1
|
Patel J, Hung C, Katapally TR. Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review. Psychiatry Res 2025; 343:116277. [PMID: 39616981 DOI: 10.1016/j.psychres.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 11/17/2024] [Indexed: 12/16/2024]
Abstract
The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13-25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care.
Collapse
Affiliation(s)
- Jamin Patel
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7
| | - Caitlin Hung
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9
| | - Tarun Reddy Katapally
- DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7; Children's Health Research Institute, Lawson Health Research Institute, 750 Base Line Road East, Suite 300, London, Ontario, Canada N6C 2R5.
| |
Collapse
|
2
|
Ikäheimonen A, Luong N, Baryshnikov I, Darst R, Heikkilä R, Holmen J, Martikkala A, Riihimäki K, Saleva O, Isometsä E, Aledavood T. Predicting and Monitoring Symptoms in Patients Diagnosed With Depression Using Smartphone Data: Observational Study. J Med Internet Res 2024; 26:e56874. [PMID: 39626241 DOI: 10.2196/56874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/07/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Clinical diagnostic assessments and the outcome monitoring of patients with depression rely predominantly on interviews by professionals and the use of self-report questionnaires. The ubiquity of smartphones and other personal consumer devices has prompted research into the potential of data collected via these devices to serve as digital behavioral markers for indicating the presence and monitoring of the outcome of depression. OBJECTIVE This paper explores the potential of using behavioral data collected with smartphones to detect and monitor depression symptoms in patients diagnosed with depression. Specifically, it investigates whether this data can accurately classify the presence of depression, as well as monitor the changes in depressive states over time. METHODS In a prospective cohort study, we collected smartphone behavioral data for up to 1 year. The study consists of observations from 164 participants, including healthy controls (n=31) and patients diagnosed with various depressive disorders: major depressive disorder (MDD; n=85), MDD with comorbid borderline personality disorder (n=27), and major depressive episodes with bipolar disorder (n=21). Data were labeled based on depression severity using 9-item Patient Health Questionnaire (PHQ-9) scores. We performed statistical analysis and used supervised machine learning on the data to classify the severity of depression and observe changes in the depression state over time. RESULTS Our correlation analysis revealed 32 behavioral markers associated with the changes in depressive state. Our analysis classified patients who are depressed with an accuracy of 82% (95% CI 80%-84%) and change in the presence of depression with an accuracy of 75% (95% CI 72%-76%). Notably, the most important smartphone features for classifying depression states were screen-off events, battery charge levels, communication patterns, app usage, and location data. Similarly, for predicting changes in depression state, the most important features were related to location, battery level, screen, and accelerometer data patterns. CONCLUSIONS The use of smartphone digital behavioral markers to supplement clinical evaluations may aid in detecting the presence and changes in severity of symptoms of depression, particularly if combined with intermittent use of self-report of symptoms.
Collapse
Affiliation(s)
- Arsi Ikäheimonen
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Nguyen Luong
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Ilya Baryshnikov
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
- Helsinki and Uusimaa Hospital District, Helsinki, Finland
| | | | - Roope Heikkilä
- City of Helsinki Mental Health Servcies, Helsinki, Finland
| | - Joel Holmen
- University of Turku, Turku, Finland
- Turku University Central Hospital, Turku, Finland
| | - Annasofia Martikkala
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
- Helsinki and Uusimaa Hospital District, Helsinki, Finland
| | - Kirsi Riihimäki
- Helsinki and Uusimaa Hospital District, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Outi Saleva
- Helsinki and Uusimaa Hospital District, Helsinki, Finland
| | - Erkki Isometsä
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
- Helsinki and Uusimaa Hospital District, Helsinki, Finland
| | | |
Collapse
|
3
|
Alt AK, Pascher A, Seizer L, von Fraunberg M, Conzelmann A, Renner TJ. Psychotherapy 2.0 - Application context and effectiveness of sensor technology in psychotherapy with children and adolescents: A systematic review. Internet Interv 2024; 38:100785. [PMID: 39559452 PMCID: PMC11570859 DOI: 10.1016/j.invent.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Background E-mental health applications have been increasingly used in the psychotherapeutic care of patients for several years. State-of-the-art sensor technology could be used to determine digital biomarkers for the diagnosis of mental disorders. Furthermore, by integrating sensors into treatment, relevant contextual information (e.g. field of gaze, stress levels) could be made transparent and improve the treatment of people with mental disorders. An overview of studies on this approach would be useful to provide information about the current status quo. Methods A systematic review of the use of sensor technology in psychotherapy for children and adolescents was conducted with the aim of investigating the use and effectiveness of sensory technology in psychotherapy treatment. Five databases were searched for studies ranging from 2000 to 2023. The study was registered by PROSPERO (CRD42023374219), conducted according to Cochrane recommendations and used the PRISMA reporting guideline. Results Of the 38.560 hits in the search, only 10 publications met the inclusion criteria, including 3 RCTs and 7 pilot studies with a total of 257 subjects. The study population consisted of children and adolescents aged 6 to 19 years with mental disorders such as OCD, anxiety disorders, PTSD, anorexia nervosa and autistic behavior. The psychotherapy methods investigated were mostly cognitive behavioral therapy (face-to-face contact) with the treatment method of exposure for various disorders. In most cases, ECG, EDA, eye-tracking and movement sensors were used to measure vital parameters. The heterogeneous studies illustrate a variety of potential useful applications of sensor technology in psychotherapy for adolescents. In some studies, the sensors are implemented in a feasible approach to treatment. Conclusion Sensors might enrich psychotherapy in different application contexts.However, so far there is still a lack of further randomized controlled clinical studies that provide reliable findings on the effectiveness of sensory therapy in psychotherapy for children and adolescents. This could stimulate the embedding of such technologies into psychotherapeutic process.https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023374219, identifier [CRD42023374219].
Collapse
Affiliation(s)
- Annika K. Alt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
| | - Anja Pascher
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
| | - Lennart Seizer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
| | - Marlene von Fraunberg
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Tobias J. Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- DZPG (German Center for Mental Health), partner site Tübingen, Germany
| |
Collapse
|
4
|
Adler DA, Yang Y, Viranda T, Xu X, Mohr DC, VAN Meter AR, Tartaglia JC, Jacobson NC, Wang F, Estrin D, Choudhury T. Beyond Detection: Towards Actionable Sensing Research in Clinical Mental Healthcare. PROCEEDINGS OF THE ACM ON INTERACTIVE, MOBILE, WEARABLE AND UBIQUITOUS TECHNOLOGIES 2024; 8:160. [PMID: 39639863 PMCID: PMC11620792 DOI: 10.1145/3699755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Researchers in ubiquitous computing have long promised that passive sensing will revolutionize mental health measurement by detecting individuals in a population experiencing a mental health disorder or specific symptoms. Recent work suggests that detection tools do not generalize well when trained and tested in more heterogeneous samples. In this work, we contribute a narrative review and findings from two studies with 41 mental health clinicians to understand these generalization challenges. Our findings motivate research on actionable sensing, as an alternative to detection research, studying how passive sensing can augment traditional mental health measures to support actions in clinical care. Specifically, we identify how passive sensing can support clinical actions by revealing patients' presenting problems for treatment and identifying targets for behavior change and symptom reduction, but passive data requires additional contextual information to be appropriately interpreted and used in care. We conclude by suggesting research at the intersection of actionable sensing and mental healthcare, to align technical research in ubiquitous computing with clinical actions and needs.
Collapse
Affiliation(s)
| | | | | | | | - David C Mohr
- Northwestern University Feinberg School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Cho M, Park D, Choo M, Kim J, Han DH. Development and Initial Evaluation of a Digital Phenotype Collection System for Adolescents: Proof-of-Concept Study. JMIR Form Res 2024; 8:e59623. [PMID: 39446465 PMCID: PMC11544340 DOI: 10.2196/59623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The growing concern on adolescent mental health calls for proactive early detection and intervention strategies. There is a recognition of the link between digital phenotypes and mental health, drawing attention to their potential use. However, the process of collecting digital phenotype data presents challenges despite its promising prospects. OBJECTIVE This study aims to develop and validate system concepts for collecting adolescent digital phenotypes that effectively manage inherent challenges in the process. METHODS In a formative investigation (N=34), we observed adolescent self-recording behaviors and conducted interviews to develop design goals. These goals were then translated into system concepts, which included planners resembling interfaces, simplified data input with tags, visual reports on behaviors and moods, and supportive ecological momentary assessment (EMA) prompts. A proof-of-concept study was conducted over 2 weeks (n=16), using tools that simulated the concepts to record daily activities and complete EMA surveys. The effectiveness of the system was evaluated through semistructured interviews, supplemented by an analysis of the frequency of records and responses. RESULTS The interview findings revealed overall satisfaction with the system concepts, emphasizing strong support for self-recording. Participants consistently maintained daily records throughout the study period, with no missing data. They particularly valued the recording procedures that aligned well with their self-recording goal of time management, facilitated by the interface design and simplified recording procedures. Visualizations during recording and subsequent report viewing further enhanced engagement by identifying missing data and encouraging deeper self-reflection. The average EMA compliance reached 72%, attributed to a design that faithfully reflected adolescents' lives, with surveys scheduled at convenient times and supportive messages tailored to their daily routines. The high compliance rates observed and positive feedback from participants underscore the potential of our approach in addressing the challenges of collecting digital phenotypes among adolescents. CONCLUSIONS Integrating observations of adolescents' recording behavior into the design process proved to be beneficial for developing an effective and highly compliant digital phenotype collection system.
Collapse
Affiliation(s)
- Minseo Cho
- Human Computer Interaction Lab, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
| | - Doeun Park
- Human Computer Interaction Lab, School of Business, Yonsei University, Seoul, Republic of Korea
| | - Myounglee Choo
- Human Computer Interaction Lab, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- HAII Corp, Seoul, Republic of Korea
| | - Jinwoo Kim
- Human Computer Interaction Lab, School of Business, Yonsei University, Seoul, Republic of Korea
- HAII Corp, Seoul, Republic of Korea
| | - Doug Hyun Han
- College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Rashid Z, Folarin AA, Zhang Y, Ranjan Y, Conde P, Sankesara H, Sun S, Stewart C, Laiou P, Dobson RJB. Digital Phenotyping of Mental and Physical Conditions: Remote Monitoring of Patients Through RADAR-Base Platform. JMIR Ment Health 2024; 11:e51259. [PMID: 39441952 PMCID: PMC11524428 DOI: 10.2196/51259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 10/25/2024] Open
Abstract
Background The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden. Objective Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients. Methods We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access. Results The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases. Conclusions RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.
Collapse
Affiliation(s)
- Zulqarnain Rashid
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Amos A Folarin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Center at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Health Data Research UK London, University College London, London, United Kingdom
- NIHR Biomedical Research Center at University College London Hospitals, NHS Foundation Trust, London, United Kingdom
| | - Yuezhou Zhang
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Yatharth Ranjan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Pauline Conde
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Heet Sankesara
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Shaoxiong Sun
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Callum Stewart
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Petroula Laiou
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
| | - Richard J B Dobson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Center at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Health Data Research UK London, University College London, London, United Kingdom
- NIHR Biomedical Research Center at University College London Hospitals, NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Beames JR, Han J, Shvetcov A, Zheng WY, Slade A, Dabash O, Rosenberg J, O'Dea B, Kasturi S, Hoon L, Whitton AE, Christensen H, Newby JM. Use of smartphone sensor data in detecting and predicting depression and anxiety in young people (12-25 years): A scoping review. Heliyon 2024; 10:e35472. [PMID: 39166029 PMCID: PMC11334877 DOI: 10.1016/j.heliyon.2024.e35472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Digital phenotyping is a promising method for advancing scalable detection and prediction methods in mental health research and practice. However, little is known about how digital phenotyping data are used to make inferences about youth mental health. We conducted a scoping review of 35 studies to better understand how passive sensing (e.g., Global Positioning System, microphone etc) and electronic usage data (e.g., social media use, device activity etc) collected via smartphones are used in detecting and predicting depression and/or anxiety in young people between 12 and 25 years-of-age. GPS and/or Wifi association logs and accelerometers were the most used sensors, although a wide variety of low-level features were extracted and computed (e.g., transition frequency, time spent in specific locations, uniformity of movement). Mobility and sociability patterns were explored in more studies compared to other behaviours such as sleep, phone use, and circadian movement. Studies used machine learning, statistical regression, and correlation analyses to examine relationships between variables. Results were mixed, but machine learning indicated that models using feature combinations (e.g., mobility, sociability, and sleep features) were better able to predict and detect symptoms of youth anxiety and/or depression when compared to models using single features (e.g., transition frequency). There was inconsistent reporting of age, gender, attrition, and phone characteristics (e.g., operating system, models), and all studies were assessed to have moderate to high risk of bias. To increase translation potential for clinical practice, we recommend the development of a standardised reporting framework to improve transparency and replicability of methodology.
Collapse
Affiliation(s)
- Joanne R. Beames
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Belgium
| | - Jin Han
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Artur Shvetcov
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Wu Yi Zheng
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Aimy Slade
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Omar Dabash
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Jodie Rosenberg
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Bridianne O'Dea
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Suranga Kasturi
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Leonard Hoon
- Applied Artificial Intelligence Institute, Deakin University, Melbourne, Australia
| | - Alexis E. Whitton
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | | | - Jill M. Newby
- Black Dog Institute and School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Langener AM, Bringmann LF, Kas MJ, Stulp G. Predicting Mood Based on the Social Context Measured Through the Experience Sampling Method, Digital Phenotyping, and Social Networks. ADMINISTRATION AND POLICY IN MENTAL HEALTH AND MENTAL HEALTH SERVICES RESEARCH 2024; 51:455-475. [PMID: 38200262 PMCID: PMC11196304 DOI: 10.1007/s10488-023-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Social interactions are essential for well-being. Therefore, researchers increasingly attempt to capture an individual's social context to predict well-being, including mood. Different tools are used to measure various aspects of the social context. Digital phenotyping is a commonly used technology to assess a person's social behavior objectively. The experience sampling method (ESM) can capture the subjective perception of specific interactions. Lastly, egocentric networks are often used to measure specific relationship characteristics. These different methods capture different aspects of the social context over different time scales that are related to well-being, and combining them may be necessary to improve the prediction of well-being. Yet, they have rarely been combined in previous research. To address this gap, our study investigates the predictive accuracy of mood based on the social context. We collected intensive within-person data from multiple passive and self-report sources over a 28-day period in a student sample (Participants: N = 11, ESM measures: N = 1313). We trained individualized random forest machine learning models, using different predictors included in each model summarized over different time scales. Our findings revealed that even when combining social interactions data using different methods, predictive accuracy of mood remained low. The average coefficient of determination over all participants was 0.06 for positive and negative affect and ranged from - 0.08 to 0.3, indicating a large amount of variance across people. Furthermore, the optimal set of predictors varied across participants; however, predicting mood using all predictors generally yielded the best predictions. While combining different predictors improved predictive accuracy of mood for most participants, our study highlights the need for further work using larger and more diverse samples to enhance the clinical utility of these predictive modeling approaches.
Collapse
Affiliation(s)
- Anna M Langener
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Department of Psychometrics and Statistics, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands.
- Faculty of Science and Engineering, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Laura F Bringmann
- Department of Psychometrics and Statistics, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands
- Interdisciplinary Center Psychopathology and Emotion Regulation, (ICPE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Gert Stulp
- Department of Sociology & Inter-University Center for Social Science Theory and Methodology, Grote Rozenstraat 31, 9712 TS, Groningen, The Netherlands
| |
Collapse
|
9
|
Jafarlou S, Azimi I, Lai J, Wang Y, Labbaf S, Nguyen B, Qureshi H, Marcotullio C, Borelli JL, Dutt ND, Rahmani AM. Objective monitoring of loneliness levels using smart devices: A multi-device approach for mental health applications. PLoS One 2024; 19:e0298949. [PMID: 38900745 PMCID: PMC11189241 DOI: 10.1371/journal.pone.0298949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/01/2024] [Indexed: 06/22/2024] Open
Abstract
Loneliness is linked to wide ranging physical and mental health problems, including increased rates of mortality. Understanding how loneliness manifests is important for targeted public health treatment and intervention. With advances in mobile sending and wearable technologies, it is possible to collect data on human phenomena in a continuous and uninterrupted way. In doing so, such approaches can be used to monitor physiological and behavioral aspects relevant to an individual's loneliness. In this study, we proposed a method for continuous detection of loneliness using fully objective data from smart devices and passive mobile sensing. We also investigated whether physiological and behavioral features differed in their importance in predicting loneliness across individuals. Finally, we examined how informative data from each device is for loneliness detection tasks. We assessed subjective feelings of loneliness while monitoring behavioral and physiological patterns in 30 college students over a 2-month period. We used smartphones to monitor behavioral patterns (e.g., location changes, type of notifications, in-coming and out-going calls/text messages) and smart watches and rings to monitor physiology and sleep patterns (e.g., heart-rate, heart-rate variability, sleep duration). Participants reported their loneliness feeling multiple times a day through a questionnaire app on their phone. Using the data collected from their devices, we trained a random forest machine learning based model to detect loneliness levels. We found support for loneliness prediction using a multi-device and fully-objective approach. Furthermore, behavioral data collected by smartphones generally were the most important features across all participants. The study provides promising results for using objective data to monitor mental health indicators, which could provide a continuous and uninterrupted source of information in mental healthcare applications.
Collapse
Affiliation(s)
- Salar Jafarlou
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Iman Azimi
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, California, United States of America
- Institute for Future Health, University of California, Irvine, Irvine, California, United States of America
| | - Jocelyn Lai
- Department of Psychological Science, University of California, Irvine, Irvine, California, United States of America
| | - Yuning Wang
- Department of Computing, University of Turku, Turku, Finland
| | - Sina Labbaf
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Brenda Nguyen
- Department of Psychological Science, University of California, Irvine, Irvine, California, United States of America
| | - Hana Qureshi
- Department of Psychological Science, University of California, Irvine, Irvine, California, United States of America
| | - Christopher Marcotullio
- Department of Psychological Science, University of California, Irvine, Irvine, California, United States of America
| | - Jessica L. Borelli
- Department of Cognitive Science, University of California, Irvine, Irvine, California, United States of America
| | - Nikil D. Dutt
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Amir M. Rahmani
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, California, United States of America
- Institute for Future Health, University of California, Irvine, Irvine, California, United States of America
- School of Nursing, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
10
|
Choi A, Ooi A, Lottridge D. Digital Phenotyping for Stress, Anxiety, and Mild Depression: Systematic Literature Review. JMIR Mhealth Uhealth 2024; 12:e40689. [PMID: 38780995 PMCID: PMC11157179 DOI: 10.2196/40689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 09/27/2023] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Unaddressed early-stage mental health issues, including stress, anxiety, and mild depression, can become a burden for individuals in the long term. Digital phenotyping involves capturing continuous behavioral data via digital smartphone devices to monitor human behavior and can potentially identify milder symptoms before they become serious. OBJECTIVE This systematic literature review aimed to answer the following questions: (1) what is the evidence of the effectiveness of digital phenotyping using smartphones in identifying behavioral patterns related to stress, anxiety, and mild depression? and (2) in particular, which smartphone sensors are found to be effective, and what are the associated challenges? METHODS We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) process to identify 36 papers (reporting on 40 studies) to assess the key smartphone sensors related to stress, anxiety, and mild depression. We excluded studies conducted with nonadult participants (eg, teenagers and children) and clinical populations, as well as personality measurement and phobia studies. As we focused on the effectiveness of digital phenotyping using smartphones, results related to wearable devices were excluded. RESULTS We categorized the studies into 3 major groups based on the recruited participants: studies with students enrolled in universities, studies with adults who were unaffiliated to any particular organization, and studies with employees employed in an organization. The study length varied from 10 days to 3 years. A range of passive sensors were used in the studies, including GPS, Bluetooth, accelerometer, microphone, illuminance, gyroscope, and Wi-Fi. These were used to assess locations visited; mobility; speech patterns; phone use, such as screen checking; time spent in bed; physical activity; sleep; and aspects of social interactions, such as the number of interactions and response time. Of the 40 included studies, 31 (78%) used machine learning models for prediction; most others (n=8, 20%) used descriptive statistics. Students and adults who experienced stress, anxiety, or depression visited fewer locations, were more sedentary, had irregular sleep, and accrued increased phone use. In contrast to students and adults, less mobility was seen as positive for employees because less mobility in workplaces was associated with higher performance. Overall, travel, physical activity, sleep, social interaction, and phone use were related to stress, anxiety, and mild depression. CONCLUSIONS This study focused on understanding whether smartphone sensors can be effectively used to detect behavioral patterns associated with stress, anxiety, and mild depression in nonclinical participants. The reviewed studies provided evidence that smartphone sensors are effective in identifying behavioral patterns associated with stress, anxiety, and mild depression.
Collapse
Affiliation(s)
- Adrien Choi
- School of Computer Science, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Aysel Ooi
- School of Computer Science, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Danielle Lottridge
- School of Computer Science, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
O’Leary A, Lahey T, Lovato J, Loftness B, Douglas A, Skelton J, Cohen JG, Copeland WE, McGinnis RS, McGinnis EW. Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:3214. [PMID: 38794067 PMCID: PMC11125700 DOI: 10.3390/s24103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
In response to a burgeoning pediatric mental health epidemic, recent guidelines have instructed pediatricians to regularly screen their patients for mental health disorders with consistency and standardization. Yet, gold-standard screening surveys to evaluate mental health problems in children typically rely solely on reports given by caregivers, who tend to unintentionally under-report, and in some cases over-report, child symptomology. Digital phenotype screening tools (DPSTs), currently being developed in research settings, may help overcome reporting bias by providing objective measures of physiology and behavior to supplement child mental health screening. Prior to their implementation in pediatric practice, however, the ethical dimensions of DPSTs should be explored. Herein, we consider some promises and challenges of DPSTs under three broad categories: accuracy and bias, privacy, and accessibility and implementation. We find that DPSTs have demonstrated accuracy, may eliminate concerns regarding under- and over-reporting, and may be more accessible than gold-standard surveys. However, we also find that if DPSTs are not responsibly developed and deployed, they may be biased, raise privacy concerns, and be cost-prohibitive. To counteract these potential shortcomings, we identify ways to support the responsible and ethical development of DPSTs for clinical practice to improve mental health screening in children.
Collapse
Affiliation(s)
- Aisling O’Leary
- Department of Philosophy, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Timothy Lahey
- University of Vermont Medical Center, Burlington, VT 05401, USA; (T.L.); (A.D.)
| | - Juniper Lovato
- Complex Systems Center, University of Vermont, Burlington VT 05405, USA; (J.L.); (B.L.)
| | - Bryn Loftness
- Complex Systems Center, University of Vermont, Burlington VT 05405, USA; (J.L.); (B.L.)
| | - Antranig Douglas
- University of Vermont Medical Center, Burlington, VT 05401, USA; (T.L.); (A.D.)
| | - Joseph Skelton
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem 27101, NC, USA;
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem 27101, NC, USA
| | - Jenna G. Cohen
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington VT 05405, USA;
| | | | - Ryan S. McGinnis
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem 27101, NC, USA
| | - Ellen W. McGinnis
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem 27101, NC, USA;
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem 27101, NC, USA
| |
Collapse
|
12
|
Harris C, Tang Y, Birnbaum E, Cherian C, Mendhe D, Chen MH. Digital Neuropsychology beyond Computerized Cognitive Assessment: Applications of Novel Digital Technologies. Arch Clin Neuropsychol 2024; 39:290-304. [PMID: 38520381 PMCID: PMC11485276 DOI: 10.1093/arclin/acae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
Compared with other health disciplines, there is a stagnation in technological innovation in the field of clinical neuropsychology. Traditional paper-and-pencil tests have a number of shortcomings, such as low-frequency data collection and limitations in ecological validity. While computerized cognitive assessment may help overcome some of these issues, current computerized paradigms do not address the majority of these limitations. In this paper, we review recent literature on the applications of novel digital health approaches, including ecological momentary assessment, smartphone-based assessment and sensors, wearable devices, passive driving sensors, smart homes, voice biomarkers, and electronic health record mining, in neurological populations. We describe how each digital tool may be applied to neurologic care and overcome limitations of traditional neuropsychological assessment. Ethical considerations, limitations of current research, as well as our proposed future of neuropsychological practice are also discussed.
Collapse
Affiliation(s)
- Che Harris
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yingfei Tang
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Eliana Birnbaum
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Christine Cherian
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Dinesh Mendhe
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Michelle H Chen
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
13
|
Choo M, Park D, Cho M, Bae S, Kim J, Han DH. Exploring a multimodal approach for utilizing digital biomarkers for childhood mental health screening. Front Psychiatry 2024; 15:1348319. [PMID: 38666089 PMCID: PMC11043569 DOI: 10.3389/fpsyt.2024.1348319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background Depression and anxiety are prevalent mental health concerns among children and adolescents. The application of conventional assessment methods, such as survey questionnaires to children, may lead to self-reporting issues. Digital biomarkers provide extensive data, reducing bias in mental health self-reporting, and significantly influence patient screening. Our primary objectives were to accurately assess children's mental health and to investigate the feasibility of using various digital biomarkers. Methods This study included a total of 54 boys and girls aged between 7 to 11 years. Each participant's mental state was assessed using the Depression, Anxiety, and Stress Scale. Subsequently, the subjects participated in digital biomarker collection tasks. Heart rate variability (HRV) data were collected using a camera sensor. Eye-tracking data were collected through tasks displaying emotion-face stimuli. Voice data were obtained by recording the participants' voices while they engaged in free speech and description tasks. Results Depressive symptoms were positively correlated with low frequency (LF, 0.04-0.15 Hz of HRV) in HRV and negatively associated with eye-tracking variables. Anxiety symptoms had a negative correlation with high frequency (HF, 0.15-0.40 Hz of HRV) in HRV and a positive association with LF/HF. Regarding stress, eye-tracking variables indicated a positive correlation, while pNN50, which represents the proportion of NN50 (the number of pairs of successive R-R intervals differing by more than 50 milliseconds) divided by the total number of NN (R-R) intervals, exhibited a negative association. Variables identified for childhood depression included LF and the total time spent looking at a sad face. Those variables recognized for anxiety were LF/HF, heart rate (HR), and pNN50. For childhood stress, HF, LF, and Jitter showed different correlation patterns between the two grade groups. Discussion We examined the potential of multimodal biomarkers in children, identifying features linked to childhood depression, particularly LF and the Sad.TF:time. Anxiety was most effectively explained by HRV features. To explore reasons for non-replication of previous studies, we categorized participants by elementary school grades into lower grades (1st, 2nd, 3rd) and upper grades (4th, 5th, 6th). Conclusion This study confirmed the potential use of multimodal digital biomarkers for children's mental health screening, serving as foundational research.
Collapse
Affiliation(s)
| | - Doeun Park
- HCI Lab, Yonsei University, Seoul, Republic of Korea
| | - Minseo Cho
- HCI Lab, Yonsei University, Seoul, Republic of Korea
| | - Sujin Bae
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jinwoo Kim
- HCI Lab, Yonsei University, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Fernández-Álvarez J, Colombo D, Gómez Penedo JM, Pierantonelli M, Baños RM, Botella C. Studies of Social Anxiety Using Ambulatory Assessment: Systematic Review. JMIR Ment Health 2024; 11:e46593. [PMID: 38574359 PMCID: PMC11027061 DOI: 10.2196/46593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND There has been an increased interest in understanding social anxiety (SA) and SA disorder (SAD) antecedents and consequences as they occur in real time, resulting in a proliferation of studies using ambulatory assessment (AA). Despite the exponential growth of research in this area, these studies have not been synthesized yet. OBJECTIVE This review aimed to identify and describe the latest advances in the understanding of SA and SAD through the use of AA. METHODS Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic literature search was conducted in Scopus, PubMed, and Web of Science. RESULTS A total of 70 articles met the inclusion criteria. The qualitative synthesis of these studies showed that AA permitted the exploration of the emotional, cognitive, and behavioral dynamics associated with the experience of SA and SAD. In line with the available models of SA and SAD, emotion regulation, perseverative cognition, cognitive factors, substance use, and interactional patterns were the principal topics of the included studies. In addition, the incorporation of AA to study psychological interventions, multimodal assessment using sensors and biosensors, and transcultural differences were some of the identified emerging topics. CONCLUSIONS AA constitutes a very powerful methodology to grasp SA from a complementary perspective to laboratory experiments and usual self-report measures, shedding light on the cognitive, emotional, and behavioral antecedents and consequences of SA and the development and maintenance of SAD as a mental disorder.
Collapse
Affiliation(s)
- Javier Fernández-Álvarez
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
- Fundación Aiglé, Buenos Aires, Argentina
| | - Desirée Colombo
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
| | | | | | - Rosa María Baños
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
- Department of Personality, Evaluation, and Psychological Treatments, University of Valencia, Valencia, Spain
- Ciber Fisiopatologia Obesidad y Nutricion (CB06/03 Instituto Salud Carlos III), Madrid, Spain
| | - Cristina Botella
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
- Ciber Fisiopatologia Obesidad y Nutricion (CB06/03 Instituto Salud Carlos III), Madrid, Spain
| |
Collapse
|
15
|
Chadaga K, Prabhu S, Sampathila N, Chadaga R, Bhat D, Sharma AK, Swathi KS. SADXAI: Predicting social anxiety disorder using multiple interpretable artificial intelligence techniques. SLAS Technol 2024; 29:100129. [PMID: 38508237 DOI: 10.1016/j.slast.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Social anxiety disorder (SAD), also known as social phobia, is a psychological condition in which a person has a persistent and overwhelming fear of being negatively judged or observed by other individuals. This fear can affect them at work, in relationships and other social activities. The intricate combination of several environmental and biological factors is the reason for the onset of this mental condition. SAD is diagnosed using a test called the "Diagnostic and Statistical Manual of Mental Health Disorders (DSM-5), which is based on several physical, emotional and demographic symptoms. Artificial Intelligence has been a boon for medicine and is regularly used to diagnose various health conditions and diseases. Hence, this study used demographic, emotional, and physical symptoms and multiple machine learning (ML) techniques to diagnose SAD. A thorough descriptive and statistical analysis has been conducted before using the classifiers. Among all the models, the AdaBoost and logistic regression obtained the highest accuracy of 88 % each. Four eXplainable artificial techniques (XAI) techniques are utilized to make the predictions interpretable, transparent and understandable. According to XAI, the "Liebowitz Social Anxiety Scale questionnaire" and "The fear of speaking in public" are the most critical attributes in the diagnosis of SAD. This clinical decision support system framework could be utilized in various suitable locations such as schools, hospitals and workplaces to identify SAD in people.
Collapse
Affiliation(s)
- Krishnaraj Chadaga
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Srikanth Prabhu
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Niranjana Sampathila
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Rajagopala Chadaga
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Devadas Bhat
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akhilesh Kumar Sharma
- Department of Data Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - K S Swathi
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
16
|
Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. JMIR Mhealth Uhealth 2024; 12:e48803. [PMID: 38252596 PMCID: PMC10823426 DOI: 10.2196/48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention, diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology, which are comprehensive in terms of form factors and detection targets according to body attachment location and type. Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new paradigm in the field of digital medicine.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Popp Z, Low S, Igwe A, Rahman MS, Kim M, Khan R, Oh E, Kumar A, De Anda‐Duran I, Ding H, Hwang PH, Sunderaraman P, Shih LC, Lin H, Kolachalama VB, Au R. Shifting From Active to Passive Monitoring of Alzheimer Disease: The State of the Research. J Am Heart Assoc 2024; 13:e031247. [PMID: 38226518 PMCID: PMC10926806 DOI: 10.1161/jaha.123.031247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Most research using digital technologies builds on existing methods for staff-administered evaluation, requiring a large investment of time, effort, and resources. Widespread use of personal mobile devices provides opportunities for continuous health monitoring without active participant engagement. Home-based sensors show promise in evaluating behavioral features in near real time. Digital technologies across these methodologies can detect precise measures of cognition, mood, sleep, gait, speech, motor activity, behavior patterns, and additional features relevant to health. As a neurodegenerative condition with insidious onset, Alzheimer disease and other dementias (AD/D) represent a key target for advances in monitoring disease symptoms. Studies to date evaluating the predictive power of digital measures use inconsistent approaches to characterize these measures. Comparison between different digital collection methods supports the use of passive collection methods in settings in which active participant engagement approaches are not feasible. Additional studies that analyze how digital measures across multiple data streams can together improve prediction of cognitive impairment and early-stage AD are needed. Given the long timeline of progression from normal to diagnosis, digital monitoring will more easily make extended longitudinal follow-up possible. Through the American Heart Association-funded Strategically Focused Research Network, the Boston University investigative team deployed a platform involving a wide range of technologies to address these gaps in research practice. Much more research is needed to thoroughly evaluate limitations of passive monitoring. Multidisciplinary collaborations are needed to establish legal and ethical frameworks for ensuring passive monitoring can be conducted at scale while protecting privacy and security, especially in vulnerable populations.
Collapse
Affiliation(s)
- Zachary Popp
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Spencer Low
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
| | - Akwaugo Igwe
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Md Salman Rahman
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Minzae Kim
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston UniversityBostonMAUSA
| | - Raiyan Khan
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston UniversityBostonMAUSA
| | - Emily Oh
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston UniversityBostonMAUSA
| | - Ankita Kumar
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston UniversityBostonMAUSA
| | - Ileana De Anda‐Duran
- Department of EpidemiologyTulane University School of Public Health & Tropical MedicineNew OrleansLAUSA
| | - Huitong Ding
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Framingham Heart StudyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
| | - Phillip H. Hwang
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
| | - Preeti Sunderaraman
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Framingham Heart StudyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
| | - Ludy C. Shih
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Framingham Heart StudyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
| | - Honghuang Lin
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMA
| | - Vijaya B. Kolachalama
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Department of MedicineBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
| | - Rhoda Au
- Department of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of MedicineBostonMAUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
- Framingham Heart StudyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
- Department of MedicineBoston University Chobanian & Avedisian School of Medicine School of MedicineBostonMAUSA
| |
Collapse
|
18
|
Nestor BA, Chimoff J, Koike C, Weitzman ER, Riley BL, Uhl K, Kossowsky J. Adolescent and Parent Perspectives on Digital Phenotyping in Youths With Chronic Pain: Cross-Sectional Mixed Methods Survey Study. J Med Internet Res 2024; 26:e47781. [PMID: 38206665 PMCID: PMC10811597 DOI: 10.2196/47781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Digital phenotyping is a promising methodology for capturing moment-to-moment data that can inform individually adapted and timely interventions for youths with chronic pain. OBJECTIVE This study aimed to investigate adolescent and parent endorsement, perceived utility, and concerns related to passive data stream collection through smartphones for digital phenotyping for clinical and research purposes in youths with chronic pain. METHODS Through multiple-choice and open-response survey questions, we assessed the perspectives of patient-parent dyads (103 adolescents receiving treatment for chronic pain at a pediatric hospital with an average age of 15.6, SD 1.6 years, and 99 parents with an average age of 47.8, SD 6.3 years) on passive data collection from the following 9 smartphone-embedded passive data streams: accelerometer, apps, Bluetooth, SMS text message and call logs, keyboard, microphone, light, screen, and GPS. RESULTS Quantitative and qualitative analyses indicated that adolescents and parent endorsement and perceived utility of digital phenotyping varied by stream, though participants generally endorsed the use of data collected by passive stream (35%-75.7% adolescent endorsement for clinical use and 37.9%-74.8% for research purposes; 53.5%-81.8% parent endorsement for clinical and 52.5%-82.8% for research purposes) if a certain level of utility could be provided. For adolescents and parents, adjusted logistic regression results indicated that the perceived utility of each stream significantly predicted the likelihood of endorsement of its use in both clinical practice and research (Ps<.05). Adolescents and parents alike identified accelerometer, light, screen, and GPS as the passive data streams with the highest utility (36.9%-47.5% identifying streams as useful). Similarly, adolescents and parents alike identified apps, Bluetooth, SMS text message and call logs, keyboard, and microphone as the passive data streams with the least utility (18.5%-34.3% identifying streams as useful). All participants reported primary concerns related to privacy, accuracy, and validity of the collected data. Passive data streams with the greatest number of total concerns were apps, Bluetooth, call and SMS text message logs, keyboard, and microphone. CONCLUSIONS Findings support the tailored use of digital phenotyping for this population and can help refine this methodology toward an acceptable, feasible, and ethical implementation of real-time symptom monitoring for assessment and intervention in youths with chronic pain.
Collapse
Affiliation(s)
- Bridget A Nestor
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Justin Chimoff
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Camila Koike
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Elissa R Weitzman
- Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Addiction Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Bobbie L Riley
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Kristen Uhl
- Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, United States
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States
| | - Joe Kossowsky
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Stamatis CA, Meyerhoff J, Meng Y, Lin ZCC, Cho YM, Liu T, Karr CJ, Liu T, Curtis BL, Ungar LH, Mohr DC. Differential temporal utility of passively sensed smartphone features for depression and anxiety symptom prediction: a longitudinal cohort study. NPJ MENTAL HEALTH RESEARCH 2024; 3:1. [PMID: 38609548 PMCID: PMC10955925 DOI: 10.1038/s44184-023-00041-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/19/2023] [Indexed: 04/14/2024]
Abstract
While studies show links between smartphone data and affective symptoms, we lack clarity on the temporal scale, specificity (e.g., to depression vs. anxiety), and person-specific (vs. group-level) nature of these associations. We conducted a large-scale (n = 1013) smartphone-based passive sensing study to identify within- and between-person digital markers of depression and anxiety symptoms over time. Participants (74.6% female; M age = 40.9) downloaded the LifeSense app, which facilitated continuous passive data collection (e.g., GPS, app and device use, communication) across 16 weeks. Hierarchical linear regression models tested the within- and between-person associations of 2-week windows of passively sensed data with depression (PHQ-8) or generalized anxiety (GAD-7). We used a shifting window to understand the time scale at which sensed features relate to mental health symptoms, predicting symptoms 2 weeks in the future (distal prediction), 1 week in the future (medial prediction), and 0 weeks in the future (proximal prediction). Spending more time at home relative to one's average was an early signal of PHQ-8 severity (distal β = 0.219, p = 0.012) and continued to relate to PHQ-8 at medial (β = 0.198, p = 0.022) and proximal (β = 0.183, p = 0.045) windows. In contrast, circadian movement was proximally related to (β = -0.131, p = 0.035) but did not predict (distal β = 0.034, p = 0.577; medial β = -0.089, p = 0.138) PHQ-8. Distinct communication features (i.e., call/text or app-based messaging) related to PHQ-8 and GAD-7. Findings have implications for identifying novel treatment targets, personalizing digital mental health interventions, and enhancing traditional patient-provider interactions. Certain features (e.g., circadian movement) may represent correlates but not true prospective indicators of affective symptoms. Conversely, other features like home duration may be such early signals of intra-individual symptom change, indicating the potential utility of prophylactic intervention (e.g., behavioral activation) in response to person-specific increases in these signals.
Collapse
Affiliation(s)
- Caitlin A Stamatis
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Jonah Meyerhoff
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yixuan Meng
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Chong Chris Lin
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Young Min Cho
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tony Liu
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
- Roblox Corporation, San Mateo, CA, USA
| | | | - Tingting Liu
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, USA
- Technology & Translational Research Unit, National Institute on Drug Abuse (NIDA IRP), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brenda L Curtis
- Technology & Translational Research Unit, National Institute on Drug Abuse (NIDA IRP), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lyle H Ungar
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David C Mohr
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
20
|
Choi H, Cho Y, Min C, Kim K, Kim E, Lee S, Kim JJ. Multiclassification of the symptom severity of social anxiety disorder using digital phenotypes and feature representation learning. Digit Health 2024; 10:20552076241256730. [PMID: 39114113 PMCID: PMC11303831 DOI: 10.1177/20552076241256730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/07/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Social anxiety disorder (SAD) is characterized by heightened sensitivity to social interactions or settings, which disrupts daily activities and social relationships. This study aimed to explore the feasibility of utilizing digital phenotypes for predicting the severity of these symptoms and to elucidate how the main predictive digital phenotypes differed depending on the symptom severity. Method We collected 511 behavioral and physiological data over 7 to 13 weeks from 27 SAD and 31 healthy individuals using smartphones and smartbands, from which we extracted 76 digital phenotype features. To reduce data dimensionality, we employed an autoencoder, an unsupervised machine learning model that transformed these features into low-dimensional latent representations. Symptom severity was assessed with three social anxiety-specific and nine additional psychological scales. For each symptom, we developed individual classifiers to predict the severity and applied integrated gradients to identify critical predictive features. Results Classifiers targeting social anxiety symptoms outperformed baseline accuracy, achieving mean accuracy and F1 scores of 87% (with both metrics in the range 84-90%). For secondary psychological symptoms, classifiers demonstrated mean accuracy and F1 scores of 85%. Application of integrated gradients revealed key digital phenotypes with substantial influence on the predictive models, differentiated by symptom types and levels of severity. Conclusions Leveraging digital phenotypes through feature representation learning could effectively classify symptom severities in SAD. It identifies distinct digital phenotypes associated with the cognitive, emotional, and behavioral dimensions of SAD, thereby advancing the understanding of SAD. These findings underscore the potential utility of digital phenotypes in informing clinical management.
Collapse
Affiliation(s)
- Hyoungshin Choi
- AI Medtech R&D, Waycen Inc, Seoul, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University and Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Yesol Cho
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choongki Min
- AI Medtech R&D, Waycen Inc, Seoul, Republic of Korea
| | - Kyungnam Kim
- AI Medtech R&D, Waycen Inc, Seoul, Republic of Korea
| | - Eunji Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Lee
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Smrke U, Mlakar I, Rehberger A, Žužek L, Plohl N. Decoding anxiety: A scoping review of observable cues. Digit Health 2024; 10:20552076241297006. [PMID: 39600386 PMCID: PMC11590141 DOI: 10.1177/20552076241297006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background While anxiety disorders are one of the most prevalent mental diseases, they are often overlooked due to shortcomings of the existing diagnostic procedures, which predominantly rely on self-reporting. Due to recent technological advances, this source of information could be complemented by the so-called observable cues - indicators that are displayed spontaneously through individuals' physiological responses or behaviour and can be detected by modern devices. However, while there are several individual studies on such cues, this research area lacks a synthesis. In line with this, our scoping review aimed to identify observable cues that offer meaningful insight into individuals' anxiety and to determine how these cues can be measured. Methods We followed the PRISMA guidelines for scoping reviews. The search string containing terms related to anxiety and observable cues was entered into four databases (Web of Science, MEDLINE, ERIC, IEEE). While the search - limited to English peer-reviewed records published from 2012 onwards - initially yielded 2311 records, only 33 articles fit our selection criteria and were included in the final synthesis. Results The scoping review unravelled various categories of observable cues of anxiety, specifically those related to facial expressions, speech and language, breathing, skin, heart, cognitive control, sleep, activity and motion, location data and smartphone use. Moreover, we identified various approaches for measuring these cues, including wearable devices, and analysing smartphone usage and social media activity. Conclusions Our scoping review points to several physiological and behavioural cues associated with anxiety and highlights how these can be measured. These novel insights may be helpful for healthcare practitioners and fuel future research and technology development. However, as many cues were investigated only in a single study, more evidence is needed to generalise these findings and implement them into practice with greater confidence.
Collapse
Affiliation(s)
- Urška Smrke
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Izidor Mlakar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Ana Rehberger
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Leon Žužek
- Department of Psychology, Faculty of Arts, University of Maribor, Ljubljana, Slovenia
- Center for Cognitive Science, Faculty of Education, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Plohl
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
22
|
Gyorda JA, Lekkas D, Jacobson NC. Detecting Longitudinal Trends between Passively Collected Phone Use and Anxiety among College Students. Digit Biomark 2024; 8:181-193. [PMID: 39473805 PMCID: PMC11521436 DOI: 10.1159/000540546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/22/2024] [Indexed: 02/08/2025] Open
Abstract
Introduction Existing theories and empirical works link phone use with anxiety; however, most leverage subjective self-reports of phone use (e.g., validated questionnaires) that may not correspond well with true behavior. Moreover, most works linking phone use with anxiety do not interrogate associations within a temporal framework. Accordingly, the present study sought to investigate the utility of passively sensed phone use as a longitudinal predictor of anxiety symptomatology within a population particularly vulnerable to experiencing anxiety. Methods Using data from the GLOBEM study, which continuously collected longitudinal behavioral data from a college cohort of N = 330 students, weekly PHQ-4 anxiety subscale scores across 3 years (2019-2021) were paired with median daily phone use records from the 2 weeks prior to anxiety self-report completion. Phone use was operationalized through unlock duration which was passively curated via Apple's "Screen Time" feature. GPS-tracked location data was further utilized to specify whether an individual's phone use was at home or away from home. Within-individual and temporal associations between phone use and anxiety were modeled within an ordinal mixed-effects logistic regression framework. Results While there was no significant association between anxiety levels and either median total phone use or median phone use at home, participants in the top quartile of median phone use away from home were predicted to exhibit clinically significant anxiety levels 20% more frequently than participants in the bottom quartile during the first study year; however, this association weakened across successive years. Importantly, these associations remained after controlling for age, physical activity, sleep, and baseline anxiety levels and were not recapitulated when operationalizing phone use with unlock frequency. Conclusions These findings suggest that phone use may be leveraged as a means of mitigating or coping with anxiety in social situations outside the home, while pandemic-related developments may also have attenuated this behavior later in the study. Nevertheless, the present results suggest promise in interrogating a larger suite of objectively measured phone use behaviors within the context of social anxiety.
Collapse
Affiliation(s)
- Joseph A. Gyorda
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Dartmouth College, Hanover, NH, USA
| | - Damien Lekkas
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Dartmouth College, Hanover, NH, USA
| | - Nicholas C. Jacobson
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Dartmouth College, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Psychiatry, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
23
|
Bibbo D, De Marchis C, Schmid M, Ranaldi S. Machine learning to detect, stage and classify diseases and their symptoms based on inertial sensor data: a mapping review. Physiol Meas 2023; 44:12TR01. [PMID: 38061062 DOI: 10.1088/1361-6579/ad133b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
This article presents a systematic review aimed at mapping the literature published in the last decade on the use of machine learning (ML) for clinical decision-making through wearable inertial sensors. The review aims to analyze the trends, perspectives, strengths, and limitations of current literature in integrating ML and inertial measurements for clinical applications. The review process involved defining four research questions and applying four relevance assessment indicators to filter the search results, providing insights into the pathologies studied, technologies and setups used, data processing schemes, ML techniques applied, and their clinical impact. When combined with ML techniques, inertial measurement units (IMUs) have primarily been utilized to detect and classify diseases and their associated motor symptoms. They have also been used to monitor changes in movement patterns associated with the presence, severity, and progression of pathology across a diverse range of clinical conditions. ML models trained with IMU data have shown potential in improving patient care by objectively classifying and predicting motor symptoms, often with a minimally encumbering setup. The findings contribute to understanding the current state of ML integration with wearable inertial sensors in clinical practice and identify future research directions. Despite the widespread adoption of these technologies and techniques in clinical applications, there is still a need to translate them into routine clinical practice. This underscores the importance of fostering a closer collaboration between technological experts and professionals in the medical field.
Collapse
Affiliation(s)
- Daniele Bibbo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | | | - Maurizio Schmid
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| | - Simone Ranaldi
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Rome, Italy
| |
Collapse
|
24
|
Bufano P, Laurino M, Said S, Tognetti A, Menicucci D. Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. J Med Internet Res 2023; 25:e46778. [PMID: 38090800 PMCID: PMC10753422 DOI: 10.2196/46778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 07/31/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has increased the impact and spread of mental illness and made health services difficult to access; therefore, there is a need for remote, pervasive forms of mental health monitoring. Digital phenotyping is a new approach that uses measures extracted from spontaneous interactions with smartphones (eg, screen touches or movements) or other digital devices as markers of mental status. OBJECTIVE This review aimed to evaluate the feasibility of using digital phenotyping for predicting relapse or exacerbation of symptoms in patients with mental disorders through a systematic review of the scientific literature. METHODS Our research was carried out using 2 bibliographic databases (PubMed and Scopus) by searching articles published up to January 2023. By following the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines, we started from an initial pool of 1150 scientific papers and screened and extracted a final sample of 29 papers, including studies concerning clinical populations in the field of mental health, which were aimed at predicting relapse or exacerbation of symptoms. The systematic review has been registered on the web registry Open Science Framework. RESULTS We divided the results into 4 groups according to mental disorder: schizophrenia (9/29, 31%), mood disorders (15/29, 52%), anxiety disorders (4/29, 14%), and substance use disorder (1/29, 3%). The results for the first 3 groups showed that several features (ie, mobility, location, phone use, call log, heart rate, sleep, head movements, facial and vocal characteristics, sociability, social rhythms, conversations, number of steps, screen on or screen off status, SMS text message logs, peripheral skin temperature, electrodermal activity, light exposure, and physical activity), extracted from data collected via the smartphone and wearable wristbands, can be used to create digital phenotypes that could support gold-standard assessment and could be used to predict relapse or symptom exacerbations. CONCLUSIONS Thus, as the data were consistent for almost all the mental disorders considered (mood disorders, anxiety disorders, and schizophrenia), the feasibility of this approach was confirmed. In the future, a new model of health care management using digital devices should be integrated with the digital phenotyping approach and tailored mobile interventions (managing crises during relapse or exacerbation).
Collapse
Affiliation(s)
- Pasquale Bufano
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Sara Said
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Stamatis CA, Liu T, Meyerhoff J, Meng Y, Cho YM, Karr CJ, Curtis BL, Ungar LH, Mohr DC. Specific associations of passively sensed smartphone data with future symptoms of avoidance, fear, and physiological distress in social anxiety. Internet Interv 2023; 34:100683. [PMID: 37867614 PMCID: PMC10589746 DOI: 10.1016/j.invent.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background Prior literature links passively sensed information about a person's location, movement, and communication with social anxiety. These findings hold promise for identifying novel treatment targets, informing clinical care, and personalizing digital mental health interventions. However, social anxiety symptoms are heterogeneous; to identify more precise targets and tailor treatments, there is a need for personal sensing studies aimed at understanding differential predictors of the distinct subdomains of social anxiety. Our objective was to conduct a large-scale smartphone-based sensing study of fear, avoidance, and physiological symptoms in the context of trait social anxiety over time. Methods Participants (n = 1013; 74.6 % female; M age = 40.9) downloaded the LifeSense app, which collected continuous passive data (e.g., GPS, communication, app and device use) over 16 weeks. We tested a series of multilevel linear regression models to understand within- and between-person associations of 2-week windows of passively sensed smartphone data with fear, avoidance, and physiological distress on the self-reported Social Phobia Inventory (SPIN). A shifting sensor lag was applied to examine how smartphone features related to SPIN subdomains 2 weeks in the future (distal prediction), 1 week in the future (medial prediction), and 0 weeks in the future (proximal prediction). Results A decrease in time visiting novel places was a strong between-person predictor of social avoidance over time (distal β = -0.886, p = .002; medial β = -0.647, p = .029; proximal β = -0.818, p = .007). Reductions in call- and text-based communications were associated with social avoidance at both the between- (distal β = -0.882, p = .002; medial β = -0.932, p = .001; proximal β = -0.918, p = .001) and within- (distal β = -0.191, p = .046; medial β = -0.213, p = .028) person levels, as well as between-person fear of social situations (distal β = -0.860, p < .001; medial β = -0.892, p < .001; proximal β = -0.886, p < .001) over time. There were fewer significant associations of sensed data with physiological distress. Across the three subscales, smartphone data explained 9-12 % of the variance in social anxiety. Conclusion Findings have implications for understanding how social anxiety manifests in daily life, and for personalizing treatments. For example, a signal that someone is likely to begin avoiding social situations may suggest a need for alternative types of exposure-based interventions compared to a signal that someone is likely to begin experiencing increased physiological distress. Our results suggest that as a prophylactic means of targeting social avoidance, it may be helpful to deploy interventions involving social exposures in response to decreases in time spent visiting novel places.
Collapse
Affiliation(s)
- Caitlin A. Stamatis
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Tingting Liu
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, United States of America
- Technology & Translational Research Unit, National Institute on Drug Abuse (NIDA IRP), National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Jonah Meyerhoff
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Yixuan Meng
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Young Min Cho
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chris J. Karr
- Audacious Software, Chicago, IL, United States of America
| | - Brenda L. Curtis
- Technology & Translational Research Unit, National Institute on Drug Abuse (NIDA IRP), National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Lyle H. Ungar
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - David C. Mohr
- Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
26
|
Aneni K, Chen CH, Meyer J, Cho YT, Lipton ZC, Kher S, Jiao MG, Gomati de la Vega I, Umutoni FA, McDougal RA, Fiellin LE. Identifying Game-Based Digital Biomarkers of Cognitive Risk for Adolescent Substance Misuse: Protocol for a Proof-of-Concept Study. JMIR Res Protoc 2023; 12:e46990. [PMID: 37995115 DOI: 10.2196/46990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Adolescents at risk for substance misuse are rarely identified early due to existing barriers to screening that include the lack of time and privacy in clinic settings. Games can be used for screening and thus mitigate these barriers. Performance in a game is influenced by cognitive processes such as working memory and inhibitory control. Deficits in these cognitive processes can increase the risk of substance use. Further, substance misuse affects these cognitive processes and may influence game performance, captured by in-game metrics such as reaction time or time for task completion. Digital biomarkers are measures generated from digital tools that explain underlying health processes and can be used to predict, identify, and monitor health outcomes. As such, in-game performance metrics may represent digital biomarkers of cognitive processes that can offer an objective method for assessing underlying risk for substance misuse. OBJECTIVE This is a protocol for a proof-of-concept study to investigate the utility of in-game performance metrics as digital biomarkers of cognitive processes implicated in the development of substance misuse. METHODS This study has 2 aims. In aim 1, using previously collected data from 166 adolescents aged 11-14 years, we extracted in-game performance metrics from a video game and are using machine learning methods to determine whether these metrics predict substance misuse. The extraction of in-game performance metrics was guided by literature review of in-game performance metrics and gameplay guidebooks provided by the game developers. In aim 2, using data from a new sample of 30 adolescents playing the same video game, we will test if metrics identified in aim 1 correlate with cognitive processes. Our hypothesis is that in-game performance metrics that are predictive of substance misuse in aim 1 will correlate with poor cognitive function in our second sample. RESULTS This study was funded by National Institute on Drug Abuse through the Center for Technology and Behavioral Health Pilot Core in May 2022. To date, we have extracted 285 in-game performance metrics. We obtained institutional review board approval on October 11, 2022. Data collection for aim 2 is ongoing and projected to end in February 2024. Currently, we have enrolled 12 participants. Data analysis for aim 2 will begin once data collection is completed. The results from both aims will be reported in a subsequent publication, expected to be published in late 2024. CONCLUSIONS Screening adolescents for substance use is not consistently done due to barriers that include the lack of time. Using games that provide an objective measure to identify adolescents at risk for substance misuse can increase screening rates, early identification, and intervention. The results will inform the utility of in-game performance metrics as digital biomarkers for identifying adolescents at high risk for substance misuse. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46990.
Collapse
Affiliation(s)
- Kammarauche Aneni
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
- Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, United States
| | - Ching-Hua Chen
- Center for Computational Health, IBM Research, Yorktown Heights, NY, United States
| | - Jenny Meyer
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
- Fairfield University, Fairfield, CT, United States
| | - Youngsun T Cho
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Zachary Chase Lipton
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburg, PA, United States
| | | | - Megan G Jiao
- McGovern Medical School, UTHealth Houston, Houston, TX, United States
| | | | | | - Robert A McDougal
- Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, United States
- Yale School of Public Health, New Haven, CT, United States
| | - Lynn E Fiellin
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
- Yale School of Public Health, New Haven, CT, United States
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Lane E, D'Arcey J, Kidd S, Onyeaka H, Alon N, Joshi D, Torous J. Digital Phenotyping in Adults with Schizophrenia: A Narrative Review. Curr Psychiatry Rep 2023; 25:699-706. [PMID: 37861979 DOI: 10.1007/s11920-023-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW As care for older adult patients with schizophrenia lacks innovation, technology can help advance the field. Specifically, digital phenotyping, the real-time monitoring of patients' behaviors through smartphone sensors and symptoms through surveys, holds promise as the method can capture the dynamicity and environmental correlates of disease. RECENT FINDINGS Few studies have used digital phenotyping to elucidate adult patients' experiences with schizophrenia. In this narrative review, we summarized the literature using digital phenotyping on adults with schizophrenia. No study focused solely on older adult patients. Studies including all adult patients were heterogeneous in measures used, duration, and outcomes. Despite limited research, digital phenotyping shows potential for monitoring outcomes such as negative, positive, and functional symptoms, as well as predicting relapse. Future research should work to target the symptomology persistent in chronic schizophrenia and ensure all patients have the digital literacy required to benefit from digital interventions and homogenize datasets to allow for more robust conclusions.
Collapse
Affiliation(s)
- Erlend Lane
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - Jessica D'Arcey
- Slaight Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sean Kidd
- Slaight Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Henry Onyeaka
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Massachusetts General/McLean Hospital, Boston, MA, USA
| | - Noy Alon
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - Devayani Joshi
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - John Torous
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Sedlakova J, Daniore P, Horn Wintsch A, Wolf M, Stanikic M, Haag C, Sieber C, Schneider G, Staub K, Alois Ettlin D, Grübner O, Rinaldi F, von Wyl V. Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review. PLOS DIGITAL HEALTH 2023; 2:e0000347. [PMID: 37819910 PMCID: PMC10566734 DOI: 10.1371/journal.pdig.0000347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/14/2023] [Indexed: 10/13/2023]
Abstract
Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
Collapse
Affiliation(s)
- Jana Sedlakova
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| | - Paola Daniore
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
| | - Andrea Horn Wintsch
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center for Gerontology, University of Zurich, Zurich, Switzerland
- CoupleSense: Health and Interpersonal Emotion Regulation Group, University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Markus Wolf
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Mina Stanikic
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Christina Haag
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Chloé Sieber
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Gerold Schneider
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Kaspar Staub
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Dominik Alois Ettlin
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Grübner
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Fabio Rinaldi
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Fondazione Bruno Kessler, Trento, Italy
- Swiss Institute of Bioinformatics, Switzerland
| | - Viktor von Wyl
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
29
|
WANG ZHIYUAN, LARRAZABAL MARIAA, RUCKER MARK, TONER EMMAR, DANIEL KATHARINEE, KUMAR SHASHWAT, BOUKHECHBA MEHDI, TEACHMAN BETHANYA, BARNES LAURAE. Detecting Social Contexts from Mobile Sensing Indicators in Virtual Interactions with Socially Anxious Individuals. PROCEEDINGS OF THE ACM ON INTERACTIVE, MOBILE, WEARABLE AND UBIQUITOUS TECHNOLOGIES 2023; 7:134. [PMID: 38737573 PMCID: PMC11087077 DOI: 10.1145/3610916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Mobile sensing is a ubiquitous and useful tool to make inferences about individuals' mental health based on physiology and behavior patterns. Along with sensing features directly associated with mental health, it can be valuable to detect different features of social contexts to learn about social interaction patterns over time and across different environments. This can provide insight into diverse communities' academic, work and social lives, and their social networks. We posit that passively detecting social contexts can be particularly useful for social anxiety research, as it may ultimately help identify changes in social anxiety status and patterns of social avoidance and withdrawal. To this end, we recruited a sample of highly socially anxious undergraduate students (N=46) to examine whether we could detect the presence of experimentally manipulated virtual social contexts via wristband sensors. Using a multitask machine learning pipeline, we leveraged passively sensed biobehavioral streams to detect contexts relevant to social anxiety, including (1) whether people were in a social situation, (2) size of the social group, (3) degree of social evaluation, and (4) phase of social situation (anticipating, actively experiencing, or had just participated in an experience). Results demonstrated the feasibility of detecting most virtual social contexts, with stronger predictive accuracy when detecting whether individuals were in a social situation or not and the phase of the situation, and weaker predictive accuracy when detecting the level of social evaluation. They also indicated that sensing streams are differentially important to prediction based on the context being predicted. Our findings also provide useful information regarding design elements relevant to passive context detection, including optimal sensing duration, the utility of different sensing modalities, and the need for personalization. We discuss implications of these findings for future work on context detection (e.g., just-in-time adaptive intervention development).
Collapse
Affiliation(s)
- ZHIYUAN WANG
- Department of Systems and Information Engineering, University of Virginia, USA
| | | | - MARK RUCKER
- Department of Systems and Information Engineering, University of Virginia, USA
| | - EMMA R. TONER
- Department of Psychology, University of Virginia, USA
| | | | - SHASHWAT KUMAR
- Department of Systems and Information Engineering, University of Virginia, USA
| | | | | | - LAURA E. BARNES
- Department of Systems and Information Engineering, University of Virginia, USA
| |
Collapse
|
30
|
Ash GI, Nally LM, Stults-Kolehmainen M, De Los Santos M, Jeon S, Brandt C, Gulanski BI, Spanakis EK, Baker JS, Weinzimer SA, Fucito LM. Personalized Digital Health Information to Substantiate Human-Delivered Exercise Support for Adults With Type 1 Diabetes. Clin J Sport Med 2023; 33:512-520. [PMID: 36715983 PMCID: PMC10898917 DOI: 10.1097/jsm.0000000000001078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Pilot-test personalized digital health information to substantiate human-delivered exercise support for adults with type 1 diabetes (T1D). DESIGN Single-group, 2-week baseline observation, then 10-week intervention with follow-up observation. SETTING Community-based sample participating remotely with physician oversight. PARTICIPANTS Volunteers aged 18 to 65 years with T1D screened for medical readiness for exercise intervention offerings. N = 20 enrolled, and N = 17 completed all outcomes with 88% to 91% biosensor adherence. INTERVENTION Feedback on personalized data from continuous glucose monitoring (CGM), its intersection with other ecological data sets (exercise, mood, and sleep), and other informational and motivational elements (exercise videos, text-based exercise coach, and self-monitoring diary). MAIN OUTCOME MEASURES Feasibility (use metrics and assessment completion), safety (mild and severe hypoglycemia, and diabetic ketoacidosis), acceptability (system usability scale, single items, and interview themes), and standard clinical and psychosocial assessments. RESULTS Participants increased exercise from a median of 0 (Interquartile range, 0-21) to 64 (20-129) minutes per week ( P = 0.001, d = 0.71) with no severe hypoglycemia or ketoacidosis. Body mass index increased (29.5 ± 5.1 to 29.8 ± 5.4 kg/m 2 , P = 0.02, d = 0.57). Highest satisfaction ratings were for CGM use (89%) and data on exercise and its intersection with CGM and sleep (94%). Satisfaction was primarily because of improved exercise management behavioral skills, although derived motivation was transient. CONCLUSIONS The intervention was feasible, safe, and acceptable. However, there is a need for more intensive, sustained support. Future interventions should perform analytics upon the digital health information and molecular biomarkers (eg, genomics) to make exercise support tools that are more personalized, automated, and intensive than our present offerings.
Collapse
Affiliation(s)
- Garrett I Ash
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | | | - Matthew Stults-Kolehmainen
- Yale-New Haven Hospital, New Haven, Connecticut
- Teachers College - Columbia University, New York, New York
| | | | | | - Cynthia Brandt
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | - Barbara I Gulanski
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | - Elias K Spanakis
- Veterans Affairs Maryland Healthcare System, Baltimore, Maryland
- University of Maryland, Baltimore, Maryland; and
| | | | | | | |
Collapse
|
31
|
Lee SH, Hwang HH, Kim S, Hwang J, Park J, Park S. Clinical Implication of Maumgyeol Basic Service-the 2 Channel Electroencephalography and a Photoplethysmogram-based Mental Health Evaluation Software. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:583-593. [PMID: 37424425 PMCID: PMC10335898 DOI: 10.9758/cpn.23.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 07/11/2023]
Abstract
Objective Maumgyeol Basic service is a mental health evaluation and grade scoring software using the 2 channels EEG and photoplethysmogram (PPG). This service is supposed to assess potential at-risk groups with mental illness more easily, rapidly, and reliably. This study aimed to evaluate the clinical implication of the Maumgyeol Basic service. Methods One hundred one healthy controls and 103 patients with a psychiatric disorder were recruited. Psychological evaluation (Mental Health Screening for Depressive Disorders [MHS-D], Mental Health Screening for Anxiety Disorders [MHS-A], cognitive stress response scale [CSRS], 12-item General Health Questionnaire [GHQ-12], Clinical Global Impression [CGI]) and digit symbol substitution test (DSST) were applied to all participants. Maumgyeol brain health score and Maumgyeol mind health score were calculated from 2 channel frontal EEG and PPG, respectively. Results Participants were divided into three groups: Maumgyeol Risky, Maumgyeol Good, and Maumgyeol Usual. The Maumgyeol mind health scores, but not brain health scores, were significantly lower in the patients group compared to healthy controls. Maumgyeol Risky group showed significantly lower psychological and cognitive ability evaluation scores than Maumgyeol Usual and Good groups. Maumgyel brain health score showed significant correlations with CSRS and DSST. Maumgyeol mind health score showed significant correlations with CGI and DSST. About 20.6% of individuals were classified as the No Insight group, who had mental health problems but were unaware of their illnesses. Conclusion This study suggests that the Maumgyeol Basic service can provide important clinical information about mental health and be used as a meaningful digital mental healthcare monitoring solution to prevent symptom aggravation.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Bwave Inc., Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
- Clinical Emotion and Cognition Research Laboratory, Department of Psychiatry, Inje University, Goyang, Korea
| | - Hyeon-Ho Hwang
- Clinical Emotion and Cognition Research Laboratory, Department of Psychiatry, Inje University, Goyang, Korea
- Department of Human-Computer Interaction, Hanyang University, Ansan, Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Korea
| | | | | | | |
Collapse
|
32
|
Rigatti M, Chapman B, Chai PR, Smelson D, Babu K, Carreiro S. Digital Biomarker Applications Across the Spectrum of Opioid Use Disorder. COGENT MENTAL HEALTH 2023; 2:2240375. [PMID: 37546179 PMCID: PMC10399596 DOI: 10.1080/28324765.2023.2240375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Opioid use disorder (OUD) is one of the most pressing public health problems of the past decade, with over eighty thousand overdose related deaths in 2021 alone. Digital technologies to measure and respond to disease states encompass both on- and off-body sensors. Such devices can be used to detect and monitor end-user physiologic or behavioral measurements (i.e. digital biomarkers) that correlate with events of interest, health, or pathology. Recent work has demonstrated the potential of digital biomarkers to be used as a tools in the prevention, risk mitigation, and treatment of opioid use disorder (OUD). Multiple physiologic adaptations occur over the course of opioid use, and represent potential targets for digital biomarker based monitoring strategies. This review explores the current evidence (and potential) for digital biomarkers monitoring across the spectrum of opioid use. Technologies to detect opioid administration, withdrawal, hyperalgesia and overdose will be reviewed. Driven by empirically derived algorithms, these technologies have important implications for supporting the safe prescribing of opioids, reducing harm in active opioid users, and supporting those in recovery from OUD.
Collapse
Affiliation(s)
- Marc Rigatti
- Department of Emergency Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Brittany Chapman
- Department of Emergency Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Peter R Chai
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - David Smelson
- Department of Psychiatry, UMass Chan Medical School, Worcester, MA, USA
| | - Kavita Babu
- Department of Emergency Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Stephanie Carreiro
- Department of Emergency Medicine, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
33
|
Frank AC, Li R, Peterson BS, Narayanan SS. Wearable and Mobile Technologies for the Evaluation and Treatment of Obsessive-Compulsive Disorder: Scoping Review. JMIR Ment Health 2023; 10:e45572. [PMID: 37463010 PMCID: PMC10394606 DOI: 10.2196/45572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Smartphones and wearable biosensors can continuously and passively measure aspects of behavior and physiology while also collecting data that require user input. These devices can potentially be used to monitor symptom burden; estimate diagnosis and risk for relapse; predict treatment response; and deliver digital interventions in patients with obsessive-compulsive disorder (OCD), a prevalent and disabling psychiatric condition that often follows a chronic and fluctuating course and may uniquely benefit from these technologies. OBJECTIVE Given the speed at which mobile and wearable technologies are being developed and implemented in clinical settings, a continual reappraisal of this field is needed. In this scoping review, we map the literature on the use of wearable devices and smartphone-based devices or apps in the assessment, monitoring, or treatment of OCD. METHODS In July 2022 and April 2023, we conducted an initial search and an updated search, respectively, of multiple databases, including PubMed, Embase, APA PsycINFO, and Web of Science, with no restriction on publication period, using the following search strategy: ("OCD" OR "obsessive" OR "obsessive-compulsive") AND ("smartphone" OR "phone" OR "wearable" OR "sensing" OR "biofeedback" OR "neurofeedback" OR "neuro feedback" OR "digital" OR "phenotyping" OR "mobile" OR "heart rate variability" OR "actigraphy" OR "actimetry" OR "biosignals" OR "biomarker" OR "signals" OR "mobile health"). RESULTS We analyzed 2748 articles, reviewed the full text of 77 articles, and extracted data from the 25 articles included in this review. We divided our review into the following three parts: studies without digital or mobile intervention and with passive data collection, studies without digital or mobile intervention and with active or mixed data collection, and studies with a digital or mobile intervention. CONCLUSIONS Use of mobile and wearable technologies for OCD has developed primarily in the past 15 years, with an increasing pace of related publications. Passive measures from actigraphy generally match subjective reports. Ecological momentary assessment is well tolerated for the naturalistic assessment of symptoms, may capture novel OCD symptoms, and may also document lower symptom burden than retrospective recall. Digital or mobile treatments are diverse; however, they generally provide some improvement in OCD symptom burden. Finally, ongoing work is needed for a safe and trusted uptake of technology by patients and providers.
Collapse
Affiliation(s)
- Adam C Frank
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruibei Li
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bradley S Peterson
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Child and Adolescent Psychiatry, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shrikanth S Narayanan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Clay I, De Luca V, Sano A. Editorial: Multimodal digital approaches to personalized medicine. Front Big Data 2023; 6:1242482. [PMID: 37469442 PMCID: PMC10352833 DOI: 10.3389/fdata.2023.1242482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Ieuan Clay
- Vivosense Inc., Newport Coast, CA, United States
| | - Valeria De Luca
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Akane Sano
- Department of Electrical Computer Engineering, Computer Science, and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
35
|
Paromita P, Mundnich K, Nadarajan A, Booth BM, Narayanan SS, Chaspari T. Modeling inter-individual differences in ambulatory-based multimodal signals via metric learning: a case study of personalized well-being estimation of healthcare workers. Front Digit Health 2023; 5:1195795. [PMID: 37363272 PMCID: PMC10289192 DOI: 10.3389/fdgth.2023.1195795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Intelligent ambulatory tracking can assist in the automatic detection of psychological and emotional states relevant to the mental health changes of professionals with high-stakes job responsibilities, such as healthcare workers. However, well-known differences in the variability of ambulatory data across individuals challenge many existing automated approaches seeking to learn a generalizable means of well-being estimation. This paper proposes a novel metric learning technique that improves the accuracy and generalizability of automated well-being estimation by reducing inter-individual variability while preserving the variability pertaining to the behavioral construct. Methods The metric learning technique implemented in this paper entails learning a transformed multimodal feature space from pairwise similarity information between (dis)similar samples per participant via a Siamese neural network. Improved accuracy via personalization is further achieved by considering the trait characteristics of each individual as additional input to the metric learning models, as well as individual trait base cluster criteria to group participants followed by training a metric learning model for each group. Results The outcomes of the proposed models demonstrate significant improvement over the other inter-individual variability reduction and deep neural baseline methods for stress, anxiety, positive affect, and negative affect. Discussion This study lays the foundation for accurate estimation of psychological and emotional states in realistic and ambulatory environments leading to early diagnosis of mental health changes and enabling just-in-time adaptive interventions.
Collapse
Affiliation(s)
- Projna Paromita
- HUman Bio-Behavioral Signals Lab, Texas A & M University, College Station, TX, United States
| | - Karel Mundnich
- Signal Analysis and Interpretation Laboratory, University of Southern California, Los Angeles, CA, United States
| | - Amrutha Nadarajan
- Signal Analysis and Interpretation Laboratory, University of Southern California, Los Angeles, CA, United States
| | - Brandon M. Booth
- Signal Analysis and Interpretation Laboratory, University of Southern California, Los Angeles, CA, United States
| | - Shrikanth S. Narayanan
- Signal Analysis and Interpretation Laboratory, University of Southern California, Los Angeles, CA, United States
| | - Theodora Chaspari
- HUman Bio-Behavioral Signals Lab, Texas A & M University, College Station, TX, United States
| |
Collapse
|
36
|
Langener AM, Stulp G, Kas MJ, Bringmann LF. Capturing the Dynamics of the Social Environment Through Experience Sampling Methods, Passive Sensing, and Egocentric Networks: Scoping Review. JMIR Ment Health 2023; 10:e42646. [PMID: 36930210 PMCID: PMC10132048 DOI: 10.2196/42646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Social interactions are important for well-being, and therefore, researchers are increasingly attempting to capture people's social environment. Many different disciplines have developed tools to measure the social environment, which can be highly variable over time. The experience sampling method (ESM) is often used in psychology to study the dynamics within a person and the social environment. In addition, passive sensing is often used to capture social behavior via sensors from smartphones or other wearable devices. Furthermore, sociologists use egocentric networks to track how social relationships are changing. Each of these methods is likely to tap into different but important parts of people's social environment. Thus far, the development and implementation of these methods have occurred mostly separately from each other. OBJECTIVE Our aim was to synthesize the literature on how these methods are currently used to capture the changing social environment in relation to well-being and assess how to best combine these methods to study well-being. METHODS We conducted a scoping review according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS We included 275 studies. In total, 3 important points follow from our review. First, each method captures a different but important part of the social environment at a different temporal resolution. Second, measures are rarely validated (>70% of ESM studies and 50% of passive sensing studies were not validated), which undermines the robustness of the conclusions drawn. Third, a combination of methods is currently lacking (only 15/275, 5.5% of the studies combined ESM and passive sensing, and no studies combined all 3 methods) but is essential in understanding well-being. CONCLUSIONS We highlight that the practice of using poorly validated measures hampers progress in understanding the relationship between the changing social environment and well-being. We conclude that different methods should be combined more often to reduce the participants' burden and form a holistic perspective on the social environment.
Collapse
Affiliation(s)
- Anna M Langener
- Groningen Institute for Evolutionary Life Sciences, Groningen, Netherlands
- Department of Sociology, Faculty of Behavioural and Social Sciences, University of Groningen & Inter-University Center for Social Science Theory and Methodology, Groningen, Netherlands
- Department of Psychometrics and Statistics, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, Netherlands
| | - Gert Stulp
- Department of Sociology, Faculty of Behavioural and Social Sciences, University of Groningen & Inter-University Center for Social Science Theory and Methodology, Groningen, Netherlands
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, Groningen, Netherlands
| | - Laura F Bringmann
- Department of Psychometrics and Statistics, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, Netherlands
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Schmidt S, D'Alfonso S. Clinician perspectives on how digital phenotyping can inform client treatment. Acta Psychol (Amst) 2023; 235:103886. [PMID: 36921359 DOI: 10.1016/j.actpsy.2023.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
This qualitative study explores mental health clinician perspectives on how information extracted from client interactions with digital devices such as smartphones and the Internet (their digital footprint data) can inform client treatment. The process of learning about an individual's behaviours and psychology from their digital footprint, what has been termed 'digital phenotyping', has emerged in recent years as a field of research with potential to offer insights of clinical value that could be used to predict/detect mental ill-health and inform treatment. This research agenda has largely consisted of quantitative studies exploring statistical associations between smartphone data and psychometric outcomes among relatively small participant cohorts. We on the other hand focus on how the data gathered from smartphones and other digital sources could be converted to pieces of meaningful information that clinicians could directly access and interpret to augment their practice and inform their treatment of clients. Through a reflexive thematic analysis of interviews involving clinical psychologists, this study presents ideas and a framework for understanding how digital phenotyping can inform, augment, and innovate client treatment. In total, five themes concerning the ethics, praxis, and value of digital phenotyping for client treatment are generated.
Collapse
Affiliation(s)
- Simone Schmidt
- School of Computing and Information Systems, The University of Melbourne, Australia
| | - Simon D'Alfonso
- School of Computing and Information Systems, The University of Melbourne, Australia.
| |
Collapse
|
38
|
Bejarano CM, Hesse DR, Cushing CC. Hedonic Appetite, Affect, and Loss of Control Eating: Macrotemporal and Microtemporal Associations in Adolescents. J Pediatr Psychol 2023; 48:448-457. [PMID: 36763682 DOI: 10.1093/jpepsy/jsad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Loss of control eating (LOC) is a dysregulated eating behavior relevant to eating disorders and weight-related health concerns. Hedonic appetite and affect (positive/negative) are dynamic microtemporal processes that influence LOC, but they have been studied predominantly in a static, macrotemporal manner. The present study examined associations of hedonic appetite and positive/negative affect, on macrotemporal and microtemporal levels, with LOC in adolescents. METHODS Adolescent participants 13-18 years old (n = 43; Mage = 15.1, SD = 1.6; 69.8% female) completed smartphone surveys for 6 evenings, assessing LOC, hedonic appetite, and positive/negative affect. Scores on items were calculated to create microtemporal and macrotemporal assessments of these constructs. Multilevel models were run to examine associations between hedonic appetite and positive/negative affect with LOC. RESULTS Both macrotemporal and microtemporal hedonic appetite were significantly positively related to LOC (β = .73, p < .001; β = .47, p < .001, respectively). Macrotemporal positive affect was significantly negatively associated with LOC (β = -.09, p < .001). Macrotemporal negative affect was significantly positively associated with LOC (β = .13, p < .001). No significant relationships emerged between microtemporal positive/negative affect and LOC. CONCLUSIONS Hedonic appetite appears to be associated with LOC on both microtemporal and macrotemporal levels, suggesting that both momentary fluctuations and having higher hedonic appetite than others can be risk factors for LOC. However, affect appears to be associated with LOC only at the macrotemporal level. Findings may inform theoretical work and clinical and research assessment strategies.
Collapse
Affiliation(s)
- Carolina M Bejarano
- Division of Behavioral Medicine & Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daryl R Hesse
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Christopher C Cushing
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.,Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
39
|
Moura I, Teles A, Viana D, Marques J, Coutinho L, Silva F. Digital Phenotyping of Mental Health using multimodal sensing of multiple situations of interest: A Systematic Literature Review. J Biomed Inform 2023; 138:104278. [PMID: 36586498 DOI: 10.1016/j.jbi.2022.104278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Many studies have used Digital Phenotyping of Mental Health (DPMH) to complement classic methods of mental health assessment and monitoring. This research area proposes innovative methods that perform multimodal sensing of multiple situations of interest (e.g., sleep, physical activity, mobility) to health professionals. In this paper, we present a Systematic Literature Review (SLR) to recognize, characterize and analyze the state of the art on DPMH using multimodal sensing of multiple situations of interest to professionals. We searched for studies in six digital libraries, which resulted in 1865 retrieved published papers. Next, we performed a systematic process of selecting studies based on inclusion and exclusion criteria, which selected 59 studies for the data extraction phase. First, based on the analysis of the extracted data, we describe an overview of this field, then presenting characteristics of the selected studies, the main mental health topics targeted, the physical and virtual sensors used, and the identified situations of interest. Next, we outline answers to research questions, describing the context data sources used to detect situations, the DPMH workflow used for multimodal sensing of situations, and the application of DPMH solutions in the mental health assessment and monitoring process. In addition, we recognize trends presented by DPMH studies, such as the design of solutions for high-level information recognition, association of features with mental states/disorders, classification of mental states/disorders, and prediction of mental states/disorders. We also recognize the main open issues in this research area. Based on the results of this SLR, we conclude that despite the potential and continuous evolution for using these solutions as medical decision support tools, this research area needs more work to overcome technology and methodological rigor issues to adopt proposed solutions in real clinical settings.
Collapse
Affiliation(s)
- Ivan Moura
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil.
| | - Ariel Teles
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil; Federal Institute of Maranhão, Brazil
| | - Davi Viana
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Jean Marques
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Luciano Coutinho
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Francisco Silva
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| |
Collapse
|
40
|
Bonnechère B, Timmermans A, Michiels S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020875. [PMID: 36679672 PMCID: PMC9866361 DOI: 10.3390/s23020875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/01/2023]
Abstract
The current important limitations to the implementation of Evidence-Based Practice (EBP) in the rehabilitation field are related to the validation process of interventions. Indeed, most of the strict guidelines that have been developed for the validation of new drugs (i.e., double or triple blinded, strict control of the doses and intensity) cannot-or can only partially-be applied in rehabilitation. Well-powered, high-quality randomized controlled trials are more difficult to organize in rehabilitation (e.g., longer duration of the intervention in rehabilitation, more difficult to standardize the intervention compared to drug validation studies, limited funding since not sponsored by big pharma companies), which reduces the possibility of conducting systematic reviews and meta-analyses, as currently high levels of evidence are sparse. The current limitations of EBP in rehabilitation are presented in this narrative review, and innovative solutions are suggested, such as technology-supported rehabilitation systems, continuous assessment, pragmatic trials, rehabilitation treatment specification systems, and advanced statistical methods, to tackle the current limitations. The development and implementation of new technologies can increase the quality of research and the level of evidence supporting rehabilitation, provided some adaptations are made to our research methodology.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annick Timmermans
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sarah Michiels
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Otorhinolaryngology, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
41
|
Buck B, Wingerson M, Tauscher JS, Enkema M, Wang W, Campbell AT, Ben-Zeev D. Using Smartphones to Identify Momentary Characteristics of Persecutory Ideation Associated With Functional Disability. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad021. [PMID: 37601285 PMCID: PMC10439515 DOI: 10.1093/schizbullopen/sgad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Objectives Though often a feature of schizophrenia-spectrum disorders, persecutory ideation (PI) is also common in other psychiatric disorders as well as among individuals who are otherwise healthy. Emerging technologies allow for a more thorough understanding of the momentary phenomenological characteristics that determine whether PI leads to significant distress and dysfunction. This study aims to identify the momentary phenomenological features of PI associated with distress, dysfunction, and need for clinical care. Methods A total of 231 individuals with at least moderate PI from 43 US states participated in a study involving 30 days of data collection using a smartphone data collection system combining ecological momentary assessment and passive sensors, wherein they reported on occurrence of PI as well as related appraisals, responses, and cooccurring states. Most (N = 120, 51.9%) participants reported never having received treatment for their PI, while 50 participants had received inpatient treatment (21.6%), and 60 (26.4%) had received outpatient care only. Results Individuals with greater functional disability did not differ in PI frequency but were more likely at the moment to describe threats as important to them, to ruminate about those threats, to experience distress related to them, and to change their behavior in response. Groups based on treatment-seeking patterns largely did not differ in baseline measures or momentary phenomenology of PI as assessed by self-report or passive sensors. Conclusions Smartphone data collection allows for granular assessment of PI-related phenomena. Functional disability is associated with differences in appraisals of and responses to PI at the moment.
Collapse
Affiliation(s)
- Benjamin Buck
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Mary Wingerson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Justin S Tauscher
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Matthew Enkema
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Weichen Wang
- Department of Computer Science, Dartmouth College, Hanover, NH
| | | | - Dror Ben-Zeev
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| |
Collapse
|
42
|
Leung T, Vuillerme N. The Use of Passive Smartphone Data to Monitor Anxiety and Depression Among College Students in Real-World Settings: Protocol for a Systematic Review. JMIR Res Protoc 2022; 11:e38785. [PMID: 36515983 PMCID: PMC9798267 DOI: 10.2196/38785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND College students are particularly at risk of depression and anxiety. These disorders have a serious impact on public health and affect patients' daily lives. The potential for using smartphones to monitor these mental conditions, providing passively collected physiological and behavioral data, has been reported among the general population. However, research on the use of passive smartphone data to monitor anxiety and depression among specific populations of college students has never been reviewed. OBJECTIVE This review's objectives are (1) to provide an overview of the use of passive smartphone data to monitor depression and anxiety among college students, given their specific type of smartphone use and living setting, and (2) to evaluate the different methods used to assess those smartphone data, including their strengths and limitations. METHODS This review will follow the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two independent investigators will review English-language, full-text, peer-reviewed papers extracted from PubMed and Web of Science that measure passive smartphone data and levels of depression or anxiety among college students. A preliminary search was conducted in February 2022 as a proof of concept. RESULTS Our preliminary search identified 115 original articles, 8 of which met our eligibility criteria. Our planned full study will include an article selection flowchart, tables, and figures representing the main information extracted on the use of passive smartphone data to monitor anxiety and depression among college students. CONCLUSIONS The planned review will summarize the published research on using passive smartphone data to monitor anxiety and depression among college students. The review aims to better understand whether and how passive smartphone data are associated with indicators of depression and anxiety among college students. This could be valuable in order to provide a digital solution for monitoring mental health issues in this specific population by enabling easier identification and follow-up of the patients. TRIAL REGISTRATION PROSPERO CRD42022316263; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=316263. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38785.
Collapse
Affiliation(s)
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, Grenoble, France.,LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, Grenoble, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
43
|
Harvey PD, Depp CA, Rizzo AA, Strauss GP, Spelber D, Carpenter LL, Kalin NH, Krystal JH, McDonald WM, Nemeroff CB, Rodriguez CI, Widge AS, Torous J. Technology and Mental Health: State of the Art for Assessment and Treatment. Am J Psychiatry 2022; 179:897-914. [PMID: 36200275 DOI: 10.1176/appi.ajp.21121254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Technology is ubiquitous in society and is now being extensively used in mental health applications. Both assessment and treatment strategies are being developed and deployed at a rapid pace. The authors review the current domains of technology utilization, describe standards for quality evaluation, and forecast future developments. This review examines technology-based assessments of cognition, emotion, functional capacity and everyday functioning, virtual reality approaches to assessment and treatment, ecological momentary assessment, passive measurement strategies including geolocation, movement, and physiological parameters, and technology-based cognitive and functional skills training. There are many technology-based approaches that are evidence based and are supported through the results of systematic reviews and meta-analyses. Other strategies are less well supported by high-quality evidence at present, but there are evaluation standards that are well articulated at this time. There are some clear challenges in selection of applications for specific conditions, but in several areas, including cognitive training, randomized clinical trials are available to support these interventions. Some of these technology-based interventions have been approved by the U.S. Food and Drug administration, which has clear standards for which types of applications, and which claims about them, need to be reviewed by the agency and which are exempt.
Collapse
Affiliation(s)
- Philip D Harvey
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Colin A Depp
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Albert A Rizzo
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Gregory P Strauss
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - David Spelber
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Linda L Carpenter
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Ned H Kalin
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - John H Krystal
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - William M McDonald
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Charles B Nemeroff
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Carolyn I Rodriguez
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - Alik S Widge
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| | - John Torous
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, and Miami VA Medical Center (Harvey); Department of Psychiatry, UC San Diego Medical Center, La Jolla (Depp); USC Institute for Creative Technologies, University of Southern California, Los Angeles (Rizzo); Department of Psychology, University of Georgia, Athens (Strauss); Department of Psychiatry, Dell Medical Center, University of Texas at Austin (Spelber, Nemeroff); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Wisconsin Medical School, Madison (Kalin); Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (Krystal); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford; Veterans Affairs Palo Alto Health Care System, Palo Alto (Rodriguez); Department of Psychiatry and Behavioral Sciences and Medical Discovery Team-Addictions, University of Minnesota, Minneapolis (Widge); Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston (Torous)
| |
Collapse
|
44
|
Shetty A, Delanerolle G, Zeng Y, Shi JQ, Ebrahim R, Pang J, Hapangama D, Sillem M, Shetty S, Shetty B, Hirsch M, Raymont V, Majumder K, Chong S, Goodison W, O’Hara R, Hull L, Pluchino N, Shetty N, Elneil S, Fernandez T, Brownstone RM, Phiri P. A systematic review and meta-analysis of digital application use in clinical research in pain medicine. Front Digit Health 2022; 4:850601. [PMID: 36405414 PMCID: PMC9668017 DOI: 10.3389/fdgth.2022.850601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023] Open
Abstract
IMPORTANCE Pain is a silent global epidemic impacting approximately a third of the population. Pharmacological and surgical interventions are primary modes of treatment. Cognitive/behavioural management approaches and interventional pain management strategies are approaches that have been used to assist with the management of chronic pain. Accurate data collection and reporting treatment outcomes are vital to addressing the challenges faced. In light of this, we conducted a systematic evaluation of the current digital application landscape within chronic pain medicine. OBJECTIVE The primary objective was to consider the prevalence of digital application usage for chronic pain management. These digital applications included mobile apps, web apps, and chatbots. DATA SOURCES We conducted searches on PubMed and ScienceDirect for studies that were published between 1st January 1990 and 1st January 2021. STUDY SELECTION Our review included studies that involved the use of digital applications for chronic pain conditions. There were no restrictions on the country in which the study was conducted. Only studies that were peer-reviewed and published in English were included. Four reviewers had assessed the eligibility of each study against the inclusion/exclusion criteria. Out of the 84 studies that were initially identified, 38 were included in the systematic review. DATA EXTRACTION AND SYNTHESIS The AMSTAR guidelines were used to assess data quality. This assessment was carried out by 3 reviewers. The data were pooled using a random-effects model. MAIN OUTCOMES AND MEASURES Before data collection began, the primary outcome was to report on the standard mean difference of digital application usage for chronic pain conditions. We also recorded the type of digital application studied (e.g., mobile application, web application) and, where the data was available, the standard mean difference of pain intensity, pain inferences, depression, anxiety, and fatigue. RESULTS 38 studies were included in the systematic review and 22 studies were included in the meta-analysis. The digital interventions were categorised to web and mobile applications and chatbots, with pooled standard mean difference of 0.22 (95% CI: -0.16, 0.60), 0.30 (95% CI: 0.00, 0.60) and -0.02 (95% CI: -0.47, 0.42) respectively. Pooled standard mean differences for symptomatologies of pain intensity, depression, and anxiety symptoms were 0.25 (95% CI: 0.03, 0.46), 0.30 (95% CI: 0.17, 0.43) and 0.37 (95% CI: 0.05, 0.69), respectively. A sub-group analysis was conducted on pain intensity due to the heterogeneity of the results (I 2 = 82.86%; p = 0.02). After stratifying by country, we found that digital applications were more likely to be effective in some countries (e.g., United States, China) than others (e.g., Ireland, Norway). CONCLUSIONS AND RELEVANCE The use of digital applications in improving pain-related symptoms shows promise, but further clinical studies would be needed to develop more robust applications. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier: CRD42021228343.
Collapse
Affiliation(s)
- Ashish Shetty
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Gayathri Delanerolle
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Yutian Zeng
- Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China,Alan Turing Institute, London, United Kingdom
| | - Jian Qing Shi
- Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China,Alan Turing Institute, London, United Kingdom
| | - Rawan Ebrahim
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Joanna Pang
- Research & Innovation Department, Southern Health NHS Foundation Trust, Southampton, United Kingdom
| | - Dharani Hapangama
- Department of Women and Children’s Health, Liverpool Women’s NHS Foundation, Liverpool, United Kingdom
| | - Martin Sillem
- Praxisklinik am Rosengarten Mannheim, Saarland University Medical Centre, Homburg, Germany
| | | | | | - Martin Hirsch
- Queen Square Institute of Neurology, University College London, London, United Kingdom,Oxford University Hospitals NHS Foundation Trust, Gynaecology, Oxford, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Kingshuk Majumder
- University of Manchester NHS Foundation Trust, Gynaecology, Manchester, United Kingdom
| | - Sam Chong
- University College London Hospitals NHS Foundation Trust, London, United Kingdom,Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - William Goodison
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rebecca O’Hara
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Louise Hull
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | | | - Naresh Shetty
- Department of Orthopedics, M.S. Ramaiah Medical College, Bangalore, India
| | - Sohier Elneil
- University College London Hospitals NHS Foundation Trust, London, United Kingdom,Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tacson Fernandez
- Queen Square Institute of Neurology, University College London, London, United Kingdom,Chronic Pain Medicine, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Robert M. Brownstone
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter Phiri
- Research & Innovation Department, Southern Health NHS Foundation Trust, Southampton, United Kingdom,Primary Care, Population Sciences and Medical Education Division, University of Southampton, Southampton, United Kingdom,Correspondence: Peter Phiri
| |
Collapse
|
45
|
Choudhary S, Thomas N, Alshamrani S, Srinivasan G, Ellenberger J, Nawaz U, Cohen R. A Machine Learning Approach for Continuous Mining of Nonidentifiable Smartphone Data to Create a Novel Digital Biomarker Detecting Generalized Anxiety Disorder: Prospective Cohort Study. JMIR Med Inform 2022; 10:e38943. [PMID: 36040777 PMCID: PMC9472035 DOI: 10.2196/38943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Anxiety is one of the leading causes of mental health disability around the world. Currently, a majority of the population who experience anxiety go undiagnosed or untreated. New and innovative ways of diagnosing and monitoring anxiety have emerged using smartphone sensor-based monitoring as a metric for the management of anxiety. This is a novel study as it adds to the field of research through the use of nonidentifiable smartphone usage to help detect and monitor anxiety remotely and in a continuous and passive manner. OBJECTIVE This study aims to evaluate the accuracy of a novel mental behavioral profiling metric derived from smartphone usage for the identification and tracking of generalized anxiety disorder (GAD). METHODS Smartphone data and self-reported 7-item GAD anxiety assessments were collected from 229 participants using an Android operating system smartphone in an observational study over an average of 14 days (SD 29.8). A total of 34 features were mined to be constructed as a potential digital phenotyping marker from continuous smartphone usage data. We further analyzed the correlation of these digital behavioral markers against each item of the 7-item Generalized Anxiety Disorder Scale (GAD-7) and its influence on the predictions of machine learning algorithms. RESULTS A total of 229 participants were recruited in this study who had completed the GAD-7 assessment and had at least one set of passive digital data collected within a 24-hour period. The mean GAD-7 score was 11.8 (SD 5.7). Regression modeling was tested against classification modeling and the highest prediction accuracy was achieved from a binary XGBoost classification model (precision of 73%-81%; recall of 68%-87%; F1-score of 71%-79%; accuracy of 76%; area under the curve of 80%). Nonparametric permutation testing with Pearson correlation results indicated that the proposed metric (Mental Health Similarity Score [MHSS]) had a colinear relationship between GAD-7 Items 1, 3 and 7. CONCLUSIONS The proposed MHSS metric demonstrates the feasibility of using passively collected nonintrusive smartphone data and machine learning-based data mining techniques to track an individuals' daily anxiety levels with a 76% accuracy that directly relates to the GAD-7 scale.
Collapse
Affiliation(s)
- Soumya Choudhary
- Department of Research, Behavidence, Inc., New York, NY, United States
| | - Nikita Thomas
- Department of Data Science, Behavidence, Inc., New York, NY, United States
| | - Sultan Alshamrani
- Department of Data Science, Behavidence, Inc., New York, NY, United States
| | - Girish Srinivasan
- Department of Data Science, Behavidence, Inc., New York, NY, United States
| | | | - Usman Nawaz
- Department of Data Science, Behavidence, Inc., New York, NY, United States
| | - Roy Cohen
- Department of Research, Behavidence, Inc., New York, NY, United States
| |
Collapse
|
46
|
Jacobson NC, Feng B. Digital phenotyping of generalized anxiety disorder: using artificial intelligence to accurately predict symptom severity using wearable sensors in daily life. Transl Psychiatry 2022; 12:336. [PMID: 35977932 PMCID: PMC9385727 DOI: 10.1038/s41398-022-02038-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a highly prevalent condition. Monitoring GAD symptoms requires substantial time, effort, and cost. The development of digital phenotypes of GAD may enable new scalable, timely, and inexpensive assessments of GAD symptoms. METHOD The current study used passive movement data collected within a large national cohort (N = 264) to assess GAD symptom severity. RESULTS Using one week of movement data, machine learning models accurately predicted GAD symptoms across a continuum (r = 0.511) and accurately detected those individuals with elevated GAD symptoms (AUC = 0.892, 70.0% Sensitivity, 95.5% Specificity, Brier Score = 0.092). Those with a risk score at the 90th percentile or above had 21 times the odds of having elevated GAD symptoms compared to those with lower risk scores. The risk score was most strongly associated with irritability, worry controllability, and restlessness (individual rs > 0.5). The risk scores for GAD were also discriminant of major depressive disorder symptom severity (r = 0.190). LIMITATIONS The current study examined the detection of GAD symptom severity rather than the prediction of GAD symptom severity across time. Furthermore, the instant sample of data did not include nighttime actigraphy, as participants were not asked to wear the actigraphs at night. CONCLUSIONS These results suggest that artificial intelligence can effectively utilize wearable movement data collected in daily life to accurately infer risk of GAD symptoms.
Collapse
Affiliation(s)
- Nicholas C Jacobson
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA.
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA.
- Department of Psychiatry, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA.
| | - Brandon Feng
- Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA
| |
Collapse
|
47
|
Bartolome A, Prioleau T. A computational framework for discovering digital biomarkers of glycemic control. NPJ Digit Med 2022; 5:111. [PMID: 35941355 PMCID: PMC9360447 DOI: 10.1038/s41746-022-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Digital biomarkers can radically transform the standard of care for chronic conditions that are complex to manage. In this work, we propose a scalable computational framework for discovering digital biomarkers of glycemic control. As a feasibility study, we leveraged over 79,000 days of digital data to define objective features, model the impact of each feature, classify glycemic control, and identify the most impactful digital biomarkers. Our research shows that glycemic control varies by age group, and was worse in the youngest population of subjects between the ages of 2–14. In addition, digital biomarkers like prior-day time above range and prior-day time in range, as well as total daily bolus and total daily basal were most predictive of impending glycemic control. With a combination of the top-ranked digital biomarkers, we achieved an average F1 score of 82.4% and 89.7% for classifying next-day glycemic control across two unique datasets.
Collapse
|
48
|
Parziale A, Mascalzoni D. Digital Biomarkers in Psychiatric Research: Data Protection Qualifications in a Complex Ecosystem. Front Psychiatry 2022; 13:873392. [PMID: 35757212 PMCID: PMC9225201 DOI: 10.3389/fpsyt.2022.873392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psychiatric research traditionally relies on subjective observation, which is time-consuming and labor-intensive. The widespread use of digital devices, such as smartphones and wearables, enables the collection and use of vast amounts of user-generated data as "digital biomarkers." These tools may also support increased participation of psychiatric patients in research and, as a result, the production of research results that are meaningful to them. However, sharing mental health data and research results may expose patients to discrimination and stigma risks, thus discouraging participation. To earn and maintain participants' trust, the first essential requirement is to implement an appropriate data governance system with a clear and transparent allocation of data protection duties and responsibilities among the actors involved in the process. These include sponsors, investigators, operators of digital tools, as well as healthcare service providers and biobanks/databanks. While previous works have proposed practical solutions to this end, there is a lack of consideration of positive data protection law issues in the extant literature. To start filling this gap, this paper discusses the GDPR legal qualifications of controller, processor, and joint controllers in the complex ecosystem unfolded by the integration of digital biomarkers in psychiatric research, considering their implications and proposing some general practical recommendations.
Collapse
|
49
|
Kilshaw RE, Adamo C, Butner JE, Deboeck PR, Shi Q, Bulik CM, Flatt RE, Thornton LM, Argue S, Tregarthen J, Baucom BRW. Passive Sensor Data for Characterizing States of Increased Risk for Eating Disorder Behaviors in the Digital Phenotyping Arm of the Binge Eating Genetics Initiative: Protocol for an Observational Study. JMIR Res Protoc 2022; 11:e38294. [PMID: 35653175 PMCID: PMC9204566 DOI: 10.2196/38294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Data that can be easily, efficiently, and safely collected via cell phones and other digital devices have great potential for clinical application. Here, we focus on how these data could be used to refine and augment intervention strategies for binge eating disorder (BED) and bulimia nervosa (BN), conditions that lack highly efficacious, enduring, and accessible treatments. These data are easy to collect digitally but are highly complex and present unique methodological challenges that invite innovative solutions. OBJECTIVE We describe the digital phenotyping component of the Binge Eating Genetics Initiative, which uses personal digital device data to capture dynamic patterns of risk for binge and purge episodes. Characteristic data signatures will ultimately be used to develop personalized models of eating disorder pathologies and just-in-time interventions to reduce risk for related behaviors. Here, we focus on the methods used to prepare the data for analysis and discuss how these approaches can be generalized beyond the current application. METHODS The University of North Carolina Biomedical Institutional Review Board approved all study procedures. Participants who met diagnostic criteria for BED or BN provided real time assessments of eating behaviors and feelings through the Recovery Record app delivered on iPhones and the Apple Watches. Continuous passive measures of physiological activation (heart rate) and physical activity (step count) were collected from Apple Watches over 30 days. Data were cleaned to account for user and device recording errors, including duplicate entries and unreliable heart rate and step values. Across participants, the proportion of data points removed during cleaning ranged from <0.1% to 2.4%, depending on the data source. To prepare the data for multivariate time series analysis, we used a novel data handling approach to address variable measurement frequency across data sources and devices. This involved mapping heart rate, step count, feeling ratings, and eating disorder behaviors onto simultaneous minute-level time series that will enable the characterization of individual- and group-level regulatory dynamics preceding and following binge and purge episodes. RESULTS Data collection and cleaning are complete. Between August 2017 and May 2021, 1019 participants provided an average of 25 days of data yielding 3,419,937 heart rate values, 1,635,993 step counts, 8274 binge or purge events, and 85,200 feeling observations. Analysis will begin in spring 2022. CONCLUSIONS We provide a detailed description of the methods used to collect, clean, and prepare personal digital device data from one component of a large, longitudinal eating disorder study. The results will identify digital signatures of increased risk for binge and purge events, which may ultimately be used to create digital interventions for BED and BN. Our goal is to contribute to increased transparency in the handling and analysis of personal digital device data. TRIAL REGISTRATION ClinicalTrials.gov NCT04162574; https://clinicaltrials.gov/ct2/show/NCT04162574. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38294.
Collapse
Affiliation(s)
- Robyn E Kilshaw
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Colin Adamo
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Jonathan E Butner
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Pascal R Deboeck
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Qinxin Shi
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachael E Flatt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stuart Argue
- Recovery Record, San Francisco, CA, United States
| | | | - Brian R W Baucom
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
50
|
Clay I, Cormack F, Fedor S, Foschini L, Gentile G, van Hoof C, Kumar P, Lipsmeier F, Sano A, Smarr B, Vandendriessche B, De Luca V. Measuring Health-Related Quality of Life With Multimodal Data: Viewpoint. J Med Internet Res 2022; 24:e35951. [PMID: 35617003 PMCID: PMC9185357 DOI: 10.2196/35951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ability to objectively measure aspects of performance and behavior is a fundamental pillar of digital health, enabling digital wellness products, decentralized trial concepts, evidence generation, digital therapeutics, and more. Emerging multimodal technologies capable of measuring several modalities simultaneously and efforts to integrate inputs across several sources are further expanding the limits of what digital measures can assess. Experts from the field of digital health were convened as part of a multi-stakeholder workshop to examine the progress of multimodal digital measures in two key areas: detection of disease and the measurement of meaningful aspects of health relevant to the quality of life. Here we present a meeting report, summarizing key discussion points, relevant literature, and finally a vision for the immediate future, including how multimodal measures can provide value to stakeholders across drug development and care delivery, as well as three key areas where headway will need to be made if we are to continue to build on the encouraging progress so far: collaboration and data sharing, removal of barriers to data integration, and alignment around robust modular evaluation of new measurement capabilities.
Collapse
Affiliation(s)
- Ieuan Clay
- Digital Medicine Society, Boston, MA, United States
| | | | | | | | | | | | | | | | - Akane Sano
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Benjamin Smarr
- Department of Bioengineering and Halicioglu Data Science Institute, University of California, San Diego, San Diego, CA, United States
| | | | - Valeria De Luca
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|