1
|
Been LE, Halliday AR, Blossom SM, Bien EM, Bernhard AG, Roth GE, Domenech Rosario KI, Pollock KB, Abramenko PE, Behbehani LM, Pascal GJ, Kelly ME. Long-Term Oral Tamoxifen Administration Decreases Brain-Derived Neurotrophic Factor in the Hippocampus of Female Long-Evans Rats. Cancers (Basel) 2024; 16:1373. [PMID: 38611051 PMCID: PMC11010888 DOI: 10.3390/cancers16071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), is commonly used as an adjuvant drug therapy for estrogen-receptor-positive breast cancers. Though effective at reducing the rate of cancer recurrence, patients often report unwanted cognitive and affective side effects. Despite this, the impacts of chronic tamoxifen exposure on the brain are poorly understood, and rodent models of tamoxifen exposure do not replicate the chronic oral administration seen in patients. We, therefore, used long-term ad lib consumption of medicated food pellets to model chronic tamoxifen exposure in a clinically relevant way. Adult female Long-Evans Hooded rats consumed tamoxifen-medicated food pellets for approximately 12 weeks, while control animals received standard chow. At the conclusion of the experiment, blood and brain samples were collected for analyses. Blood tamoxifen levels were measured using a novel ultra-performance liquid chromatography-tandem mass spectrometry assay, which found that this administration paradigm produced serum levels of tamoxifen similar to those in human patients. In the brain, brain-derived neurotrophic factor (BDNF) was visualized in the hippocampus using immunohistochemistry. Chronic oral tamoxifen treatment resulted in a decrease in BDNF expression across several regions of the hippocampus. These findings provide a novel method of modeling and measuring chronic oral tamoxifen exposure and suggest a putative mechanism by which tamoxifen may cause cognitive and behavioral changes reported by patients.
Collapse
Affiliation(s)
- Laura E. Been
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Amanda R. Halliday
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Sarah M. Blossom
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Elena M. Bien
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Anya G. Bernhard
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Grayson E. Roth
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Karina I. Domenech Rosario
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Karlie B. Pollock
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Petra E. Abramenko
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Leily M. Behbehani
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Gabriel J. Pascal
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Mary Ellen Kelly
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
- Neuroscience Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Panganiban K, Tseng GC, Papoulias M, Smith E, Monteiro J, Shah D, Maksyutynska K, Cavalier S, Radoncic E, Prasad F, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Glucose dysregulation in antipsychotic-naive first-episode psychosis: in silico exploration of gene expression signatures. Transl Psychiatry 2024; 14:19. [PMID: 38199991 PMCID: PMC10781725 DOI: 10.1038/s41398-023-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
Collapse
Grants
- R01 DK124219 NIDDK NIH HHS
- R01 HL150432 NHLBI NIH HHS
- R01 MH107487 NIMH NIH HHS
- R01 MH121102 NIMH NIH HHS
- Holds the Meighen Family Chair in Psychosis Prevention, the Cardy Schizophrenia Research Chair, a Danish Diabetes Academy Professorship, a Steno Diabetes Center Fellowship, and a U of T Academic Scholar Award, and is funded by operating grants from the Canadian Institutes of Health Research (CIHR), the Banting and Best Diabetes Center, the Miners Lamp U of T award, CIHR and Canadian Psychiatric Association Glenda MacQueen Memorial Award, and the PSI Foundation.
- Hilda and William Courtney Clayton Paediatric Research Fund and Dr. LG Rao/Industrial Partners Graduate Student Award from the University of Toronto, and Meighen Family Chair in Psychosis Prevention
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UofT | Banting and Best Diabetes Centre, University of Toronto (BBDC)
- Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship-Master’s program
- Cleghorn Award
- University of Toronto (UofT)
- Centre for Addiction and Mental Health (Centre de Toxicomanie et de Santé Mentale)
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Defense (United States Department of Defense)
- Commonwealth of Pennsylvania Formula Fund, The Pittsburgh Foundation
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emily Smith
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kateryna Maksyutynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Cavalier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emril Radoncic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Femin Prasad
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- ProMedica, Toledo, OH, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Choi MC, Kim SK, Choi YJ, Choi YJ, Kim S, Jegal KH, Lim SC, Kang KW. Role of monocarboxylate transporter I/lactate dehydrogenase B-mediated lactate recycling in tamoxifen-resistant breast cancer cells. Arch Pharm Res 2023; 46:907-923. [PMID: 38048029 DOI: 10.1007/s12272-023-01474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Min Chang Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam University, Daejeon, 34134, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam University, Daejeon, 34134, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Hwan Jegal
- College of Oriental Medicine, Daegu Haany University, Kyongsan, 38610, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
6
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Lugilde J, Casado S, Beiroa D, Cuñarro J, Garcia-Lavandeira M, Álvarez CV, Nogueiras R, Diéguez C, Tovar S. LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner. Cells 2022; 11:cells11030324. [PMID: 35159134 PMCID: PMC8834077 DOI: 10.3390/cells11030324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Data gleaned recently shows that ghrelin, a stomach derived peptide, and liver-expressed-antimicrobial peptide 2 (LEAP-2) play opposite roles on food intake. However, the data available with LEAP-2 in relation to in vivo studies are still very scanty and some key questions regarding the interplay among ghrelin and LEAP-2 remain to be answered. In this work, using rats and mice, we study fasting-induced food intake as well as testing the effect of diet exposure, e.g., standard diet and high fat diet, in terms of ghrelin-induced food intake. The anorexigenic effect of LEAP-2 on fasting induced food intake appears to be dependent on energy stores, being more evident in ob/ob than in wild type mice and also in animals exposed to high fat diet. On the other hand, LEAP-2 administration markedly inhibited ghrelin-induced food intake in lean, obese (ob/ob and DIO) mice, aged rats and GH-deficient dwarf rats. In contrast, the inhibitory effect on glucose levels can only be observed in some specific experimental models indicating that the mechanisms involved are likely to be quite different. Taken together from these data, LEAP-2 emerged as a potential candidate to be therapeutically useful in obesity.
Collapse
Affiliation(s)
- Javier Lugilde
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
| | - Sabela Casado
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Daniel Beiroa
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
| | - Juan Cuñarro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.G.-L.); (C.V.Á.)
| | - Clara V. Álvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.G.-L.); (C.V.Á.)
| | - Rubén Nogueiras
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (C.D.); (S.T.)
| | - Sulay Tovar
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.L.); (S.C.); (D.B.); (J.C.); (R.N.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (C.D.); (S.T.)
| |
Collapse
|
8
|
Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, Kaplan J, Houck JA, Johnson G, Sharp RR, Gillen AE, Jones KL, Zhang AMY, Johnson JD, MacLean PS, Reusch JEB, Wright-Hobart S, Wellberg EA. Breast Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in Lean and Obese Female Mice. Endocrinology 2021; 162:bqab174. [PMID: 34410380 PMCID: PMC8455348 DOI: 10.1210/endocr/bqab174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sara E Hull
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A Knaub
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stevi Johnson-Murguia
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Fotobari Kinanee
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Houck
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ginger Johnson
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel R Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Austin E Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Anni M Y Zhang
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul S MacLean
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jane E B Reusch
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Sabrina Wright-Hobart
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A Wellberg
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Lamberigts C, Wang Y, Dierckx T, Buys N, Everaert N, Buyse J. The influence of thyroid state on hypothalamic AMP-activated protein kinase pathways in broilers. Gen Comp Endocrinol 2021; 311:113838. [PMID: 34181935 DOI: 10.1016/j.ygcen.2021.113838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
To investigate whether there are important interactions in play in broilers between thyroid hormones and the central regulation of energy homeostasis through AMP-activated protein kinase (AMPK), we induced a functional hyperthyroid and hypothyroid state in broiler chicks, and quantified systemic and hypothalamic AMPK related gene expression and related protein. Thyroid state was manipulated through dietary supplementation of triiodothyronine (T3) or methimazole (MMI) for 7 days. A hypothalamic AMPK suppressor, 0.1% α-lipoic acid (α-LA) was used to assess the effects of the T3 and MMI feed formulations on the AMPK pathways. Feed intake and body weight were reduced in both hypothyroid and hyperthyroid conditions. In hyperthyroid conditions (T3 supplementation) expression of the AMPKα1 subunit increased, while in hypothyroid conditions (MMI supplementation) active phosphorylated AMPK levels in the hypothalamus dropped, but gene expression of the AMPKα1 and α2 subunit increased. For FAS and ACC (involved in fatty acid metabolism), and CRH, TRH and CNR1 (anorexigenic neuropeptides stimulating energy expenditure) there were indications that their regulation in response to thyroid state might be modulated through AMPK pathways. Our results indicate that the expression of hypothalamic AMPK as well as that of several other genes from AMPK pathways are involved in thyroid-hormone-induced changes in appetite, albeit differently according to thyroid state.
Collapse
Affiliation(s)
- C Lamberigts
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Y Wang
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - T Dierckx
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1030, 3000 Leuven, Belgium
| | - N Buys
- Laboratory of Livestock Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux AgroBioTech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Abd El-Haleim EA, Sallam NA. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam Clin Pharmacol 2021; 36:338-349. [PMID: 34312906 DOI: 10.1111/fcp.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Tamoxifen (TAM) is a life-saving and cost-effective drug widely used in the prevention and treatment of breast cancer. However, the adverse effects of tamoxifen can lead to non-adherence and poor patient outcomes. Therefore, exploring novel strategies to improve TAM safety profile is crucial. Given the key role that vitamin D (VD) plays in modulating lipid metabolism and inflammation, in addition to its benefits in reducing risk and progression of breast cancer, we evaluated the protective potential of VD against TAM-induced hepatotoxicity focusing on lipid metabolism and microRNAs (miRNAs) regulation. Female rats were pretreated with VD as cholecalciferol (500 IU/kg/day, po) for 4 weeks before receiving TAM (40 mg/kg/day, po) concurrently with VD during the fifth and sixth weeks. Liver histology, lipid profile and expression of genes, proteins, and miRNAs involved in lipid metabolism and inflammation were examined. TAM-induced steatohepatitis was evidenced by elevated liver triglycerides and cholesterol contents, increased serum miRNA-122 level, and ALT activity, in parallel with accumulation of lipid droplets, focal necrosis, and inflammatory cells infiltration in hepatocytes. Prophylactic use of VD mitigated TAM-induced steatohepatitis by modulating key transcription factors in the liver: PPAR-α, Srebf1, and NF-κB and their downstream genes/proteins Fas, CPT-1A, and TNF-α resulting in reduced hepatic lipids and suppressed pro-inflammatory signaling. Notably, VD pretreatment mitigated TAM-induced alterations in the expression of serum miRNA-122, hepatic miRNA-21, and miRNA-33. The combination therapy of VD and TAM has complementary benefits in terms of safety and not only efficacy and should be further investigated clinically.
Collapse
Affiliation(s)
- Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Zhang Z, Park JW, Ahn IS, Diamante G, Sivakumar N, Arneson D, Yang X, van Veen JE, Correa SM. Estrogen receptor alpha in the brain mediates tamoxifen-induced changes in physiology in mice. eLife 2021; 10:63333. [PMID: 33647234 PMCID: PMC7924955 DOI: 10.7554/elife.63333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Adjuvant tamoxifen therapy improves survival in breast cancer patients. Unfortunately, long-term treatment comes with side effects that impact health and quality of life, including hot flashes, changes in bone density, and fatigue. Partly due to a lack of proven animal models, the tissues and cells that mediate these negative side effects are unclear. Here, we show that mice undergoing tamoxifen treatment experience changes in temperature, bone, and movement. Single-cell RNA sequencing reveals that tamoxifen treatment induces widespread gene expression changes in the hypothalamus and preoptic area (hypothalamus-POA). These expression changes are dependent on estrogen receptor alpha (ERα), as conditional knockout of ERα in the hypothalamus-POA ablates or reverses tamoxifen-induced gene expression. Accordingly, ERα-deficient mice do not exhibit tamoxifen-induced changes in temperature, bone, or movement. These findings provide mechanistic insight into the effects of tamoxifen on the hypothalamus-POA and indicate that ERα mediates several physiological effects of tamoxifen treatment in mice.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Jae Whan Park
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Nilla Sivakumar
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| |
Collapse
|
12
|
Hundahl C, Kotzbeck P, Burm HB, Christiansen SH, Torz L, Helge AW, Madsen MP, Ratner C, Serup AK, Thompson JJ, Eichmann TO, Pers TH, Woldbye DPD, Piomelli D, Kiens B, Zechner R, Skov LJ, Holst B. Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Mol Metab 2021; 47:101174. [PMID: 33549847 PMCID: PMC7903013 DOI: 10.1016/j.molmet.2021.101174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. Methods Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. Results We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. Conclusions Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet. HSL is expressed in appetite-regulating nuclei of the mouse hypothalamus. HSL in the hypothalamus is activated via β-adrenergic receptor signaling. The anorexic response to acute stress is blunted in mice without hypothalamic HSL. Central HSL deficiency results in obesity in mice on a high-fat diet. HSL in SF1-positive neurons contributes to the anorexigenic stress response.
Collapse
Affiliation(s)
- Cecilie Hundahl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Petra Kotzbeck
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Hayley B Burm
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Søren H Christiansen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Aske W Helge
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin P Madsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Cecilia Ratner
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annette K Serup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - David P D Woldbye
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniele Piomelli
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria; Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Louise J Skov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
13
|
Time-restricted feeding in dark phase of circadian cycle and/or westernized diet cause mixed hyperlipidemia in rats. NUTR HOSP 2021; 38:281-289. [PMID: 33478227 DOI: 10.20960/nh.03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: the dietary pattern that characterizes western diet is strongly associated with metabolic diseases and excess weight, as well as chronic illnesses. Misaligned feeding schedules can lead to or aggravate the development of such conditions. Aim: this study evaluated the influence of dietary composition and/or time-restricted feeding on the anthropometric and biochemical profile of adult rats. Methods: forty male rats, at 60 days of life, were divided into the following groups: Control (C), Restricted Control (RC), Westernized (W), and Restricted Westernized (RW). Results: westernized groups, in spite of a low energy intake (C = 5399 ± 401.2 kcal; RC = 4279.0 ± 476.2 kcal; W = 4302 ± 619.8 kcal; RW = 4081.0 ± 404.4 kcal, p < 0.001), had a higher body weight (C = 404.6 ± 39.1 g; RC = 335.1 ± 36.5 g; W = 488.9 ± 51.2 g; RW = 438.8 ± 36.5 g, p < 0.001) as compared to their paired controls (RC and C) - around 30 % and 20 % more for RW and W, respectively. The westernized diet caused glucose intolerance and mixed hyperlipidemia, characterized by higher concentrations of cholesterol (C = 40.8 ± 7.4 mg/dL; RC = 76.7 ± 10.8 mg/dL; W = 61.3 ± 20.2 mg/dL; RW = 42.2 ± 8.2 mg/dL), LDLc (C = 17.4 ± 7.5 mg/dL; RC = 38.8 ± 7.2 mg/dL ; W = 45.3 ± 15.8 mg/dL; RW = 11.0 ± 5.8 mg/dL), and triacylglycerol (C = 45.2 ± 15.0 mg/dL; RC = 73.2 ± 21.5 mg/dL ; W = 83.6 ± 23.4 mg/dL; RW = 57.5 ± 13.6 mg/dL) in the serum (p < 0.05). Conclusion: the effect of time-restricted feeding on body weight was strongly dependent on diet composition. The glucose tolerance test showed an influence of the circadian cycle phase. Mixed hyperlipidemia varied according to the presence of westernized diet and/or time-restricted food.
Collapse
|
14
|
Fadó R, Rodríguez-Rodríguez R, Casals N. The return of malonyl-CoA to the brain: Cognition and other stories. Prog Lipid Res 2020; 81:101071. [PMID: 33186641 DOI: 10.1016/j.plipres.2020.101071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
15
|
Beneficial effects of tamoxifen on leptin sensitivity in young mice fed a high fat diet: Role of estrogen receptor α and cytokines. Life Sci 2020; 246:117384. [PMID: 32061672 DOI: 10.1016/j.lfs.2020.117384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
|
16
|
Guillaume M, Riant E, Fabre A, Raymond-Letron I, Buscato M, Davezac M, Tramunt B, Montagner A, Smati S, Zahreddine R, Palierne G, Valera MC, Guillou H, Lenfant F, Unsicker K, Metivier R, Fontaine C, Arnal JF, Gourdy P. Selective Liver Estrogen Receptor α Modulation Prevents Steatosis, Diabetes, and Obesity Through the Anorectic Growth Differentiation Factor 15 Hepatokine in Mice. Hepatol Commun 2019; 3:908-924. [PMID: 31304450 PMCID: PMC6601326 DOI: 10.1002/hep4.1363] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17β-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific ERα deletion (LERKO mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in LERKO mice. However, while E2 still prevented obesity and glucose intolerance in LERKO mice, hepatocyte ERα deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the Gdf15 regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed GDF15-knockout mice. Conclusion: We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD.
Collapse
Affiliation(s)
- Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Service d'Hépato-gastro-entérologie Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Aurélie Fabre
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Isabelle Raymond-Letron
- STROMALab, Centre National de la Recherche Scientifique ERL5311 Etablissement Français du Sang, Ecole Nationale Vétérinaire de Toulouse, Institut National de la Santé et de le Recherche Médicale (INSERM) U1031, Université de Toulouse III Toulouse France
| | - Melissa Buscato
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Morgane Davezac
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Sarra Smati
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Institut National de La Recherche Agronomique Unité Médicale de Recherche 1331, ToxAlim, Université de Toulouse Toulouse France
| | - Rana Zahreddine
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Gaëlle Palierne
- Equipe SP@RTE, Unité Médicale de Recherche 6290, Institut de Genétique et Développement de Rennes Université de Rennes 1 Rennes France
| | - Marie-Cécile Valera
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Hervé Guillou
- Institut National de La Recherche Agronomique Unité Médicale de Recherche 1331, ToxAlim, Université de Toulouse Toulouse France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Klaus Unsicker
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology University of Freiburg Freiburg Germany
| | - Raphaël Metivier
- Equipe SP@RTE, Unité Médicale de Recherche 6290, Institut de Genétique et Développement de Rennes Université de Rennes 1 Rennes France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Service de Diabétologie Maladies Métaboliques et Nutrition, Centre Hospitalier Universitaire de Toulouse Toulouse France
| |
Collapse
|
17
|
Morselli E, Santos RDS, Gao S, Ávalos Y, Criollo A, Palmer BF, Clegg DJ. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am J Physiol Endocrinol Metab 2018; 315:E7-E14. [PMID: 29509437 PMCID: PMC7717113 DOI: 10.1152/ajpendo.00473.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.
Collapse
Affiliation(s)
- Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberta de Souza Santos
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| | - Su Gao
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
- Department of Medicine, Columbia University Medical Center , New York, New York
| | - Yenniffer Ávalos
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell , Santiago , Chile
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile , Santiago , Chile
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| |
Collapse
|
18
|
Naowaboot J, Wannasiri S, Pannangpetch P. Vernonia cinerea water extract improves insulin resistance in high-fat diet-induced obese mice. Nutr Res 2018; 56:51-60. [PMID: 30055774 DOI: 10.1016/j.nutres.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand.
| | - Supaporn Wannasiri
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | | |
Collapse
|
19
|
Cruciani-Guglielmacci C, López M, Campana M, le Stunff H. Brain Ceramide Metabolism in the Control of Energy Balance. Front Physiol 2017; 8:787. [PMID: 29075199 PMCID: PMC5643460 DOI: 10.3389/fphys.2017.00787] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/26/2017] [Indexed: 01/11/2023] Open
Abstract
The regulation of energy balance by the central nervous system (CNS) is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D). Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate), the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA) to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.
Collapse
Affiliation(s)
- Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mélanie Campana
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Hervé le Stunff
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.,UMR9197 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France
| |
Collapse
|
20
|
Guillaume M, Handgraaf S, Fabre A, Raymond-Letron I, Riant E, Montagner A, Vinel A, Buscato M, Smirnova N, Fontaine C, Guillou H, Arnal JF, Gourdy P. Selective Activation of Estrogen Receptor α Activation Function-1 Is Sufficient to Prevent Obesity, Steatosis, and Insulin Resistance in Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1273-1287. [DOI: 10.1016/j.ajpath.2017.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
|
21
|
Postnatal developmental of Neuromedin S and its receptor in the male Xiaomeishan pig reproductive axis. Anim Reprod Sci 2017; 181:115-124. [DOI: 10.1016/j.anireprosci.2017.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/31/2017] [Indexed: 11/18/2022]
|
22
|
Xu B, Lovre D, Mauvais-Jarvis F. The effect of selective estrogen receptor modulators on type 2 diabetes onset in women: Basic and clinical insights. J Diabetes Complications 2017; 31:773-779. [PMID: 28185712 PMCID: PMC5350049 DOI: 10.1016/j.jdiacomp.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/03/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are a class of compounds that interact with estrogen receptors (ERs) and exert agonist or antagonist effects on ERs in a tissue-specific manner. Tamoxifen, a first generation SERM, is used for treatment of ER positive breast cancer. Raloxifene, a second generation SERM, was used to prevent postmenopausal osteoporosis. The third-generation SERM bazedoxifene (BZA) effectively prevents osteoporosis while preventing estrogenic stimulation of breast and uterus. Notably, BZA combined with conjugated estrogens (CE) is a new menopausal treatment. The menopausal state predisposes to metabolic syndrome and type 2 diabetes, and therefore the effects of SERMs on metabolic homeostasis are gaining attention. Here, we summarize knowledge of SERMs' impacts on metabolic, homeostasis, obesity and diabetes in rodent models and postmenopausal women.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Medicine, Division of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Dragana Lovre
- Department of Medicine, Division of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
23
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
24
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 2017; 6:e299. [PMID: 28240737 PMCID: PMC5337623 DOI: 10.1038/oncsis.2017.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a biologically aggressive subset of sex steroid-related tumors, including breast carcinomas. Using pharmacological and genetic approaches, we assessed the molecular relationship between FASN signaling and estrogen receptor alpha (ERα) signaling in breast cancer. The small compound C75, a synthetic slow-binding inhibitor of FASN activity, induced a dramatic augmentation of estradiol (E2)-stimulated, ERα-driven transcription. FASN and ERα were both necessary for the synergistic activation of ERα transcriptional activity that occurred following co-exposure to C75 and E2: first, knockdown of FASN expression using RNAi (RNA interference) drastically lowered (>100 fold) the amount of E2 required for optimal activation of ERα-mediated transcriptional activity; second, FASN blockade synergistically increased E2-stimulated ERα-mediated transcriptional activity in ERα-negative breast cancer cells stably transfected with ERα, but not in ERα-negative parental cells. Non-genomic, E2-regulated cross-talk between the ERα and MAPK pathways participated in these phenomena. Thus, treatment with the pure antiestrogen ICI 182 780 or the potent and specific inhibitor of MEK/ERK, U0126, was sufficient to abolish the synergistic nature of the interaction between FASN blockade and E2-stimulated ERα transactivation. FASN inhibition suppressed E2-stimulated breast cancer cell proliferation and anchorage-independent colony formation while promoting the reduction of ERα protein. FASN blockade resulted in the increased expression and nuclear accumulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, two critical mediators of the therapeutic effects of antiestrogen in breast cancer, while inactivating AKT, a key mediator of E2-promoted anchorage-independent growth. The ability of FASN to regulate E2/ERα signaling may represent a promising strategy for anticancer treatment involving a new generation of FASN inhibitors.
Collapse
Affiliation(s)
- J A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - R Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| |
Collapse
|
26
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 2016; 12:421-32. [PMID: 27199291 DOI: 10.1038/nrendo.2016.67] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| |
Collapse
|
27
|
Santorelli ML, Hirshfield KM, Steinberg MB, Rhoads GG, Lin Y, Demissie K. Hormonal therapy for breast cancer and diabetes incidence among postmenopausal women. Ann Epidemiol 2016; 26:436-40. [DOI: 10.1016/j.annepidem.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 02/03/2023]
|
28
|
Daurio NA, Tuttle SW, Worth AJ, Song EY, Davis JM, Snyder NW, Blair IA, Koumenis C. AMPK Activation and Metabolic Reprogramming by Tamoxifen through Estrogen Receptor-Independent Mechanisms Suggests New Uses for This Therapeutic Modality in Cancer Treatment. Cancer Res 2016; 76:3295-306. [PMID: 27020861 DOI: 10.1158/0008-5472.can-15-2197] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/14/2016] [Indexed: 12/23/2022]
Abstract
Tamoxifen is the most widely used adjuvant chemotherapeutic for the treatment of estrogen receptor (ER)-positive breast cancer, yet a large body of clinical and preclinical data indicates that tamoxifen can modulate multiple cellular processes independently of ER status. Here, we describe the ER-independent effects of tamoxifen on tumor metabolism. Using combined pharmacologic and genetic knockout approaches, we demonstrate that tamoxifen inhibits oxygen consumption via inhibition of mitochondrial complex I, resulting in an increase in the AMP/ATP ratio and activation of the AMP-activated protein kinase (AMPK) signaling pathway in vitro and in vivo AMPK in turn promotes glycolysis and alters fatty acid metabolism. We also show that tamoxifen-induced cytotoxicity is modulated by isoform-specific effects of AMPK signaling, in which AMPKα1 promotes cell death through inhibition of the mTOR pathway and translation. By using agents that concurrently target distinct adaptive responses to tamoxifen-mediated metabolic reprogramming, we demonstrate increased cytotoxicity through synergistic therapeutic approaches. Our results demonstrate novel metabolic perturbations by tamoxifen in tumor cells, which can be exploited to expand the therapeutic potential of tamoxifen treatment beyond ER(+) breast cancer. Cancer Res; 76(11); 3295-306. ©2016 AACR.
Collapse
Affiliation(s)
- Natalie A Daurio
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen W Tuttle
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Worth
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ethan Y Song
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julianne M Davis
- SUPERS Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Ian A Blair
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Li S, Si T, Wang M, Zhao H. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening. ACS Synth Biol 2015; 4:1308-15. [PMID: 26149896 DOI: 10.1021/acssynbio.5b00069] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharomyces cerevisiae using an adapted bacterial transcription factor FapR and its corresponding operator fapO to gauge intracellular malonyl-CoA levels. By combining this sensor with a genome-wide overexpression library, we identified two novel gene targets that improved intracellular malonyl-CoA concentration. We further utilized the resulting recombinant yeast strain to produce a valuable compound, 3-hydroxypropionic acid, from malonyl-CoA and enhanced its titer by 120%. Such a genetic sensor provides a powerful approach for genome-wide screening and could further improve the synthesis of a large range of chemicals derived from malonyl-CoA in yeast.
Collapse
Affiliation(s)
- Sijin Li
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tong Si
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Meng Wang
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Energy Biosciences Institute, ‡Institute for Genomic Biology, §Department of Chemical
and Biomolecular Engineering, and ∥Departments of Chemistry, Biochemistry, and
Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015; 6:287-302. [PMID: 26675762 PMCID: PMC4670736 DOI: 10.1002/jcsm.12059] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.
Collapse
Affiliation(s)
- Chukwuemeka Charles Ezeoke
- United States Navy Medical Corps and PGY-2, Internal Medicine Residency, Saint Louis University HospitalSt. Louis, MO, USA
| | - John E Morley
- Division of Geriatrics, Saint Louis University School of Medicine1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA
- Division of Endocrinology, Saint Louis University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
31
|
López M, Tena-Sempere M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol Metab 2015; 26:411-21. [PMID: 26126705 DOI: 10.1016/j.tem.2015.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Despite their prominent roles in the control of reproduction, estrogens pervade many other bodily functions. Key metabolic pathways display marked sexual differences, and estrogens are potent modulators of energy balance, as evidenced in extreme conditions of estrogen deficiency characterized by hyperphagia and decreased energy expenditure, and leading to obesity. Compelling evidence has recently demonstrated that, in addition to their peripheral effects, the actions of estrogens on energy homeostasis are exerted at central levels, to regulate almost every key aspect of metabolic homeostasis, from feeding to energy expenditure, to glucose and lipid metabolism. We review herein the state-of-the-art of the role of estrogens in the regulation of energy balance, with a focus on their central effects and modes of action.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
32
|
Xu B, Lovre D, Mauvais-Jarvis F. Effect of selective estrogen receptor modulators on metabolic homeostasis. Biochimie 2015; 124:92-97. [PMID: 26133657 DOI: 10.1016/j.biochi.2015.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands that exhibit either estrogen agonistic or antagonistic activity in a tissue-specific manner. The first and second generation SERMs, tamoxifen and raloxifene, are used for treatment of ER positive breast cancer and postmenopausal osteoporosis respectively. The third-generation SERM, bazedoxifene (BZA), effectively prevents osteoporosis while blocking the estrogenic stimulation in breast and uterus. Notably, BZA combined with conjugated estrogens (CE) in a tissue-selective estrogen complex (TSEC) is a new menopausal treatment. Postmenopausal estrogen deficiency predisposes to metabolic syndrome and type 2 diabetes, and therefore the effects of SERMs and TSECs on metabolic homeostasis are gaining attention. In this article, we summarize current knowledge about the impact of SERMs on metabolic homeostasis and metabolic disorders in animal models and postmenopausal women.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Dragana Lovre
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
33
|
Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep 2015; 10:1681-1691. [PMID: 25772356 DOI: 10.1016/j.celrep.2015.02.034] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022] Open
Abstract
In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.
Collapse
|
34
|
Martínez de Morentin PB, Lage R, González-García I, Ruíz-Pino F, Martins L, Fernández-Mallo D, Gallego R, Fernø J, Señarís R, Saha AK, Tovar S, Diéguez C, Nogueiras R, Tena-Sempere M, López M. Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats. Endocrinology 2015; 156:947-60. [PMID: 25535827 PMCID: PMC4330316 DOI: 10.1210/en.2014-1611] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
During gestation, hyperphagia is necessary to cope with the metabolic demands of embryonic development. There were three main aims of this study: Firstly, to investigate the effect of pregnancy on hypothalamic fatty acid metabolism, a key pathway for the regulation of energy balance; secondly, to study whether pregnancy induces resistance to the anorectic effect of fatty acid synthase (FAS) inhibition and accumulation of malonyl-coenzyme A (CoA) in the hypothalamus; and, thirdly, to study whether changes in hypothalamic AMPK signaling are associated with brown adipose tissue (BAT) thermogenesis during pregnancy. Our data suggest that in pregnant rats, the hypothalamic fatty acid pathway shows an overall state that should lead to anorexia and elevated BAT thermogenesis: decreased activities of AMP-activated protein kinase (AMPK), FAS, and carnitine palmitoyltransferase 1, coupled with increased acetyl-CoA carboxylase function with subsequent elevation of malonyl-CoA levels. This profile seems dependent of estradiol levels but not prolactin or progesterone. Despite the apparent anorexic and thermogenic signaling in the hypothalamus, pregnant rats remain hyperphagic and display reduced temperature and BAT function. Actually, pregnant rats develop resistance to the anorectic effects of central FAS inhibition, which is associated with a reduction of proopiomelanocortin (POMC) expression and its transcription factors phospho-signal transducer and activator of transcription 3, and phospho-forkhead box O1. This evidence demonstrates that pregnancy induces a state of resistance to the anorectic and thermogenic actions of hypothalamic cellular signals of energy surplus, which, in parallel to the already known refractoriness to leptin effects, likely contributes to gestational hyperphagia and adiposity.
Collapse
Affiliation(s)
- Pablo B Martínez de Morentin
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) (P.B.M.d.M., R.L., I.G.-G., L.M., D.F.M., R.S., S.T., C.D., R.N., M.L.), University of Santiago de Compostela (USC)-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBERobn) (P.B.M.d.M., R.L., I.G.-G., F.R.-P., L.M., D.F.M., S.T., C.D., R.N., M.T.-S., M.L.), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology and Immunology (F.R.-P., M.T.-S.), University of Córdoba, Córdoba 14004, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía (F.R.-P., M.T.-S.), Córdoba 14004, Spain; Department of Morphological Sciences (R.G.), School of Medicine, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Clinical Science (J.F.), K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, N-5021, Norway; and Diabetes Research Unit, EBRC-827 (A.K.S.), Boston Medical Center, Boston, Massachusetts 02118
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Martínez-Sánchez N, Alvarez CV, Fernø J, Nogueiras R, Diéguez C, López M. Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab 2014; 28:703-12. [PMID: 25256765 DOI: 10.1016/j.beem.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Clara V Alvarez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
36
|
Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J, Salvador J, Escalada J, Dieguez C, Lopez M, Frühbeck G, Nogueiras R. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014; 63:3346-58. [PMID: 24917578 DOI: 10.2337/db14-0302] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
GLP-1 receptor (GLP-1R) is widely located throughout the brain, but the precise molecular mechanisms mediating the actions of GLP-1 and its long-acting analogs on adipose tissue as well as the brain areas responsible for these interactions remain largely unknown. We found that central injection of a clinically used GLP-1R agonist, liraglutide, in mice stimulates brown adipose tissue (BAT) thermogenesis and adipocyte browning independent of nutrient intake. The mechanism controlling these actions is located in the hypothalamic ventromedial nucleus (VMH), and the activation of AMPK in this area is sufficient to blunt both central liraglutide-induced thermogenesis and adipocyte browning. The decreased body weight caused by the central injection of liraglutide in other hypothalamic sites was sufficiently explained by the suppression of food intake. In a longitudinal study involving obese type 2 diabetic patients treated for 1 year with GLP-1R agonists, both exenatide and liraglutide increased energy expenditure. Although the results do not exclude the possibility that extrahypothalamic areas are also modulating the effects of GLP-1R agonists, the data indicate that long-acting GLP-1R agonists influence body weight by regulating either food intake or energy expenditure through various hypothalamic sites and that these mechanisms might be clinically relevant.
Collapse
Affiliation(s)
- Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Monica Imbernon
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Daniel Herranz
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Johan Fernø
- Department of Clinical Science, K.G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel Lopez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
37
|
Tamrakar P, Ibrahim BA, Gujar AD, Briski KP. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. J Neurosci Res 2014; 93:321-32. [PMID: 25231731 DOI: 10.1002/jnr.23481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023]
Abstract
The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.
Collapse
Affiliation(s)
- Pratistha Tamrakar
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana
| | | | | | | |
Collapse
|
38
|
Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism 2014; 63:895-902. [PMID: 24814684 DOI: 10.1016/j.metabol.2014.04.003] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND De novo lipogenesis (DNL) is a complex and highly regulated metabolic pathway. In normal conditions DNL converts excess carbohydrate into fatty acids that are then esterified to storage triacylglycerols (TGs). These TGs could later provide energy via β-oxidation. In human body this pathway is primarily active in liver and adipose tissue. However, it is considered to be a minor contributor to the serum lipid homeostasis. Deregulations in the lipogenic pathway are associated with diverse pathological conditions. SCOPE OF REVIEW The present review focuses on our current understanding of the lipogenic pathway with special reference to the causes and consequences of aberrant DNL. MAJOR CONCLUSIONS The deregulation of DNL in the major lipogenic tissues of the human body is often observed in various metabolic anomalies - including obesity, non-alcoholic fatty liver disease and metabolic syndrome. In addition to that de novo lipogenesis is reported to be exacerbated in cancer tissues, virus infected cells etc. These observations suggest that inhibitors of the DNL pathway might serve as therapeutically significant compounds. The effectiveness of these inhibitors in treatment of cancer and obesity has been suggested by previous works. GENERAL SIGNIFICANCE De novo lipogenesis - which is an intricate and highly regulated pathway - can lead to adverse metabolic consequences when deregulated. Therapeutic targeting of this pathway may open a new window of opportunity for combating various lipogenesis-driven pathological conditions - including obesity, cancer and certain viral infections.
Collapse
Affiliation(s)
- Fatima Ameer
- Microbiology and Molecular Genetics, University of the Punjab, Lahore-54590, Pakistan
| | - Lisa Scandiuzzi
- Department of Radiation Oncology, 1300 Morris Park Avenue, 10461, Bronx, NY, USA
| | - Shahida Hasnain
- Microbiology and Molecular Genetics, University of the Punjab, Lahore-54590, Pakistan
| | - Hubert Kalbacher
- Medical and Natural Sciences Research Centre, University of Tubingen, Germany
| | - Nousheen Zaidi
- Microbiology and Molecular Genetics, University of the Punjab, Lahore-54590, Pakistan.
| |
Collapse
|
39
|
Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile. PLoS One 2014; 9:e97195. [PMID: 24819600 PMCID: PMC4018328 DOI: 10.1371/journal.pone.0097195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022] Open
Abstract
Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.
Collapse
|
40
|
Pérez-Sieira S, López M, Nogueiras R, Tovar S. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Sci Rep 2014; 4:4264. [PMID: 24584059 PMCID: PMC3939456 DOI: 10.1038/srep04264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/14/2014] [Indexed: 01/11/2023] Open
Abstract
The NR4A is a subfamily of the orphan nuclear receptors (NR) superfamily constituted by three well characterized members: Nur77 (NR4A1), Nurr1 (NR4A2) and Nor 1 (NR4A3). They are implicated in numerous biological processes as DNA repair, arteriosclerosis, cell apoptosis, carcinogenesis and metabolism. Several studies have demonstrated the role of this subfamily on glucose metabolism, insulin sensitivity and energy balance. These studies have focused mainly in liver and skeletal muscle. However, its potential role in white adipose tissue (WAT), one of the most important tissues involved in the regulation of energy homeostasis, is not well-studied. The aim of this work was to elucidate the regulation of NR4A in WAT under different physiological and pathophysiological settings involved in energy balance such as fasting, postnatal development, gender, hormonal deficiency and pregnancy. We compared NR4A mRNA expression of Nur77, Nurr1 and Nor 1 and found a clear regulation by nutritional status, since the expression of the 3 isoforms is increased after fasting in a leptin-independent manner and sex steroid hormones also modulate NR4A expression in males and females. Our findings indicate that NR4A are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in glucose metabolism and energy status.
Collapse
Affiliation(s)
- S Pérez-Sieira
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - M López
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - R Nogueiras
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - S Tovar
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
41
|
Guptarak J, Wiktorowicz JE, Sadygov RG, Zivadinovic D, Paulucci-Holthauzen AA, Vergara L, Nesic O. The cancer drug tamoxifen: a potential therapeutic treatment for spinal cord injury. J Neurotrauma 2013; 31:268-83. [PMID: 24004276 DOI: 10.1089/neu.2013.3108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen (TMX) is a selective estrogen receptor modulator that can mimic the neuroprotective effects of estrogen but lacks its systemic adverse effects. We found that TMX (1 mg/day) significantly improved the motor recovery of partially paralyzed hind limbs of male adult rats with thoracic spinal cord injury (SCI), thus indicating a translational potential for this cancer medication given its clinical safety and applicability and the lack of currently available treatments for SCI. To shed light on the mechanisms underlying the beneficial effects of TMX for SCI, we used proteomic analyses, Western blots and histological assays, which showed that TMX treatment spared mature oligodendrocytes/increased myelin levels and altered reactive astrocytes, including the upregulation of the water channels aquaporin 4 (AQP4), a novel finding. AQP4 increases in TMX-treated SCI rats were associated with smaller fluid-filled cavities with borders consisting of densely packed AQP4-expressing astrocytes that closely resemble the organization of normal glia limitans externa (in contrast to large cavities in control SCI rats that lacked glia limitans-like borders and contained reactive glial cells). Based on our findings, we propose that TMX is a promising candidate for the therapeutic treatment of SCI and a possible intervention for other neuropathological conditions associated with demyelination and AQP4 dysfunction.
Collapse
Affiliation(s)
- Jutatip Guptarak
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
42
|
Álvarez-Crespo M, Martínez-Sánchez N, Ruíz-Pino F, Garcia-Lavandeira M, Alvarez CV, Tena-Sempere M, Nogueiras R, Diéguez C, López M. The orexigenic effect of orexin-A revisited: dependence of an intact growth hormone axis. Endocrinology 2013; 154:3589-98. [PMID: 23861376 DOI: 10.1210/en.2013-1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fifteen years ago orexins were identified as central regulators of energy homeostasis. Since then, that concept has evolved considerably and orexins are currently considered, besides orexigenic neuropeptides, key modulators of sleep-wake cycle and neuroendocrine function. Little is known, however, about the effect of the neuroendocrine milieu on orexins' effects on energy balance. We therefore investigated whether hypothalamic-pituitary axes have a role in the central orexigenic action of orexin A (OX-A) by centrally injecting hypophysectomized, adrenalectomized, gonadectomized (male and female), hypothyroid, and GH-deficient dwarf rats with OX-A. Our data showed that the orexigenic effect of OX-A is fully maintained in adrenalectomized and gonadectomized (females and males) rats, slightly reduced in hypothyroid rats, and totally abolished in hypophysectomized and dwarf rats when compared with their respective vehicle-treated controls. Of note, loss of the OX-A effect on feeding was associated with a blunted OX-A-induced increase in the expression of either neuropeptide Y or its putative regulator, the transcription factor cAMP response-element binding protein, as well as its phosphorylated form, in the arcuate nucleus of the hypothalamus of hypophysectomized and dwarf rats. Overall, this evidence suggests that the orexigenic action of OX-A depends on an intact GH axis and that this neuroendocrine feedback loop may be of interest in the understanding of orexins action on energy balance and GH deficiency.
Collapse
Affiliation(s)
- Mayte Álvarez-Crespo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice. PLoS One 2013; 8:e75104. [PMID: 24069385 PMCID: PMC3777889 DOI: 10.1371/journal.pone.0075104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022] Open
Abstract
Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC), de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1-/- mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.
Collapse
|
44
|
Gao S, Moran TH, Lopaschuk GD, Butler AA. Hypothalamic malonyl-CoA and the control of food intake. Physiol Behav 2013; 122:17-24. [PMID: 23988346 DOI: 10.1016/j.physbeh.2013.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Fatty acid metabolism is implicated in the hypothalamic control of food intake. In this regard, malonyl-CoA, an intermediate in fatty acid synthesis, is emerging as a key player. Malonyl-CoA in the hypothalamus has been proposed as an anorectic mediator in the central control of feeding. A large body of evidence demonstrates that modulating hypothalamic activities of malonyl-CoA metabolic enzymes impacts food intake. Malonyl-CoA action appears to play a significant role in the intracellular signaling pathways underlying leptin anorectic effect in the arcuate nucleus. Ghrelin's hypothalamic effect on feeding may also involve the change in malonyl-CoA metabolism. Hypothalamic malonyl-CoA levels are altered in response to fasting and refeeding, suggesting physiological relevance of the changes in malonyl-CoA level in the controls of feeding and energy balance. Malonyl-CoA inhibits the acyltransferase activity of carnitine palmitoyltransferase-1 (CPT-1), and CPT-1 was considered as a downstream effector in hypothalamic malonyl-CoA effect on feeding. However, recent evidence has not been entirely consistent with this notion. In the arcuate nucleus, the inhibition of CPT-1 acyltransferase activity does not play an important role in the feeding effect of either leptin or cerulenin (a fatty acid synthase inhibitor) that requires the increase in malonyl-CoA level. Alternatively, the brain isoform of CPT-1 (CPT-1c) may act as a downstream target in the malonyl-CoA signaling pathways. CPT-1c does not possess a typical acyltransferase activity, and the exact molecular function of this protein is currently unknown. Recent data indicate it is involved in ceramide metabolism. Of relevance, in the arcuate nucleus, CPT-1c may link malonyl-CoA to ceramide metabolism to affect food intake.
Collapse
Affiliation(s)
- Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL 33458, USA.
| | | | | | | |
Collapse
|
45
|
Gao S, Serra D, Keung W, Hegardt FG, Lopaschuk GD. Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. Am J Physiol Endocrinol Metab 2013; 305:E336-47. [PMID: 23736540 DOI: 10.1152/ajpendo.00168.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carnitine palmitoyltransferase-1 (CPT-1) liver isoform, or CPT-1a, is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced an orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, arcuate nucleus (Arc) overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN CPT-1 activity was altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. All together, CPT-1a in the hypothalamic VMN appears to play an important role in central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.
Collapse
Affiliation(s)
- Su Gao
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
46
|
Ramírez S, Martins L, Jacas J, Carrasco P, Pozo M, Clotet J, Serra D, Hegardt FG, Diéguez C, López M, Casals N. Hypothalamic ceramide levels regulated by CPT1C mediate the orexigenic effect of ghrelin. Diabetes 2013; 62:2329-37. [PMID: 23493572 PMCID: PMC3712075 DOI: 10.2337/db12-1451] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is located in the endoplasmic reticulum of neurons, may play a role in this action. Here, we demonstrate that the orexigenic action of ghrelin is totally blunted in CPT1C knockout (KO) mice, despite having the canonical ghrelin signaling pathway activated. We also demonstrate that ghrelin elicits a marked upregulation of hypothalamic C18:0 ceramide levels mediated by CPT1C. Notably, central inhibition of ceramide synthesis with myriocin negated the orexigenic action of ghrelin and normalized the levels of AgRP and NPY, as well as their key transcription factors phosphorylated cAMP-response element-binding protein and forkhead box O1. Finally, central treatment with ceramide induced food intake and orexigenic neuropeptides expression in CPT1C KO mice. Overall, these data indicate that, in addition to formerly reported mechanisms, ghrelin also induces food intake through regulation of hypothalamic CPT1C and ceramide metabolism, a finding of potential importance for the understanding and treatment of obesity.
Collapse
Affiliation(s)
- Sara Ramírez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Luís Martins
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jordi Jacas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Carrasco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Pozo
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Dolors Serra
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Fausto G. Hegardt
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Diéguez
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel López
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Corresponding authors: Miguel López, , and Núria Casals,
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Effect of chronic administration of tamoxifen and/or estradiol on feeding behavior, palatable food and metabolic parameters in ovariectomized rats. Physiol Behav 2013; 119:17-24. [DOI: 10.1016/j.physbeh.2013.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 01/25/2023]
|
48
|
Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 2013; 34:309-38. [PMID: 23460719 PMCID: PMC3660717 DOI: 10.1210/er.2012-1055] [Citation(s) in RCA: 823] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
49
|
Gao S, Casals N, Keung W, Moran TH, Lopaschuk GD. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiol Behav 2013; 118:165-70. [PMID: 23680429 DOI: 10.1016/j.physbeh.2013.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/06/2013] [Indexed: 01/15/2023]
Abstract
Fatty acid metabolism is an important pathway involved in the hypothalamus-mediated control of food intake. Previous studies using whole hypothalamic tissue lysates have shown that fatty acid metabolism plays a key role in ghrelin's effect on feeding. Here, we report site-specific effects of central ghrelin on fatty acid metabolism in two critical hypothalamic nuclei, the ventral medial nucleus (VMN) and the arcuate nucleus (Arc). Intracerebroventricular administration of ghrelin to rats activates AMP-activated protein kinase in both the VMN and the Arc, while ghrelin treatment has a site-specific effect on fatty acid metabolic pathways in these two nuclei. In the VMN, central ghrelin increases the phosphorylation level of ACC, indicating the decrease in activity, and decreases the level of malonyl-CoA (the product of ACC). Malonyl-CoA is an inhibitor of carnitine palmitoyltransferase-1 (CPT-1) that is a key enzyme in mitochondrial fatty acid oxidation. Consistent with this action of malonyl-CoA on CPT-1, central ghrelin treatment increases the activity of CPT-1 in the VMN. In contrast, in the Arc, neither malonyl-CoA level nor CPT-1 activity is affected following central ghrelin. Taken together, our data suggest ghrelin exerts differential effects on fatty acid metabolic pathways in the VMN and the Arc.
Collapse
Affiliation(s)
- Su Gao
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
50
|
Evenden J. Cognitive impairments and cancer chemotherapy: translational research at a crossroads. Life Sci 2013; 93:589-95. [PMID: 23583572 DOI: 10.1016/j.lfs.2013.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Cancer chemotherapy is often associated with cognitive deficits which may remain after the treatment has ended. As more people survive cancer, concern is increasing about the impact of these problems with memory and executive function when they return to everyday life. When chemotherapeutic drugs are administered to healthy animals in dosing regimens modeling those used in humans, cognitive deficits also occur, and these preclinical studies can provide information about the biological mechanisms by which the cancer fighting drugs affect the brain. Evidence from animal studies points to damage to hippocampus, particularly a disruption of neurogenesis, whereas human studies emphasize cognitive deficits associated with impairments in frontal cortical function. This discrepancy may be due more to the tasks selected by researchers, and the choice of biochemical endpoints than inherently different effects of chemotherapy in humans and rodents. These differences in approach must be reconciled if common underlying mechanisms are to be identified, with the hope of leading to novel drug or non-pharmacological treatments. This may be achieved by broadening the scope of human and animal studies, and by looking outside the topic of chemotherapy-induced cancer deficits to learn from the advances being made by studying the effects of stress and somatic disease on brain function, and the cognitive impairments now recognized to result from a wide range of mental and physical illnesses.
Collapse
Affiliation(s)
- John Evenden
- WiltonLogic LLC, 101 Wilton Woods Lane, Media, PA 19063, USA.
| |
Collapse
|