1
|
Fountoulakis PN, Theofilis P, Vlachakis PK, Karakasis P, Pamporis K, Sagris M, Dimitroglou Y, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Gut Microbiota in Heart Failure-The Role of Inflammation. Biomedicines 2025; 13:911. [PMID: 40299538 PMCID: PMC12024997 DOI: 10.3390/biomedicines13040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Heart failure (HF) has become an immense health concern affecting almost 1-2% of the population globally. It is a complex syndrome characterized by activation of the sympathetic nervous system and the Renin-Angiotensin-Aldosterone (RAAS) axis as well as endothelial dysfunction, oxidative stress, and inflammation. The recent literature points towards the interaction between the intestinal flora and the heart, also called the gut-heart axis. The human gastrointestinal tract is naturally inhabited by various microbes, which are distinct for each patient, regulating the functions of many organs. Alterations of the gut microbiome, a process called dysbiosis, may result in systemic diseases and have been associated with heart failure through inflammatory and autoimmune mechanisms. The disorder of intestinal permeability favors the translocation of microbes and many metabolites capable of inducing inflammation, thus further contributing to the deterioration of normal cardiac function. Besides diet modifications and exercise training, many studies have revealed possible gut microbiota targeted treatments for managing heart failure. The aim of this review is to demonstrate the impact of the inflammatory environment induced by the gut microbiome and its metabolites on heart failure and the elucidation of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Petros N. Fountoulakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Marios Sagris
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Yannis Dimitroglou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| |
Collapse
|
2
|
Abstract
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption. In the present paper, the intake of saturated fat in ancestral and contemporary dietary settings is discussed. It is shown that while saturated fatty acids have been consumed by human ancestors across time and space, they do not feature dominantly in the diets of hunter-gatherers or projected nutritional inputs of genetic accommodation. A higher intake of high-fat dairy and meat products produces a divergent fatty acid profile that can increase the risk of cardiovascular and inflammatory disease and decrease the overall satiating-, antioxidant-, and nutrient capacity of the diet. By prioritizing fiber-rich and micronutrient-dense foods, as well as items with a higher proportion of unsaturated fatty acids, and in particular the long-chain polyunsaturated omega-3 fatty acids, a nutritional profile that is better aligned with that of wild and natural diets is achieved. This would help prevent the burdening diseases of civilization, including heart disease, cancer, and neurodegenerative conditions. Saturated fat is a natural part of a balanced diet; however, caution is warranted in a food environment that differs markedly from the one to which we are adapted.
Collapse
Affiliation(s)
- Eirik Garnås
- Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.
| |
Collapse
|
3
|
Guivala SJ, Bode KA, Okun JG, Kartal E, Schwedhelm E, Pohl LV, Werner S, Erbs S, Thiele H, Büttner P. Interactions between the gut microbiome, associated metabolites and the manifestation and progression of heart failure with preserved ejection fraction in ZSF1 rats. Cardiovasc Diabetol 2024; 23:299. [PMID: 39143579 PMCID: PMC11325580 DOI: 10.1186/s12933-024-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.
Collapse
Affiliation(s)
- Salmina J Guivala
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Konrad A Bode
- Department Molecular Diagnostics, Laboratory Dr. Limbach and Colleagues, Am Breitspiel 15, 69126, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ece Kartal
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Luca V Pohl
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sarah Werner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sandra Erbs
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Holger Thiele
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Petra Büttner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| |
Collapse
|
4
|
Dinetz E, Zeballos-Palacios C, Martinez CA. Addressing the Missing Links in Cardiovascular Aging. Clin Interv Aging 2024; 19:873-882. [PMID: 38774249 PMCID: PMC11107914 DOI: 10.2147/cia.s457180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
The aim of this manuscript is to provide a review of available options to enhance cardiovascular health and prevent cardiovascular disease (CVD) in the aging population using a systems-biology approach. These include the role of the gut microbiome, the early identification and removal of environmental toxins, and finally age related sex hormones and supplement replacement which all influence aging. Implementing such a comprehensive approach has the potential to facilitate earlier risk assessment, disease prevention, and even improve mortality. Further study in these areas will continue to advance our understanding and refine therapeutic interventions for a healthier cardiovascular aging process.
Collapse
Affiliation(s)
- Elliot Dinetz
- Department of Integrative and Family Medicine, University of Miami Miller School of Medicine Miami, Miami, FL, USA
| | | | - Claudia A Martinez
- Department of Medicine, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Hou C, Jiang X, Sheng W, Zhang Y, Lin Q, Hong S, Zhao J, Wang T, Ye X. Xinmaikang (XMK) tablets alleviate atherosclerosis by regulating the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117240. [PMID: 37777030 DOI: 10.1016/j.jep.2023.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinmaikang (XMK) tablets, a Chinese patent medicine, have been used for the prevention and treatment of atherosclerosis (AS) clinically. However, the underlying mechanism of XMK is far from completely illustrated. AIM OF THE STUDY This study aimed to determine whether XMK alleviates AS in Apolipoprotein E-knockout (ApoE-/-) mice and to explore the potential mechanism of action in bone marrow-derived macrophages (BMDMs). MATERIALS AND METHODS XMK decoction was analyzed by an LC‒MS/MS assay. Molecular docking was conducted to determine the interaction of XMK molecular ligands and AS targets. In vivo, 10 ApoE-/- mice were selected as the control group. Fifty ApoE-/- mice were randomly divided into 5 groups: the model group, low-, medium-, and high-dose XMK groups and the simvastatin group. Mice in the control group were fed a chow diet, and the other 5 groups were fed a high-fat diet (HFD) for 12 weeks. After 12 weeks, the treatment groups were administered low-dose XMK (2.28·kg-1·d), medium-dose XMK (4.55·kg-1·d), high-dose XMK (9.1 kg-1 d) and simvastatin (91 mg-1 d) for another 12 weeks. Serum enzymology assays tested AST/ALT, Cr, LDH and CK-MB levels. The atherosclerotic plaques and lipid deposition were measured by Oil red O (ORO) staining and Hematoxylin and Eosin (H&E) staining. Then, we examined the body weight and serum lipids (TC, TG, LDL-C and HDL-C) of the mice. ELISA was performed to determine the levels of inflammatory factors (IL-6, TNF-ɑ, VCAM-1, CXCL8 and CCL2). SREBP2/NLRP3 signaling pathway-related genes (SREBP2, NLRP3, ASC, IL-1β and Caspase-1) were analyzed by RT‒qPCR and western blotting. In vitro, LPS-stimulated BMDMs were treated with different concentrations of XMK (1, 2.5, 5, 10, 20, and 40 μg/ml). Immunofluorescence staining (SREBP2, NLRP3), adenovirus infection and siRNA knockdown (SREBP2, NLRP3, Caspase-1 and ASC) were conducted as complements to the in vivo experiment. RESULTS Molecular docking showed a stable interaction between the effective components of XMK and SREBP2 and NLRP3. Serum enzymology assays revealed the medication safety of XMK in cardiac, hepatic and renal function. Studies in vivo indicated that XMK improved serum lipids (TC, TG, LDL-C and HDL-C) and reduced plaque area. Body weight decreased, and the expression of inflammatory cytokines (IL-6, TNF-ɑ and VCAM-1) was inhibited. Then, XMK downregulated the mRNA and protein expression of SREBP2, NLRP3, ASC, IL-1β and Caspase-1. In vitro, the above findings were reinforced in BMDMs, and knocking down SREBP2 restrained the effect of XMK on the NLRP3/ASC/Caspase-1 signaling pathway. CONCLUSIONS XMK restrains AS by improving inflammation through the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Chijun Hou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xinyue Jiang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenjuan Sheng
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Yuling Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qianbei Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shihan Hong
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jiale Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xiaohan Ye
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China.
| |
Collapse
|
6
|
Kimble A, Hauschild J, McDonnell G. Affinity and Inactivation of Bacterial Endotoxins for Medical Device Materials. Biomed Instrum Technol 2024; 57:153-162. [PMID: 38170935 PMCID: PMC10764065 DOI: 10.2345/0899-8205-57.4.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endotoxins are high-molecular-weight complexes that contain lipopolysaccharide, protein, and phospholipid originating from the outer membrane of gram-negative bacteria. As gram-negative bacteria are naturally present in a variety of sources, endotoxins are commonly identified as contaminants in manufacturing environments. In industrial applications, endotoxin often is considered difficult to inactivate and to have a strong affinity with surfaces resulting from its hydrophobic chemical structure. This article describes the investigation of the true affinity of endotoxin, from various microbial sources in solution, for medical device material surfaces. In addition, endotoxin reduction was investigated with commonly used sterilization methods such as those based on ionizing radiation, dry and moist heat, and ethylene oxide sterilization. Endotoxin activity was found to be reduced following exposure to a range of sterilization modalities with the degree of activity reduction related to the source of endotoxin and the substrate material upon which it was present.
Collapse
|
7
|
Nooti S, Rai V, Radwan MM, Thankam FG, Singh H, Chatzizisis YS, Agrawal DK. Oxidized Low-density Lipoproteins and Lipopolysaccharides Augment Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2023; 7:273-294. [PMID: 37577745 PMCID: PMC10421630 DOI: 10.26502/fccm.92920338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease and hypercholesterolemia is a risk factor. This study aims to compare the potency of lipopolysaccharide (LPS) and oxidized low-density lipoproteins (oxLDL) to induce plaque formation and increase plaque vulnerability in the carotid artery of hypercholesterolemic Yucatan microswine. Atherosclerotic lesions at the common carotid artery junction and ascending pharyngeal artery were induced in hypercholesterolemic Yucatan microswine at 5-6 months of age with balloon angioplasty. LPS or oxLDL were administered intraluminally at the site of injury after occluding the arterial flow temporarily. Pre-intervention ultrasound (US), angiography, and optical coherence tomography (OCT) were done at baseline and just before euthanasia to assess post-op parameters. The images from the US, OCT, and angiography in the LPS and the oxLDL-treated group showed increased plaque formation with features suggestive of unstable plaque, including necrotic core, thin fibrous caps, and a signal poor region more with oxLDL compared to LPS. Histomorphology of the carotid artery tissue near the injury corroborated the presence of severe lesions in both LPS and oxLDL-treated pigs but more in the oxLDL group. Vascular smooth muscle and endothelial cells treated with LPS and oxLDL showed increased folds changes in mRNA transcripts of the biomarkers of inflammation and plaque vulnerability compared to untreated cells. Collectively, the results suggest that angioplasty-mediated intimal injury of the carotid arteries in atherosclerotic swine with local administration of LPS or ox-LDL induces vulnerable plaques compared to angioplasty alone and oxLDL is relatively more potent than LPS in inducing vulnerable plaque.
Collapse
Affiliation(s)
- S Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - V Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - M M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - F G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - H Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Y S Chatzizisis
- Division of Cardiovascular Medicine, Leonard M. Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | - D K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
8
|
Ciacci P, Paraninfi A, Orlando F, Rella S, Maggio E, Oliva A, Cangemi R, Carnevale R, Bartimoccia S, Cammisotto V, D'Amico A, Magna A, Nocella C, Mastroianni CM, Pignatelli P, Violi F, Loffredo L. Endothelial dysfunction, oxidative stress and low-grade endotoxemia in COVID-19 patients hospitalised in medical wards. Microvasc Res 2023:104557. [PMID: 37268038 DOI: 10.1016/j.mvr.2023.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Endothelial dysfunction, assessed by flow-mediated dilation (FMD), is related to poor prognosis in patients with COVID-19 pneumonia (CP). In this study, we explored the interplay among FMD, NADPH oxidase type 2 (NOX-2) and lipopolysaccharides (LPS) in hospitalised patients with CP, community acquired pneumonia (CAP) and controls (CT). METHODS We enrolled 20 consecutive patients with CP, 20 hospitalised patients with CAP and 20 CT matched for sex, age, and main cardiovascular risk factors. In all subjects we performed FMD and collected blood samples to analyse markers of oxidative stress (soluble Nox2-derived peptide (sNOX2-dp), hydrogen peroxide breakdown activity (HBA), nitric oxide (NO), hydrogen peroxide (H2O2)), inflammation (TNF-α and IL-6), LPS and zonulin levels. RESULTS Compared with controls, CP had significant higher values of LPS, sNOX-2-dp, H2O2,TNF-α, IL-6 and zonulin; conversely FMD, HBA and NO bioavailability were significantly lower in CP. Compared to CAP patients, CP had significantly higher levels of sNOX2-dp, H2O2, TNF-α, IL-6, LPS, zonulin and lower HBA. Simple linear regression analysis showed that FMD inversely correlated with sNOX2-dp, H2O2, TNF-α, IL-6, LPS and zonulin; conversely FMD was directly correlated with NO bioavailability and HBA. Multiple linear regression analysis highlighted LPS as the only predictor of FMD. CONCLUSION This study shows that patients with COVID-19 have low-grade endotoxemia that could activate NOX-2, generating increased oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Paolo Ciacci
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Aurora Paraninfi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Federica Orlando
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Silvia Rella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Enrico Maggio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Arianna Magna
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Violi
- Mediterranea Cardiocentro, Naples, Italy; Sapienza University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy.
| |
Collapse
|
9
|
Khomich M, Lin H, Malinovschi A, Brix S, Cestelli L, Peddada S, Johannessen A, Eriksen C, Real FG, Svanes C, Bertelsen RJ. Association between lipid-A-producing oral bacteria of different potency and fractional exhaled nitric oxide in a Norwegian population-based adult cohort. J Transl Med 2023; 21:354. [PMID: 37246224 DOI: 10.1186/s12967-023-04199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Lipid A is the primary immunostimulatory part of the lipopolysaccharide (LPS) molecule. The inflammatory response of LPS varies and depends upon the number of acyl chains and phosphate groups in lipid A which is specific for a bacterial species or strain. Traditional LPS quantification assays cannot distinguish between the acylation degree of lipid A molecules, and therefore little is known about how bacteria with different inflammation-inducing potencies affect fractional exhaled nitric oxide (FeNO). We aimed to explore the association between pro-inflammatory hexa- and less inflammatory penta-acylated LPS-producing oral bacteria and FeNO as a marker of airway inflammation. METHODS We used data from a population-based adult cohort from Norway (n = 477), a study center of the RHINESSA multi-center generation study. We applied statistical methods on the bacterial community- (prediction with MiRKAT) and genus-level (differential abundance analysis with ANCOM-BC) to investigate the association between the oral microbiota composition and FeNO. RESULTS We found the overall composition to be significantly associated with increasing FeNO levels independent of covariate adjustment, and abundances of 27 bacterial genera to differ in individuals with high FeNO vs. low FeNO levels. Hexa- and penta-acylated LPS producers made up 2.4% and 40.8% of the oral bacterial genera, respectively. The Bray-Curtis dissimilarity within hexa- and penta-acylated LPS-producing oral bacteria was associated with increasing FeNO levels independent of covariate adjustment. A few single penta-acylated LPS producers were more abundant in individuals with low FeNO vs. high FeNO, while hexa-acylated LPS producers were found not to be enriched. CONCLUSIONS In a population-based adult cohort, FeNO was observed to be associated with the overall oral bacterial community composition. The effect of hexa- and penta-acylated LPS-producing oral bacteria was overall significant when focusing on Bray-Curtis dissimilarity within each of the two communities and FeNO levels, but only penta-acylated LPS producers appeared to be reduced or absent in individuals with high FeNO. It is likely that the pro-inflammatory effect of hexa-acylated LPS producers is counteracted by the dominance of the more abundant penta-acylated LPS producers in this population-based adult cohort involving mainly healthy individuals.
Collapse
Affiliation(s)
- Maryia Khomich
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Huang Lin
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, Durham, NC, USA
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lucia Cestelli
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shyamal Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, Durham, NC, USA
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, Center for International Health, University of Bergen, Bergen, Norway
| | - Carsten Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Francisco Gomez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Svanes
- Department of Global Public Health and Primary Care, Center for International Health, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
| |
Collapse
|
10
|
Sumida K, Pierre JF, Yuzefpolskaya M, Colombo PC, Demmer RT, Kovesdy CP. Gut Microbiota-Targeted Interventions in the Management of Chronic Kidney Disease. Semin Nephrol 2023; 43:151408. [PMID: 37619529 PMCID: PMC10783887 DOI: 10.1016/j.semnephrol.2023.151408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Recent advances in microbiome research have informed the potential role of the gut microbiota in the regulation of metabolic, cardiovascular, and renal systems, and, when altered, in the pathogenesis of various cardiometabolic disorders, including chronic kidney disease (CKD). The improved understanding of gut dysbiosis in cardiometabolic pathologies in turn has led to a vigorous quest for developing therapeutic strategies. These therapeutic strategies aim to investigate whether interventions targeting gut dysbiosis can shift the microbiota toward eubiosis and if these shifts, in turn, translate into improvements in (or prevention of) CKD and its related complications, such as premature cardiovascular disease. Existing evidence suggests that multiple interventions (eg, plant-based diets; prebiotic, probiotic, and synbiotic supplementation; constipation treatment; fecal microbiota transplantation; and intestinal dialysis) might result in favorable modulation of the gut microbiota in patients with CKD, and thereby potentially contribute to improving clinical outcomes in these patients. In this review, we summarize the current understanding of the characteristics and roles of the gut microbiota in CKD and discuss the potential of emerging gut microbiota-targeted interventions in the management of CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN.
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI
| | - Melana Yuzefpolskaya
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
11
|
Toprak K, Kaplangoray M, Altiparmak İH, Taşcanov MB, Güngören F, Fedai H, İnanir M, Biçer A, Demirbağ R. Can increased intestinal permeability and low-grade endotoxemia be the triggering pathogenesis in isolated coronary artery ectasia? Coron Artery Dis 2023; 34:102-110. [PMID: 36720018 DOI: 10.1097/mca.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Isolated coronary artery ectasia (ICAE) is a rare coronary artery disease (CAD) encountered during coronary angiography. Although many mechanisms have been suggested today that may be associated with ICAE, the underlying pathogenesis has not been fully understood. In this study, we aimed to reveal the possible relationship between intestinal permeability and ICAE. METHODS Of the 12 850 patients who underwent coronary angiography, 138 consecutive patients with ICAE and 140 age- and sex-matched subjects with normal coronary arteries as the control group and 140 subjects with stenotic CAD were included in the study. RESULTS Serum zonulin and lipopolysaccharide levels were significantly higher in patients with ICAE than in the control group and CAD group. Additionally, zonulin and lipopolysaccharide levels were significantly higher in the CAD group than in the ICAE group. In the correlation analysis, serum zonulin levels were correlated with the mean diameter and length of the ecstatic segment. In multivariate analysis, zonulin and lipopolysaccharide were identified as independent predictors for ICAE. CONCLUSION These results suggest that there may be a pathophysiological relationship between increased intestinal permeability and ICAE.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University
| | - Mustafa Kaplangoray
- Department of Cardiology, Mehmet Akif İnan Training and Research Hospital, Sanliurfa
| | | | | | - Fatih Güngören
- Department of Cardiology, Istanbul Aydin University VM Medical Park Florya Hospital, Istanbul
| | - Halil Fedai
- Department of Cardiology, Şanliurfa Training and Research Hospital, Sanliurfa
| | - Mehmet İnanir
- Department of Cardiology, Bolu Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu, Turkey
| | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University
| |
Collapse
|
12
|
Chen D, Geng Y, Deng Z, Li P, Xue S, Xu T, Li G. Inhibition of TLR4 Alleviates Heat Stroke-Induced Cardiomyocyte Injury by Down-Regulating Inflammation and Ferroptosis. Molecules 2023; 28:molecules28052297. [PMID: 36903542 PMCID: PMC10005438 DOI: 10.3390/molecules28052297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory response and cell death play key roles in the mechanism of myocardial cell injury induced by heat stroke (HS) in rats. Ferroptosis is a newly discovered regulatory type of cell death, which is involved in the occurrence and development of various cardiovascular diseases. However, the role of ferroptosis in the mechanism of cardiomyocyte injury caused by HS remains to be clarified. The purpose of this study was to investigate the role and potential mechanism of Toll-like receptor 4 (TLR4) in cardiomyocyte inflammation and ferroptosis under HS conditions at the cellular level. The HS cell model was established by exposing H9C2 cells at 43 °C for 2 h and then recovering at 37 °C for 3 h. The association between HS and ferroptosis was investigated by adding the ferroptosis inhibitor, liproxstatin-1, and the ferroptosis inducer, erastin. The results show that the expressions of ferroptosis-related proteins recombinant solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were decreased, the contents of glutathione (GSH) were decreased, and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ were increased in H9C2 cells in the HS group. Moreover, the mitochondria of the HS group became smaller and the membrane density increased. These changes were consistent with the effects of erastin on H9C2 cells and were reversed with liproxstatin-1. The addition of TLR4 inhibitor TAK-242 or NF-κB inhibitor PDTC reduced the expressions of NF-κB and p53, increased the expressions of SLC7A11 and GPX4, reduced the contents of TNF-α, IL-6 and IL-1β, increased the content of GSH and reduced MDA, ROS, and Fe2+ levels in H9C2 cells under the HS condition. TAK-242 may improve the mitochondrial shrinkage and membrane density of H9C2 cells induced by HS. In conclusion, this study illustrated that inhibition of the TLR4/NF-κB signaling pathway can regulate the inflammatory response and ferroptosis induced by HS, which provides new information and a theoretical basis for the basic research and clinical treatment of cardiovascular injuries caused by HS.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Geng
- School of Nursing, Ningxia Medical University, Yinchuan 750004, China
| | - Ziwei Deng
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Peiling Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Shujing Xue
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Tao Xu
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (T.X.); (G.L.); Tel.: +86-138-95-103-877 (T.X.); +86-187-09-508-466 (G.L.)
| | - Guanghua Li
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (T.X.); (G.L.); Tel.: +86-138-95-103-877 (T.X.); +86-187-09-508-466 (G.L.)
| |
Collapse
|
13
|
Wu R, Zhang L, Xu H, Chen H, Zhao W, Zhou Y, Zhou L, Wu J, An S. Salvia miltiorrhiza Extract Prevents the Occurrence of Early Atherosclerosis in Apoe -/- Mice via TLR4/ NF-kB Pathway. Cardiovasc Hematol Agents Med Chem 2023; 21:232-239. [PMID: 36748219 PMCID: PMC10258915 DOI: 10.2174/1871525721666230206112134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Salvia miltiorrhiza (SM) contains four major aqueous active ingredients, which have been isolated, purified and identified as danshensu (DSS), salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and protocatechuic aldehyde (PAL), A mixture of these four ingredients is called SABP. Although aqueous extract from Salvia miltiorrhiza has been traditionally used to treat cardiovascular diseases, the efficacy and function of the optimal ratio of SABP in preventing and treating cardiovascular diseases remain unknown. This study aims to explore the antiinflammatory mechanisms underlying the attenuation of atherosclerosis development by aqueous extract from Salvia miltiorrhiza. METHODS Male ApoE-/- mice (6 weeks) were randomly allocated into three groups: the model group (Model), the SABP group (SABP), and the rosuvastatin calcium group (RC). Male C57BL/6 mice (6 weeks) were used as a control group. All mice were fed with an ordinary diet. After 8 weeks of treatment, the lipid profiles in serum and the lactate dehydrogenase (LDH) and creatine kinase (CK) in heart tissue were measured using an automatic biochemical analyzer. Alterations of the thoracic aorta and the heart were assessed using Hematoxylin and eosin staining. The protein expression of Toll-like receptor 4 (TLR4), TGF beta-activated kinase 1 (TAK1), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the heart tissue were determined though immunohistochemistry and western blotting analysis. RESULTS The serum low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and total cholesterol (TC) levels were increased, and the high-density lipoprotein cholesterol (HDL-C) level was decreased in ApoE-/- mice. SABP significantly decreased serum lipid levels and improved histopathology in the thoracic aorta. In addition. SABP treatment inhibited the expression of TLR4, TAK1, NF-κB, IL-6 and TNF-α in the heart in ApoE-/- mice. The LDH and CK in the heart did not differ significantly among different groups, and the heart did not have obvious pathological changes. CONCLUSION These findings indicated that SABP may exert an anti-atherosclerotic effect by lowering blood lipids and inhibiting inflammatory response via TLR4/ NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruoyu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Linqi Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Hongxu Chen
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jiangli Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| |
Collapse
|
14
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
15
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
16
|
Blanks AM, Pedersen LN, Caslin HL, Mihalick VL, Via J, Canada JM, Van Tassell B, Carbone S, Abbate A, Lee Franco R. LPS differentially affects expression of CD14 and CCR2 in monocyte subsets of Post-STEMI patients with hyperglycemia. Diabetes Res Clin Pract 2022; 191:110077. [PMID: 36089102 DOI: 10.1016/j.diabres.2022.110077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
AIMS Following ST-segment elevation myocardial infarction (STEMI), recruitment and activation of monocytes [classical (CD14++CD16-CCR2++), intermediate (CD14++CD16+CCR2+), non-classical (CD14LowCD16++CCR2Low)] are needed for myocardial wound healing. Monocyte surface receptor CC chemokine receptor type 2 (CCR2) is responsible for monocyte chemotaxis to sites of inflammation and the lipopolysaccharide (LPS)-binding protein co-receptor, CD14, is involved in pro-inflammatory monocyte activation. The purpose of this investigation was to determine the effects of ex-vivo LPS activation on monocyte subset CD14 and CCR2 expression in post-STEMI individuals with normal and elevated random blood glucose. METHODS Post-STEMI subjects were identified as normal random glucose (NG, <98 mg/dL, n = 13) or impaired random glucose (IG, ≥98 mg/dL, n = 26) and monocytes were analyzed for non-activated and LPS-activated (1 µg/mL for 4 h) CCR2 and CD14 expression. RESULTS Non-activated intermediate monocytes from IG showed decreased CD14 expression when compared to NG, which was maintained following LPS-activation. The NG group showed a larger absolute reduction in classical CCR2 expression, leading to a significant difference between NG and IG following LPS-activation. CONCLUSION Results suggest a heightened response to pro-inflammatory activation in IG following STEMI, which may impair or delay post-STEMI myocardial healing, and thus increase the incidence of chronic heart failure. NIH 1R34HL121402.
Collapse
Affiliation(s)
- Anson M Blanks
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Lauren N Pedersen
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, United States
| | - Virginia L Mihalick
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Jeremy Via
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Justin M Canada
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Benjamin Van Tassell
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - R Lee Franco
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
17
|
Lin TY, Chang YK, Wu MY, Wu TK, Chen CH, Lim PS. Serum Lipopolysaccharide-Binding Protein Levels and Cardiovascular Events in Hemodialysis Patients: A Prospective Cohort Study. Nephrology (Carlton) 2022; 27:877-885. [PMID: 36045565 DOI: 10.1111/nep.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Patients with end-stage kidney disease (ESKD) exhibit an elevated cardiovascular risk. Chronic inflammation is one of the main mechanisms of cardiovascular disease (CVD). Lipopolysaccharide has been proposed as a link between systemic inflammation and CVD. Herein, we evaluated whether lipopolysaccharide-binding protein (LBP), a surrogate marker of lipopolysaccharide and consequent inflammation, is associated with cardiovascular events in ESKD. METHODS We performed a prospective cohort study of maintenance hemodialysis patients. Baseline serum LBP levels were categorized into tertiles and also modeled continuously for analyses. Cox regression methods were used to evaluate the association of serum LBP levels with cardiovascular events. RESULTS A total of 360 hemodialysis patients were included in this analysis. During a median follow-up of 3.1 years, 90 (25.0%) patients had cardiovascular events. Patients in the upper tertile of serum LBP levels had a significantly greater risk of cardiovascular events (hazard ratio [HR] 4.87; 95% confidence intervals [CI], 2.12-11.15) than those in the lower tertile, independent of age, sex, hypertension, diabetes, CVD, dialysis vintage, body mass index, non-high-density lipoprotein cholesterol, albumin, phosphorus, high-sensitivity C-reactive protein, and interleukin-6. The association was consistent regardless of whether competing risk of death was accounted for (subdistribution HR 4.87; 95% CI, 1.96-12.11 for upper versus lower tertiles) or serum LBP was analysed as a continuous variable (HR 1.30; 95% CI, 1.02-1.66 per 1 SD increment). CONCLUSIONS Serum LBP levels were independently associated with cardiovascular events in heomodialysis patients. LBP might serve as a novel biomarker for CVD in ESKD.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ming-Yin Wu
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsai-Kun Wu
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chang-Hsu Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Paik-Seong Lim
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Institute of Biomedical Science, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Francisqueti-Ferron FV, Nakandakare-Maia ET, Siqueira JS, Ferron AJT, Vieira TA, Bazan SGZ, Corrêa CR. The role of gut dysbiosis-associated inflammation in heart failure. Rev Assoc Med Bras (1992) 2022; 68:1120-1124. [PMID: 36134842 PMCID: PMC9574986 DOI: 10.1590/1806-9282.20220197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Fabiane Valentini Francisqueti-Ferron
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil.,Faculdades Integradas de Bauru - Bauru (SP), Brazil
| | - Erika Tiemi Nakandakare-Maia
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil.,Centro Universitário Sudoeste Paulista - Avaré (SP), Brazil
| | - Juliana Silva Siqueira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil
| | - Artur Junio Togneri Ferron
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil.,Faculdades Integradas de Bauru - Bauru (SP), Brazil
| | - Taynara Aparecida Vieira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil
| | | | - Camila Renata Corrêa
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Medical School - Botucatu (SP), Brazil
| |
Collapse
|
19
|
Li X, Guo D, Zhou W, Hu Y, Zhou H, Chen Y. Oxidative Stress and Inflammation Markers Associated with Multiple Peripheral Artery Occlusions in Elderly Patients. Angiology 2022; 74:472-487. [PMID: 35786005 DOI: 10.1177/00033197221111860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Pro-oxidative stress and pro-inflammatory responses can influence each other in the development of atherosclerosis. This study evaluated the relationship between oxidative stress, inflammation, and multiple peripheral artery occlusions in elderly patients (age mean 71.2 ± 8.1 years). Methods: A total of 723 participants were enrolled: 67 healthy subjects, 214 patients with common iliac artery occlusions, 224 patients with popliteal artery occlusions, and 218 patients with femoral artery occlusions. We measured oxidative stress biomarkers (malondialdehyde [MDA], F2-isoprostane [F2-isoP], total oxidant status [TOS], and ischemia-modified albumin [IMA]) and the expressions of molecules in mimecan (MIME)/nuclear factor kappa B (NF-κB)/P53/Toll-like receptor 4 (TLR4) signaling pathway in older patients with multiple peripheral artery occlusions. Results: The levels of MDA, F2-isoP, TOS, IMA, MIME, NF-κB, P53, and TLR4 were increased in the single-site peripheral artery occlusive group when compared with healthy controls (P < .001) and were further increased in the multiple-site peripheral artery occlusive group compared with the single-site peripheral artery occlusive group (P < .001). Conclusion: Oxidative stress may promote inflammatory signaling pathways and lead to multiple peripheral artery occlusions in elderly patients.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Youdong Hu
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Hualan Zhou
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Ying Chen
- Xiamen Road Branch Hospital, 38044The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|
20
|
TLR4-SIRT3 Mechanism Modulates Mitochondrial and Redox Homeostasis and Promotes EPCs Recruitment and Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1282362. [PMID: 35832490 PMCID: PMC9273456 DOI: 10.1155/2022/1282362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The low survival rate of endothelial progenitor cells (EPCs) in vivo which are susceptible to adverse microenvironments including inflammation and oxidative stress has become one primary challenge of EPCs transplantation for regenerative therapy. Recent studies reported functional expression of toll-like receptor (TLR) 4 on EPCs and dose-dependent effects of lipopolysaccharide (LPS) on cellular oxidative stress and angiogenic properties. However, the involved mechanism has not yet been elucidated well, and the influence of TLR4 signaling on EPCs survival and function in vivo is unknown. In the present study, we observed the effects of LPS and TLR4/SIRT3 on EPCs mitochondrial permeability and intracellular mitochondrial superoxide. We employed the monocrotaline-induced pulmonary arteriolar injury model to observe the effects of TLR4/SIRT3 on the recruitment and survival of transplanted EPCs. We found the destructive effects of 10 μg/mL LPS on mitochondrial homeostasis, and cellular viability was mediated by TLR4/SIRT3 signals at least partially, and the TLR4 mediates the early-stage recruitment of transplanted EPCs in pulmonary arteriolar inflammation injury; however, SIRT3 has more contribution to the survival of incorporated EPCs and ameliorated arteriolar remodeling in lung vascular tissue. The study provides insights for the critical role of TLR4/SIRT3 in LPS-induced oxidative stress and mitochondrial disorder in EPCs in vitro and in vivo. The TLR4/SIRT3 signaling is important for EPCs resistance against inflammation and oxidative stress and may represent a new manipulating target for developing efficient cell therapy strategy.
Collapse
|
21
|
Singh H, Rai V, Agrawal DK. LPS and oxLDL-induced S100A12 and RAGE expression in carotid arteries of atherosclerotic Yucatan microswine. Mol Biol Rep 2022; 49:8663-8672. [PMID: 35771356 DOI: 10.1007/s11033-022-07703-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND S100A12, also known as Calgranulin C, is a ligand for the receptor for advanced glycation end products (RAGE) and plays key roles in cardiovascular and other inflammatory diseases. Interactions between S100A12 and RAGE initiate downstream signaling activating extracellular signal-regulated kinases (ERK1/2), mitogen activated protein kinases (MAPK), and transcription factor NF-κB. This increases the expression of pro-inflammatory cytokines to induce the inflammatory response. S100A12, and RAGE play a critical role in the development and progression of atherosclerosis. There is a well-known relationship between the bacterial endotoxin lipopolysaccharide (LPS) and the lipid antigens oxidized low-density lipoprotein (oxLDL) in driving the immune response in atherosclerosis. METHODS AND RESULTS Our study aimed to compare the potential of LPS and oxLDL in regulating the expression of S100A12 and RAGE in atherosclerosis. The expression of these proteins was assessed in the harvested carotid arteries from LPS- and oxLDL-treated atherosclerotic Yucatan microswine. Tissues were collected from five different treatment groups: (i) angioplasty alone, (ii) LPS alone, (iii) oxLDL alone, (iv) angioplasty with LPS, and (v) angioplasty with oxLDL. Immunohistochemical findings revealed that angioplasty with LPS induced higher expression of S100A12 and RAGE compared to other treatment groups. The results were further corroborated by testing their gene expression through qPCR in cultured vascular smooth muscle cells (VSMCs) isolated from control carotid arteries and LPS- and oxLDL-treated arteries. CONCLUSIONS The results of this study suggest that LPS induces the expression of S100A12 and RAGE more than oxLDL in atherosclerotic artery and both S100A12 and RAGE could be therapeutic targets.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
22
|
A Network Pharmacology Study to Explore the Underlying Mechanism of Safflower ( Carthamus tinctorius L.) in the Treatment of Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3242015. [PMID: 35607519 PMCID: PMC9124127 DOI: 10.1155/2022/3242015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Safflower has long been used to treat coronary heart disease (CHD). However, the underlying mechanism remains unclear. The goal of this study was to predict the therapeutic effect of safflower against CHD using a network pharmacology and to explore the underlying pharmacological mechanisms. Firstly, we obtained relative compounds of safflower based on the TCMSP database. The TCMSP and PubChem databases were used to predict targets of these active compounds. Then, we built CHD-related targets by the DisGeNET database. The protein-protein interaction (PPI) network graph of overlapping genes was obtained after supplying the common targets of safflower and CHD into the STRING database. The PPI network was then used to determine the top ten most significant hub genes. Furthermore, the DAVID database was utilized for the enrichment analysis on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). To validate these results, a cell model of CHD was established in EAhy926 cells using oxidized low-density lipoprotein (ox-LDL). Safflower was determined to have 189 active compounds. The TCMSP and PubChem databases were used to predict 573 targets of these active compounds. The DisGeNET database was used to identify 1576 genes involved in the progression of CHD. The top ten hub genes were ALB, IL6, IL1B, VEGFA, STAT3, MMP9, TLR4, CCL2, CXCL8, and IL10. GO functional enrichment analysis yielded 92 entries for biological process (BP), 47 entries for cellular component (CC), 31 entries for molecular function (MF), and 20 signaling pathways, which were obtained from KEGG pathway enrichment screening. Based on these findings, the FoxO signaling pathway is critical in the treatment of CHD by safflower. The in vitro results showed that safflower had an ameliorating effect on ox-LDL-induced apoptosis and mitochondrial membrane potential. The western blot results showed that safflower decreased Bax expression and acetylation of FoxO1 proteins while increasing the expression of Bcl-2 and SIRT1 proteins. Safflower can be used in multiple pathways during CHD treatment and can exert anti-apoptotic effects by regulating the expression of Bax, Bcl-2, and SIRT1/FoxO1 signaling pathway-related proteins.
Collapse
|
23
|
Sumida K, Han Z, Chiu CY, Mims TS, Bajwa A, Demmer RT, Datta S, Kovesdy CP, Pierre JF. Circulating Microbiota in Cardiometabolic Disease. Front Cell Infect Microbiol 2022; 12:892232. [PMID: 35592652 PMCID: PMC9110890 DOI: 10.3389/fcimb.2022.892232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The rapid expansion of microbiota research has significantly advanced our understanding of the complex interactions between gut microbiota and cardiovascular, metabolic, and renal system regulation. Low-grade chronic inflammation has long been implicated as one of the key mechanisms underlying cardiometabolic disease risk and progression, even before the insights provided by gut microbiota research in the past decade. Microbial translocation into the bloodstream can occur via different routes, including through the oral and/or intestinal mucosa, and may contribute to chronic inflammation in cardiometabolic disease. Among several gut-derived products identifiable in the systemic circulation, bacterial endotoxins and metabolites have been extensively studied, however recent advances in microbial DNA sequencing have further allowed us to identify highly diverse communities of microorganisms in the bloodstream from an -omics standpoint, which is termed "circulating microbiota." While detecting microorganisms in the bloodstream was historically considered as an indication of infection, evidence on the circulating microbiota is continually accumulating in various patient populations without clinical signs of infection and even in otherwise healthy individuals. Moreover, both quantitative and compositional alterations of the circulating microbiota have recently been implicated in the pathogenesis of chronic inflammatory conditions, potentially through their immunostimulatory, atherogenic, and cardiotoxic properties. In this mini review, we aim to provide recent evidence on the characteristics and roles of circulating microbiota in several cardiometabolic diseases, such as type 2 diabetes, cardiovascular disease, and chronic kidney disease, with highlights of our emerging findings on circulating microbiota in patients with end-stage kidney disease undergoing hemodialysis.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Keiichi Sumida,
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chi-Yang Chiu
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tahliyah S. Mims
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,Nephrology Section, Memphis Veterans Affairs (VA) Medical Center, Memphis, TN, United States
| | - Joseph F. Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Vissenaekens H, Grootaert C, Raes K, De Munck J, Smagghe G, Boon N, Van Camp J. Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup. Inflammation 2022; 45:1600-1611. [PMID: 35352237 DOI: 10.1007/s10753-022-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis initiation is associated with a pro-inflammatory state of the endothelium. Quercetin is a flavonoid abundantly present in plant-based foods, with a possible impact on cardiovascular health. In this study, the effects of quercetin on lipopolysaccharide (LPS)-mediated endothelial inflammation and monocyte adhesion and migration, which are initial steps of the atherogenic process, are studied. Novel in vitro multicellular models simulating the intestinal-endothelial-monocytes/macrophages axis allowed to combine relevant intestinal flavonoid absorption, metabolism and efflux, and the consequent bioactivity towards peripheral endothelial cells. In this triple coculture, quercetin exposure decreased monocyte adhesion to and macrophage migration through an LPS-stressed endothelium, and this was associated with significantly lower levels of soluble vascular cell adhesion molecule-1 (sVCAM-1). Furthermore, quercetin decreased the pro-inflammatory cell environment upon LPS-induced endothelial activation, in terms of tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and sVCAM-1 expression. These findings highlight a mode-of-action by which quercetin may positively impact the initial states of atherosclerosis under more physiologically relevant conditions in terms of quercetin concentrations, metabolites, and intercellular crosstalk.
Collapse
Affiliation(s)
- Hanne Vissenaekens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Julie De Munck
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
25
|
Xia L, Wang X, Yao W, Wang M, Zhu J. Lipopolysaccharide increases exosomes secretion from endothelial progenitor cells by toll-like receptor 4 dependent mechanism. Biol Cell 2022; 114:127-137. [PMID: 35235701 DOI: 10.1111/boc.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Endothelial progenitor cells (EPCs) can exert angiogenic effects by a paracrine mechanism, where exosomes work as an important mediator. Recent studies reported functional expression of toll-like receptor (TLR) 4 on human EPCs and dose-dependent effects of lipopolysaccharide (LPS) on EPC angiogenic properties. To study on the effects of TLR4/LPS signaling on EPC-derived exosomes (Exo) and involved mechanisms, we investigated the effect of LPS on exosomes secretion from human EPC and tested Exo functions by senescence-associated β-galactosidase activity assay and reactive oxygen species (ROS) related H2 DCF-DA assay. To clarify the mechanism, we examined the changes in intracellular calcium levels and multivesicular bodies (MVBs) development in EPC. We employed the inhibitors of the plasma membrane Ca 2+ -ATPase (PMCA), endoplasmic reticulum Ca 2+ -ATPase (ERCA), PLC-IP3 pathway and store-operated calcium entry to assess the effects of LPS on calcium signalings which critical for exosome secretion. LPS induced the release of Exo in a TLR4-dependent manner in vitro, which effect can be partly abrogated by the membrane-permeable IP 3 R antagonist, 2-aminoethyl diphenylborinate (2-APB), but not PLC inhibitor, U-73122. The LPS can significantly delay the fallback of [Ca 2+ ]i after isolating the cellular PMCA activity, and disturb PMCA 1/4 expression. The distribution of elevated intracellular calcium seemed coincident with the development of MVBs. Furthermore, the LPS-induced Exo maintained valid anti-oxidation/senescence properties. The PMCA and ER Ca 2+ release mechanism may contribute to the pro-exosomal effects of LPS on EPC, which is valuable for potential pro-regenerative application in future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liang Xia
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xiaotian Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Weidong Yao
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Meihui Wang
- Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junhui Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
27
|
Cabral F, Al-Rahem M, Skaggs J, Thomas TA, Kumar N, Wu Q, Fadda P, Yu L, Robinson JM, Kim J, Pandey E, Sun X, Jarjour WN, Rajaram MV, Harris EN, Ganesan LP. Stabilin receptors clear LPS and control systemic inflammation. iScience 2021; 24:103337. [PMID: 34816100 PMCID: PMC8591421 DOI: 10.1016/j.isci.2021.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharides (LPSs) cause lethal endotoxemia if not rapidly cleared from blood circulation. Liver sinusoidal endothelial cells (LSEC) systemically clear LPS by unknown mechanisms. We discovered that LPS clearance through LSEC involves endocytosis and lysosomal inactivation via Stabilin-1 and 2 (Stab1 and Stab2) but does not involve TLR4. Cytokine production was inversely related to clearance/endocytosis of LPS by LSEC. When exposed to LPS, Stabilin double knockout mice (Stab DK) and Stab1 KO, but not Stab2 KO, showed significantly enhanced systemic inflammatory cytokine production and early death compared with WT mice. Stab1 KO is not significantly different from Stab DK in circulatory LPS clearance, LPS uptake and endocytosis by LSEC, and cytokine production. These data indicate that (1) Stab1 receptor primarily facilitates the proactive clearance of LPS and limits TLR4-mediated inflammation and (2) TLR4 and Stab1 are functionally opposing LPS receptors. These findings suggest that endotoxemia can be controlled by optimizing LPS clearance by Stab1.
Collapse
Affiliation(s)
- Fatima Cabral
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Mustafa Al-Rahem
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John Skaggs
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thushara A. Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - John M. Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, MA 01854, USA
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Wael N. Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V.S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Alshareef GH, Mohammed AE, Abumaree M, Basmaeil YS. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:51-69. [PMID: 34754198 PMCID: PMC8572118 DOI: 10.2147/sccaa.s332952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Introduction Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS). Methods DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined. Furthermore, DBMSCs’ expression of 84 genes associated with their functional activities in the presence of LPS was investigated. Results Results indicated that LPS had no significant effect on DBMSCs’ adhesion, migration, and proliferation (24 h and 72 h) (p > 0.05). However, DBMSCs’ proliferation was significantly reduced at 10 µg/mL of LPS at 48 h (p < 0.05). In addition, inflammatory cytokines and receptors related to adhesion, proliferation, migration, and differentiation were significantly overexpressed when DBMSCs were treated with 10 µg/mL of LPS (p < 0.05). Conclusion These results indicated that DBMSCs maintained their functional activities (proliferation, adhesion, and migration) in the presence of LPS as there was no variation between the treated DBMSCs and the control group. This study will lay the foundation for future preclinical and clinical studies to confirm the appropriateness of DBMSCs as a potential medication to cure inflammatory diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Ghofran Hasan Alshareef
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Afrah E Mohammed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Mohammed Abumaree
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Sumida K, Pierre JF, Han Z, Mims TS, Potukuchi PK, Yuzefpolskaya M, Colombo PC, Demmer RT, Datta S, Kovesdy CP. Circulating Microbial Signatures and Cardiovascular Death in Patients With ESRD. Kidney Int Rep 2021; 6:2617-2628. [PMID: 34622101 PMCID: PMC8484116 DOI: 10.1016/j.ekir.2021.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Patients with end-stage renal disease (ESRD) experience disproportionately high cardiovascular morbidity and mortality. Accumulating evidence suggests a role for the circulating microbiome in the pathogenesis of cardiovascular disease; however, little is known about its association with premature cardiovascular mortality in ESRD. METHODS In a pilot case-control study of 17 hemodialysis patients who died of a cardiovascular event and 17 matched hemodialysis controls who remained alive during a median follow-up of 2.0 years, we compared the levels and composition of circulating microbiome, including Bacteria, Archaea, and Fungi, in serum samples by quantitative polymerase chain reaction and 16S or Internal Transcribed Spacer (ITS) ribosomal RNA (rRNA) sequencing, respectively. Associations of the circulating cell-free microbial signatures with clinical parameters and cardiovascular death were examined using the Spearman rank correlation and multivariable conditional logistic regression, respectively. RESULTS Both 16S and ITS rRNA were detectable in all (except 3 for ITS) examined patients' serum samples. Despite no significant difference in 16S rRNA levels and α diversity between cases and controls, taxonomic analysis demonstrated differential community membership between groups, with significantly greater Actinobacteria and less Proteobacteria observed in cases than in controls at the phylum level. Proportions of Actinobacteria and Proteobacteria phyla were significantly correlated with plasma nuclear factor erythroid 2-related factor 2 (Nrf2) levels (rho = -0.41 and 0.42, P = 0.015 and 0.013, respectively) and marginally associated with risk of cardiovascular death (adjusted odds ratios [95% confidence intervals] = 1.12 [0.98-1.29] and 0.88 [0.76-1.02] for 1% increase, respectively). CONCLUSION Alterations of the circulating cell-free microbial signatures may be associated with higher premature cardiovascular mortality in ESRD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tahliyah S. Mims
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Praveen Kumar Potukuchi
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Melana Yuzefpolskaya
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, New York, USA
| | - Paolo C. Colombo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, New York, USA
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
30
|
Native Low-Density Lipoproteins Act in Synergy with Lipopolysaccharide to Alter the Balance of Human Monocyte Subsets and Their Ability to Produce IL-1 Beta, CCR2, and CX3CR1 In Vitro and In Vivo: Implications in Atherogenesis. Biomolecules 2021; 11:biom11081169. [PMID: 34439835 PMCID: PMC8391227 DOI: 10.3390/biom11081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has demonstrated that oxidized low-density lipoproteins (oxLDL) and lipopolysaccharide (LPS) enhance accumulation of interleukin (IL)-1 beta-producing macrophages in atherosclerotic lesions. However, the potential synergistic effect of native LDL (nLDL) and LPS on the inflammatory ability and migration pattern of monocyte subpopulations remains elusive and is examined here. In vitro, whole blood cells from healthy donors (n = 20) were incubated with 100 μg/mL nLDL, 10 ng/mL LPS, or nLDL + LPS for 9 h. Flow cytometry assays revealed that nLDL significantly decreases the classical monocyte (CM) percentage and increases the non-classical monocyte (NCM) subset. While nLDL + LPS significantly increased the number of NCMs expressing IL-1 beta and the C-C chemokine receptor type 2 (CCR2), the amount of NCMs expressing the CX3C chemokine receptor 1 (CX3CR1) decreased. In vivo, patients (n = 85) with serum LDL-cholesterol (LDL-C) >100 mg/dL showed an increase in NCM, IL-1 beta, LPS-binding protein (LBP), and Castelli’s atherogenic risk index as compared to controls (n = 65) with optimal LDL-C concentrations (≤100 mg/dL). This work demonstrates for the first time that nLDL acts in synergy with LPS to alter the balance of human monocyte subsets and their ability to produce inflammatory cytokines and chemokine receptors with prominent roles in atherogenesis.
Collapse
|
31
|
Sumneang N, Apaijai N, Chattipakorn SC, Chattipakorn N. Myeloid differentiation factor 2 in the heart: Bench to bedside evidence for potential clinical benefits? Pharmacol Res 2020; 163:105239. [PMID: 33053443 DOI: 10.1016/j.phrs.2020.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Cardiac inflammation has been involved in many pathological processes in the heart including cardiac hypertrophy, fibrosis, adverse remodeling, and dysfunction. Myeloid differentiation factor 2 (MD2) is a key mediating protein that has been shown to contribute to the inflammatory process. MD2 is required for the activation of TLR4 in the form of dimerization complex. Upon activation of TLR4, the signal can be sent through either myeloid differentiation primary response protein 88 (Myd88) or toll/interleukin-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) proteins to activate the inflammatory response in cardiac tissue, after which the inflammatory cytokines and genes are produced. In patients with dilated cardiomyopathy, a positive correlation was demonstrated between the serum MD2 levels and mortality rate. Therefore, MD2 inhibition should provide beneficial effects in inflammation related to cardiac diseases such as obesity and heart failure. Multiple inhibitors of TLR4/MD2 interaction reportedly attenuated cardiac dysfunction and remodeling in animals with obesity and heart failure. In this review, we comprehensively summarized the reports from in vitro, in vivo, and clinical studies regarding the role of MD2 and the effects of MD2 inhibitors on cardiac inflammation, dysfunction, fibrosis, and remodeling. The information regarding the beneficial effects of MD2 inhibitors will be used to encourage future clinical use as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
32
|
Youk H, Kim M, Lee CJ, Oh J, Park S, Kang SM, Kim JH, Ann SJ, Lee SH. Nlrp3, Csf3, and Edn1 in Macrophage Response to Saturated Fatty Acids and Modified Low-Density Lipoprotein. Korean Circ J 2020; 51:68-80. [PMID: 32975056 PMCID: PMC7779813 DOI: 10.4070/kcj.2020.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives The relationship between metabolic stress, inflammation, and cardiovascular disease is being studied steadily. The aim of this study was to evaluate the effect of palmitate (PA) and minimally modified low-density lipoprotein (mmLDL) on macrophages and to identify the associated pathways. Methods J774 macrophages were incubated with PA or mmLDL and lipopolysaccharide (LPS). Secretion of inflammatory chemokines and the expression of corresponding genes were determined. The phosphorylation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase was also assessed. RNA sequencing of macrophages was performed to identify the genes regulated by PA or mmLDL. Some of the genes regulated by the 2 agents were validated by knocking down the cells using small interfering RNA. Results PA or mmLDL promoted the secretion of interleukin (IL)-6 and IL-1β in LPS-stimulated macrophages, and this was accompanied by higher phosphorylation of ERK. RNA sequencing revealed dozens of genes that were regulated in this process, such as Csf3 and Edn1, which were affected by PA and mmLDL, respectively. These agents also increased Nlrp3 expression. The effect of Csf3 or Edn1 silencing on inflammation was modest, whereas toll-like receptor (TLR) 4 inhibition reduced a large proportion of macrophage activation. Conclusions We demonstrated that the proinflammatory milieu with high levels of PA or mmLDL promoted macrophage activation and the expression of associated genes such as Nlrp3, Csf3, and Edn1. Although the TLR4 pathway appeared to be most relevant, additional role of other genes in this process provided insights regarding the potential targets for intervention.
Collapse
Affiliation(s)
- Harin Youk
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Miso Kim
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Graduate Program of Science for Aging, Graduate School of Yonsei University, Seoul, Korea.
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Hassan MO, Dix-Peek T, Duarte R, Dickens C, Naidoo S, Vachiat A, Grinter S, Manga P, Naicker S. Association of chronic inflammation and accelerated atherosclerosis among an indigenous black population with chronic kidney disease. PLoS One 2020; 15:e0232741. [PMID: 32649699 PMCID: PMC7351182 DOI: 10.1371/journal.pone.0232741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Inflammation plays a major role in the development of atherosclerosis and cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. Toll-like receptor-4 (TLR4) is a major receptor for lipopolysaccharides (endotoxin) and other ligands involved in the pathogenesis of inflammation. We determined whether endotoxin levels and the presence of TLR4 polymorphisms are associated with markers of inflammation and atherosclerosis among South African CKD patients. Materials and methods Endotoxin, lipopolysaccharide binding protein (LBP), serum CD14 (sCD14), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and carotid intima media thickness (CIMT) were measured in 160 participants (120 CKD patients and 40 controls). Associations between endotoxins and CIMT in the presence of sCD14, IL-8 and MCP-1, were assessed using odds ratios. Participants were screened for the presence of Asp299Gly and Thr399Ile TLR4 polymorphisms, and CIMT and inflammatory markers were compared between subjects with and without TLR4 polymorphisms. Results Endotoxin levels correlated with sCD14 (r = 0.441, p<0.001) and MCP-1 (r = 0.388, p<0.001) levels while increased CIMT was associated with MCP-1 (r = 0.448, p<0.001), sCD14 levels (r = 0.476, p<0.001), LBP (r = 0.340, p<0.001), and IL-8 (r = 0.395, p<0.001). Atherosclerosis was associated with endotoxin levels (odds ratio: 4.95; 95% confidence interval: 2.52–9.73; p<0.001), and was predicted by higher serum levels of inflammatory markers. Analysis of patients with TLR4 polymorphisms showed reduced serum levels of inflammatory markers and CIMT values compared with the patients carrying the wild type TLR4 alleles. Conclusion The study demonstrated associations between circulating endotoxaemia, systemic inflammation and accelerated atherosclerosis among South African CKD patients, and showed that the atherogenic predictive power of endotoxaemia was significantly increased by the presence of elevated levels of inflammatory markers. Additional findings, which must be confirmed, suggest that TLR4 polymorphisms are associated with low levels of inflammatory markers and CIMT values.
Collapse
Affiliation(s)
- Muzamil Olamide Hassan
- Divisions of Nephrology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Therese Dix-Peek
- Internal Medicine Research Laboratory, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Internal Medicine Research Laboratory, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline Dickens
- Internal Medicine Research Laboratory, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sagren Naidoo
- Divisions of Nephrology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ahmed Vachiat
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sacha Grinter
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Saraladevi Naicker
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Shelton CD, Byndloss MX. Gut Epithelial Metabolism as a Key Driver of Intestinal Dysbiosis Associated with Noncommunicable Diseases. Infect Immun 2020; 88:e00939-19. [PMID: 32122941 PMCID: PMC7309626 DOI: 10.1128/iai.00939-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In high-income countries, the leading causes of death are noncommunicable diseases (NCDs), such as obesity, cancer, and cardiovascular disease. An important feature of most NCDs is inflammation-induced gut dysbiosis characterized by a shift in the microbial community structure from obligate to facultative anaerobes such as Proteobacteria This microbial imbalance can contribute to disease pathogenesis by either a depletion in or the production of microbiota-derived metabolites. However, little is known about the mechanism by which inflammation-mediated changes in host physiology disrupt the microbial ecosystem in our large intestine leading to disease. Recent work by our group suggests that during gut homeostasis, epithelial hypoxia derived from peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent β-oxidation of microbiota-derived short-chain fatty acids limits oxygen availability in the colon, thereby maintaining a balanced microbial community. During inflammation, disruption in gut anaerobiosis drives expansion of facultative anaerobic Enterobacteriaceae, regardless of their pathogenic potential. Therefore, our research group is currently exploring the concept that dysbiosis-associated expansion of Enterobacteriaceae can be viewed as a microbial signature of epithelial dysfunction and may play a greater role in different models of NCDs, including diet-induced obesity, atherosclerosis, and inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Catherine D Shelton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Integrative physiology and traditional naturopathic practice: Results of an international observational study. Integr Med Res 2020; 9:100424. [PMID: 32509521 PMCID: PMC7265055 DOI: 10.1016/j.imr.2020.100424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Naturopathy is one of seven distinct traditional medical systems acknowledged by the World Health Organization. Naturopathic principles and philosophies encourage a focus on multiple body systems during case-taking and the design of treatments. Little is known about whether such teaching translates into practice. This study aimed to characterise naturopathic practice as it relates to the identification of multiple physiological systems in the diagnosis and treatment of patients. Methods A cross sectional study was conducted in collaboration with the World Naturopathic Federation. A survey capturing clinical diagnostic and treatment considerations for up to 20 consecutive patients was administered to naturopaths in 14 countries. Results Naturopaths (n = 56) were mostly female (62.5%), aged between 36 and 45 years (37.5%), in practice for 5–10 years (44.6%), and consulting between 11 and 20 patients per week (35.7%). Participants completed the survey for 851 patient cases. Naturopaths reported a greater number of physiological systems relevant to clinical cases where the patients were working age (18–65 years) (IRR 1.3, p = .042), elderly (65 years and over) (IRR 1.4, p = .046), or considered by the naturopath to have a chronic health condition (IRR 1.2, p = .003). The digestive system was weakly associated with patients based on chronicity of the health complaint (V = .1149, p = .004), or having a musculoskeletal complaint (V = .1067, p = .002) autoimmune pathophysiology (V = .1681, p < .001), and considered relevant in respiratory (V = .1042, p = .002), endocrine (V = .1023, p = .003), female reproductive (V = .1009, p = .003), and integumentary (V = .1382, p < .001) systems. Conclusion Naturopaths across the world adopt an integrative physiological approach to the diagnosis and treatment of chronic and complex health care complaints. .
Collapse
|
36
|
Loffredo L, Ivanov V, Ciobanu N, Deseatnicova E, Gutu E, Mudrea L, Ivanov M, Nocella C, Cammisotto V, Orlando F, Pannunzio A, Palumbo I, Cosenza M, Bartimoccia S, Carnevale R, Violi F. Is There an Association Between Atherosclerotic Burden, Oxidative Stress, and Gut-Derived Lipopolysaccharides? Antioxid Redox Signal 2020; 33:761-766. [PMID: 32336107 DOI: 10.1089/ars.2020.8109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Recent studies hypothesized a role of gut microbiota favoring atherosclerosis via an increased oxidative stress, but data in peripheral artery disease (PAD) have not been provided yet. The aim of this study was to assess serum lipopolysaccharide (LPS) as well as oxidative stress in PAD patients and controls (CT). Furthermore, we wanted to analyze the relationship between LPS and the severity of atherosclerosis in the lower limb arteries. Results: Eighty consecutive subjects, including 40 PAD patients and 40 CT were recruited. A cross-sectional study was performed to compare serum LPS, soluble Nox2-derived peptide (sNox2-dp), hydrogen peroxide (H2O2), H2O2 breakdown activity (HBA) and ankle brachial index (ABI) in these two groups. Serum zonulin was used to assess gut permeability. Compared with CT, PAD patients had significant higher values of LPS, zonulin, sNox2-dp, and H2O2; conversely ABI and HBA were significantly lower in PAD patients. LPS serum levels were associated with atherosclerotic burden as depicted by the inverse correlation with ABI. LPS was also associated with oxidative stress as shown by its direct correlation with markers of oxidative stress such as sNox2-dp, serum H2O2, and HBA. Finally, we found a significant correlation between LPS and zonulin. A multiple linear regression analysis showed that LPS was significantly associated only with ABI. Innovation and Conclusion: These findings suggest that LPS is elevated in PAD patients with a close association with the atherosclerotic burden and oxidative stress. The correlation between LPS and zonulin suggests that changes in gut permeability could be a potential trigger of LPS translocation in the peripheral circulation.
Collapse
Affiliation(s)
- Lorenzo Loffredo
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Victoria Ivanov
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Nicolae Ciobanu
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Elena Deseatnicova
- Department of Rheumatology and Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova, Chisinau, Republic of Moldova
| | - Evgenii Gutu
- 3rd Department of General Surgery, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova, Chisinau, Republic of Moldova
| | - Ludmila Mudrea
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Mihaela Ivanov
- Moldavian Research Institute of Cardiology, Chisinau, Republic of Moldova
| | - Cristina Nocella
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Federica Orlando
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Pannunzio
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Palumbo
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Mattia Cosenza
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Francesco Violi
- Division I Medical Clinic, Department of Clinical, Internistic, Anaesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
37
|
Gasser M, Lissner R, Nawalaniec K, Hsiao LL, Waaga-Gasser AM. KMP01D Demonstrates Beneficial Anti-inflammatory Effects on Immune Cells: An ex vivo Preclinical Study of Patients With Colorectal Cancer. Front Immunol 2020; 11:684. [PMID: 32425932 PMCID: PMC7205007 DOI: 10.3389/fimmu.2020.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is frequently associated with dysbiosis of the gut microbiome which, together with a compromised gut barrier, can result in perioperative endotoxin leakage into the circulation. Constant local and systemic inflammatory activity is suggested to facilitate metastases formation. Previous studies have pointed to the capacity of a colostrum preparation to neutralize endotoxins within the gastrointestinal tract which could ameliorate associated inflammatory responses and tumor recurrence in affected patients. This study aimed to examine the effects of the colostrum preparation, KMP01D, on the inflammatory activity of patient-derived immune cells. Methods: The effects of KMP01D on pro-/anti-inflammatory cytokine responses and apoptosis were examined ex vivo using immune cells from CRC patients (stages I-IV, n = 48). The expression of CD14, CD68, Toll-like receptor (TLR)4, and insulin-like growth factor (IGF)-1 was also analyzed. Results: KMP01D increased interleukin (IL)-10 and IL-13 anti-inflammatory cytokine expression in patient-derived peripheral blood mononuclear cells (PBMCs). Interestingly, KMP01D also decreased the secretion of IL-1β, IL-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-12 inflammatory cytokines, and IGF-1 in these cells. Moreover, CD14 and TLR4 expression involved in endotoxin signaling was downregulated in PBMCs and tumor-derived cells. Apoptosis of immune cells and tumor-derived cells was likewise enhanced with KMP01D. Addition of vitamin D3 as a cofactor demonstrated enhanced anti-inflammatory effects. Conclusions: KMP01D demonstrated beneficial ex vivo effects on inflammatory cytokine responses in PBMCs and enhanced apoptosis of immune cells from CRC patients. In line with previous clinical trials, we present new evidence endorsing KMP01D as a treatment strategy to regulate stage-dependent local and systemic inflammation in CRC patients.
Collapse
Affiliation(s)
- Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Reinhard Lissner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Karol Nawalaniec
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Sumida K, Yamagata K, Kovesdy CP. Constipation in CKD. Kidney Int Rep 2020; 5:121-134. [PMID: 32043026 PMCID: PMC7000799 DOI: 10.1016/j.ekir.2019.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the most common gastrointestinal disorders among patients with chronic kidney disease (CKD) partly because of their sedentary lifestyle, low fiber and fluid intake, concomitant medications (e.g., phosphate binders), and multiple comorbidities (e.g., diabetes). Although constipation is usually perceived as a benign, often self-limited condition, recent evidence has challenged this most common perception of constipation. The chronic symptoms of constipation negatively affect patients' quality of life and impose a considerable social and economic burden. Furthermore, recent epidemiological studies have revealed that constipation is independently associated with adverse clinical outcomes, such as end-stage renal disease (ESRD), cardiovascular (CV) disease, and mortality, potentially mediated by the alteration of gut microbiota and the increased production of fecal metabolites. Given the importance of the gut in the disposal of uremic toxins and in acid-base and mineral homeostasis with declining kidney function, the presence of constipation in CKD may limit or even preclude these ancillary gastrointestinal roles, potentially contributing to excess morbidity and mortality. With the advent of new drug classes for constipation, some of which showing unique renoprotective properties, the adequate management of constipation in CKD may provide additional therapeutic benefits beyond its conventional defecation control. Nevertheless, the problem of constipation in CKD has long been underrecognized and its management strategies have scarcely been documented. This review outlines the current understanding of the diagnosis, prevalence, etiology, outcome, and treatment of constipation in CKD, and aims to discuss its novel clinical and therapeutic implications.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Diana A Gorog
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
40
|
Perticone M, Zito R, Miceli S, Pinto A, Suraci E, Greco M, Gigliotti S, Hribal ML, Corrao S, Sesti G, Perticone F. Immunity, Inflammation and Heart Failure: Their Role on Cardiac Function and Iron Status. Front Immunol 2019; 10:2315. [PMID: 31632400 PMCID: PMC6779858 DOI: 10.3389/fimmu.2019.02315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Aims: Heart failure is a clinical syndrome characterized by subclinical systemic inflammation and immune system activation associated with iron deficiency. No data exist on the various activations of immune-mediated mechanisms of inflammation in heart failure patients with reduced/preserved ejection fraction. We aimed to (1) investigate possible differences in inflammatory parameters and oxidative stress, and (2) detect a different iron status between groups. Materials and Methods: We enrolled 50 consecutive Caucasian outpatients with heart failure. All patients underwent echocardiographic measurements, laboratory determinations, evaluation of iron status and Toll-like receptors, and NF-κB expression in peripheral blood mononuclear cells, as well as pro-inflammatory cytokines. All statistical calculations were made using SPSS for Mac version 21.0. Results: Patients with reduced ejection fraction showed significantly lower hemoglobin levels (12.3 ± 1.4 vs. 13.6 ± 1.4 g/dl), serum iron (61.4 ± 18.3 vs. 93.7 ± 33.7 mcg/dl), transferrin iron binding capacity (20.7 ± 8.4 vs. 31.1 ± 15.6 %), and e-GFR values (78.1 ± 36.1 vs. 118.1 ± 33.9 ml/min/1.73 m2) in comparison to patients with preserved ejection fraction, while unsaturated iron binding capacity (272.6 ± 74.9 vs. 221.7 ± 61.4 mcg/dl), hepcidin (4.61 ± 0.89 vs. 3.28 ± 0.69 ng/ml), and creatinine (1.34 ± 0.55 vs. 1.03 ± 0.25 mg/dl) were significantly higher in the same group. When considering inflammatory parameters, patients with reduced ejection fraction showed significantly higher expression of both Toll-like receptors-2 (1.90 ± 0.97 vs. 1.25 ± 0.76 MFI) and Toll-like receptors-4 (4.54 ± 1.32 vs. 3.38 ± 1.62 MFI), respectively, as well as a significantly higher activity of NF-κB (2.67 ± 0.60 vs. 1.07 ± 0.30). Furthermore, pro-inflammatory cytokines, interleukin-1, and interleukin-6, was significantly higher in patients with reduced ejection fraction, while the protective cytokine interleukin-10 was significantly lower in the same group. Correlational analyses demonstrated a significant and inverse relationship between left ventricular function and inflammatory parameters in patients with reduced ejection fraction, as well as a direct correlation between ferritin and inflammatory parameters. Conclusions: Our data demonstrate a different immune-mediated inflammatory burden in heart failure patients with reduced or preserved ejection fraction, as well as significant differences in iron status. These data contribute to further elucidate pathophysiologic mechanisms leading to cardiac dysfunction.
Collapse
Affiliation(s)
- Maria Perticone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Roberta Zito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sofia Miceli
- Department of Geriatrics, Azienda Ospedaliero-Universitaria Mater Domini, Catanzaro, Italy
| | - Angelina Pinto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Edoardo Suraci
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Simona Gigliotti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Salvatore Corrao
- Department of Internal Medicine 2, National Relevance and High Specialization Hospital Trust, Palermo, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
41
|
Abstract
The recent explosion of scientific interest in the gut microbiota has dramatically advanced our understanding of the complex pathophysiological interactions between the gut and multiple organs in health and disease. Emerging evidence has revealed that the gut microbiota is significantly altered in patients with chronic kidney disease (CKD), along with impaired intestinal barrier function. These alterations allow translocation of various gut-derived products into the systemic circulation, contributing to the development and progression of CKD and cardiovascular disease (CVD), partly mediated by chronic inflammation. Among potentially toxic gut-derived products identifiable in the systemic circulation, bacterial endotoxin and gut metabolites (e.g., p-cresyl sulfate and trimethylamine-N-oxide) have been extensively studied for their immunostimulatory and atherogenic properties. Recent studies have also suggested similar biological properties of bacterial DNA fragments circulating in the blood of patients with CKD, even in the absence of overt infections. Despite the accumulating evidence of the gut microbiota in CKD and its therapeutic potential for CVD, the precise mechanisms for multidirectional interactions between the gut, kidney, and heart remain poorly understood. This review aims to provide recent evidence on the associations between the gut microbiota, CKD, and CVD, and summarize current understanding of the potential pathophysiological mechanisms underlying the “gut–kidney–heart” axis in CKD.
Collapse
Affiliation(s)
- K Sumida
- 1 Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - CP Kovesdy
- 1 Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- 2 Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| |
Collapse
|
42
|
Zhang X, Xue C, Xu Q, Zhang Y, Li H, Li F, Liu Y, Guo C. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond) 2019; 16:40. [PMID: 31182969 PMCID: PMC6555760 DOI: 10.1186/s12986-019-0359-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background As reported previously by our group, medium-chain triglycerides can ameliorate atherosclerosis. Given that TLR4 is closely related to atherosclerosis, we hypothesized herein that caprylic acid (C8:0) would suppress inflammation via TLR4/NF-κB signaling and further promote the amelioration of atherosclerosis in apoE- deficient (apoE-/-) mice. Methods Fifty 6-week male apoE-/- mice were randomly allocated into five diet groups: a high-fat diet (HFD) without or with 2% caprylic acid (C8:0), capric acid (C10:0), stearic acid (C18:0), or linolenic acid (C18:3). RAW246.7 cells were treated with caprylic acid (C8:0), docosahexenoic acid (DHA), palmitic acid (C16:0), and lipopolysaccharide (LPS) with or without TLR4 knock-down (TLR4-KD). The serum lipid profiles, inflammatory biomolecules, and mRNA and protein expression levels were measured. Atherosclerotic lesions that occurred in the aorta and aortic sinuses were evaluated and quantified. Results Our results indicated that C8:0 reduced body fat, improved the lipid profiles, suppressed inflammatory cytokine production, downregulated aortic TLR4, MyD88, NF-κB, TNF-α, IKKα, and IKKβ mRNA expression, and alleviated atherosclerosis in the apoE-/- mice (P < 0.05). In RAW 264.7 cells, C8:0 diminished the inflammatory response and both mRNA and protein expression of TLR4, MyD88, NF-κB, and TNF-α compared to those in the LPS and C16:0 groups (P < 0.05). However, in the TLR4-KD RAW 264.7 cells, C8:0 significantly upregulated NF-κB mRNA and protein expression compared to those in the C16:0 and DHA groups. Conclusions These results suggest that C8:0 functions via TLR4/NF-κB signaling to improve the outcomes of apoE-/- mice through suppressing inflammation and ameliorating atherosclerosis. Thus, C8:0 may represent as a promising nutrient against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Xinsheng Zhang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China.,2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Changyong Xue
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Qing Xu
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Yong Zhang
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Huizi Li
- 3Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing, 100088 China
| | - Feng Li
- 4Department of Nutrition, Air Force Medical Center, PLA, Beijing, 100142 China
| | - Yinghua Liu
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Changjiang Guo
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China
| |
Collapse
|
43
|
Yu L, Feng Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm 2018; 2018:9874109. [PMID: 29576748 PMCID: PMC5822798 DOI: 10.1155/2018/9874109] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Medical systems worldwide are being faced with a growing need to understand mechanisms behind the pathogenesis of heart failure (HF) that is considered as a leading cause of morbidity and mortality around the world. Elevated levels of inflammatory mediators have been identified in patients with HF, which are primarily manifestations of innate immune responses mediated by pattern recognition receptors (PRRs). Toll-like receptors (TLRs), which belong to PRRs, are subjected to the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to generate innate immune responses. More and more emerging data indicate that TLR signaling pathway molecules are involved in the progression of HF. Herein, we present new data with regard to the activation of TLRs in the failing heart, focusing on TLR2, TLR3, TLR4, and TLR9, and suggest the potential use of TLRs in target therapy.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
- Henan Key Laboratory of immunology and Targeted Drugs, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
44
|
Kang C, Zhang Q, Zhu W, Cai C, Sun X, Jin M. Transcription analysis of the responses of porcine heart to Erysipelothrix rhusiopathiae. PLoS One 2017; 12:e0185548. [PMID: 28976997 PMCID: PMC5627920 DOI: 10.1371/journal.pone.0185548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Erysipelothrix rhusiopathiae (E. rhusiopathiae) is the causative agent of swine erysipelas. This microbe has caused great economic losses in China and in other countries. In this study, high-throughput cDNA microarray assays were employed to evaluate the host responses of porcine heart to E. rhusiopathiae and to gain additional insights into its pathogenesis. A total of 394 DE transcripts were detected in the active virulent E. rhusiopathiae infection group compared with the PBS group at 4 days post-infection. Moreover, 262 transcripts were upregulated and 132 transcripts were downregulated. Differentially expressed genes were involved in many vital functional classes, including inflammatory and immune responses, signal transduction, apoptosis, transport, protein phosphorylation and dephosphorylation, metabolic processes, chemotaxis, cell adhesion, and innate immune responses. Pathway analysis demonstrated that the most significant pathways were Chemokine signaling pathway, NF-kappa B signaling pathway, TLR pathway, CAMs, systemic lupus erythematosus, chemokine signaling pathway, Cytokine–cytokine receptor interaction, PI3K-Akt signaling pathway, Phagosome, HTLV-I infection, Measles, Rheumatoid arthritis and natural-killer-cell-mediated cytotoxicity. The reliability of our microarray data was verified by performing quantitative real-time PCR. This study is the first to document the response of piglet heart to E. rhusiopathiae infection. The observed gene expression profile could help screen potential host agents that can reduce the prevalence of E. rhusiopathiae. The profile might also provide insights into the underlying pathological changes that occur in pigs infected with E. rhusiopathiae.
Collapse
Affiliation(s)
- Chao Kang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Weifeng Zhu
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Chengzhi Cai
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, P.R. China, Wuhan, Hubei, P.R. China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
- College of Veterinary Medicine, Huazhong Agricultural University, P.R. China, Wuhan, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
45
|
Lu Z, Li Y, Brinson CW, Lopes-Virella MF, Huang Y. Cooperative stimulation of atherogenesis by lipopolysaccharide and palmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis 2017; 265:231-241. [PMID: 28934649 DOI: 10.1016/j.atherosclerosis.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Either lipopolysaccharide (LPS) or high-fat diet (HFD) enriched with saturated fatty acid (SFA) promotes atherosclerosis. In this study, we investigated the effect of LPS in combination with SFA-rich HFD on atherosclerosis and how LPS and SFA interact to stimulate inflammatory response in vascular endothelial cells. METHODS Low-density lipoprotein receptor-deficient (LDLR-/-) mice were fed a low-fat diet (LFD), HFD with low palmitic acid (PA) (LP-HFD), or HFD with high PA (HP-HFD) for 20 weeks. During the last 12 weeks, half mice received LPS and half received PBS. After treatment, metabolic parameters and aortic atherosclerosis were analyzed. To understand the underlying mechanisms, human aortic endothelial cells (HAECs) were treated with LPS and/or PA and proinflammatory molecule expression was quantified. RESULTS The metabolic study showed that LPS had no significant effect on cholesterol, triglycerides, free fatty acids, but increased insulin and insulin resistance. Both LP-HFD and HP-HFD increased body weight and cholesterol while LP-HFD increased glucose and HP-HFD increased triglycerides, insulin, and insulin resistance. Analysis of aortic atherosclerosis showed that HP-HFD was more effective than LP-HFD in inducing atherosclerosis and LPS in combination with HP-HFD increased atherosclerosis in the thoracic aorta, a less common site for atherosclerosis, as compared with LPS or HP-HFD. To understand the mechanisms, results showed that LPS and PA synergistically upregulated adhesion molecules and proinflammatory cytokines in HAECs. CONCLUSIONS LPS and PA-rich HFD cooperatively increased atherogenesis in the thoracic aorta. The synergy between LPS and PA on proinflammatory molecules in HAECs may play an important role in atherogenesis.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Colleen W Brinson
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|