathogen concentrations from qPCR measurements. QMRA (quantitative microbial risk assessment) was then conducted for swimming, wading, and fishing exposures. Overall, mean risk estimates varied from 0.27 to 53 illnesses per 1,000 recreators depending on exposure assessment, site, activity, and norovirus dose-response model. HF183-based exposure assessment identified CSO-impacted sites as higher risk, and the recommended HF183 risk-based threshold of 525 genomic copies per 100 mL was generally protective of public health at the CSO-impacted sites but was not as protective at the non-CSO-impacted sites. In the context of our urban watershed, HF183-based exposure assessment over- and under-estimated risk relative to exposure assessment based on pathogen measurements, and the etiology of predicted pathogen-specific illnesses differed significantly. Across all sites, the HF183 model overestimated risk for norovirus, adenovirus, and Campylobacter jejuni, and it underestimated risk for E. coli and Cryptosporidium. To our knowledge, this study is the first to directly compare health risk estimates using HF183 and empirical pathogen measurements from the same waterways. Our work highlights the importance of site-specific hazard identification and exposure assessment to decide whether HF183 is applicable for monitoring risk.
Collapse
Affiliation(s)
- K Skiendzielewski
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States.
| | - T Burch
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - J Stokdyk
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S McGinnis
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - S McLoughlin
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - A Firnstahl
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S Spencer
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - M Borchardt
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - H M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States; Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Golomazou E, Mamedova S, Eslahi AV, Karanis P. Cryptosporidium and agriculture: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170057. [PMID: 38242460 DOI: 10.1016/j.scitotenv.2024.170057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cryptosporidiosis is a significant contributor to global foodborne and waterborne disease burden. It is a widespread cause of diarrheal diseases that affect humans and animals worldwide. Agricultural environments can become a source of contamination with Cryptosporidium species through faecal material derived from humans and animals. This review aims to report the main findings of scientific research on Cryptosporidium species related to various agricultural sectors, and highlights the risks of cryptosporidiosis in agricultural production, the contamination sources, the importance of animal production in transmission, and the role of farmed animals as hosts of the parasites. Agricultural contamination sources can cause water pollution in groundwater and different surface waters used for drinking, recreational purposes, and irrigation. The application of contaminated manure, faecal sludge management, and irrigation with inadequately treated water are the main concerns associated with foodborne and waterborne cryptosporidiosis related to agricultural activities. The review emphasizes the public health implications of agriculture concerning the transmission risk of Cryptosporidium parasites and the urgent need for a new concept in the agriculture sector. Furthermore, the findings of this review provide valuable information for developing appropriate measures and monitoring strategies to minimize the risk of infection.
Collapse
Affiliation(s)
- Eleni Golomazou
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446 Volos, Greece
| | - Simuzer Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan & Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50931 Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, 2408 Nicosia, Cyprus.
| |
Collapse
|
5
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Suarez P, Vallejos-Almirall A, Fernández I, Gonzalez-Chavarria I, Alonso J, Vidal G. Identification of Cryptosporidium parvum and Blastocystis hominis subtype ST3 in Cholga mussel and treated sewage: Preliminary evidence of fecal contamination in harvesting area. Food Waterborne Parasitol 2024; 34:e00214. [PMID: 38188968 PMCID: PMC10770711 DOI: 10.1016/j.fawpar.2023.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidium parvum and Blastocystis hominis are foodborne parasites known for causing diarrhea. They accumulate in mussels grown on contaminated water bodies, due to the discharge of treated sewage from sewage treatment plants (STP). Despite this, some countries like Chile do not include these parasites in the control or monitoring of sewage water. The objective of this research was to evaluate the contamination of C. parvum. and B. hominis from treated sewage (disinfected by chlorination) and Cholga mussels in a touristic rural cove from the bay of Concepción. Cholga mussels from commercial stores and a treated sewage sample were analyzed. Cryptosporidium spp. was identified by Ziehl-Neelsen-Staining (ZNS) and C. parvum by direct-immunofluorescence assay (IFA) from ZNS-positive samples. Blastocystis hominis was identified by PCR using locus SSU rDNA. C. parvum and B. hominis subtype ST3 were found in 40% and 45% of Cholga mussel samples, respectively, and both parasites were identified in the treated sewage. Blastocystis hominis SSU rDNA gene alignment from Cholga mussels and treated sewage showed 89% of similarity, indicating that could be the same parasite in both samples. We describe the first evidence of possible contamination with these parasites from treated sewage to Cholga mussel suggesting an environmental contamination with high human risk. Based on these results, further studies will consider all the rural coves and STP from the bay to prevent possible contamination of these parasites.
Collapse
Affiliation(s)
- P. Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A. Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - I. Fernández
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - I. Gonzalez-Chavarria
- Laboratorio de Lipoproteínas y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, Spain
| | - G. Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
| |
Collapse
|
7
|
Boening-Ulman KM, Mikelonis AM, Heckman JL, Calfee MW, Ratliff K, Youn S, Smith JS, Mitchell CE, Hunt WF, Winston RJ. The potential to manage releases of Bacillus anthracis using bioretention and a high flow media filter: Results of simulated runoff testing with tracer spores Bacillus globigii. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120286. [PMID: 38354613 PMCID: PMC11649060 DOI: 10.1016/j.jenvman.2024.120286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.
Collapse
Affiliation(s)
- Kathryn M Boening-Ulman
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA.
| | - Anne M Mikelonis
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - J Lee Heckman
- APTIM Government Solutions, 1600 Gest St., U.S. Environmental Protection Agency Test and Evaluation Facility, Cincinnati, OH, 45204, USA
| | - M Worth Calfee
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Katherine Ratliff
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Sungmin Youn
- Department of Civil Engineering, Marshall University, Huntington, WV, 25755, USA
| | - Joseph S Smith
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| | - Caleb E Mitchell
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - William F Hunt
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - Ryan J Winston
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave., Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Gitter A, Gidley M, Mena KD, Ferguson A, Sinigalliano C, Bonacolta A, Solo-Gabriele H. Integrating microbial source tracking with quantitative microbial risk assessment to evaluate site specific risk based thresholds at two South Florida beaches. Front Microbiol 2023; 14:1210192. [PMID: 37901823 PMCID: PMC10602684 DOI: 10.3389/fmicb.2023.1210192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Quantitative microbial risk assessment (QMRA) can be used to evaluate health risks associated with recreational beach use. This study developed a site-specific risk assessment using a novel approach that combined quantitative PCR-based measurement of microbial source tracking (MST) genetic markers (human, dog, and gull fecal bacteria) with a QMRA analysis of potential pathogen risk. Water samples (n = 24) from two recreational beaches were collected and analyzed for MST markers as part of a broader Beach Exposure And Child Health Study that examined child behavior interactions with the beach environment. We report here the measurements of fecal bacteria MST markers in the environmental DNA extracts of those samples and a QMRA analysis of potential health risks utilizing the results from the MST measurements in the water samples. Human-specific Bacteroides was enumerated by the HF183 Taqman qPCR assay, gull-specific Catellicoccus was enumerated by the Gull2 qPCR assay, and dog-specific Bacteroides was enumerated by the DogBact qPCR assay. Derived reference pathogen doses, calculated from the MST marker concentrations detected in recreational waters, were used to estimate the risk of gastrointestinal illness for both children and adults. Dose-response equations were used to estimate the probability of the risk of infection (Pinf) per a swimming exposure event. Based on the QMRA simulations presented in this study, the GI risk from swimming or playing in water containing a mixture of human and non-human fecal sources appear to be primarily driven by the human fecal source. However, the estimated median GI health risk for both beaches never exceeded the U.S. EPA risk threshold of 32 illnesses per 1,000 recreation events. Our research suggests that utilizing QMRA together with MST can further extend our understanding of potential recreational bather risk by identifying the source contributing the greatest risk in a particular location, therefore informing beach management responses and decision-making.
Collapse
Affiliation(s)
- Anna Gitter
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Maribeth Gidley
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Anthony Bonacolta
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
9
|
Siwak AM, Baker PG, Dube A. Biosensors as early warning detection systems for waterborne Cryptosporidium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:615-630. [PMID: 37578878 PMCID: wst_2023_229 DOI: 10.2166/wst.2023.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Collapse
Affiliation(s)
- Andrea M Siwak
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa E-mail:
| | - Priscilla G Baker
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| |
Collapse
|
10
|
Lee U, Jang ES, Lee S, Kim HJ, Kang CW, Cho M, Lee J. Near dissolved organic matter microfiltration (NDOM MF) coupled with UVC LED disinfection to maximize the efficiency of water treatment for the removal of Giardia and Cryptosporidium. WATER RESEARCH 2023; 233:119731. [PMID: 36822110 DOI: 10.1016/j.watres.2023.119731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microfiltration (MF) membranes with a mean pore size same as or smaller than 0.45 µm have been typically used to separate pathogenic protozoa in water since materials larger than 0.45 µm are considered particulates. However, 0.45 µm is too small to separate protozoa which are 4-6 µm (Cryptosporidium oocyst) or 8-15 µm (Giardia cyst) in size. In this study, we optimized the mean pore size of MF membranes to maximize the producibility and guarantee a high removal rate simultaneously and proposed the membrane filtration using an MF membrane with an optimum mean pore size larger than but close to dissolved organic matter (DOM), which is called near DOM MF (NDOM MF). According to the MF test using polystyrene surrogate beads with diameters of 3 and 8 µm, an MF membrane with a 0.8 µm mean pore size was the best in that it showed 52% to 146% higher water fluxes than a 0.45 µm MF membrane while maintaining the removal rate at 3-4 log. It was also the case for a low-temperature MF test, revealing the NDOM MF is highly effective regardless of temperature changes. Lastly, we tried to find the possibility of combining the NDOM MF with disinfection by an ultraviolet light emitting diode (UVC LED) to further guarantee the high quality of treated water while providing high process efficiency.
Collapse
Affiliation(s)
- Uje Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Eun-Suk Jang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Somin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Hee-Jun Kim
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Chun-Won Kang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea.
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
11
|
Strokal M, Strokal V, Kroeze C. The future of the Black Sea: More pollution in over half of the rivers. AMBIO 2023; 52:339-356. [PMID: 36074247 PMCID: PMC9453707 DOI: 10.1007/s13280-022-01780-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The population in the Black Sea region is expected to decline in the future. However, a better understanding of how river pollution is affected by declining trends in population and increasing trends in economic developments and urbanization is needed. This study aims to quantify future trends in point-source emissions of nutrients, microplastics, Cryptosporidium, and triclosan to 107 rivers draining into the Black Sea. We apply a multi-pollutant model for 2010, 2050, and 2100. In the future, over half of the rivers will be more polluted than in 2010. The population in 74 sub-basins may drop by over 25% in our economic scenario with poor wastewater treatment. Over two-thirds of the people will live in cities and the economy may grow 9-fold in the region. Advanced wastewater treatment could minimize trade-offs between economy and pollution: our Sustainability scenario projects a 68-98% decline in point-source pollution by 2100. Making this future reality will require coordinated international efforts.
Collapse
Affiliation(s)
- Maryna Strokal
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Vita Strokal
- National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kiev, 03041 Ukraine
| | - Carolien Kroeze
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Xiao D, Wang N, Chen S, Wang S, Yuan X, Fan W, Huo M. Synergism in sequential inactivation of Cryptosporidium parvum with trypsin and UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8354-8362. [PMID: 36445526 DOI: 10.1007/s11356-022-24408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium, a protozoan parasite, in wastewater presents a major public health concern for water safety. However, bactericidal efficiencies of conventional disinfection methods towards Cryptosporidium oocysts are still hampered owing to the presence of their thick outer wall. In this study, we present a novel UV inactivation process where the efficiency has been significantly enhanced by addition of a trypsin pretreatment stage. Notably, inactivation (log-reduction) of oocysts was noted to be 73.75-294.72% higher than that obtained by UV irradiation alone, under identical conditions. Experimental observations and supporting mechanistic analyses suggest that trypsin led to cleavage of the protein layers on the oocyst wall, facilitating penetration of UV radiation into the oocysts leading to degradation of their genomic DNA (gDNA). The dissociative effect of trypsin on the oocyst wall was indicated by the fact that 64.50% of oocysts displayed early apoptosis after trypsinization. Imaging by scanning electron microscopy indicated that this combined treatment led to substantial disruption of the oocyst coat, deforming their shape. This resulted in the release of cellular proteins and gDNA, their concentrations in bulk solution increasing by 1.22-8.60 times. As UV irradiation time was prolonged, gDNA was degraded into smaller fragments with lower molecular masses. Both laddering and diffuse smear patterns in gel analysis indicated significantly detrimental effects on gDNA and viability of oocysts. Overall, this study demonstrated enhancement of UV inactivation of Cryptosporidium oocysts by trypsin and explored the underlying mechanisms for the process.
Collapse
Affiliation(s)
- Dan Xiao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Nan Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, China
| | - Shiheng Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Siyue Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangyi Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Wei Fan
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
13
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
14
|
Amoah ID, Kumari S, Bux F. A probabilistic assessment of microbial infection risks due to occupational exposure to wastewater in a conventional activated sludge wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156849. [PMID: 35728649 DOI: 10.1016/j.scitotenv.2022.156849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pathogens during wastewater treatment could result in significant health risks. In this paper, a probabilistic approach for assessing the risks of microbial infection for workers in an activated sludge wastewater treatment plant is presented. A number of exposure routes were modelled, including hand-to-mouth and droplet ingestion of untreated wastewater, droplet ingestion and inhalation of aerosols after secondary treatment, and ingestion of sludge during drying. Almost all workers exposed to untreated wastewater could be infected with the three selected potential pathogens of pathogenic E. coli, Norovirus and Cryptosporidium spp. Hand-to-mouth ingestion is the single most significant route of exposure at the head of works. There is also a risk of infections resulting from ingestion of droplets or inhalation of aerosols at the aeration tanks or contaminated hands at the clarifiers during secondary wastewater treatment. For sludge, the risks of infection with Norovirus was found to be the highest due to accidental ingestion (median risks of 2.2 × 10-2(±3.3 × 10-3)). Regardless of the point and route of exposure, Norovirus and Cryptosporidium spp. presented the highest risks. The study finds that occupational exposure to wastewater at wastewater treatment plants can result in significant viral and protozoan infections. This risk assessment framework can be used to establish and measure the success of risk reduction measures in wastewater treatment plants. These measures could include the use of personal protective equipment and adherence to strict personal hygiene.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
15
|
Ladeia WA, Martins FDC, Nino BDSL, Silvério ADC, da Silva AC, Ossada R, da Silva DA, Garcia JL, Freire RL. High occurrence of viable forms of Cryptosporidium and Giardia in domestic sewage from an agricultural region of Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:1405-1415. [PMID: 36170194 DOI: 10.2166/wh.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cryptosporidium and Giardia are the main etiologies of waterborne outbreaks caused by protozoa. These parasites are commonly detected in wastewater; however, there is little knowledge about the concentration of viable forms in treated sewage, mainly in small communities. To understand more about the presence of viable oocysts and cysts in domestic sewage, we monitored the affluent and effluent of a wastewater treatment plant (WWTP) in inner-city Brazil. Ten samplings and seven follow-ups were performed in 2020. Samples were concentrated by centrifugation, filtration and purified by fluctuation. Viability was accessed by propidium-monoazide (PMA) associated with nPCR and qPCR. Both viable protozoa were detected in all raw sewage samples (average: 438.5 viable oocysts/L). Regarding treated sewage, Cryptosporidium was detected in all of the samples (average: 92.8 viable oocysts/L) and Giardia was detected in 70% with viable cysts in 30%. Considering the follow-ups, 31.17% of Cryptosporidium viable oocysts remained in the effluent after the treatment. High amounts of Cryptosporidium and a high frequency of Giardia were detected, therefore both arrived at WWTP and were discharged into the river. These alert the presence of agro-industrial effluents into domestic sewage and demonstrated the effectiveness of the concentration technique for monitoring protozoa in wastewater.
Collapse
Affiliation(s)
- Winni Alves Ladeia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Felippe Danyel Cardoso Martins
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Beatriz de Souza Lima Nino
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Arielle da Cunha Silvério
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Ana Clécia da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Raul Ossada
- Preventive Veterinary Medicine and Animal Health Department, Veterinary Medicine and Zootechnics College, São Paulo University, Professor Orlando M de Paiva Avenue, 87, São Paulo 05508-270, Brazil
| | - Douglas Aparecido da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - João Luis Garcia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Roberta Lemos Freire
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| |
Collapse
|
16
|
Khan NU, Usman T, Sarwar MS, Ali H, Gohar A, Asif M, Rabbani F, Khan RU, Sultana N, Khan NA, Mobashar M, Shah AA, Wanapat M. The prevalence, risk factors analysis and evaluation of two diagnostic techniques for the detection of Cryptosporidium infection in diarrheic sheep from Pakistan. PLoS One 2022; 17:e0269859. [PMID: 35802622 PMCID: PMC9269430 DOI: 10.1371/journal.pone.0269859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Cryptosporidium spp. is recognized as an opportunistic zoonotic parasite that infects humans as well as wild and domestic animals. This enteric protozoan is a major cause of diarrhea in humans and animals and often result in death due to severe dehydration. The present study was designed to investigate the prevalence, identification of various risk factors and evaluation of sensitivity of the two diagnostic techniques for rapid and correct detection of Cryptosporidium infection in diarrheic sheep in Pakistan.
Methods
A total of 360 fecal samples were collected and processed for detection of Cryptosporidium infection after proper preservation. These samples were properly stained with modified Ziehl-Neelsen acid staining and then examined under simple microscope at 100x magnification for confirmation of Cryptosporidium oocysts. The same samples were again processed through simple PCR for confirmation of the Cryptosporidium spp.
Results
The age wise prevalence was detected through simple microscopy and PCR. We found highest prevalence at the age of ≤1 year followed by 1–2 years of age while the lowest prevalence was recorded at the age of ≥ 2–3 years of sheep and found significant difference between different ages (P<0.05). The sex wise prevalence showed the highest prevalence in male (♂) animals detected compared to female (♀). The overall prevalence was detected 27.08% and 18.80% through PCR and simple microscopy, respectively, and significant difference between two diagnostic techniques were observed (P<0.05). Considering the seasonality, the highest prevalence was recorded through simple microscopy in autumn, summer, and spring, while the lowest in winter. These results were confirmed through PCR.
Conclusion
It was concluded that molecular detection is the most efficient, specific and sensitive technique for detection of Cryptosporidium infection than simple microscopy. Moreover sheep is the major potential source of infection to other wild and domestic animals including humans.
Collapse
Affiliation(s)
- Naimat Ullah Khan
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Tahir Usman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mian Saeed Sarwar
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazrat Ali
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ali Gohar
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Asif
- Institute of Continuing Education and Extension, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Fazli Rabbani
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Nighat Sultana
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Assar Ali Shah
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (AAS); (MW)
| | - Metha Wanapat
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (AAS); (MW)
| |
Collapse
|
17
|
Díaz-Gavidia C, Barría C, Weller DL, Salgado-Caxito M, Estrada EM, Araya A, Vera L, Smith W, Kim M, Moreno-Switt AI, Olivares-Pacheco J, Adell AD. Humans and Hoofed Livestock Are the Main Sources of Fecal Contamination of Rivers Used for Crop Irrigation: A Microbial Source Tracking Approach. Front Microbiol 2022; 13:768527. [PMID: 35847115 PMCID: PMC9279616 DOI: 10.3389/fmicb.2022.768527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022] Open
Abstract
Freshwater bodies receive waste, feces, and fecal microorganisms from agricultural, urban, and natural activities. In this study, the probable sources of fecal contamination were determined. Also, antibiotic resistant bacteria (ARB) were detected in the two main rivers of central Chile. Surface water samples were collected from 12 sampling sites in the Maipo (n = 8) and Maule Rivers (n = 4) every 3 months, from August 2017 until April 2019. To determine the fecal contamination level, fecal coliforms were quantified using the most probable number (MPN) method and the source of fecal contamination was determined by Microbial Source Tracking (MST) using the Cryptosporidium and Giardia genotyping method. Separately, to determine if antimicrobial resistance bacteria (AMB) were present in the rivers, Escherichia coli and environmental bacteria were isolated, and the antibiotic susceptibility profile was determined. Fecal coliform levels in the Maule and Maipo Rivers ranged between 1 and 130 MPN/100-ml, and 2 and 30,000 MPN/100-ml, respectively. Based on the MST results using Cryptosporidium and Giardia host-specific species, human, cattle, birds, and/or dogs hosts were the probable sources of fecal contamination in both rivers, with human and cattle host-specific species being more frequently detected. Conditional tree analysis indicated that coliform levels were significantly associated with the river system (Maipo versus Maule), land use, and season. Fecal coliform levels were significantly (p < 0.006) higher at urban and agricultural sites than at sites immediately downstream of treatment centers, livestock areas, or natural areas. Three out of eight (37.5%) E. coli isolates presented a multidrug-resistance (MDR) phenotype. Similarly, 6.6% (117/1768) and 5.1% (44/863) of environmental isolates, in Maipo and Maule River showed and MDR phenotype. Efforts to reduce fecal discharge into these rivers should thus focus on agriculture and urban land uses as these areas were contributing the most and more frequently to fecal contamination into the rivers, while human and cattle fecal discharges were identified as the most likely source of this fecal contamination by the MST approach. This information can be used to design better mitigation strategies, thereby reducing the burden of waterborne diseases and AMR in Central Chile.
Collapse
Affiliation(s)
- Constanza Díaz-Gavidia
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Carla Barría
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Daniel L. Weller
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Marilia Salgado-Caxito
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Erika M. Estrada
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia
| | - Aníbal Araya
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Leonardo Vera
- Escuela Ingeniería Ambiental, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Woutrina Smith
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Minji Kim
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, United States
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: Aiko D. Adell,
| |
Collapse
|
18
|
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. CHEMOSPHERE 2022; 295:133915. [PMID: 35143869 DOI: 10.1016/j.chemosphere.2022.133915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Significant findings for microbial removal have led to expertise on several kinds of nanomaterials that made new paths for removing various biological contaminants in a variety of water resources in recent years. Furthermore, advancements in multifunctional nanocomposites synthesis pave the enhanced possibility for their use in water treatment system design. The adsorption towards microbial elimination has been reviewed and compared in this review article using four common kinds of nanomaterials: carbon materials, metal oxides, metal/metal oxides, polymeric metal oxide nanocomposites and their most important mechanistic behavior also discussed. We also describe and analyze recent findings on the effects of engineered nanomaterials on microbial communities in natural and artificial environments. Understanding the removal mechanistic strategy is crucial to improving the nanoparticles (NPs) efficiency and increasing their applicability against a variety of bacteria in various environmental conditions. Also, our study focused on their behavioral effects on microbial structure and functionality towards the removal. Future research opportunities connected to the use of nanomaterials in microbial control and inactivation with societal and health implications are also discussed. We also highlight a number of interesting research subjects that might be of futuristic interest to the scientific community.
Collapse
Affiliation(s)
- A Chithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - Rajaseetharama Sekar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India.
| | - G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| |
Collapse
|
19
|
Meki CD, Ncube EJ, Voyi K. Community-level interventions for mitigating the risk of waterborne diarrheal diseases: a systematic review. Syst Rev 2022; 11:73. [PMID: 35436979 PMCID: PMC9016942 DOI: 10.1186/s13643-022-01947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Waterborne diarrhea diseases are among the leading causes of morbidity and mortality globally. These diseases can be mitigated by implementing various interventions. We reviewed the literature to identify available interventions to mitigate the risk of waterborne diarrheal diseases. METHODS We conducted a systematic database review of CINAHL (Cumulative Index to Nursing and Allied Health Literature), PubMed, Web of Science Core Collection, Cochrane library, Scopus, African Index Medicus (AIM), and LILACS (Latin American and Caribbean Health Sciences Literature). Our search was limited to articles published between 2009 and 2020. We conducted the review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement checklist. The identified studies were qualitatively synthesized. RESULTS Our initial search returned 28 773 articles of which 56 studies met the inclusion criteria. The included studies reported interventions, including vaccines for rotavirus disease (monovalent, pentavalent, and Lanzhou lamb vaccine); enhanced water filtration for preventing cryptosporidiosis, Vi polysaccharide for typhoid; cholera 2-dose vaccines, water supply, water treatment and safe storage, household disinfection, and hygiene promotion for controlling cholera outbreaks. CONCLUSION We retrieved few studies on interventions against waterborne diarrheal diseases in low-income countries. Interventions must be specific to each type of waterborne diarrheal disease to be effective. Stakeholders must ensure collaboration in providing and implementing multiple interventions for the best outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020190411 .
Collapse
Affiliation(s)
- Chisala D. Meki
- University of Zambia, School of Public Health, University of Zambia, P O. BOX 50110, Lusaka, Zambia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Esper J. Ncube
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Rand Water, Johannesburg, South Africa
| | - Kuku Voyi
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Hill TB, Daniels GC, Feng J, Harding MW. Hard to Kill: Inactivation of Plasmodiophora brassicae Resting Spores Using Chemical Disinfectants. PLANT DISEASE 2022; 106:190-196. [PMID: 34370550 DOI: 10.1094/pdis-05-21-1055-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosafety practices, such as bioexclusion via sanitization, can prevent the spread of infectious soilborne threats such as the clubroot pathogen Plasmodiophora brassicae. Twenty-three chemical disinfectants were evaluated for efficacy against P. brassicae resting spores. Evans blue staining was used to directly measure the viability of P. brassicae resting spores after 20-min exposures to 10 concentrations of each of the 23 chemical disinfectants. Only nine disinfectants were capable of >95% inactivation, and only five were capable of inactivating >99% of resting spores. Bleach (sodium hypochlorite) and Spray Nine were the most effective disinfectants for inactivation of clubroot resting spores. AES 2500, SaniDate, and ethanol also inactivated >99% of resting spores but only at very high concentrations. A time course experiment showed that 10- to 12-min contact time was sufficient for ≥95% resting spore inactivation with Spray Nine and sodium hypochlorite, but ≥30-min contact was required for other disinfectants evaluated. These results will assist in guiding management recommendations for sanitization aimed at bioexclusion and biocontainment of P. brassicae.
Collapse
Affiliation(s)
- T Blake Hill
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| | - Greg C Daniels
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
| | - Michael W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| |
Collapse
|
21
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
22
|
El-Refai SA, Helwa MA, Rakha EB, Atia AF. Autophagy - related 16 - like 1 single nucleotide gene polymorphism increases the risk and severity of Cryptosporidium parvum infection. Mol Biochem Parasitol 2021; 245:111407. [PMID: 34358586 DOI: 10.1016/j.molbiopara.2021.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Cryptosporidium parvum (C. parvum) is an intracellular parasite of the intestinal cells. It causes cryptosporidiosis that can be fatal in immunosuppressed individuals. Autophagy is a process to eliminate intracellular microbes. The autophagy-related 16 - like 1 (ATG16L1) gene encodes proteins involved in the autophagy pathway. Single nucleotide polymorphism (SNP) in this gene increases the invasion and survival of the intracellular microbes. This study aimed to assess whether SNP in the ATG16L1 gene influences the risk and severity of cryptosporidiosis. Group I: cases with C. parvum infection (C. parvum, n = 40) and group II: healthy control (HC, n = 120) were included. Genotyping of the ATG16L1 gene was done for all participants to determine the polymorphism status as AA, GG, or AG genotype. A significant association between C. parvum infection and ATG16L1 genotypes was detected. C. parvum group had a significantly higher frequency of GG genotype and G allele when compared to HC group. The genotypes (AG + GG) and G allele had 2.428 and 2.13 folds risk of C. parvum infection when compared to the AA genotype and the A allele. Patients with the AG + GG genotype had statistically significant higher Cryptosporidium oocyst counts in stool, higher infection intensity, more frequency of vomiting and dehydration, longer disease duration, and more recurrence. The GG or AG genotypes were independent risk factors in the disease severity (p- value = 0.013). In conclusion, ATG16L1 SNP increased the risk and severity of cryptosporidiosis. Thus, individuals with such SNP can benefit from autophagy up-regulating approaches in decreasing the risk and controlling C. parvum infection.
Collapse
Affiliation(s)
- Samar A El-Refai
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Mohamed A Helwa
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Ehab B Rakha
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, 60, El Gomhoria Sreet, Mansoura, 35516, Egypt.
| | - Amany F Atia
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| |
Collapse
|
23
|
Zini LB, Lorenzini R, Camelo LGG, Gutterres M. Occurrence of Cryptosporidium and Giardia in surface water supply from 2016 to 2020 in South Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:496. [PMID: 34282498 DOI: 10.1007/s10661-021-09280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The objectives of this research are to evaluate Giardia and Cryptosporidium contamination in surface water supply in Rio Grande do Sul (RS) State in South Brazil in the years 2016 to 2020, assess seasonality, and to infer the population that may have been exposed to these protozoa through drinking water based on drinking water treatment efficiency. Data were obtained through the drinking water surveillance national information system. From 204 DWT plants in the state, 66 have been analyzed for protozoa. A total of 2304 analyses of protozoa in raw water were evaluated, of which 223 had both Giardia spp. cysts and/or Cryptosporidium spp. oocysts in concentrations that varied from 0.1 to 21.5/L. A total of 2,712,125 people from 48 cities were at risk of having the presence of pathogenic protozoa in their drinking water. The probability of finding these protozoa was higher in winter. Giardia cysts were more likely to be found in a period without rain, suggesting that sewage was the main source of contamination. It is concluded that the springs of Rio Grande do Sul are impacted and the circulation of pathogenic protozoa through the territory is endemic with a probable source of contamination to sewage and livestock activity.
Collapse
Affiliation(s)
- Luciano Barros Zini
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil.
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil.
| | - Rafaela Lorenzini
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Luana Gabriele Gomes Camelo
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Mariliz Gutterres
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil
| |
Collapse
|
24
|
Abstract
As the most important resource for life, water has been a central issue on the international agenda for several decades. Yet, the world’s supply of clean freshwater is steadily decreasing due to extensive agricultural demand for irrigated lands. Therefore, water resources should be used with greater efficiency, and the use of non-traditional water resources, such as Treated Wastewater (TW), should be increased. Reusing TW could be an alternative option to increase water resources. Thus, many countries have decided to turn wastewater into an irrigation resource to help meet urban demand and address water shortages. However, because of the nature of that water, there are potential problems associated with its use in irrigation. Some of the major concerns are health hazards, salinity build-up, and toxicity hazards. The objectives of this comprehensive literature review are to illuminate the importance of using TW in irrigation as an alternative freshwater source and to assess the effects of its use on soil fertility and other soil properties, plants, and public health. The literature review reveals that TW reuse has become part of the extension program for boosting water resource utilization. However, the uncontrolled application of such waters has many unfavorable effects on both soils and plants, especially in the long-term. To reduce these unfavorable effects when using TW in irrigation, proper guidelines for wastewater reuse and management should be followed to limit negative effects significantly.
Collapse
|
25
|
Ryu H, Addor Y, Brinkman NE, Ware MW, Boczek L, Hoelle J, Mistry JH, Keely SP, Villegas EN. Understanding Microbial Loads in Wastewater Treatment Works as Source Water for Water Reuse. WATER 2021; 13. [PMID: 34804602 PMCID: PMC8597597 DOI: 10.3390/w13111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Facing challenges in water demands and population size, particularly in the water-scarce regions in the United States, the reuse of treated municipal wastewater has become a viable potential to relieve the ever-increasing demands of providing water for (non-)potable use. The objectives of this study were to assess microbial quality of reclaimed water and to investigate treatability of microorganisms during different treatment processes. Raw and final treated effluent samples from three participating utilities were collected monthly for 16 months and analyzed for various microbial pathogens and fecal indicator organisms. Results revealed that the detectable levels of microbial pathogens tested were observed in the treated effluent samples from all participating utilities. Log10 reduction values (LRVs) of Cryptosporidium oocysts and Giardia cysts were at least two orders of magnitude lower than those of human adenovirus and all fecal indicator organisms except for aerobic endospores, which showed the lowest LRVs. The relatively higher LRV of the indicator organisms such as bacteriophages suggested that these microorganisms are not good candidates of viral indicators of human adenovirus during wastewater treatment processes. Overall, this study will assist municipalities considering the use of wastewater effluent as another source of drinking water by providing important data on the prevalence, occurrence, and reduction of waterborne pathogens in wastewater. More importantly, the results from this study will aid in building a richer microbial occurrence database that can be used towards evaluating reuse guidelines and disinfection practices for water reuse practices.
Collapse
Affiliation(s)
- Hodon Ryu
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Yao Addor
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Nichole E. Brinkman
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Michael W. Ware
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Laura Boczek
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jill Hoelle
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jatin H. Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX 75270, USA
| | - Scott P. Keely
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Eric N. Villegas
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
- Correspondence:
| |
Collapse
|
26
|
Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, Květoňová D, Hlásková L, Rost M, McEvoy J, Rajský D, Feng Y, Kváč M. Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria ( Myocastor coypus). Microorganisms 2021; 9:813. [PMID: 33921541 PMCID: PMC8069493 DOI: 10.3390/microorganisms9040813] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cryptosporidium spp., common parasites of vertebrates, remain poorly studied in wildlife. This study describes the novel Cryptosporidium species adapted to nutrias (Myocastor coypus). A total of 150 faecal samples of feral nutria were collected from locations in the Czech Republic and Slovakia and examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, and gp60 loci. Molecular analyses revealed the presence of C. parvum (n = 1), C. ubiquitum subtype family XIId (n = 5) and Cryptosporidium myocastoris n. sp. XXIIa (n = 2), and XXIIb (n = 3). Only nutrias positive for C. myocastoris shed microscopically detectable oocysts, which measured 4.8-5.2 × 4.7-5.0 µm, and oocysts were infectious for experimentally infected nutrias with a prepatent period of 5-6 days, although not for mice, gerbils, or chickens. The infection was localised in jejunum and ileum without observable macroscopic changes. The microvilli adjacent to attached stages responded by elongating. Clinical signs were not observed in naturally or experimentally infected nutrias. Phylogenetic analyses at SSU, actin, and HSP70 loci demonstrated that C. myocastoris n. sp. is distinct from other valid Cryptosporidium species.
Collapse
Affiliation(s)
- Jana Ježková
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Zlata Limpouchová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Jitka Prediger
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Nikola Holubová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Roman Konečný
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Michael Rost
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND 58102, USA;
| | - Dušan Rajský
- Faculty of Forestry, Technical University in Zvolen, 960 01 Zvolen, Slovakia;
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| |
Collapse
|
27
|
Jones KR, Tardieu L. Giardia and Cryptosporidium in Neo-Tropical Rodents and Marsupials: Is There Any Zoonotic Potential? Life (Basel) 2021; 11:life11030256. [PMID: 33804628 PMCID: PMC8003710 DOI: 10.3390/life11030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidiosis and giardiasis have been identified as emerging diseases in both developed and developing countries. Wildlife has been highlighted to play a major role in the spread of these diseases to humans. This review aims to highlight the research findings that relate to Cryptosporidium spp. and Giardia spp., with a focus on (1) parasitism of neo-tropical hystricomorphic rodents and marsupials from the genus Didelphis and (2) prevention and treatment strategies for humans and animals for the neo-tropical region. It was found that there are few studies conducted on neo-tropical rodent and marsupial species, but studies that were found illustrated the potential role these animals may play as zoonotic carriers of these two parasites for the neo-tropical region. Thus, it is recommended that further studies be done to assess the threat of protozoan parasites in neo-tropical wildlife to humans and domestic animals, and to further determine the most effective prophylaxis adapted for the unique conditions of the region.
Collapse
Affiliation(s)
- Kegan Romelle Jones
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), St. Augustine Campus, University of the West Indies (UWI), St. Augustine, Trinidad and Tobago;
- Department of Basic Veterinary Sciences (DBVS), Faculty of Medical Sciences (FMS), School of Veterinary Medicine (SVM), Mt. Hope Campus, University of the West Indies (UWI), Mount Hope, Trinidad and Tobago
- Correspondence: ; Tel.: +1-868-787-0833
| | - Laura Tardieu
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), St. Augustine Campus, University of the West Indies (UWI), St. Augustine, Trinidad and Tobago;
| |
Collapse
|
28
|
Kamrani F, Nouri Sepehr M, Heidari A, Dehghanifard E, Miahipour A, Sezavar M. The Occurrence of Cryptosporidium and Giardia Parasites in Drinking Water Resources of Alborz province , the Central Part of Iran in 2018. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2021. [DOI: 10.34172/ijep.2021.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Giardia and Cryptosporidium are common parasitic protozoa that cause acute intestinal infections in children. These two parasites are mostly found in aquatic environments, including raw water, wastewater, and even treated water. Objective: The present study aimed to examine parasitic contamination of drinking water resources by cysts and the oocyst of Giardia and Cryptosporidium in Alborz province, Iran. Materials and Methods: Water samples from three rivers and seven randomly-selected wells of Alborz province were examined using Sheather, formol-ether, and immuno-fluorescence assay (IFA) techniques. The prepared slides were examined with optical and fluorescence microscopes. Results: IFA technique revealed that 28% of the wells were contaminated with both parasites. It was also shown that all rivers’ drainage basins were contaminated with Cryptosporidium parasite, while 66% of rivers’ drainage basins were contaminated with Giardia parasite. Conclusion: The results showed that water resources of Alborz province contained Giardia cysts and Cryptosporidium oocysts, which required health care officials to pay serious attention to treating drinking water.
Collapse
Affiliation(s)
- Farzaneh Kamrani
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Nouri Sepehr
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliehsan Heidari
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Abolfazl Miahipour
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Moniereh Sezavar
- Department of Experimental Sciences, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
29
|
Mphephu MG, Ekwanzala MD, Momba MNB. Cryptosporidium species and subtypes in river water and riverbed sediment using next-generation sequencing. Int J Parasitol 2021; 51:339-351. [PMID: 33421439 DOI: 10.1016/j.ijpara.2020.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
This study uncovered the prevalence, harboured species, and subtype diversity of Cryptosporidium species in river water and its sediment from the Apies River in South Africa. Cryptosporidium spp. concentrations in freshwater and its sediment were determined using Ziehl-Neelsen staining and quantitative Polymerase Chain Reaction (qPCR) techniques. Next-generation sequencing (NGS) targeting the 60 kDa glycoprotein (gp60) gene of Cryptosporidium spp. was performed to reveal the species, subtype families and subtypes harboured in freshwater and its sediment. Although the results revealed that water samples had a higher prevalence (30%) compared with sediment (28%), the number of observable Cryptosporidium spp. oocysts in sediment samples (ranging from 4.90 to 5.81 log10 oocysts per 1 Liter) was higher than that of river water samples (ranging from 4.60 to 5.58 log10 oocysts per 1 L) using Ziehl-Neelsen staining. The 18S ribosomal ribonucleic acid (rRNA) gene copy of Cryptosporidium in riverbed sediments ranged from 6.03 to 7.65 log10, whereas in river water, it was found to be between 4.20 and 6.79 log10. Subtyping results showed that in riverbed sediments, Cryptosporidium parvum accounted for 40.72% of sequences, followed by Cryptosporidium hominis with 23.64%, Cryptosporidium cuniculus with 7.10%, Cryptosporidium meleagridis with 4.44% and the least was Cryptosporidium wrairi with 2.59%. A considerable percentage of reads in riverbed sediment (21.25%) was not assigned to any subtype. River water samples had 45.63% of sequences assigned to C. parvum, followed by 30.32% to C. hominis, 17.99% to C. meleagridis and 5.88% to C. cuniculus. The data obtained are concerning, as Cryptosporidium spp. have intrinsic resistance to water treatment processes and low infectious doses, which can pose a risk to human health due to the various uses of water (for human consumption, leisure, and reuse).
Collapse
Affiliation(s)
- Muofhe Grace Mphephu
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa
| | - Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa.
| |
Collapse
|
30
|
Schoen ME, Boehm AB, Soller J, Shanks OC. Contamination Scenario Matters when Using Viral and Bacterial Human-Associated Genetic Markers as Indicators of a Health Risk in Untreated Sewage-Impacted Recreational Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13101-13109. [PMID: 32969642 PMCID: PMC8215692 DOI: 10.1021/acs.est.0c02189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fecal pollution at beaches can pose a health risk to recreators. Quantitative microbial risk assessment (QMRA) is a tool to evaluate the use of candidate fecal indicators to signify a health risk from enteric pathogens in sewage-impacted waters. We extend the QMRA approach to model mixtures of sewage at different ages using genetic marker concentrations for human-associated crAssphage, Bacteroides spp., and polyomavirus in sewage samples from 49 wastewater facilities across the contiguous United States. Risk-based threshold (RBT) estimates varied across different mixture and sewage age scenarios. Fresh sewage RBT estimates were not always protective when aged sewage was present, and aged sewage RBT estimates often fell below the marker lower limit of quantification. Conservative RBT estimates of 9.3 × 102 and 9.1 × 103 (copies/100 mL) for HF183/BacR287 and CPQ_056, respectively, were predicted when fresh sewage was greater (by volume) than aged at the time of measurement. Conversely, genetic markers may not be effective indicators when aged sewage contributes the majority of pathogens, relative to fresh contamination, but minimal marker levels. Results highlight the utility of QMRA that incorporates pollutant age and mixture scenarios, the potential advantages of a crAssphage fecal indicator, and the potential influence of site-specific factors on estimating RBT values.
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
31
|
García-Gil Á, Abeledo-Lameiro MJ, Gómez-Couso H, Marugán J. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of Cryptosporidium parvum in water by sunlight. WATER RESEARCH 2020; 185:116226. [PMID: 32738603 DOI: 10.1016/j.watres.2020.116226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Water contamination with the enteroprotozoan parasite Cryptosporidium is a current challenge worldwide. Solar water disinfection (SODIS) has been proved as a potential alternative for its inactivation, especially at household level in low-income environments. This work presents the first comprehensive kinetic model for the inactivation of Cryptosporidium parvum oocysts by sunlight that, based on the mechanism of the process, is able to describe not only the individual thermal and spectral actions but also their synergy. Model predictions are capable of estimating the required solar exposure to achieve the desired level of disinfection under variable solar spectral irradiance and environmental temperature conditions for different locations worldwide. The thermal contribution can be successfully described by a modified Arrhenius equation while photoinactivation is based on a series-event mechanistic model. The wavelength-dependent spectral effect is modeled by means of the estimation of the C. parvum extinction coefficients and the determination of the quantum yield of the inactivation process. Model predictions show a 3.7% error with respect to experimental results carried out under a wide range of temperature (30 to 45 °C) and UV irradiance (0 to 50 W·m-2). Furthermore, the model was validated in three scenarios in which the spectral distribution radiation was modified using different plastic materials common in SODIS devices, ensuring accurate forecasting of inactivation rates for real conditions.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Jesús Abeledo-Lameiro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Research Institute on Chemical and Biological Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C / Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
32
|
Davhana N, ElBakri A, Bessong P, Samie A. Association of genetic polymorphism at tumor necrosis factor-α gene promoter - 1031T/C and parasitic infections among children in Northern South Africa. Heliyon 2020; 6:e05129. [PMID: 33083607 PMCID: PMC7553974 DOI: 10.1016/j.heliyon.2020.e05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 11/02/2022] Open
Abstract
Intestinal parasitic diseases are common in developing countries including South Africa and have been documented to be the most common in children under the age of five. The present study aimed to identify any potential association that may exist between TNF-α promoter gene polymorphism and parasitic infections. A total of 199 blood samples were evaluated from children who were part of the MAL-ED study cohort. The DNA was used to investigate polymorphism in the promoter region of the TNF-α gene at position -1031T/C. The polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) assay. The TC genotype at position -1031 was significantly higher in healthy controls children than in children who were infected with Entamoeba species (59.9% vs 29.4%, P = 0.015) and Entamoeba coli (59.1% vs 30.8%, P = 0.046), indicating that TC genotype may be protective against Entamoeba infections and Entamoeba coli infections. The CC genotype at position -1031 was more common among children with parasite and diarrhea and the results was statistically significant (P = 0.04). This study has revealed that the CC genotype may be is a risk factor for symptomatic parasitic infections while the TC genotype might be protective of Entamoeba infections among children in Dzimauli community.
Collapse
|
33
|
Benito M, Menacho C, Chueca P, Ormad MP, Goñi P. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110268. [PMID: 32148324 DOI: 10.1016/j.jenvman.2020.110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 05/15/2023]
Abstract
Some of the microorganisms present in urban wastewater, which include intestinal protozoa and nematodes, can be pathogenic. Their (oo)cyst and egg transmissible stages are very resistant to environmental stresses and disinfectants and they are therefore difficult to remove. Thus, they can constitute a health risk if water or sludge obtained in the purification of wastewater is reused for agricultural purposes. In this context, the presence of intestinal protozoa and nematodes were studied in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in the north of Spain by optical microscopy and PCR techniques. The removal efficiency of different wastewater treatments was also compared. The presence of protozoa has increased among the population discharging waste to WWTPs in recent years. Cryptosporidium spp., Giardia duodenalis, Entamoeba spp. and nematodes were detected in all of the WWTPs. Indeed, this is the first report of Entamoeba histolytica and Entamoeba moshkovskii in Spanish WWTPs. The water treatments studied showed different removal efficiencies for each species of intestinal protozoa, with the aerated lagoons providing the best results. (Oo)cysts were also detected in sludge even after aerobic digestion and dehydration. To avoid risks, (oo)cyst viability should be analysed whenever the sludge is to be used as a fertilizer. This study reinforces the necessity of establishing legal limits on the presence of protozoa in WWTP effluents and sludges, especially if reuse is planned. Further studies are necessary for a better understanding of the presence and behaviour of intestinal parasites.
Collapse
Affiliation(s)
- María Benito
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Carmen Menacho
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Patricia Chueca
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - María P Ormad
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Pilar Goñi
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
34
|
Razzolini MTP, Breternitz BS, Kuchkarian B, Bastos VK. Cryptosporidium and Giardia in urban wastewater: A challenge to overcome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113545. [PMID: 31733962 DOI: 10.1016/j.envpol.2019.113545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to quantify Giardia and Cryptosporidium in disinfected water reuse samples from two Wastewater Treatment Plants (A and B), which were quantified by USEPA 1693/2014 Method. Giardia was found in 35.8% of the total samples (<0.03 to 16 cysts/L) while Cryptosporidium in 30.2% (<0.03 to 25.8 oocysts/L). This study highlights the presence of both parasites in water for reuse despite treatment processes for their removal, which means there is a challenge to overcome. Their presence is preoccupant even though in low concentrations because the infectivity dose is low coupled with high prevalence in the global population. The practice of water recycling is valuable for sustainable water management and it is in line with Sustainable Developments Goals but should not threaten human health. Tackling this issue is more critical in developing countries because treatment processes are often more limited, the monitoring data from water reuse are not always available, the lack of regulation for water reuse quality and the lack of planning for its sustainable usage.
Collapse
Affiliation(s)
- M T P Razzolini
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil.
| | - B S Breternitz
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| | - B Kuchkarian
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| | - V K Bastos
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| |
Collapse
|
35
|
Boehm AB. Risk-based water quality thresholds for coliphages in surface waters: effect of temperature and contamination aging. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2031-2041. [PMID: 31612888 DOI: 10.1039/c9em00376b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coliphages, viruses that infect Escherichia coli, have been used for decades to assess surface water quality yet there is no guideline for interpreting their concentrations. The present study uses a quantitative microbial risk assessment (QMRA) framework to derive risk-based surface water quality thresholds for somatic and F+ or male-specific coliphages. The risk-based threshold is the concentration at which the risk of gastro-intestinal illness is simulated to be 32/1000. The framework specifically investigates a simplified hazard scenario where recreational swimmers come into contact with water contaminated with untreated sewage containing coliphages and enteric pathogens. The framework considers exposure to sewage of diverse ages and thus accounts for the decay of coliphages and pathogens over time. As decay rate constants depend on temperature, the model considers the effect of temperature on the risk-based threshold. When exposure to fresh, unaged sewage contamination occurs, the risk-based water quality threshold for somatic and F+ coliphages is 60 PFU per 100 mL and 30 PFU per 100 mL, respectively, and temperature independent. The risk-based threshold decreases as the contamination ages because, on average, coliphages decay more quickly than norovirus, the pathogen that contributes the most to risk. The decrease in the risk-based threshold with contaminant age is equal to the difference in the first order decay rate constants of coliphages and norovirus. Since coliphage decay rate constants are larger at 25 °C than at 15 °C, and norovirus decay rate constants are a weak function of temperature, risk-based thresholds decrease more quickly with age at 25 °C than at 15 °C. For the common case where the age of contamination is unknown, the risk-based threshold for both coliphages is between ∼1 PFU per 100 mL and ∼10 PFU per 100 mL, depending on model assumptions. Future work can apply this QMRA framework for identifying risk-based thresholds for coliphages from different hazards (treated wastewater or animal feces) or from mixtures of contamination of different ages and sources.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA 94305-4020.
| |
Collapse
|
36
|
Tombang AN, Ambe NF, Bobga TP, Nkfusai CN, Collins NM, Ngwa SB, Diengou NH, Cumber SN. Prevalence and risk factors associated with cryptosporidiosis among children within the ages 0-5 years attending the Limbe regional hospital, southwest region, Cameroon. BMC Public Health 2019; 19:1144. [PMID: 31429732 PMCID: PMC6700837 DOI: 10.1186/s12889-019-7484-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Cryptosporidiosis is a pathological condition caused by infection with coccidian protozoan parasites Cryptosporidium. Cryptosporidium is one of the most common causes of childhood diarrhea in developing countries. So far, no data has been published on its prevalence among children with diarrhea in Cameroon. This study was therefore, designed to assess the prevalence and risk factors associated with Cryptosporidiosis among children within the ages 0–5 years suffering from diarrhea and being attended to at the Limbe Regional Hospital. Methods The study was a hospital based analytical cross-sectional study involving children within the ages 0–5 years (n = 112) hospitalized or consulted in the pediatric departments of the hospital between April 2018 and May 2018. Stool specimens were processed using the modified acid-fast staining method, and microscopically examined for Cryptosporidium infection. Results A total of 112 participants were recruited out of which 67 presented with diarrhea. A high prevalence 9/67 (13.40%) of Cryptosporidium was noticed in children with diarrhea than children without diarrhea 1/45 (2.2%). There was a significant relationship (p = 0.041) between prevalence of Cryptosporidium and the presence of diarrhea in children within the ages 0–5 years in the Limbe Regional Hospital. It was realized that children from parents with primary level of education, children whose parents did not respect exclusive breastfeeding and those whose parents were giving them pipe borne water for drinking recorded a higher prevalence. Conclusions This study revealed an overall prevalence of 8.9% for Cryptosporidium among children of ages 0–5 years that attended the Limbe Regional Hospital. The prevalence among children that presented with diarrhea was 13.4%. The study clearly demonstrated that Cryptosporidium is an important protozoal etiologic agent for children with diarrhea in Limbe. Electronic supplementary material The online version of this article (10.1186/s12889-019-7484-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsimbom Neville Tombang
- Department of Medical Laboratory Sciences, Faculty Health Sciences, University of Buea, Buea, Cameroon
| | - Ngwa Fabrice Ambe
- Department of Medical Laboratory Sciences, Faculty Health Sciences, University of Buea, Buea, Cameroon.,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Tanyi Pride Bobga
- Department of Medical Laboratory Sciences, Faculty Health Sciences, University of Buea, Buea, Cameroon.,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Claude Ngwayu Nkfusai
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon. .,Cameroon Baptist Convention Health Service (CBCHS), Yaoundé, Cameroon.
| | - Ngandeu Mongoue Collins
- Department of Medical Laboratory Sciences, Faculty Health Sciences, University of Buea, Buea, Cameroon
| | - Sangwe Bertrand Ngwa
- Department of Medical Laboratory Sciences, Faculty Health Sciences, University of Buea, Buea, Cameroon
| | - Ngwene Hycentha Diengou
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Center for Medical Research, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Samuel Nambile Cumber
- Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,Section for Epidemiology and Social Medicine, Department of Public Health, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria Private Bag X323, Gezina, Pretoria, 0001, Pretoria, South Africa
| |
Collapse
|
37
|
Adeyemo FE, Singh G, Reddy P, Bux F, Stenström TA. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One 2019; 14:e0216040. [PMID: 31083664 PMCID: PMC6513095 DOI: 10.1371/journal.pone.0216040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/13/2019] [Indexed: 01/05/2023] Open
Abstract
Wastewater from different sources is contaminated by protozoan parasites including Cryptosporidium and Giardia. Many protozoan parasites are becoming resistant to chemical treatment. The challenge of finding alternatives is presented to researchers by exploring other methods of eliminating protozoan parasites from wastewater. The aim of this study was to assess the speciation and the viability of Cryptosporidium and Giardia in environmental samples with the specific objective of evaluating if effluent chlorination and UV affect the viability. Different doses of chlorine with different exposure times were experimented with both distilled water and waste water spiked with (oo)cysts derived from environmental samples. UV irradiation at different doses was also experimented using the same spiked samples. Two methods of quantification and detection, namely, microscopy and flow cytometry, were used in the experiment. Two vital dyes, Syto-9+PI and DAPI+PI, were the used for staining the collected wastewater samples. It was found that the (oo)cysts responded to chlorination and UV treatments with Giardia responding better than Cryptosporidium. Giardia responded very well to UV irradiations with almost 0 percent remaining viable after a low dose of UV. Cryptosporidium was found to be resistant to chlorination even at high doses but responded well to high UV doses. DAPI+PI dye gave a lower mean percentage viability values than Syto-9+PI. Flow cytometry gave higher mean percentage than microscopy from the results. It is concluded that UV is a promising alternative to Chlorine in removing Cryptosporidium and Giardia from waste water. Appropriate treatment method for wastewater is necessary to minimize water resources pollution when wastewater is released into water systems.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
- * E-mail: ,
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| |
Collapse
|
38
|
Leung JWS, Cheng J, Tanguay F, Roscoe B, Davies D, Tinney S, Noseworthy AL, Holt AM, McCully A, Sunil V. Cryptosporidiosis Outbreak Investigation in a Canadian Correctional Facility Using Novel Case Finding Tools. JOURNAL OF CORRECTIONAL HEALTH CARE 2019; 25:162-176. [PMID: 30866705 DOI: 10.1177/1078345819832024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Eliminating Cryptosporidium oocysts is particularly challenging in prison environments, and limited information is available on best practices for outbreak control. This report aims to expand the evidence base through the lessons learned from an outbreak at a Canadian federal penitentiary in 2013. The outbreak investigation methods included inmate and staff case finding, hypothesis-generating questionnaires, and environmental investigation. A clear source of Cryptosporidium into the facility could not be identified; however, there were a number of possible sources of ongoing propagation within the facility. There were difficulties obtaining valid data on inmate and staff cases and exposures. This report discusses the novel epidemiological tools used in this investigation to address the complex challenges of a correctional setting.
Collapse
Affiliation(s)
- Jannie Wing-Sea Leung
- 1 Public Health Agency of Canada, Ottawa, Ontario, Canada.,2 British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Joyce Cheng
- 1 Public Health Agency of Canada, Ottawa, Ontario, Canada
| | | | | | - Donna Davies
- 3 Correctional Services Canada, Ottawa, Ontario, Canada
| | | | - Avis Lynn Noseworthy
- 4 Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Anne Marie Holt
- 4 Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Amy McCully
- 4 Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Vidya Sunil
- 4 Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| |
Collapse
|
39
|
Vermeulen LC, van Hengel M, Kroeze C, Medema G, Spanier JE, van Vliet MTH, Hofstra N. Cryptosporidium concentrations in rivers worldwide. WATER RESEARCH 2019; 149:202-214. [PMID: 30447525 DOI: 10.1016/j.watres.2018.10.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Cryptosporidium is a leading cause of diarrhoea and infant mortality worldwide. A better understanding of the sources, fate and transport of Cryptosporidium via rivers is important for effective management of waterborne transmission, especially in the developing world. We present GloWPa-Crypto C1, the first global, spatially explicit model that computes Cryptosporidium concentrations in rivers, implemented on a 0.5 × 0.5° grid and monthly time step. To this end, we first modelled Cryptosporidium inputs to rivers from human faeces and animal manure. Next, we use modelled hydrology from a grid-based macroscale hydrological model (the Variable Infiltration Capacity model). Oocyst transport through the river network is modelled using a routing model, accounting for temperature- and solar radiation-dependent decay and sedimentation along the way. Monthly average oocyst concentrations are predicted to range from 10-6 to 102 oocysts L-1 in most places. Critical regions ('hotspots') with high concentrations include densely populated areas in India, China, Pakistan and Bangladesh, Nigeria, Algeria and South Africa, Mexico, Venezuela and some coastal areas of Brazil, several countries in Western and Eastern Europe (incl. The UK, Belgium and Macedonia), and the Middle East. Point sources (human faeces) appears to be a more dominant source of pollution than diffuse sources (mainly animal manure) in most world regions. Validation shows that GloWPa-Crypto medians are mostly within the range of observed concentrations. The model generally produces concentrations that are 1.5-2 log10 higher than the observations. This is likely predominantly due to the absence of recovery efficiency of the observations, which are therefore likely too low. Goodness of fit statistics are reasonable. Sensitivity analysis showed that the model is most sensitive to changes in input oocyst loads. GloWPa-Crypto C1 paves the way for many new opportunities at the global scale, including scenario analysis to investigate the impact of global change and management options on oocysts concentrations in rivers, and risk analysis to investigate human health risk.
Collapse
Affiliation(s)
- Lucie C Vermeulen
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Marijke van Hengel
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands; Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, the Netherlands
| | - J Emiel Spanier
- Water Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Michelle T H van Vliet
- Water Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Nynke Hofstra
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
40
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
41
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
42
|
Abeledo-Lameiro MJ, Ares-Mazás E, Goméz-Couso H. Use of ultrasound irradiation to inactivate Cryptosporidium parvum oocysts in effluents from municipal wastewater treatment plants. ULTRASONICS SONOCHEMISTRY 2018; 48:118-126. [PMID: 30080534 DOI: 10.1016/j.ultsonch.2018.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Water reuse is currently considered an innovative way to addressing water shortage that can provide significant economic, social and environmental benefits, particularly -but not exclusively- in water deficient areas. The potential transmission of infectious diseases is the most common concern in relation to water reclamation. Cryptosporidium is an important genus of protozoan enteropathogens that infect a wide range of vertebrate hosts, including humans. The infective form (oocyst) is highly resistant to the environmental conditions and disinfection treatments. Consequently, Cryptosporidium is the most common etiological agent identified in waterborne outbreaks attributed to parasitic protozoa worldwide. The present study evaluates the efficacy of ultrasound disinfection, at three power levels (60, 80 and 100 W), pulsed at 50% or in continuous mode, for inactivating the waterborne protozoan parasite Cryptosporidium parvum in simulated and real effluents from municipal wastewater treatment plants (MWTPs). Overall interpretation of the results shows that the application of ultrasound irradiation at 80 W power in continuous mode for an exposure time of 10 min drastically reduced the viability of C. parvum. Thus, oocyst viabilities of 4.16 ± 1.93%; 1.29 ± 0.86%; 3.16 ± 0.69%; and 3.15 ± 0.87% were obtained in distilled water, simulated, real and filtered MWTP effluents, respectively (vs 98.57 ± 0.01%, initial oocyst viability), as determined using inclusion/exclusion of the fluorogenic vital dye propidium iodide, an indicator of the integrity of the oocyst wall. Independently of the mode used (pulsed/continuous) and at 80 W power, higher level of oocyst inactivation was detected in MWTP effluents than in distilled water used as a control solution, may be due to the differences in the chemical composition of the samples. Comparison of the results obtained in both modes showed that use of the continuous mode yielded significantly lower oocyst viability. However, when the Dose parameter was considered (energy per volume unit), no statistically significant differences in oocyst viability were observed in relation to the type of mode used. The results demonstrate that ultrasound technology represents a promising alternative to the disinfection methods (ultraviolet irradiation and chlorine products) currently used in water reclamation as it drastically reduces the survival of Cryptosporidium oocysts, without changing the chemical composition of the water or producing toxic by-products.
Collapse
Affiliation(s)
- María Jesús Abeledo-Lameiro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Goméz-Couso
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain; Institute of Food Research and Analysis, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
43
|
Ridderstedt F, Widerström M, Lindh J, Lilja M. Sick leave due to diarrhea caused by contamination of drinking water supply with Cryptosporidium hominis in Sweden: a retrospective study. JOURNAL OF WATER AND HEALTH 2018; 16:704-710. [PMID: 30285952 DOI: 10.2166/wh.2017.311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated sick leave from work, studies, preschool, and kindergarten occurring between 1 November 2010 and 31 January 2011 and associated with a waterborne outbreak of diarrhea caused by Cryptosporidium hominis in late November 2010 in Östersund, Sweden with 45.2% of 60,000 residents being symptomatic. A questionnaire defining acute watery diarrhoea and/or ≥3 diarrhea episodes/day as cryptosporidiosis was sent to 1,508 residents in late January 2011 (response rate 69.2%). Among adults aged 18-60 years, 24.0% took sick leave for a mean of 4.6 (SD ± 4.0) days due to cryptosporidiosis, and an additional 10.6% were absent from work a mean of 4.0 (±2.2) days to care for symptomatic children. Among children (aged ≤17 years), 35.0% stayed home sick from kindergarten/preschool or school/university for a mean of 5.2 (±3.8) days resulting in 5.1 (±4.4) days of absence from work per sick child shared between parents/guardians. The estimated total number of sick leave days was 50,000 for adults and 20,700 for children, with an estimated direct cost of €7 million for employers. The potential impact on society of sick leave caused by waterborne diseases must be considered in decisions regarding the quality of drinking water.
Collapse
Affiliation(s)
| | - Micael Widerström
- Department of Clinical Microbiology, Unit of Communicable Disease Control and Prevention - Östersund, Umeå University, Umeå, Sweden
| | - Johan Lindh
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Clinical Research Center - Östersund, Umeå University, Umeå, Sweden E-mail:
| |
Collapse
|
44
|
Boehm AB, Graham KE, Jennings WC. Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9634-9645. [PMID: 30080397 DOI: 10.1021/acs.est.8b01948] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the risk of gastrointestinal illness associated with swimming in surface waters with aged sewage contamination. First, a systematic review compiled 333 first order decay rate constants ( k) for human norovirus and its surrogates feline calicivirus and murine norovirus, Salmonella, Campylobacter, Escherichia coli O157:H7, Giardia, and Cryptosporidium, and human-associated indicators in surface water. A meta-analysis investigated effects of sunlight, temperature, and water matrix on k. There was a relatively large number of k for bacterial pathogens and some human-associated indicators ( n > 40), fewer for protozoans ( n = 14-22), and few for human norovirus and its Caliciviridae surrogates ( n = 2-4). Average k ranked: Campylobacter > human-associated markers > Salmonella> E. coli O157:H7 > norovirus and its surrogates > Giardia > Cryptosporidium. Compiled k values were used in a quantitative microbial risk assessment (QMRA) to simulate gastrointestinal illness risk associated with swimming in water with aged sewage contamination. The QMRA used human-associated fecal indicator HF183 as an index for the amount of sewage present and thereby provided insight into how risk relates to HF183 concentrations in surface water. Because exposure to norovirus contributed the majority of risk, and HF183 k is greater than norovirus k, the risk associated with exposure to a fixed HF183 concentration increases with the age of contamination. Swimmer exposure to sewage after it has aged ∼3 days results in median risks less than 30/1000. A risk-based water quality threshold for HF183 in surface waters that takes into account uncertainty in contamination age is derived to be 4100 copies/100 mL.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Katherine E Graham
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Wiley C Jennings
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
45
|
Schoen ME, Jahne MA, Garland J. Human health impact of non-potable reuse of distributed wastewater and greywater treated by membrane bioreactors. MICROBIAL RISK ANALYSIS 2018; 9:72-81. [PMID: 35280215 PMCID: PMC8914979 DOI: 10.1016/j.mran.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We assessed the annual probability of infection resulting from non-potable exposures to distributed greywater and domestic wastewater treated by an aerobic membrane bioreactor (MBR) followed by chlorination. A probabilistic quantitative microbial risk assessment was conducted for both residential and office buildings and a residential district using Norovirus, Rotavirus, Campylobacter jejuni, and Cryptosporidium spp. as reference pathogens. A Monte Carlo approach captured variation in pathogen concentration in the collected water and pathogen (or microbial surrogate) treatment performance, when available, for various source water and collection scale combinations. Uncertain inputs such as dose-response relationships and the volume ingested were treated deterministically and explored through sensitivity analysis. The predicted 95th percentile annual risks for non-potable indoor reuse of distributed greywater and domestic wastewater at district and building scales were less than the selected health benchmark of 10-4 infections per person per year (ppy) for all pathogens except Cryptosporidium spp., given the selected exposure (which included occasional, accidental ingestion), dose-response, and treatment performance assumptions. For Cryptosporidium spp., the 95th percentile annual risks for reuse of domestic wastewater (for all selected collection scenarios) and district-collected greywater were greater than the selected health benchmark when using the limited, available MBR treatment performance data; this finding is counterintuitive given the large size of Cryptosporidium spp. relative to the MBR pores. Therefore, additional data on MBR removal of protozoa is required to evaluate the proposed MBR treatment process for non-potable reuse. Although the predicted Norovirus annual risks were small across scenarios (less than 10-7 infections ppy), the risks for Norovirus remain uncertain, in part because the treatment performance is difficult to interpret given that the ratio of total to infectious viruses in the raw and treated effluents remains unknown. Overall, the differences in pathogen characterization between collection type (i.e., office vs. residential) and scale (i.e., district vs. building) drove the differences in predicted risk; and, the accidental ingestion event (although modeled as rare) determined the annual probability of infection. The predicted risks resulting from treatment malfunction scenarios indicated that online, real-time monitoring of both the MBR and disinfection processes remains important for non-potable reuse at distributed scales. The resulting predicted health risks provide insight on the suitability of MBR treatment for distributed, non-potable reuse at different collection scales and the potential to reduce health risks for non-potable reuse.
Collapse
Affiliation(s)
- Mary E. Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, CA 94703, USA
- Corresponding author. (M.E. Schoen)
| | - Michael A. Jahne
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jay Garland
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
46
|
Schmitz BW, Moriyama H, Haramoto E, Kitajima M, Sherchan S, Gerba CP, Pepper IL. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7015-7023. [PMID: 29847105 DOI: 10.1021/acs.est.7b05876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.
Collapse
Affiliation(s)
- Bradley W Schmitz
- Department of Civil & Environmental Engineering , National University of Singapore , Block E1A, #07-03, No. 1 Engineering Drive 2 , Singapore , 117576
| | - Hitoha Moriyama
- Department of Environmental Sciences , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering , Hokkaido University , North 13 West 8 , Kita-ku, Sapporo , Hokkaido 060-8628 , Japan
| | - Samendra Sherchan
- Department of Global Environmental Health Services , Tulane University of Louisiana , 1440 Canal Street Suite 2100 , New Orleans , Louisiana 70112 , United States
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| | - Ian L Pepper
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| |
Collapse
|
47
|
Mosnier E, Martin N, Razakandrainibe R, Dalle F, Roux G, Buteux A, Favennec L, Brousse P, Guarmit B, Blanchet D, Epelboin L, Girouin C, Martin E, Djossou F, Nacher M, Demar M. Cryptosporidiosis Outbreak in Immunocompetent Children from a Remote Area of French Guiana. Am J Trop Med Hyg 2018; 98:1727-1732. [PMID: 29692312 DOI: 10.4269/ajtmh.17-0609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In September 2014, an increase in the number of Cryptosporidium spp. gastrointestinal tract infections was reported over a 6-month period among children living in a remote area along the Maroni River in French Guiana. Children presented gastroenteritis symptoms with Cryptosporidium-positive stools. Questionnaires were administered and stool examinations were controlled 3 months after the onset of symptoms. Data collection included demographics, food consumption, river behavior, symptoms, and outcome. Stool specimens were tested using microscopy and polymerase chain reaction. Samples from the water systems were examined for turbidity and culture for bacteria. Data from the reference laboratory were analyzed to calculate the median cryptosporidiosis incidence among immunocompetent patients from 2008 to 2015. Data on gastroenteritis cases reported by the Delocalized Center for Prevention and Care in the area were also collected. We report a cluster of 14 cases. All cases were children, aged between 4.5 and 38 months. Seven reported moderate to severe dehydration and required hospitalization. Speciation and microbiological typing revealed the cluster strain was Cryptosporidium hominis subtype IbA10G2 but C. hominis IbA9G2 and IbA15G1 strains were also identified. The median incidence in French Guiana was 5.8 cases per year before the outbreak. The first cases of the cluster appeared in the dry season. We describe the clinical features, epidemiology, and state of current investigations for the largest documented outbreak of cryptosporidiosis in French Guiana.
Collapse
Affiliation(s)
- Emilie Mosnier
- Unité de Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Centres Délocalisés de Prévention et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| | - Noémie Martin
- Centres Délocalisés de Prévention et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie et Mycologie, Centre Hospitalier Universitaire Charles Nicolle, Rouen, France
| | - Frédéric Dalle
- UMR PAM Université de Bourgogne/AgrSup, Dijon, France.,Laboratoire de Parasitologie Mycologie, CHU Dijon, Dijon, France
| | - Guillaume Roux
- Laboratoire de Parasitologie et Mycologie, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Arnaud Buteux
- Laboratoire de Parasitologie et Mycologie, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Loïc Favennec
- Laboratoire de Parasitologie et Mycologie, Centre Hospitalier Universitaire Charles Nicolle, Rouen, France
| | - Paul Brousse
- Centres Délocalisés de Prévention et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Basma Guarmit
- Centres Délocalisés de Prévention et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Denis Blanchet
- Laboratoire de Parasitologie et Mycologie, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| | - Loïc Epelboin
- Unité de Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| | | | - Elise Martin
- Centres Délocalisés de Prévention et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, Guyane, France
| | - Félix Djossou
- Unité de Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Epidémiologie Clinique Antilles Guyane, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| | - Magalie Demar
- Laboratoire de Parasitologie et Mycologie, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Unité de Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon, Cayenne, Guyane, France.,Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, Guyane, France
| |
Collapse
|
48
|
Xiao S, Hu S, Zhang Y, Zhao X, Pan W. Influence of sewage treatment plant effluent discharge into multipurpose river on its water quality: A quantitative health risk assessment of Cryptosporidium and Giardia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:797-805. [PMID: 29141237 DOI: 10.1016/j.envpol.2017.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/15/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Sewage treatment plants (STPs) are one of the sources of pathogens discharged into surface water. An investigation was carried out over the duration of 12 months in Henan Province, China, to evaluate the health influence of municipal wastewater effluent discharge on water quality of the receiving water. A discharge-based quantitative microbial risk assessment (QMRA) was employed, taking into account the vegetables consumption habits of the Chinese, population subgroups with different immune statuses and ages, to evaluate the incremental disease burden from agricultural irrigation and swimming exposure scenarios associated with increased concentration of the protozoan Cryptosporidium and/or Giardia in the receiving river. The results shown that all the STP influent samples contained Cryptosporidium and Giardia with average density of 142.31 oocysts/L and 1187.06 cysts/L, respectively. The QMRA results demonstrated that the estimated additional health burdens due to discharged effluent for both parasites were slightly violated the threshold of 10-6 DALYs per person per year set by WHO. Mitigation measures should be planned and executed by season since more disease burdens were borne during hot season than other seasons. The sensitivity analysis highlighted the great importance of stability of STP treatment process. This study provides useful information to improve the safety of surface water and deduce the disease burden of the protozoa in Henan Province and other region inside and outside China.
Collapse
Affiliation(s)
- Shumin Xiao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin 300384, PR China.
| | - Sike Hu
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Yan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Xiaoyun Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Wenwei Pan
- College of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
49
|
Cryptosporidium and Giardia safety margin increase in leafy green vegetables irrigated with treated wastewater. Int J Hyg Environ Health 2018; 221:112-119. [PMID: 29066286 DOI: 10.1016/j.ijheh.2017.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 11/21/2022]
|
50
|
Troldborg M, Duckett D, Allan R, Hastings E, Hough RL. A risk-based approach for developing standards for irrigation with reclaimed water. WATER RESEARCH 2017; 126:372-384. [PMID: 28985601 DOI: 10.1016/j.watres.2017.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
A generalised quantitative risk assessment (QRA) is developed to assess the potential harm to human health resulting from irrigation with reclaimed water. The QRA is conducted as a backward calculation starting from a pre-defined acceptable risk level at the receptor point (defined as an annual infection risk of 10-4 for pathogens and by reference doses (RfD) for chemical hazards) and results in an estimate of the corresponding acceptable concentration levels of the given hazards in the effluent. In this way the QRA is designed to inform the level of water treatment required to achieve an acceptable risk level and help establish reclaimed water quality standards. The QRA considers the exposure of human receptors to microbial and chemical hazards in the effluent through various exposure pathways and routes depending on the specific irrigation scenario. By considering multiple pathways and routes, a number of key aspects relevant to estimating human exposure to recycled water can be accounted for, including irrigation and crop handling practices (e.g., non-edible vs edible, spray vs. drip, withholding time) and volumes consumed (directly vs indirectly). The QRA relies on a large number of inputs, many of which were found to be highly uncertain. A possibilistic approach, based on fuzzy set theory, was used to propagate the uncertain input values through the QRA model to estimate the possible range of hazard concentrations that are deemed acceptable/safe for reclaimed water irrigation. Two scenarios were considered: amenity irrigation and irrigation of ready-to-eat food crops, and calculations were carried out for six example hazards (norovirus, Cryptosporidium, cadmium, lead, PCB118 and naphthalene) and using UK-specific input values. The human health risks associated with using reclaimed water for amenity irrigation were overall deemed low, i.e. the calculated acceptable concentration levels for most of the selected hazards were generally far greater than levels typically measured in effluent from wastewater treatment plants; however the predicted acceptable concentration levels for norovirus and Cryptosporidium suggested that disinfection by UV may be required before use. It was found that stricter concentration standards were required for hazards that are more strongly bound to soil and/or are more toxic/infectious. It was also found that measures that reduce the amount of effluent directly ingested by the receptor would significantly reduce the risks (by up to 2 orders of magnitude for the two pathogens). The results for the food crop irrigation scenario showed that stricter concentration standards are required to ensure the effluent is safe to use. For pathogens, the dominant exposure route was found to be ingestion of effluent captured on the surface of the crops indicating that risks could be significantly reduced by restricting irrigation to the non-edible parts of the crop. The results also showed that the exposure to some organic compounds and heavy metals through plant uptake and attached soil particles could be high and possibly pose unacceptable risk to human health. For both scenarios, we show that the predicted acceptable concentration levels are associated with large uncertainty and discuss the implications this has for defining quality standards and how the uncertainty can be reduced.
Collapse
Affiliation(s)
- Mads Troldborg
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom.
| | - Dominic Duckett
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Richard Allan
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Emily Hastings
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Rupert L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| |
Collapse
|