1
|
Chen Y, Yu T, Deuster P. Astaxanthin Protects Against Heat-induced Mitochondrial Alterations in Mouse Hypothalamus. Neuroscience 2021; 476:12-20. [PMID: 34543676 DOI: 10.1016/j.neuroscience.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays an essential role in regulating whole-body energy and temperature homeostasis when adapting to environmental changes. We previously reported that heat exposure causes mitochondrial dysfunction and apoptosis in mouse skeletal muscle, and pretreatment with astaxanthin (AST), an antioxidant, prevents this effect. How the hypothalamus responds to heat stress remains largely unexplored. In this study, we investigated the effects of heat exposure on hypothalamic mitochondria in mice with and without AST pretreatment. During heat exposure, both vehicle and AST-treated mice had a hyperthermic response though no significant differences in peak core body temperature were noted between the two groups. Heat exposure induced mitochondrial fission in the hypothalamus, as manifested by increased mitochondrial fragmentation and expression of both total and phosphorylated dynamin-related protein 1. In addition, transmission electron microscopy revealed damaged and degraded mitochondria in the hypothalamus of heat-exposed mice. Heat induced apoptosis and mitophagy were further confirmed by increased formation of reactive oxygen species, activation of caspase 3/7 and expression of LC3 proteins. Moreover, heat exposure increased the expression of PINK1 and Parkin in mouse hypothalamus. In contrast, pretreatment with AST reduced these effects. These results demonstrate that heat stress-induced hypothalamic apoptosis is associated with altered mitochondrial dynamics favoring fission and mitophagy. AST protects the hypothalamus against heat-induced injury by preserving redox homeostasis and mitochondrial integrity.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
4
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
5
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
6
|
Hwalla N, Jaafar Z. Dietary Management of Obesity: A Review of the Evidence. Diagnostics (Basel) 2020; 11:diagnostics11010024. [PMID: 33375554 PMCID: PMC7823549 DOI: 10.3390/diagnostics11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Obesity is a multi-factorial disease and its prevention and management require knowledge of the complex interactions underlying it and adopting a whole system approach that addresses obesogenic environments within country specific contexts. The pathophysiology behind obesity involves a myriad of genetic, epigenetic, physiological, and macroenvironmental factors that drive food intake and appetite and increase the obesity risk for susceptible individuals. Metabolically, food intake and appetite are regulated via intricate processes and feedback systems between the brain, gastrointestinal system, adipose and endocrine tissues that aim to maintain body weight and energy homeostasis but are also responsive to environmental cues that may trigger overconsumption of food beyond homeostatic needs. Under restricted caloric intake conditions such as dieting, these processes elicit compensatory metabolic mechanisms that promote energy intake and weight regain, posing great challenges to diet adherence and weight loss attempts. To mitigate these responses and enhance diet adherence and weight loss, different dietary strategies have been suggested in the literature based on their differential effects on satiety and metabolism. In this review article, we offer an overview of the literature on obesity and its underlying pathological mechanisms, and we present an evidence based comparative analysis of the effects of different popular dietary strategies on weight loss, metabolic responses and diet adherence in obesity.
Collapse
|
7
|
Mens Sana in Corpore Sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020; 12:nu12102989. [PMID: 33003562 PMCID: PMC7599769 DOI: 10.3390/nu12102989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although diet interventions are mostly related to metabolic disorders, nowadays they are used in a wide variety of pathologies. From diabetes and obesity to cardiovascular diseases, to cancer or neurological disorders and stroke, nutritional recommendations are applied to almost all diseases. Among such disorders, metabolic disturbances and brain function and/or diseases have recently been shown to be linked. Indeed, numerous neurological functions are often associated with perturbations of whole-body energy homeostasis. In this regard, specific diets are used in various neurological conditions, such as epilepsy, stroke, or seizure recovery. In addition, Alzheimer’s disease and Autism Spectrum Disorders are also considered to be putatively improved by diet interventions. Glycemic index diets are a novel developed indicator expected to anticipate the changes in blood glucose induced by specific foods and how they can affect various physiological functions. Several results have provided indications of the efficiency of low-glycemic index diets in weight management and insulin sensitivity, but also cognitive function, epilepsy treatment, stroke, and neurodegenerative diseases. Overall, studies involving the glycemic index can provide new insights into the relationship between energy homeostasis regulation and brain function or related disorders. Therefore, in this review, we will summarize the main evidence on glycemic index involvement in brain mechanisms of energy homeostasis regulation.
Collapse
|
8
|
Chu SC, Chen PN, Yu CH, Hsieh YS, Kuo DY. Double immunofluorescent evidence that oxidative stress-associated activation of JNK/AP-1 signaling participates in neuropeptide-mediated appetite control. Eur Neuropsychopharmacol 2019; 29:1235-1249. [PMID: 31519469 DOI: 10.1016/j.euroneuro.2019.08.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Amphetamine (AMPH), an appetite suppressant, alters expression levels of neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus. This study explored the potential role of cJun-N-terminal kinases (JNK) in appetite control, mediated by reactive oxygen species (ROS) and activator protein-1 (AP-1) in AMPH-treated rats. Rats were given AMPH daily for 4 days. Changes in feeding behavior and expression levels of hypothalamic NPY, CART, cFos, cJun, phosphorylated JNK (pJNK), as well as those of anti-oxidative enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GP) and glutathione S-transferase (GST), were examined and compared. Following AMPH treatment, food intake and NPY expression decreased, whereas the other proteins expression and AP-1/DNA binding activity increased. Both cerebral cJun inhibition and ROS inhibition attenuated AMPH anorexia and modified detected protein, revealing a crucial role for AP-1 and ROS in regulating AMPH-induced appetite control. Moreover, both pJNK/CART and SOD/CART activities detected by double immunofluorescent staining increased in hypothalamic arcuate nucleus in AMPH-treated rats. The results suggested that pJNK/AP-1 signaling and endogenous anti-oxidants participated in regulating NPY/CART-mediated appetite control in rats treated with AMPH. These findings advance understanding of the molecular mechanism underlying the role of pJNK/AP-1 and oxidative stress in NPY/CART-mediated appetite suppression in AMPH-treated rats.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City 406, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Taiwan, ROC
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Taiwan, ROC
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| |
Collapse
|
9
|
Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci 2019; 20:ijms20061317. [PMID: 30875909 PMCID: PMC6471380 DOI: 10.3390/ijms20061317] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin exists in the central nervous system, where it executes two important functions in the hypothalamus: the suppression of food intake and the improvement of glucose metabolism. Recent studies have shown that both are exerted robustly in rodents and humans. If intact, these functions exert beneficial effects on obesity and diabetes, respectively. Disruption of both occurs due to a condition known as hypothalamic insulin resistance, which is caused by obesity and the overconsumption of saturated fat. An enormous volume of literature addresses the molecular mechanisms of hypothalamic insulin resistance. IKKβ and JNK are major players in the inflammation pathway, which is activated by saturated fatty acids that induce hypothalamic insulin resistance. Two major tyrosine phosphatases, PTP-1B and TCPTP, are upregulated in chronic overeating. They dephosphorylate the insulin receptor and insulin receptor substrate proteins, resulting in hypothalamic insulin resistance. Prolonged hyperinsulinemia with excessive nutrition activates the mTOR/S6 kinase pathway, thereby enhancing IRS-1 serine phosphorylation to induce hypothalamic insulin resistance. Other mechanisms associated with this condition include hypothalamic gliosis and disturbed insulin transport into the central nervous system. Unveiling the precise molecular mechanisms involved in hypothalamic insulin resistance is important for developing new ways of treating obesity and type 2 diabetes.
Collapse
|
10
|
Berends LM, Dearden L, Tung YCL, Voshol P, Fernandez-Twinn DS, Ozanne SE. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018; 61:2225-2234. [PMID: 30043179 PMCID: PMC6133152 DOI: 10.1007/s00125-018-4694-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110β subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.
Collapse
Affiliation(s)
- Lindsey M Berends
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yi Chun L Tung
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter Voshol
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Haissaguerre M, Ferrière A, Simon V, Saucisse N, Dupuy N, André C, Clark S, Guzman-Quevedo O, Tabarin A, Cota D. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Mol Metab 2018; 12:98-106. [PMID: 29699927 PMCID: PMC6001919 DOI: 10.1016/j.molmet.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. METHODS C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H2O2) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. RESULTS Icv administration of H2O2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H2O2. H2O2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. CONCLUSIONS Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Amandine Ferrière
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Vincent Simon
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Nicolas Saucisse
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Nathalie Dupuy
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Antoine Tabarin
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
12
|
Fruhwürth S, Vogel H, Schürmann A, Williams KJ. Novel Insights into How Overnutrition Disrupts the Hypothalamic Actions of Leptin. Front Endocrinol (Lausanne) 2018; 9:89. [PMID: 29632515 PMCID: PMC5879088 DOI: 10.3389/fendo.2018.00089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity has become a worldwide health problem, but we still do not understand the molecular mechanisms that contribute to overeating and low expenditure of energy. Leptin has emerged as a major regulator of energy balance through its actions in the hypothalamus. Importantly, obese people exhibit high circulating levels of leptin, yet the hypothalamus no longer responds normally to this hormone to suppress appetite or to increase energy expenditure. Several well-known hypotheses have been proposed to explain impaired central responsiveness to the effects of leptin in obesity, including defective transit across the blood-brain barrier at the arcuate nucleus, hypothalamic endoplasmic reticulum stress, maladaptive sterile inflammation in the hypothalamus, and overexpression of molecules that may inhibit leptin signaling. We also discuss a new explanation that is based on our group's recent discovery of a signaling pathway that we named "NSAPP" after its five main protein components. The NSAPP pathway consists of an oxide transport chain that causes a transient, targeted burst in intracellular hydrogen peroxide (H2O2) to inactivate redox-sensitive members of the protein tyrosine phosphatase gene family. The NSAPP oxide transport chain is required for full activation of canonical leptin signaling in neurons but fails to function normally in states of overnutrition. Remarkably, leptin and insulin both require the NSAPP oxide transport chain, suggesting that a defect in this pathway could explain simultaneous resistance to the appetite-suppressing effects of both hormones in obesity.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kevin Jon Williams
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Kevin Jon Williams,
| |
Collapse
|
13
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience 2017. [DOI: 10.1016/j.neuroscience.2017.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Chrétien C, Fenech C, Liénard F, Grall S, Chevalier C, Chaudy S, Brenachot X, Berges R, Louche K, Stark R, Nédélec E, Laderrière A, Andrews ZB, Benani A, Flockerzi V, Gascuel J, Hartmann J, Moro C, Birnbaumer L, Leloup C, Pénicaud L, Fioramonti X. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes 2017; 66:314-324. [PMID: 27899482 DOI: 10.2337/db16-1114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022]
Abstract
The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.
Collapse
Affiliation(s)
- Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Charlène Chevalier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Chaudy
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Xavier Brenachot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Raymond Berges
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Katie Louche
- INSERM UMR1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | - Romana Stark
- Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Zane B Andrews
- Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University School of Medicine, Homburg, Germany
| | - Jean Gascuel
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Jana Hartmann
- Institute of Neuroscience and Center for Integrated Protein Science, Technical University Munich, Munich, Germany
| | - Cédric Moro
- INSERM UMR1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
16
|
Carneiro L, Geller S, Hébert A, Repond C, Fioramonti X, Leloup C, Pellerin L. Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation. Sci Rep 2016; 6:34909. [PMID: 27708432 PMCID: PMC5052612 DOI: 10.1038/srep34909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023] Open
Abstract
Ketone bodies have been shown to transiently stimulate food intake and modify energy homeostasis regulatory systems following cerebral infusion for a moderate period of time (<6 hours). As ketone bodies are usually enhanced during episodes of fasting, this effect might correspond to a physiological regulation. In contrast, ketone bodies levels remain elevated for prolonged periods during obesity, and thus could play an important role in the development of this pathology. In order to understand this transition, ketone bodies were infused through a catheter inserted in the carotid to directly stimulate the brain for a period of 24 hours. Food ingested and blood circulating parameters involved in metabolic control as well as glucose homeostasis were determined. Results show that ketone bodies infusion for 24 hours increased food intake associated with a stimulation of hypothalamic orexigenic neuropeptides. Moreover, insulinemia was increased and caused a decrease in glucose production despite an increased resistance to insulin. The present study confirms that ketone bodies reaching the brain stimulates food intake. Moreover, we provide evidence that a prolonged hyperketonemia leads to a dysregulation of energy homeostasis control mechanisms. Finally, this study shows that brain exposure to ketone bodies alters insulin signaling and consequently glucose homeostasis.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Audrey Hébert
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Xavier Fioramonti
- UMR CNRS 6265-INRA 1324-Univ. Bourgogne Franche-Comté Centre des sciences du goût et de l'alimentation, 21000 Dijon, France
| | - Corinne Leloup
- UMR CNRS 6265-INRA 1324-Univ. Bourgogne Franche-Comté Centre des sciences du goût et de l'alimentation, 21000 Dijon, France
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
17
|
Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus. Neurosci Lett 2016; 619:1-7. [PMID: 26968348 DOI: 10.1016/j.neulet.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 01/26/2023]
Abstract
In the hypothalamus, several reports have implied that ROS mediate physiological effects of insulin. In this study, we investigated the mechanisms of insulin-induced ROS production and the effect of ROS on insulin signal transduction in mouse hypothalamic organotypic cultures. Insulin increased intracellular ROS, which were suppressed by NADPH oxidase inhibitor. H2O2 increased phospho-insulin receptor β (p-IRβ) and phospho-Akt (p-Akt) levels. Insulin-induced increases in p-IRβ and p-Akt levels were attenuated by ROS scavenger or NADPH oxidase inhibitor. Our data suggest that insulin-induced phosphorylation of IRβ and Akt is mediated via ROS which are predominantly produced by NADPH oxidase in mouse hypothalamus.
Collapse
|
18
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
19
|
Carneiro L, Geller S, Fioramonti X, Hébert A, Repond C, Leloup C, Pellerin L. Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice. Am J Physiol Endocrinol Metab 2016; 310:E103-15. [PMID: 26530151 DOI: 10.1152/ajpendo.00282.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sarah Geller
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Fioramonti
- Centre National de la Recherche Scientifique, UMR6265, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France; Institut National de la Recherche Agronomique, UMR1324, CSGA, Dijon, France; and Université de Bourgogne, CSGA, Dijon, France
| | - Audrey Hébert
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Corinne Leloup
- Centre National de la Recherche Scientifique, UMR6265, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France; Institut National de la Recherche Agronomique, UMR1324, CSGA, Dijon, France; and Université de Bourgogne, CSGA, Dijon, France
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
20
|
Mc Allister E, Pacheco-Lopez G, Woods SC, Langhans W. Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice. Physiol Behav 2015; 151:623-8. [PMID: 26344647 DOI: 10.1016/j.physbeh.2015.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/16/2022]
Abstract
Insulin inhibits eating after its intracerebroventricular (ICV) administration in multiple species and under a variety of conditions. Nevertheless, the results across reports are inconsistent in that ICV insulin does not always reduce food intake. The reasons for this variability are largely unknown. Using mice as a model, we performed several crossover trials with insulin vs. vehicle when infused into the third cerebral ventricle (i3vt) to test the hypothesis that recent experience with the i3vt procedure contributes to the variability in the effect of ICV insulin on food intake. Using a cross-over design with two days between injections, we found that insulin (0.4 μU/mouse) significantly reduced food intake relative to vehicle in mice that received vehicle on the first and insulin on the second trial, whereas this effect was absent in mice that received insulin on the first and vehicle on the second trial. Higher doses (i3vt 4.0 and 40.0 μU/mouse) had no effect on food intake in this paradigm. When injections were spaced 7 days apart, insulin reduced food intake with no crossover effect. Mice that did not reduce food intake in response to higher doses of i3vt insulin did so in response to i3vt infusion of the melanocortin receptor agonist melanotan-II (MT-II), indicating that the function of the hypothalamic melanocortin system, which mediates the effect of insulin on eating, was not impaired by whatever interfered with the insulin effect, and that this interference occurred upstream of the melanocortin receptors. Overall, our findings suggest that associative effects based on previous experience with the experimental situation can compromise the eating inhibition elicited by i3vt administered insulin.
Collapse
Affiliation(s)
- Eugenia Mc Allister
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Gustavo Pacheco-Lopez
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Health Sciences Department, Metropolitan University (UAM) at Lerma, Mexico; Health, Medical and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, University of Leiden, The Netherlands
| | | | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
21
|
Begg DP, May AA, Mul JD, Liu M, D'Alessio DA, Seeley RJ, Woods SC. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin. Diabetes 2015; 64:2457-66. [PMID: 25667307 PMCID: PMC4477354 DOI: 10.2337/db14-1364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake.
Collapse
Affiliation(s)
- Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | - Aaron A May
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Min Liu
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - David A D'Alessio
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Department of Medicine, Duke University, Durham, NC
| | - Randy J Seeley
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
22
|
Comparative secretome analysis of rat stomach under different nutritional status. J Proteomics 2015; 116:44-58. [PMID: 25579404 DOI: 10.1016/j.jprot.2015.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/01/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED Obesity is a major public health threat for many industrialised countries. Bariatric surgery is the most effective treatment against obesity, suggesting that gut derived signals are crucial for energy balance regulation. Several descriptive studies have proven the presence of gastric endogenous systems that modulate energy homeostasis; however, these systems and the interactions between them are still not well known. In the present study, we show for the first time the comparative 2-DE gastric secretome analysis under different nutritional status. We have identified 38 differently secreted proteins by comparing stomach secretomes from tissue explant cultures of rats under feeding, fasting and re-feeding conditions. Among the proteins identified, glyceraldehyde-3-phosphate dehydrogenase was found to be more abundant in gastric secretome and plasma after re-feeding, and downregulated in obesity. Additionally, two calponin-1 species were decreased in feeding state, and other were modulated by nutritional and metabolic conditions. These and other secreted proteins identified in this work may be considered as potential gastrokines implicated in food intake regulation. BIOLOGICAL SIGNIFICANCE The present work has an important impact in the field of obesity, especially in the regulation of body weight maintenance by the stomach. Nowadays, the most effective treatment in the fight against obesity is bariatric surgery, which suggests that stomach derived signals might be crucial for the regulation of the energy homeostasis. However, until now, the knowledge about the gastrokines and its mechanism of action has been poorly elucidated. In the present work, we had updated a previously validated explant secretion model for proteomic studies; this analysis allowed us, for the first time, to study the gastric secretome without interferences from other organs. We had identified 38 differently secreted proteins comparing ex vivo cultured stomachs from rats under feeding, fasting and re-feeding regimes. The results in the present article provide novel targets to study the role of the stomach in body weight and appetite regulation, and suggest new potential therapeutic targets for treating obesity.
Collapse
|
23
|
Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 2015; 9:56. [PMID: 25759638 PMCID: PMC4338676 DOI: 10.3389/fnins.2015.00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.
Collapse
Affiliation(s)
- Anne Drougard
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| | | | | | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| |
Collapse
|
24
|
Abstract
The pancreatic hormone insulin plays a well-described role in the periphery, based principally on its ability to lower circulating glucose levels via activation of glucose transporters. However, insulin also acts within the central nervous system (CNS) to alter a number of physiological outcomes ranging from energy balance and glucose homeostasis to cognitive performance. Insulin is transported into the CNS by a saturable receptor-mediated process that is proposed to be dependent on the insulin receptor. Transport of insulin into the brain is dependent on numerous factors including diet, glycemia, a diabetic state and notably, obesity. Obesity leads to a marked decrease in insulin transport from the periphery into the CNS and the biological basis of this reduction of transport remains unresolved. Despite decades of research into the effects of central insulin on a wide range of physiological functions and its transport from the periphery to the CNS, numerous questions remain unanswered including which receptor is responsible for transport and the precise mechanisms of action of insulin within the brain.
Collapse
Affiliation(s)
- Denovan P Begg
- School of Psychology, University of New South Wales (UNSW, Australia), Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol 2015; 6:27. [PMID: 25698989 PMCID: PMC4313585 DOI: 10.3389/fpsyg.2015.00027] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/07/2015] [Indexed: 12/16/2022] Open
Abstract
Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture.
Collapse
Affiliation(s)
- Antonio Paoli
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Gerardo Bosco
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Enrico M Camporesi
- Department of Surgery, University of South Florida Tampa, FL, USA ; TEAMHealth Tampa, FL, USA
| | - Devanand Mangar
- TEAMHealth Tampa, FL, USA ; Tampa General Hospital Tampa, FL, USA
| |
Collapse
|
26
|
Bispo KP, de Oliveira Rodrigues L, da Silva Soares de Souza É, Mucci D, Tavares do Carmo MDG, de Albuquerque KT, de Carvalho Sardinha FL. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring. J Physiol Sci 2015; 65:131-8. [PMID: 25398547 PMCID: PMC10717077 DOI: 10.1007/s12576-014-0351-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.
Collapse
Affiliation(s)
- Kenia Pereira Bispo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Letícia de Oliveira Rodrigues
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Érica da Silva Soares de Souza
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Daniela Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Maria das Graças Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Kelse Tibau de Albuquerque
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
- Laboratório de Nutrição Experimental, LABNEX, Universidade Federal do Rio de Janeiro, Macaé, RJ Brazil
| | - Fatima Lucia de Carvalho Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| |
Collapse
|
27
|
Fink BD, Herlein JA, Guo DF, Kulkarni C, Weidemann BJ, Yu L, Grobe JL, Rahmouni K, Kerns RJ, Sivitz WI. A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice. J Pharmacol Exp Ther 2014; 351:699-708. [PMID: 25301169 DOI: 10.1124/jpet.114.219329] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Brian D Fink
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Judith A Herlein
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Deng Fu Guo
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Chaitanya Kulkarni
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Benjamin J Weidemann
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Liping Yu
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - Robert J Kerns
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. RECENT ADVANCES Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. CRITICAL ISSUES Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. FUTURE DIRECTIONS Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body.
Collapse
Affiliation(s)
- Mary A Ndiaye
- 1 Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|
29
|
Targeting oxidative stress in the hypothalamus: the effect of transcription factor STAT3 knockdown on endogenous antioxidants-mediated appetite control. Arch Toxicol 2014; 89:87-100. [DOI: 10.1007/s00204-014-1252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
|
30
|
Drougard A, Duparc T, Brenachot X, Carneiro L, Gouazé A, Fournel A, Geurts L, Cadoudal T, Prats AC, Pénicaud L, Vieau D, Lesage J, Leloup C, Benani A, Cani PD, Valet P, Knauf C. Hypothalamic apelin/reactive oxygen species signaling controls hepatic glucose metabolism in the onset of diabetes. Antioxid Redox Signal 2014; 20:557-73. [PMID: 23879244 PMCID: PMC3901354 DOI: 10.1089/ars.2013.5182] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver glucose metabolism and glycemia. RESULTS We show that icv apelin injection stimulates liver glycogenolysis and gluconeogenesis via an over-activation of the sympathetic nervous system (SNS), leading to fasted hyperglycemia. The effect of central apelin on liver function is dependent of an increased production of hypothalamic reactive oxygen species (ROS). These data are strengthened by experiments using lentiviral vector-mediated over-expression of apelin in hypothalamus of mice that present over-activation of SNS associated to an increase in hepatic glucose production. Finally, we report that mice fed a high-fat diet present major alterations of hypothalamic apelin/ROS signaling, leading to activation of glycogenolysis. INNOVATION/CONCLUSION: These data bring compelling evidence that hypothalamic apelin is one master switch that participates in the onset of diabetes by directly acting on liver function. Our data support the idea that hypothalamic apelin is a new potential therapeutic target to treat diabetes.
Collapse
Affiliation(s)
- Anne Drougard
- 1 Institut National de la Santé et de la Recherche Médicale (INSERM) , Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao S, Serra D, Keung W, Hegardt FG, Lopaschuk GD. Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. Am J Physiol Endocrinol Metab 2013; 305:E336-47. [PMID: 23736540 DOI: 10.1152/ajpendo.00168.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carnitine palmitoyltransferase-1 (CPT-1) liver isoform, or CPT-1a, is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced an orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, arcuate nucleus (Arc) overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN CPT-1 activity was altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. All together, CPT-1a in the hypothalamic VMN appears to play an important role in central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.
Collapse
Affiliation(s)
- Su Gao
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
32
|
Hypothalamic S-nitrosylation contributes to the counter-regulatory response impairment following recurrent hypoglycemia. PLoS One 2013; 8:e68709. [PMID: 23894333 PMCID: PMC3716881 DOI: 10.1371/journal.pone.0068709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
AIMS Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation. RESULTS Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia. CONCLUSION These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy.
Collapse
|
33
|
Pomytkin IA. H2O2 Signalling Pathway: A Possible Bridge between Insulin Receptor and Mitochondria. Curr Neuropharmacol 2013; 10:311-20. [PMID: 23730255 PMCID: PMC3520041 DOI: 10.2174/157015912804143559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/20/2023] Open
Abstract
This review is focused on the mechanistic aspects of the insulin-induced H2O2 signalling pathway in neurons and the molecules affecting it, which act as risk factors for developing central insulin resistance. Insulin-induced H2O2 promotes insulin receptor activation and the mitochondria act as the insulin-sensitive H2O2 source, providing a direct molecular link between mitochondrial dysfunction and irregular insulin receptor activation. In this view, the accumulation of dysfunctional mitochondria during chronological ageing and Alzheimer's disease (AD) is a risk factor that may contribute to the development of dysfunctional cerebral insulin receptor signalling and insulin resistance. Due to the high significance of insulin-induced H2O2 for insulin receptor activation, oxidative stress-induced upregulation of antioxidant enzymes, e.g., in AD brains, may represent another risk factor contributing to the development of insulin resistance. As insulin-induced H2O2 signalling requires fully functional mitochondria, pharmacological strategies based on activating mitochondria biogenesis in the brain are central to the treatment of diseases associated with dysfunctional insulin receptor signalling in this organ.
Collapse
|
34
|
Hsieh YS, Chen PN, Yu CH, Liao JM, Kuo DY. Inhibiting neuropeptide Y Y1 receptor modulates melanocortin receptor- and NF-κB-mediated feeding behavior in phenylpropanolamine-treated rats. Horm Behav 2013; 64:95-102. [PMID: 23707533 DOI: 10.1016/j.yhbeh.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) and nuclear factor-kappa B (NF-κB) are involved in regulating anorexia elicited by phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether NPY Y1 receptor (Y1R) is involved in this process, and a potential role for the proopiomelanocortin system was identified. Rats were given PPA once a day for 4days. Changes in the hypothalamic expression of the NPY, Y1R, NF-κB, and melanocortin receptor 4 (MC4R) levels were assessed and compared. The results indicated that food intake and NPY expression decreased, with the largest reductions observed on Day 2 (approximately 50% and 45%, respectively), whereas NF-κB, MC4R, and Y1R increased, achieving maximums on Day 2 (160%, 200%, and 280%, respectively). To determine the role of Y1R, rats were pretreated with Y1R antisense or a Y1R antagonist via intracerebroventricular injection 1h before the daily PPA dose. Y1R knockdown and inhibition reduced PPA anorexia and partially restored the normal expression of NPY, MC4R, and NF-κB. The data suggest that hypothalamic Y1R participates in the appetite-suppression from PPA by regulating MC4R and NF-κB. The results of this study increase our understanding of the molecular mechanisms in PPA-induced anorexia.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | | | | | | | | |
Collapse
|
35
|
Begg DP, Mul JD, Liu M, Reedy BM, D'Alessio DA, Seeley RJ, Woods SC. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats. Endocrinology 2013; 154:1047-54. [PMID: 23337529 PMCID: PMC3578991 DOI: 10.1210/en.2012-1929] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diet-induced obesity (DIO) reduces the ability of centrally administered insulin to reduce feeding behavior and also reduces the transport of insulin from the periphery to the central nervous system (CNS). The current study was designed to determine whether reversal of high-fat DIO restores the anorexic efficacy of central insulin and whether this is accompanied by restoration of the compromised insulin transport. Adult male Long-Evans rats were initially maintained on either a low-fat chow diet (LFD) or a high-fat diet (HFD). After 22 weeks, half of the animals on the HFD were changed to the LFD, whereas the other half continued on the HFD for an additional 8 weeks, such that there were 3 groups: 1) a LFD control group (Con; n = 18), 2) a HFD-fed, DIO group (n = 17), and 3) a HFD to LFD, DIO-reversal group (DIO-rev; n = 18). The DIO reversal resulted in a significant reduction of body weight and epididymal fat weight relative to the DIO group. Acute central insulin administration (8 mU) reduced food intake and caused weight loss in Con and DIO-rev but not DIO rats. Fasting cerebrospinal fluid insulin was higher in DIO than Con animals. However, after a peripheral bolus injection of insulin, cerebrospinal fluid insulin increased in Con and DIO-rev rats but not in the DIO group. These data provide support for previous reports that DIO inhibits both the central effects of insulin and insulin's transport to the CNS. Importantly, DIO-rev restored sensitivity to the effects of central insulin on food intake and insulin transport into the CNS.
Collapse
Affiliation(s)
- Denovan P Begg
- Departments of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Begg DP, Woods SC. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:53-60. [PMID: 23471249 PMCID: PMC3776474 DOI: 10.1152/advan.00167.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/14/2013] [Indexed: 05/10/2023]
Abstract
The endocrine pancreas is richly innervated with sympathetic and parasympathetic projections from the brain. In the mid-20th century, it was established that α-adrenergic activation inhibits, whereas cholinergic stimulation promotes, insulin secretion; this demonstrated the importance of the sympathetic and parasympathetic systems in pancreatic endocrine function. It was later established that insulin injected peripherally could act within the brain, leading to the discovery of insulin and insulin receptors within the brain and the receptor-mediated transport of insulin into the central nervous system from endothelial cells. The insulin receptor within the central nervous system is widely distributed, reflecting insulin's diverse range of actions, including acting as an adiposity signal to reduce food intake and increase energy expenditure, regulation of systemic glucose responses, altering sympathetic activity, and involvement in cognitive function. As observed with central insulin administration, the pancreatic hormones glucagon, somatostatin, pancreatic polypeptide, and amylin can each also reduce food intake. Pancreatic and also gut hormones are released cephalically, in what is an important mechanism to prepare the body for a meal and prevent excessive postprandial hyperglycemia.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | | |
Collapse
|
37
|
Hsieh YS, Chen PN, Kuo MH, Kuo DY. Neuropeptide Y Y1 receptor knockdown can modify glutathione peroxidase and c-AMP response element-binding protein in phenylpropanolamine-treated rats. Arch Toxicol 2013; 87:469-79. [PMID: 23052195 DOI: 10.1007/s00204-012-0947-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
It has been reported that antioxidative enzymes, neuropeptide Y (NPY), and c-AMP response element-binding protein (CREB) are involved in regulating phenylpropanolamine (PPA)-mediated appetite suppression. Here, we investigated whether Y1 receptor (Y1R) might be involved in this regulation. Rats were daily treated with PPA for 4 days. Changes in the contents of NPY, Y1R, glutathione peroxidase (GP), and CREB were assessed and compared. Results showed that Y1R, GP, and CREB increased, with a maximal increase about 100, 200, and 150 %, respectively, on Day 2. By contrast, NPY decreased with a biggest reduction about 48 % on Day 2 and the pattern of expression during PPA treatment was opposite to those of Y1R, GP, and CREB. Central knockdown (using antisense) or inhibition (using antagonist) of Y1R expression modulated the anorectic response of PPA and the reciprocal regulation between NPY and GP (or CREB), revealing an essential role of Y1R in regulating NPY, GP, and CREB. These results suggest that Y1R participates in the reciprocal regulation of NPY, GP, and CREB in the hypothalamus during PPA treatment in conscious rats. The present results may aid the therapeutic research of PPA and related antiobesity drugs.
Collapse
MESH Headings
- Animals
- Appetite Depressants/pharmacology
- Appetite Regulation/drug effects
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Eating/drug effects
- Gene Knockdown Techniques
- Glutathione Peroxidase/metabolism
- Hypothalamus/drug effects
- Hypothalamus/enzymology
- Injections, Intraventricular
- Male
- Neuropeptide Y/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Phenylpropanolamine/pharmacology
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Signal Transduction/drug effects
- Time Factors
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan, ROC
| | | | | | | |
Collapse
|
38
|
Fang XL, Shu G, Yu JJ, Wang LN, Yang J, Zeng QJ, Cheng X, Zhang ZQ, Wang SB, Gao P, Zhu XT, Xi QY, Zhang YL, Jiang QY. The anorexigenic effect of serotonin is mediated by the generation of NADPH oxidase-dependent ROS. PLoS One 2013; 8:e53142. [PMID: 23326391 PMCID: PMC3541393 DOI: 10.1371/journal.pone.0053142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/23/2012] [Indexed: 12/27/2022] Open
Abstract
Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway.
Collapse
Affiliation(s)
- Xin-Ling Fang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Jian Yu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Na Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Jie Zeng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Cheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Qi Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ping Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Tong Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- * E-mail:
| |
Collapse
|
39
|
Aimé P, Hegoburu C, Jaillard T, Degletagne C, Garcia S, Messaoudi B, Thevenet M, Lorsignol A, Duchamp C, Mouly AM, Julliard AK. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS One 2012; 7:e51227. [PMID: 23251461 PMCID: PMC3522659 DOI: 10.1371/journal.pone.0051227] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.
Collapse
Affiliation(s)
- Pascaline Aimé
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Chloé Hegoburu
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Tristan Jaillard
- Métabolisme Plasticité Mitochondrie, CNRS UMR 5241 - Université Paul Sabatier, Toulouse, France
- STROMALab, CNRS UMR 5273 - EFS - INSERM U1031- Université Paul Sabatier, Toulouse, France
| | - Cyril Degletagne
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), CNRS UMR 5023 - Université Lyon 1 – Université de Lyon, Villeurbanne, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Belkacem Messaoudi
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Marc Thevenet
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Anne Lorsignol
- Métabolisme Plasticité Mitochondrie, CNRS UMR 5241 - Université Paul Sabatier, Toulouse, France
- STROMALab, CNRS UMR 5273 - EFS - INSERM U1031- Université Paul Sabatier, Toulouse, France
| | - Claude Duchamp
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), CNRS UMR 5023 - Université Lyon 1 – Université de Lyon, Villeurbanne, France
| | - Anne-Marie Mouly
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
| | - Andrée Karyn Julliard
- Centre de Recherche en Neurosciences de Lyon (CRNL), Team Olfaction: From Coding to Memory, CNRS UMR 5292 - INSERM U1028- Université Lyon1 - Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Hsieh YS, Kuo MH, Chen PN, Kuo DY. The identification of neuropeptide Y receptor subtype involved in phenylpropanolamine-induced increase in oxidative stress and appetite suppression. Neuromolecular Med 2012. [PMID: 23179670 DOI: 10.1007/s12017-012-8206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) and superoxide dismutase (SOD) have been reported to participate in the regulation of appetite-suppressing effect of phenylpropanolamine (PPA), a sympathomimetic agent. This study explored whether Y1 receptor (Y1R) and/or Y5 receptor (Y5R) was involved in this regulation. Wistar rats were treated with PPA for 24 h. Changes in food intake and hypothalamic NPY, Y1R, Y5R, and SOD contents were assessed and compared. Results showed that food intake and NPY contents were decreased following PPA treatment, while Y1R and SOD contents were increased and Y5R contents remained unchanged. Moreover, although Y1R or Y5R knockdown by themselves could modify the food intake, Y1R but not Y5R knockdown could modify PPA-induced anorexia as well as NPY and SOD contents. In addition, selective inhibition of Y1R but not Y5R could modulate PPA-induced anorexia. It is suggested that Y1R but not Y5R participates in the anorectic response of PPA via the modulation of NPY and SOD. Results provide molecular mechanism of NPY-mediated PPA anorexia and may aid the understanding of the toxicology of PPA.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan, ROC
| | | | | | | |
Collapse
|
41
|
He R, Ju X, Yuan J, Wang L, Girgih AT, Aluko RE. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.08.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
St-Louis R, Parmentier C, Raison D, Grange-Messent V, Hardin-Pouzet H. Reactive oxygen species are required for the hypothalamic osmoregulatory response. Endocrinology 2012; 153:1317-29. [PMID: 22202167 DOI: 10.1210/en.2011-1350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free radicals, or reactive oxygen species (ROS), are highly reactive byproducts of oxygen degradation. They are well known for their cellular toxicity, but few studies have analyzed their potential role in homeostatic processes. We investigated ROS production and function during the arginine vasopressin (AVP) hypothalamic response to hyperosmolarity. Six-week-old male C3H/HeJ mice were subjected to salt loading for 2 or 8 d. The osmotic axis was progressively activated and reached a new steady-state status at 8 d as demonstrated by monitoring of plasmatic osmolality and c-Fos and AVP expression in the supraoptic nucleus (SON). Free radicals, visualized by dihydroethidine staining and measured by 2'-7'dichlorofluorescein diacetate assays, were detected after 2 d of salt loading. The activity and expression of superoxide dismutase 2 and catalase were concomitantly up-regulated in the SON, suggesting that free radicals are detoxified by endogenous antioxidant systems, thereby avoiding their deleterious effects. The early phase of the osmoregulatory response has been investigated using an acute hyperosmotic model; free radicals were produced 45 min after an ip injection of 1.5 m NaCl. This was followed by an increase in c-Fos and AVP expression and an increase in superoxide dismutase 2 and catalase activities. α-Lipoic acid, a ROS scavenger, administrated during the 3 d before the hypertonic ip injection, abolished the increase of AVP. These findings establish that hyperosmolarity causes ROS production in the SON, which is essential for AVP increase. This demonstrates the importance of free radicals as physiological signaling molecules in the regulation of body-fluid balance.
Collapse
Affiliation(s)
- Ronald St-Louis
- Université Pierre et Marie Curie Institut National de la Santé et de la Recherche Médicale Unité 952, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7224, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
43
|
Abstract
Insulin acts throughout the body to reduce circulating energy and to increase energy storage. Within the brain, insulin produces a net catabolic effect by reducing food intake and increasing energy expenditure; this is evidenced by the hypophagia and increased brown adipose tissue sympathetic nerve activity induced by central insulin infusion. Reducing the activity of the brain insulin system via administration of insulin antibodies, receptor antisense treatment, or receptor knockdown results in hyperphagia and increased adiposity. However, despite decades of research into the role of central insulin in food intake, many questions remain to be answered, including the underlying mechanism of action.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
44
|
de Kloet AD, Krause EG, Scott KA, Foster MT, Herman JP, Sakai RR, Seeley RJ, Woods SC. Central angiotensin II has catabolic action at white and brown adipose tissue. Am J Physiol Endocrinol Metab 2011; 301:E1081-91. [PMID: 21862725 PMCID: PMC3233774 DOI: 10.1152/ajpendo.00307.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable evidence implicates the renin-angiotensin system (RAS) in the regulation of energy balance. To evaluate the role of the RAS in the central nervous system regulation of energy balance, we used osmotic minipumps to chronically administer angiotensin II (Ang II; icv; 0.7 ng/min for 24 days) to adult male Long-Evans rats, resulting in reduced food intake, body weight gain, and adiposity. The decrease in body weight and adiposity occurred relative to both ad libitum- and pair-fed controls, implying that reduced food intake in and of itself does not underlie all of these effects. Consistent with this, rats administered Ang II had increased whole body heat production and oxygen consumption. Additionally, chronic icv Ang II increased uncoupling protein-1 and β(3)-adrenergic receptor expression in brown adipose tissue and β3-adrenergic receptor expression in white adipose tissue, which is suggestive of enhanced sympathetic activation and thermogenesis. Chronic icv Ang II also increased hypothalamic agouti-related peptide and decreased hypothalamic proopiomelanocortin expression, consistent with a state of energy deficit. Moreover, chronic icv Ang II increased the anorectic corticotrophin- and thyroid-releasing hormones within the hypothalamus. These results suggest that Ang II acts in the brain to promote negative energy balance and that contributing mechanisms include an alteration in the hypothalamic circuits regulating energy balance, a decrease in food intake, an increase in energy expenditure, and an increase in sympathetic activation of brown and white adipose tissue.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Body Weight/drug effects
- Brain/drug effects
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Drug Evaluation, Preclinical
- Eating/drug effects
- Infusion Pumps, Implantable
- Infusions, Intraventricular
- Infusions, Subcutaneous
- Male
- Metabolism/drug effects
- Rats
- Rats, Long-Evans
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kuo DY, Chen PN, Yang SF, Chu SC, Chen CH, Kuo MH, Yu CH, Hsieh YS. Role of reactive oxygen species-related enzymes in neuropeptide y and proopiomelanocortin-mediated appetite control: a study using atypical protein kinase C knockdown. Antioxid Redox Signal 2011; 15:2147-59. [PMID: 21453188 DOI: 10.1089/ars.2010.3738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS Studies have reported that redox signaling in the hypothalamus participates in nutrient sensing. The current study aimed to determine if the activation of reactive oxygen species-related enzymes (ROS-RE) in the hypothalamus participates in regulating neuropeptide Y (NPY)-mediated eating. Moreover, possible roles of proopiomelanocortin (POMC) and atypical protein kinase C (aPKC) were also investigated. Rats were treated daily with phenylpropanolamine (PPA) for 4 days. Changes in the expression levels of ROS-RE, POMC, NPY, and aPKC were assessed and compared. RESULTS Results showed that ROS-RE, POMC, and aPKC increased, with a maximal response on Day 2 (anorectic effect) and with a restoration to the normal level on Day 4 (tolerant effect). By contrast, NPY expression decreased, and the expression pattern of NPY proved opposite those of ROS-RE and POMC. Central inhibition of ROS production by ICV infusion of ROS scavenger attenuated PPA anorexia, revealing a crucial role of ROS in regulating eating. Cerebral aPKC knockdown by ICV infusion of antisense aPKC modulated the expression of ROS-RE, POMC, and NPY. CONCLUSION Results suggest that ROS-RE/POMC- and NPY-containing neurons function reciprocally in regulating both the anorectic and tolerant effects of PPA, while aPKC is upstream of these regulators. INNOVATION These results may further the understanding of ROS-RE and aPKC in the control of PPA anorexia.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kuo DY, Chen PN, Chu SC, Hsieh YS. Knocking down the transcript of NF-kappaB modulates the reciprocal regulation of endogenous antioxidants and feeding behavior in phenylpropanolamine-treated rats. Arch Toxicol 2011; 86:453-63. [PMID: 21989786 DOI: 10.1007/s00204-011-0761-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022]
Abstract
It has been reported that oxidative stress, antioxidants, and neuropeptide Y (NPY) are involved in regulating the feeding behavior of phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether transcription factor NF-κB is involved in this effect. Rats were treated daily with PPA for 4 days. Changes in hypothalamic NF-κB, NPY, superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels during PPA treatment were assessed and compared. Results showed that NF-κB, SOD, and GPx increased, with a maximal response on Day 2, while the food intake and NPY decreased with the biggest reduction on Day 2 during PPA treatment. To further determine whether NF-κB was involved, intracerebroventricular infusion of antisense oligonucleotide was performed at 1 h before daily PPA in free-moving rats. Cerebral NF-κB knockdown could modify PPA anorexia and the expressions of NPY, SOD, and GPx. It is suggested that hypothalamic NF-κB participates in the reciprocal regulation of NPY and antioxidants, which mediated the appetite-suppressing effect of PPA. Results may further the understanding of the molecular mechanisms of PPA.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | | | | | | |
Collapse
|
47
|
Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 2011; 18:52-8. [PMID: 21917523 DOI: 10.1016/j.molmed.2011.08.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/18/2022]
Abstract
Nutrient availability is critical for the physiological functions of all tissues. By contrast, an excess of nutrients such as carbohydrate and fats impair health and shorten life due by stimulating chronic diseases, including diabetes, cancer and neurodegeneration. The control of circulating glucose and lipid levels involve mitochondria in both central and peripheral mechanisms of metabolism regulation. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in physiological and pathological processes related to glucose and lipid metabolism, and in this review we discuss the latest data on the relationships between UCP2 and glucose and lipid sensing from the perspective of specific hypothalamic neuronal circuits and peripheral tissue functions. The goal is to provide a framework for discussion of future therapeutic strategies for metabolism-related chronic diseases.
Collapse
|
48
|
de Kloet AD, Pacheco-López G, Langhans W, Brown LM. The effect of TNFα on food intake and central insulin sensitivity in rats. Physiol Behav 2010; 103:17-20. [PMID: 21163282 DOI: 10.1016/j.physbeh.2010.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/04/2010] [Accepted: 11/29/2010] [Indexed: 01/01/2023]
Abstract
Circulating and tissue levels of the proinflammatory cytokine tumor necrosis factor α (TNFα) are elevated in obesity. TNFα interferes with insulin signaling in many tissues and also plays a causal role in the anorexia that accompanies severe challenges to the immune system. The interactions between TNFα and insulin in the control of eating are less well known. The present study evaluated the role of TNFα in the central nervous system control of food intake by insulin in adult male Long Evans rats. We first determined the ability of several doses of TNFα injected into the 3rd cerebral ventricle (i3vt) to reduce food intake in male rats. Subsequently, we assessed the ability of a subthreshold dose of TNFα to modulate the effect of i3vt insulin on food intake in male rats fed a low-fat chow or a high-fat (HF) diet. TNFα administered i3vt dose-dependently reduced food intake in rats fed a standard low-fat chow diet. Moreover, a low, sub-threshold dose of TNFα diminished the reduction in food intake by insulin in rats maintained on a chow diet, but enhanced insulin action in rats maintained on a HF diet. These data suggest that the interaction of TNFα with central insulin varies with nutritional and/or dietary conditions.
Collapse
Affiliation(s)
- Annette D de Kloet
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
| | | | | | | |
Collapse
|
49
|
Kuhla B, Albrecht D, Bruckmaier R, Viergutz T, Nürnberg G, Metges CC. Proteome and radioimmunoassay analyses of pituitary hormones and proteins in response to feed restriction of dairy cows. Proteomics 2010; 10:4491-500. [DOI: 10.1002/pmic.201000383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Abstract
Neuropathies are severe complications of diabetes. In this issue of Neuron, Campanucci et al. report that hyperglycemia-induced elevation of reactive oxygen species impairs synaptic transmission of sympathetic neurons leading to diabetes-induced dysautonomias. These observations provide new insights into the etiology of diabetic complications and suggest potential novel therapeutic approaches for neuropathies.
Collapse
Affiliation(s)
- Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|