1
|
Han J, Li J, Yao S, Wei Z, Jiang H, Xu T, Zeng J, Xu L, Han Y. GPR75: Advances, Challenges in Deorphanization, and Potential as a Novel Drug Target for Disease Treatment. Int J Mol Sci 2025; 26:4084. [PMID: 40362321 PMCID: PMC12071931 DOI: 10.3390/ijms26094084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such as 20-hydroxyeicosatetraenoic acid (20-HETE) and C-C motif chemokine ligand 5 (CCL5/RANTES); however, its definitive endogenous ligand remains unidentified, and GPR75 is currently classified as an orphan receptor by International Union of Basic and Clinical Pharmacology (IUPHAR). Research on GPR75 deorphanization has underscored its critical roles in disease models, particularly in metabolic health, glucose regulation, and stability of the nervous and cardiovascular systems. However, the signaling pathways of GPR75 across different pathological conditions require further investigation. Importantly, ongoing studies are targeting GPR75 for drug development, exploring small molecule inhibitors, antibodies, and gene silencing techniques, positioning GPR75 as a promising GPCR target for treating related diseases. This review summarizes the recent advancements in GPR75 deorphanization research, examines its functions across tissues and systems, and highlights its links to metabolic, cardiovascular, and neurological disorders, thereby providing a resource for researchers to better understand the biological functions of this receptor.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Jiaojiao Li
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Sirui Yao
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Zao Wei
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Hui Jiang
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563006, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| |
Collapse
|
2
|
Akther S, Samiha F, Sony SA, Haque MA, Hasnat MA, Islam SMS, Ahmed S, Abdullah-Al-Shoeb M. Assessment of serum biomarker changes following the COVID-19 pandemic and vaccination: a cohort study in Sylhet, Bangladesh. Front Public Health 2025; 13:1435930. [PMID: 40061468 PMCID: PMC11885237 DOI: 10.3389/fpubh.2025.1435930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Objectives Coronavirus 2019 (COVID-19) has spread throughout the world and the current COVID-19 vaccines have shown to be the most effective means of combating the COVID-19. This study focused to examine the status of serum biomarkers in individuals infected and non-infected with SARS-CoV-2, both before and after COVID-19 pandemic and vaccination. Methods This study comprised 133 adults aged 35 and older including both academic and non-academic personnel associated with Shahjalal University of Science and Technology in Sylhet, Bangladesh. Participants were evaluated before and after COVID-19 pandemic, as well as following two doses of vaccination. Blood samples were collected to measure different serum biomarkers, including fasting blood sugar (FBS), serum creatinine, serum alanine transaminase (ALT), total cholesterol (TC), triglyceride (TG), Low density lipoprotein-cholesterol (LDL-C), and High density lipoprotein-cholesterol (HDL-C). Statistical analysis was performed using SPSS software. Result In all participants, serum creatinine, FBS and TC levels significantly increased after two doses of vaccination (p = 0.022, 0.006, 0.05) compared to pre-vaccination levels. Notably, all serum biomarkers showed a significant elevation (p ≤ 0.05) in the self-reported SARS-CoV-2 infected group (n = 44). Additionally, 31% of participants were newly diagnosed with hyperglycemia after receiving the COVID-19 vaccine. Conclusion The findings indicate that both self-reported SARS-CoV-2 infection and COVID-19 vaccination could influence different serum biomarker levels. However, further comprehensive research is necessary to discern the precise factors contributing to the alterations observed in the serum biomarker levels for future health management strategy.
Collapse
Affiliation(s)
- Shangida Akther
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fairoz Samiha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sabrina Amita Sony
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Anamul Haque
- Department of Statistics, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Abul Hasnat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - S. M. Saiful Islam
- Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
3
|
Zhan Y, Chen Z, Zheng S, Dai L, Zhang W, Dai Y, Gao F, Shen Y, Zhang W. Elevated BACE1 and IFNγ+ T Cells in Patients with Cognitive Impairment and the 5xFAD Mouse Model. ACS Chem Neurosci 2025; 16:384-392. [PMID: 39810314 PMCID: PMC11804866 DOI: 10.1021/acschemneuro.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
The dysregulation of T cell differentiation was associated with cognitive impairment. Recently, the peripheric β-secretase (BACE1) has been suggested as a regulator of T cell differentiation, which was increased in both cognitive impairment (CI) and type 2 diabetes mellitus (T2DM) in CI patients. However, the relationship between T cell dysfunction and CI remains unclear. To address this question, we measured T cell subtypes and BACE1 enzyme activity in a clinical cohort and 5xFAD mice. We found that both IFNγ+ Th1 and Tc1 cells were increased in the CI and T2DM-CI groups, which were associated with worsening cognitive function. The elevated IFNγ + Th1 and Tc1 cells were also observed in 8-month-old 5xFAD mice. The elevated BACE1-mediated INSR cleavage was associated with increased IFNγ + Th1 and Tc1 cells. These findings demonstrate the potential role of elevated BACE1 in IFNγ+ T cells and CI.
Collapse
Affiliation(s)
- Yaxi Zhan
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Zuolong Chen
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Shuxin Zheng
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Linbin Dai
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Wei Zhang
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| | - Yumeng Dai
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| | - Feng Gao
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Yong Shen
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
- Anhui Province
Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Weiwei Zhang
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| |
Collapse
|
4
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
5
|
Taselaar AE, Wijngaarden LH, Klaassen RA, van der Harst E, Dunkelgrun M, Kuijper TM, Ambagtsheer G, Hendriks T, de Bruin RWF, Litjens NHR. Bariatric surgery reverses morbid obesity-induced changes in the composition of circulating immune cells-a prospective cohort study. Surg Obes Relat Dis 2025:S1550-7289(25)00008-5. [PMID: 40038017 DOI: 10.1016/j.soard.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND Morbid obesity is associated with aging of the immune system, a phenomenon known as "inflammaging," characterized by increased numbers of various immune cell subsets. OBJECTIVES To evaluate the long-term effects of bariatric surgery on immune cell subsets in patients with obesity and to determine the impact of metabolic syndrome on these changes. SETTING High-volume bariatric center, Netherlands. METHODS This prospective cohort study included patients with obesity, with and without metabolic syndrome, as well as lean controls. Peripheral blood samples were collected preoperatively (T0) and at various time points up to 18 months postoperatively (T18). Flow cytometry was used to measure absolute numbers of T cells, B cells, natural killer (NK) cells, and monocyte subsets, with adjustments for age and cytomegalovirus (CMV) serostatus. RESULTS At T0, patients with obesity had elevated numbers of CD4+ CD31 naïve T cells, CD8+ terminally differentiated effector memory RA T cells, double-negative B cells, plasmablasts, NK cells, and monocytes compared with lean controls. CD8+ central memory T cells were decreased in patients with obesity. While most immune cell subsets gradually normalized by T18, some subsets, including T cells, B cells, and NK cells, that were initially elevated, decreased during follow-up and ultimately ended up lower than those in lean controls at T12 or T18. Metabolic syndrome did not affect these outcomes. COVID-19-related disruptions reduced the number of patients assessed over time. CONCLUSIONS Bariatric surgery restores the harmful effects of morbid obesity on the composition of innate and adaptive immune cell subsets in the long-term for patients with obesity, both with and without metabolic syndrome.
Collapse
Affiliation(s)
- Annick Elianna Taselaar
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands; Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands.
| | - Leontine Henriëtte Wijngaarden
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands; Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | | | | | - Martin Dunkelgrun
- Department of Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | | | - Gisela Ambagtsheer
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Tessa Hendriks
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | | | - Nicolle Helena Renier Litjens
- Department of Internal Medicine, Erasmus MC Transplant Institute, Division Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Chen Z, Sun J, Shi T, Song C, Wu C, Wu Z, Lin J. Causal roles of circulating cytokines in sarcopenia-related traits: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1370985. [PMID: 39345889 PMCID: PMC11427268 DOI: 10.3389/fendo.2024.1370985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Epidemiological and experimental evidence suggests that chronic inflammation plays an important role in the onset and progression of sarcopenia. However, there is inconsistent data on the inflammatory cytokines involved in the pathogenesis of sarcopenia. Therefore, we performed a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between circulating cytokines and sarcopenia-related traits. Methods The MR analysis utilized genetic data from genome-wide association study that included genetic variations in 41 circulating cytokines and genetic variant data for appendicular lean mass (ALM), hand grip strength, and usual walking pace. Causal associations were primarily explored using the inverse variance-weighted (IVW) method, supplemented by MR-Egger, simple mode, weighted median, and weighted mode analyses. Additionally, sensitivity analyses were also performed to ensure the reliability and stability of the results. Results Three cytokines [hepatocyte growth factor (HGF), interferon gamma-induced protein 10 (IP-10), and macrophage colony-stimulating factor (M-CSF)] were positively associated with ALM (β: 0.0221, 95% confidence interval (CI): 0.0071, 0.0372, P= 0.0039 for HGF; β: 0.0096, 95%CI: 4e-04, 0.0189, P= 0.0419 for IP-10; and β: 0.0100, 95%CI: 0.0035, 0.0165, P= 0.0025 for M-CSF). Conversely, higher levels of interleukin-7 (IL-7), monocyte chemotactic protein 3 (MCP-3), and regulated on activation, normal T cell expressed and secreted (RANTES) were associated with decreased hand grip strength (β: -0.0071, 95%CI: -0.0127, -0.0014, P= 0.0140 for IL-7; β: -0.0064, 95%CI: -0.0123, -6e-04, P= 0.0313 for MCP-3; and β: -0.0082, 95%CI: -0.0164, -1e-04, P= 0.0480 for RANTES). Similarly, interleukin 1 receptor antagonist (IL-1RA) was negatively correlated with usual walking pace (β: -0.0104, 95%CI: -0.0195, -0.0013, P= 0.0254). Sensitivity analysis confirmed the robustness of these findings. Conclusions Our study provides additional insights into the pivotal role of specific inflammatory cytokines in the pathogenesis of sarcopenia. Further research is required to determine whether these cytokines can be used as targets for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jun Sun
- Department of Emergency, Zhaotong Traditional Chinese Medicine Hospital, Zhaotong, Yunnan, China
| | - Tengbin Shi
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chenyang Song
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chengjian Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhengru Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiajun Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
7
|
González-Garibay AS, Sandoval G, Torres-González OR, Bastidas-Ramírez BE, Sánchez-Hernández IM, Padilla-Camberos E. Agave-Laurate-Bioconjugated Fructans Decrease Hyperinsulinemia and Insulin Resistance, Whilst Increasing IL-10 in Rats with Metabolic Syndrome Induced by a High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1036. [PMID: 39204141 PMCID: PMC11357657 DOI: 10.3390/ph17081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic syndrome (MetS) comprises a cluster of metabolic risk factors, which include obesity, hypertriglyceridemia, high blood pressure, and insulin resistance. The purpose of this study was to evaluate the effects of laurate-bioconjugated fructans on pro- and anti-inflammatory cytokines in Wistar rats with MetS induced by a high-fat diet. Laurate-bioconjugated fructans were synthesized with agave fructans, immobilized lipase B, and vinyl laureate as the acylant. Groups were fed a standard diet (NORMAL), a high-fat diet (HFD), or a high-fat diet plus laurate-bioconjugated fructans (FL PREV) for 9 weeks. A fourth group received a high-fat diet for 6 weeks, followed by simultaneous exposure to a high-fat diet and laurate-bioconjugated fructans for 3 additional weeks (FL REV). The dose of laurate-bioconjugated fructans was 130 mg/kg. Laurate-bioconjugated fructans reduced food and energy intake, body weight, body mass index, abdominal circumference, adipose tissue, adipocyte area, serum triglycerides, insulin, insulin resistance, and C-reactive protein but they increased IL-10 protein serum levels and mRNA expression. The impact of laurate-bioconjugated fructans on zoometric and metabolic parameters supports their potential as therapeutic agents to improve obesity, obesity comorbidities, insulin resistance, type 2 diabetes mellitus, and MetS.
Collapse
Affiliation(s)
- Angélica Sofía González-Garibay
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Georgina Sandoval
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-González
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Iván Moisés Sánchez-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Eduardo Padilla-Camberos
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| |
Collapse
|
8
|
Tylutka A, Morawin B, Walas Ł, Zembron-Lacny A. Does excess body weight accelerate immune aging? Exp Gerontol 2024; 187:112377. [PMID: 38346543 DOI: 10.1016/j.exger.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Overweight and obesity in older adults increase the risk of a range of comorbidities by sustaining chronic inflammation and thus enhancing immunosenescence. This study aimed to assess whether excess body mass affected disproportion in T lymphocytes. Therefore, the study was designed to explain whether excess body mass in older individuals affected the disproportion in numbers of T lymphocytes and whether anthropometric indices and immune risk profile expressed as CD4/CD8 ratio are diagnostically useful in the analysis of immunosenescence. MATERIALS & METHODS One hundred three individuals aged 73.6 ± 3.1 years were allocated to the normal body mass (body mass index (BMI) 18.5-24.9 kg/m2,n = 39), the pre-obesity (BMI 25.0-29.9 kg/m2, n = 44) or the obesity (BMI ≥30.0 kg/m2, n = 20) group, based on WHO recommendations. Details on the subjects' medical history and lifestyle were obtained by health questionnaire. Anthropometric analysis was performed by bioelectrical impedance method, biochemical analysis was made by the automatic analyzer and ELISA immunoassays, and T and B lymphocyte counts were determined by eight-parameter flow cytometry. Additionally, visceral adiposity index, body adiposity index (BAI), and body shape index (ABSI) were evaluated based on body circumference, BMI and lipid-lipoprotein profile measurements. RESULTS The highest percentage of CD3+CD4+ T lymphocytes (59.4 ± 12.6 %) and the lowest CD3+CD8+ T lymphocytes (31.6 ± 10.0 %) were noted in patients the obesity group. The highest cut-off value of 1.9 for CD4/CD8 ratio was recorded in the normal body mass vs pre-obesity model. CD4/CD8 ratio > 2.5 was recorded in >20 % of our pre-obesity and obesity groups while 64.5 % of the normal body mass group had CD4/CD8 ratio < 1. High diagnostic usefulness was demonstrated for both BAI and lipid accumulation product (LAP) (AUC values of ~0.800 and ~ 0.900 respectively) in three models: normal body mass vs pre-obesity, normal body mass vs obesity, and pre-obesity vs obesity. CONCLUSION The odds ratios (OR) for CD4/CD8 ratio in the normal body mass vs obesity model (OR = 16.1, 95%CI 3.8-93.6) indicated a potential diagnostic value of T lymphocytes for clinical prognosis of immune aging in relation to excess body weight in older adults. High values of AUC obtained for the following models: CD4/CD8 + BAI (AUC = 0.927), CD4/CD8 + LAP (AUC = 1.00), CD4/CD8 + ABSI (AUC = 0.865) proved to provide excellent discrimination between older adults with obesity and with normal body mass.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| | - Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| |
Collapse
|
9
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
10
|
Engin AB, Engin A. Tryptophan Metabolism in Obesity: The Indoleamine 2,3-Dioxygenase-1 Activity and Therapeutic Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:629-655. [PMID: 39287867 DOI: 10.1007/978-3-031-63657-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-β in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
11
|
Yu S, Lian R, Chen C, Chen X, Xu J, Zeng Y, Li Y. Impact of body mass index on peripheral and uterine immune status in the window of implantation in patients with recurrent reproductive failure. HUM FERTIL 2023; 26:1322-1333. [PMID: 36946060 DOI: 10.1080/14647273.2023.2189024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/11/2022] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate whether maternal obesity affects the immune status of peripheral blood and endometrium in patients with recurrent reproductive failure classified according to their body mass index (BMI). A total of 228 repeated implantation failure (RIF) and 266 recurrent miscarriage (RM) patients were enrolled in the study and further subdivided into three groups according to their BMI: (i) normal weight (18.5≤ BMI <23); (ii) overweight (23≤ BMI <25); and (iii) obese (BMI ≥25). Peripheral blood and endometrium samples were collected in the mid-luteal phase before IVF treatment or natural pregnancy. Peripheral immunocytes were analyzed by flow cytometry, while uterine immune cells were subjected to immunohistochemistry. In RM patients, significantly increased peripheral helper T cells and decreased cytotoxic T cells, NK cells were observed in the obese group compared with the normal-weight group. Meanwhile, in the endometrium, the percentage of NK cell, macrophage cell, M2 macrophage cell, and Treg cell significantly reduced with increased BMI in RIF patients, and the percentage of NK cell and M2 macrophage cell significantly decreased with increased BMI in RM patients. In conclusion, obesity may cause endometrial immune disorder in recurrent reproductive failure women, but was only associated with the peripheral immune change in RM patients.
Collapse
Affiliation(s)
- ShuYi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - RuoChun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Xian Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - YuYe Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| |
Collapse
|
12
|
Borja-Magno AI, Furuzawa-Carballeda J, Guevara-Cruz M, Arias C, Granados J, Bourges H, Tovar AR, Sears B, Noriega LG, Gómez FE. Supplementation with EPA and DHA omega-3 fatty acids improves peripheral immune cell mitochondrial dysfunction and inflammation in subjects with obesity. J Nutr Biochem 2023; 120:109415. [PMID: 37437746 DOI: 10.1016/j.jnutbio.2023.109415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.
Collapse
Affiliation(s)
- Angélica I Borja-Magno
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Martha Guevara-Cruz
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Clorinda Arias
- Department of Genomics Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, Mexico
| | - Julio Granados
- Department of Transplants, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Hector Bourges
- Divission of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Armando R Tovar
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Barry Sears
- Inflammation Research Foundation, Peabody, Massachusetts, USA
| | - Lilia G Noriega
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| | - Francisco Enrique Gómez
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Burwitz BJ, Yusova S, Robino JJ, Takahashi D, Luo A, Slayden OD, Bishop CV, Hennebold JD, Roberts CT, Varlamov O. Western-style diet in the presence of elevated circulating testosterone induces adipocyte hypertrophy without proinflammatory responses in rhesus macaques. Am J Reprod Immunol 2023; 90:e13773. [PMID: 37766405 PMCID: PMC10544858 DOI: 10.1111/aji.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Anovulatory infertility is commonly associated with hyperandrogenemia (elevated testosterone, T), insulin resistance, obesity, and white adipose tissue (WAT) dysfunction associated with adipocyte hypertrophy. However, whether hyperandrogenemia and adipocyte hypertrophy per se induce a proinflammatory response is unknown. METHOD OF STUDY Young adult female rhesus macaques were exposed to an obesogenic Western-style diet (WSD) in the presence of elevated circulating testosterone (T+WSD) or a low-fat control diet with no exogenous T. Immune cells residing in visceral omental white adipose tissue (OM-WAT), corpus luteum and the contralateral ovary, endometrium, lymph nodes, bone marrow, and peripheral blood mononuclear cells were characterized by flow cytometry during the luteal phase of the reproductive cycle. RESULTS Following one year of treatment, T+WSD animals became more insulin-resistant and exhibited increased body fat and adipocyte hypertrophy compared to controls. T+WSD treatment did not induce macrophage polarization toward a proinflammatory phenotype in the tissues examined. Additionally, T+WSD treatment did not affect TNFα production by bone marrow macrophages in response to toll-like receptor agonists. While the major lymphoid subsets were not significantly affected by T+WSD treatment, we observed a significant reduction in the frequency of effector memory CD8+ T-cells (Tem) in OM-WAT, but not in other tissues. Notably, OM-WAT Tem frequencies were negatively correlated with insulin resistance as assessed by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). CONCLUSION This study shows that short-term T+WSD treatment induces weight gain, insulin resistance, and adipocyte hypertrophy, but does not have a significant effect on systemic and tissue-resident proinflammatory markers, suggesting that adipocyte hypertrophy and mild hyperandrogenemia alone are not sufficient to induce a proinflammatory response.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Divisions of Pathobiology and Immunology
- Divisions of Metabolic Health and Disease
| | | | | | | | - Addie Luo
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Ov D. Slayden
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Cecily V. Bishop
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jon D. Hennebold
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Charles T. Roberts
- Divisions of Metabolic Health and Disease
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | | |
Collapse
|
14
|
Schmitz T, Freuer D, Meisinger C, Linseisen J. Associations between anthropometric parameters and immune-phenotypical characteristics of circulating Tregs and serum cytokines. Inflamm Res 2023; 72:1789-1798. [PMID: 37659013 PMCID: PMC10539435 DOI: 10.1007/s00011-023-01777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE To investigate the associations between several anthropometric parameters and regulatory T cells (Tregs) and circulating cytokines in a population-based cohort. METHODS Between 2018 and 2021, a total of 238 participants were examined up to three times within the scope of the MEGA study in Augsburg, Germany. Tregs were analyzed using flow cytometry and the serum concentrations of 52 cytokines were determined. Anthropometric parameters were measured, using also bioelectrical impedance analysis: body mass index (BMI), relative total body fat, relative visceral adipose tissue (rVAT), waist circumference (WC), waist-to-hip ratio (WHR) and body fat distribution. Associations were analyzed using linear mixed models with random intercept (Tregs) and conventional linear regression models (cytokines). RESULTS WC and WHR were inversely associated with the general Treg subset. Four parameters (BMI, rVAT, WC, and WHR) were inversely associated with the conventional Treg population. Three cytokines showed a particularly strong association with several anthropometric parameters: the cutaneous T-cell attracting chemokine was inversely associated with anthropometric parameters, while hepatocyte growth factor and interleukine-18 showed positive associations. CONCLUSIONS Anthropometric measures are associated with Tregs and serum cytokine concentrations revealing new important interconnections between obesity and the adaptive immune system.
Collapse
Affiliation(s)
- Timo Schmitz
- Epidemiology, Medical Faculty, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - D Freuer
- Epidemiology, Medical Faculty, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - C Meisinger
- Epidemiology, Medical Faculty, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - J Linseisen
- Epidemiology, Medical Faculty, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
15
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Jones RH, Thompson D, Turner JE. Immune cell status, cardiorespiratory fitness and body composition among breast cancer survivors and healthy women: a cross sectional study. Front Physiol 2023; 14:1107070. [PMID: 37324393 PMCID: PMC10267418 DOI: 10.3389/fphys.2023.1107070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Methods: We examined whether immune cell profiles differ between healthy women (n = 38) and breast cancer survivors (n = 27) within 2 years of treatment, and whether any group-differences were influenced by age, cytomegalovirus infection, cardiorespiratory fitness and body composition. Using flow cytometry, CD4+ and CD8+ T cell subsets, including naïve (NA), central memory (CM) and effector cells (EM and EMRA) were identified using CD27/CD45RA. Activation was measured by HLA-DR expression. Stem cell-like memory T cells (TSCMs) were identified using CD95/CD127. B cells, including plasmablasts, memory, immature and naïve cells were identified using CD19/CD27/CD38/CD10. Effector and regulatory Natural Killer cells were identified using CD56/CD16. Results: Compared to healthy women, CD4+ CM were +Δ21% higher among survivors (p = 0.028) and CD8+ NA were -Δ25% lower (p = 0.034). Across CD4+ and CD8+ subsets, the proportion of activated (HLA-DR+) cells was +Δ31% higher among survivors: CD4+ CM (+Δ25%), CD4+ EM (+Δ32%) and CD4+ EMRA (+Δ43%), total CD8+ (+Δ30%), CD8+ EM (+Δ30%) and CD8+ EMRA (+Δ25%) (p < 0.046). The counts of immature B cells, NK cells and CD16+ NK effector cells were higher among survivors (+Δ100%, +Δ108% and +Δ143% respectively, p < 0.04). Subsequent analyses examined whether statistically significant differences in participant characteristics, influenced immunological differences between groups. Compared to healthy women, survivors were older (56 ± 6 y vs. 45 ± 11 y), had lower cardiorespiratory fitness (V˙O2max mL kg-1 min-1: 28.8 ± 5.0 vs. 36.2 ± 8.5), lower lean mass (42.3 ± 5.0 kg vs. 48.4 ± 15.8 kg), higher body fat (36.3% ± 5.3% vs. 32.7% ± 6.4%) and higher fat mass index (FMI kg/m2: 9.5 ± 2.2 vs. 8.1 ± 2.7) (all p < 0.033). Analysis of covariance revealed divergent moderating effects of age, CMV serostatus, cardiorespiratory fitness and body composition on the differences in immune cell profiles between groups, depending on the cell type examined. Moreover, across all participants, fat mass index was positively associated with the proportion of HLA-DR+ CD4+ EMRA and CD8+ EM/EMRA T cells (Pearson correlation: r > 0.305, p < 0.019). The association between fat mass index and HLA-DR+ CD8+ EMRA T cells withstood statistical adjustment for all variables, including age, CMV serostatus, lean mass and cardiorespiratory fitness, potentially implicating these cells as contributors to inflammatory/immune-dysfunction in overweight/obesity.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Velindre Cancer Centre and Cardiff University, Cardiff, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Borja-Magno A, Guevara-Cruz M, Flores-López A, Carrillo-Domínguez S, Granados J, Arias C, Perry M, Sears B, Bourges H, Gómez FE. Differential effects of high dose omega-3 fatty acids on metabolism and inflammation in patients with obesity: eicosapentaenoic and docosahexaenoic acid supplementation. Front Nutr 2023; 10:1156995. [PMID: 37215211 PMCID: PMC10196397 DOI: 10.3389/fnut.2023.1156995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Obesity is complicated by low-grade chronic inflammation characterised by increases in inflammatory proteins and cells in peripheral blood. It has been known that omega-3 fatty acids (FA) like eicosapentaenoic (EPA) and docosahexaenoic (DHA) could modulate the inflammatory process and improve metabolic markers. Objective This study aimed to determine the effect of high-dose omega-3 FA on metabolic and inflammatory markers among patients with obesity and healthy volunteers. Methods This prospective study included 12 women with obesity (body mass index [BMI] ≥ 35.0 kg/m2) and 12 healthy women (BMI < 24.0 kg/m2) who were supplemented with a dose of 4.8 g/day (3.2 g EPA plus 1.6 g DHA) for 3 months followed by no treatment for 1 month. Plasma metabolic and inflammatory markers and levels of mRNA transcripts of CD4+ T lymphocyte subsets were determined monthly. Results None of the participants exhibited changes in weight or body composition after study completion. EPA and DHA supplementation improved metabolic (insulin, Homeostatic Model Assessment of Insulin Resistance [HOMA-IR], triglyceride [TG]/ high-density lipoprotein [HDL] ratio, TG, and arachidonic acid [AA]/EPA ratio) and tumor necrosis factor-alpha (TNF-α). Moreover, the levels of mRNA transcripts of T CD4+ lymphocyte subsets (TBX21, IFNG, GATA-3, interleukin [IL]-4, FOXP3, IL-10 IL-6, and TNF-α), were down-regulated during the intervention phase. After 1 month without supplementation, only insulin, HOMA-IR and the mRNA transcripts remained low, whereas all other markers returned to their levels before supplementation. Conclusion Supplementation with high-dose omega-3 FAs could modulate metabolism and inflammation in patients with obesity without weight loss or changes in body composition. However, these modulatory effects were ephemeral and with clear differential effects: short-duration on metabolism and long-lasting on inflammation.
Collapse
Affiliation(s)
- Angélica Borja-Magno
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Flores-López
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Silvia Carrillo-Domínguez
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mary Perry
- Inflammation Research Foundation, Peabody, MA, United States
| | - Barry Sears
- Inflammation Research Foundation, Peabody, MA, United States
| | - Hector Bourges
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - F. Enrique Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
17
|
Dieme A, André S, Lapillonne H, Tounian P, Clément K, Dubern B. Characterization of lymphocyte profiles in children with syndromic obesity. Arch Pediatr 2023; 30:212-218. [PMID: 37061360 DOI: 10.1016/j.arcped.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Little is known about blood lymphocyte subpopulations in children with common (CO) or syndromic (SO) obesity. We aimed to describe the blood lymphocyte profiles of obese children and to search for associations with clinical phenotypes. METHODS Main blood lymphocyte subpopulations were analyzed in 159 children with CO and 34 with SO in a retrospective cohort. Phenotypes included obesity history, body mass index (BMI) Z score, percentage fat mass, and inflammatory parameters. Correlations were performed between phenotypes and circulating lymphocyte profiles. RESULTS Children with SO had a higher BMI Z score (5.5 ± 1.7 SD) than children with CO (4.7 ± 0.9 SD; p = 0.01). Significant differences were found for lymphocyte counts, including a higher percentage of CD19+ B cells (SO = 20.1 ± 6.7 vs. CO = 17.1 ± 6.1%, p = 0.03), despite lower absolute numbers (SO = 0.57 ± 0.20 vs. CO = 0.63 ± 1.9 g/L, p < 0.01). However, no difference in the lymphocyte profile was found between children with SO and those with the most severe CO (BMI Z score ≥ 4.7 SD). CONCLUSION Children with SO have altered blood lymphocyte profiles with increased prevalence of CD19+ B cells, which is closely linked to the degree of obesity severity and inflammatory markers.
Collapse
Affiliation(s)
- A Dieme
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France
| | - S André
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France
| | - H Lapillonne
- Armand-Trousseau Children's Hospital, Biological Hematology Department, Paris, France
| | - P Tounian
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France
| | - K Clément
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France; Hôpital Universitaire Pitié Salpêtrière, Nutrition Department, Paris, France
| | - B Dubern
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France.
| |
Collapse
|
18
|
In obese hypertensives cholecalciferol inhibits circulating TH17 cells but not macrophage infiltration on adipose tissue. Clin Immunol 2023; 247:109244. [PMID: 36706826 DOI: 10.1016/j.clim.2023.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
In arterial hypertension, increased Th17 cells and reduced Tregs are the hallmarks of immunological dysfunction and the basis for the investigation of immunomodulatory drugs. Although cholecalciferol is not a primary immunomodulator, it has recognized action on immune cells, leading us to hypothesise if cholecalciferol can induce a more tolerogenic phenotype in obese hypertensives. In a phase-2, single-centre, randomised, open, 24-week trial, we assigned adults with obesity-associated hypertension and vitamin D deficiency to receive usual therapy plus 50,000 IU/week of cholecalciferol or usual therapy alone. The primary endpoint was the percentual variation in T CD4+, T CD8+, Tregs, and Th17 cells. Secondary endpoints included the percentual variation in Th1, Tc1, Tc17, and monocytes and variation in the number of perivascular and non-perivascular macrophages, T CD4+ and T CD8+ lymphocytes in subcutaneous abdominal adipose tissue. A control group of 12 overweight normotensives was also evaluated for peripheral immune cells. A total of 36 obese hypertensives were randomised, 18 in each group. In comparison with normotensive controls, hypertensives presented higher percentages of T lymphocytes (p = 0.016), Tregs (p = 0.014), and non-classical monocytes (p < 0.001). At week 24, Th17 cells increased in control group (p = 0.017) but remained stable in cholecalciferol group. For Tregs, downregulation towards the values of normotensive controls was observed (p = 0.003), and in multivariate analysis, an increased loading in the setting of the cells of adaptive immunity observed (eigenvalue 1.78, p < 0.001). No changes were documented for monocytes. In adipose tissue, a baseline negative correlation between vitamin D and perivascular macrophages was observed (r = -0.387, p = 0.024) that persisted in the control group (r = -0.528, p = 0.024) but not in the cholecalciferol group, which presented an increase in non-perivascular macrophages (p = 0.029) at week 24. No serious adverse events were reported for all the participants. In this trial, we found that supplementation with cholecalciferol interfered with peripheral and adipose tissue immune cell profile, downregulating peripheral Th17 cells, but increasing the number of infiltrating subcutaneous adipose tissue macrophages. (Funded by Núcleo Estudos Hipertensão da Beira Interior; EudraCT number: 2015-003910-26).
Collapse
|
19
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
20
|
Mohamed AA, Alrohaimi AH, Sayed Abdelgeliel A, Albogami S, Jafri I, Fayad E, Mohamed N, Nassar NA, Adaroas AS, Eldeeb HH, Abdel Halim A, Ramadan A, Elnagar RM, Abdelghafour RAM, Mohamed AY, Mahmoud MO, El-Kasses A, El-Sayed M, Mohammed MA, Alwaleed EA, Mousa S, Abdel Salam S, Abd el salam SM. The Impact of LEP rs7799039 Polymorphism and Obesity on the Severity of Coronavirus Disease-19. Diabetes Metab Syndr Obes 2023; 16:515-522. [PMID: 36852180 PMCID: PMC9961580 DOI: 10.2147/dmso.s391869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/22/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND AND AIMS SARS-CoV-2 infection has been recorded in 230 countries to date. Obesity has a negative impact on one's quality of life and is one of the main causes of mortality globally. Obesity affects the immune system, making the host more susceptible to infectious infections. Also, obesity commonly provokes the severity of respiratory diseases so the correlation of LEP rs7799039 Polymorphism in corpulent patients with COVID-19 infection was clearly investigated in the current study. METHODS A total of 232 patients were recruited, 116 patients were obese with COVID-19 infection, and 116 patients were non obese COVID-19. Fasting blood glucose test (FBG), hemoglobin A1C (HbA1C), complete blood count (CBC), international normalized ratio (INR), urea, alanine transaminase (ALT), aspartate aminotransferase (AST), D dimer and C-reactive protein (CRP) were estimated. C.T. scan was performed for each patient, and C.T. severity score was calculated. Genotyping for the leptin rs7799039 SNPs was performed by TaqMan® (Applied Biosystems Step One TM Real-time PCR). RESULTS Regarding LEP polymorphism, all individuals of non-obese groups significantly had the homozygous allele GG (100%), whereas only 56% of obese groups had GG alleles (P = 0.001). The severity scores significantly (P = 0.001) varied regarding LEP polymorphism regarding Rs7799039, where the largest proportion of those with Grade IV had the homozygous allele AA (57.1%). CONCLUSION There was a correlation between the leptin gene allelic discrimination and COVID-19 CT brutality in obese patients. The A allele was considered a risk factor for severity in COVID-19 patients while the G allele contributes to decreasing that risk.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Abdulmohsen H Alrohaimi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Nouran Mohamed
- Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | | | | | - Hala H Eldeeb
- Clinical Pathology Department, Elsahel Teaching Hospital, Cairo, Egypt
| | - Ahmed Abdel Halim
- Tropical Medicine Department, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Ahmed Ramadan
- Endemic Medicine Department, Cairo University, Cairo, Egypt
| | - Rehab M Elnagar
- Radiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Maha O Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ahmed El-Kasses
- Radiology Department, Elsahel Teaching Hospital, Cairo, Egypt
| | - Marwa El-Sayed
- Department of Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mostafa Ahmed Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, Egypt
| | - Eman A Alwaleed
- Department of Botany and Microbiology, South Valley University, Qena, Egypt
| | - Shrook Mousa
- Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Sherief Abdel Salam
- Department of Hepatogastroenterology and Infectious Diseases, Tanta University, Tanta, Egypt
- Correspondence: Sherief Abdel Salam, Department of Hepatogastroenterology and Infectious Diseases, Tanta University, Tanta, Egypt, Email
| | - Soha M Abd el salam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, Suez, Egypt
| |
Collapse
|
21
|
Ojo BA, Alake SE, Kaur A, Wong SY, Keirns B, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Supplemental wheat germ modulates phosphorylation of STAT3 in the gut and NF-κBp65 in the adipose tissue of mice fed a Western diet. Curr Dev Nutr 2023; 7:100023. [PMID: 37181127 PMCID: PMC10100941 DOI: 10.1016/j.cdnut.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3β. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.
Collapse
Affiliation(s)
- Babajide A. Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanmi E. Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Amritpal Kaur
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Siau Yen Wong
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A. Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
22
|
Green WD, Alwarawrah Y, Al-Shaer AE, Shi Q, Armstrong M, Manke J, Reisdorph N, Farrell TM, Hursting SD, MacIver NJ, Beck MA, Shaikh SR. Inflammation and Metabolism of Influenza-Stimulated Peripheral Blood Mononuclear Cells From Adults With Obesity Following Bariatric Surgery. J Infect Dis 2022; 227:92-102. [PMID: 35975968 PMCID: PMC10205606 DOI: 10.1093/infdis/jiac345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Obesity dysregulates immunity to influenza infection. Therefore, there is a critical need to investigate how obesity impairs immunity and to establish therapeutic approaches that mitigate the impact of increased adiposity. One mechanism by which obesity may alter immune responses is through changes in cellular metabolism. METHODS We studied inflammation and cellular metabolism of peripheral blood mononuclear cells (PBMCs) isolated from individuals with obesity relative to lean controls. We also investigated if impairments to PBMC metabolism were reversible upon short-term weight loss following bariatric surgery. RESULTS Obesity was associated with systemic inflammation and poor inflammation resolution. Unstimulated PBMCs from participants with obesity had lower oxidative metabolism and adenosine triphosphate (ATP) production compared to PBMCs from lean controls. PBMC secretome analyses showed that ex vivo stimulation with A/Cal/7/2009 H1N1 influenza led to a notable increase in IL-6 with obesity. Short-term weight loss via bariatric surgery improved biomarkers of systemic metabolism but did not improve markers of inflammation resolution, PBMC metabolism, or the PBMC secretome. CONCLUSIONS These results show that obesity drives a signature of impaired PBMC metabolism, which may be due to persistent inflammation. PBMC metabolism was not reversed after short-term weight loss despite improvements in measures of systemic metabolism.
Collapse
Affiliation(s)
- William D Green
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yazan Alwarawrah
- Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of North Carolina at Chapel Hill, North Carolina USA
| | - Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy M Farrell
- Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven D Hursting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Nancie J MacIver
- Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of North Carolina at Chapel Hill, North Carolina USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| |
Collapse
|
23
|
Wijngaarden LH, Taselaar AE, Nuijten F, van der Harst E, Klaassen RA, Kuijper TM, Jongbloed F, Ambagtsheer G, Klepper M, IJzermans JNM, de Bruin RWF, Litjens NHR. T and B Cell Composition and Cytokine Producing Capacity Before and After Bariatric Surgery. Front Immunol 2022; 13:888278. [PMID: 35860273 PMCID: PMC9289114 DOI: 10.3389/fimmu.2022.888278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Morbid obesity is associated with a chronic state of low-grade inflammation, which may lead to accelerated differentiation of T and B cells. These differentiated immune cells are strongly cytotoxic and have an increased pro-inflammatory cytokine producing capacity. Furthermore, the anti-inflammatory function of the T and B cells decreases. The aim of this study was to evaluate the effect of morbid obesity on the subset profile and cytokine producing capacity of T and B cells. Subsequently, we assessed whether bariatric surgery affected the subset profile and cytokine producing capacity of these cells. We determined the proportion of T and B cell subsets and their cytokine producing capacity in peripheral blood collected from 23 morbidly obese patients before and three months after bariatric surgery using flow-cytometry. We compared this with the results of 25 lean controls. Both CD4+ and CD8+ T cells showed a more differentiated subset profile in morbidly obese patients as compared to lean controls, which was not recovered three months after bariatric surgery. The B cell composition of morbidly obese patients after bariatric surgery adjusted towards the profile of lean controls. However, the IL-2 and IFN-γ producing capacity of CD8+ T cells and the IL-2, IFN-γ, TNF-α and IL-10 producing capacity of B cells was not restored three months after bariatric surgery. In conclusion, the data suggest that the immune system has the capacity to recover from the detrimental effects of morbid obesity within three months after bariatric surgery in terms of cell composition; however, this was not seen in terms of cytokine producing capacity. The full restoration of the immune system after bariatric surgery may thus take longer.
Collapse
Affiliation(s)
- L. H. Wijngaarden
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - A. E. Taselaar
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - F. Nuijten
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - E. van der Harst
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - R. A. Klaassen
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - T. M. Kuijper
- Maasstad Academy, Maasstad Hospital, Rotterdam, Netherlands
| | - F. Jongbloed
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - G. Ambagtsheer
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - M. Klepper
- Department of Internal Medicine, Erasmus MC Transplant Institute, Division Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - J. N. M. IJzermans
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - R. W. F. de Bruin
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
- *Correspondence: R. W. F. de Bruin,
| | - N. H. R. Litjens
- Department of Internal Medicine, Erasmus MC Transplant Institute, Division Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
24
|
Siopis G. Obesity: A comorbidity-acquired immunodeficiency syndrome (CAIDS). Int Rev Immunol 2022; 42:415-429. [PMID: 35666083 DOI: 10.1080/08830185.2022.2083614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
Accumulating data emphasize a strong link between obesity and the severity of coronavirus disease-2019 (COVID-19), including mortality. Obesity interferes with several components of the immune system including lymphoid tissue's integrity, leukocytes' development and function, complement system's activation, and the coordination of innate and adaptive immune responses. Overall, obesity results in a less efficient immune response to infectious agents. Severe acute respiratory syndrome coronavirus 2 exploits this weakened immune system in people with obesity to precipitate COVID-19, and in some cases death. It is therefore the author's recommendation that obesity should be viewed as another form of acquired immunodeficiency syndrome and be treated with the appropriate seriousness. Unlike the previously described acquired immunodeficiency syndrome (AIDS) that is caused by the Human Immunodeficiency Virus (HIV), obesity is a comorbidity-acquired immunodeficiency syndrome. People with AIDS do not die from HIV, but may die from opportunistic pathogens such as Mycobacterium tuberculosis. However, AIDS is ascribed its due importance in the course of deterioration of the patient. Similarly, obesity should be acknowledged further as a risk factor for mortality from COVID-19. Obesity is a modifiable condition and even in people with a strong genetic predisposition, lifestyle modifications can reverse obesity, and even moderate weight loss can improve the inflammatory milieu. Strong public health actions are warranted to promote lifestyle measures to reduce the burden from overweight and obesity that currently affect more than one-third of the global population, with projections alarming this may reach 55-80% within the next thirty years.
Collapse
Affiliation(s)
- George Siopis
- Institute for Physical Activity and Nutrition (IPAN), Burwood, Australia
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
25
|
Li H, Jia Y, Weng D, Ju Z, Zhao Y, Liu S, Liu Y, Song M, Cui L, Sun S, Lin H. Clostridium butyricum Inhibits Fat Deposition via Increasing the Frequency of Adipose Tissue-Resident Regulatory T Cells. Mol Nutr Food Res 2022; 66:e2100884. [PMID: 35426245 DOI: 10.1002/mnfr.202100884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/17/2022] [Indexed: 12/13/2022]
Abstract
SCOPE Clostridium butyricum (CB) exerts beneficial actions in several disorders. However, the impact and molecular cues of CB in fat metabolism remain elusive. This study demonstrates the CB inhibition of fat deposition by increasing the relative number of adipose tissue-resident Treg cells (aTregs). METHODS AND RESULTS CB is administered orally to wild type (WT) mice fed with chow diet, which decrease fat deposition and adipogenic gene expression, associating with elevated serum levels of butyrate. Sodium butyrate (SB) feeding mimics the CB suppression of fat accumulation. Of note, the frequency of aTregs in both the CB and SB treatments, analyzed by flow cytometry, is markedly increased, accompanied by activated Wnt10b expression in white adipose tissues. However, CB and SB fail to inhibit fat deposition in Wnt10b-KO mice. Intriguingly, CB and SB are able to alleviate the obesity, fatty liver, and glucose abnormalities in high fat diet (HFD)-fed WT mice. CONCLUSIONS These findings suggest that CB, through its metabolite butyrate, inhibits fat deposition via potentiating aTreg cell generation, and support the option of CB and SB for therapeutic interventions in obesity and related disorders.
Collapse
Affiliation(s)
- Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Weng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zijing Ju
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yunfei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mengze Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Lulu Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
26
|
Dai W, Liu X, Su H, Li X, Xu Y, Yu Y. Influence of adipose tissue immune dysfunction on childhood obesity. Cytokine Growth Factor Rev 2022; 65:27-38. [PMID: 35595599 DOI: 10.1016/j.cytogfr.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022]
Abstract
In recent decades, a dramatic rise has been observed in the prevalence of obesity in childhood and adolescence, along with an increase in fetal microsomia rates. The increased risk of obesity during this key period in development negatively affects the health of the individual later in life. Immune cells residing and recruited to white adipose tissue have been highlighted as important factors contributing to the pathogenesis of childhood obesity. Immune dysfunction in the context of obesity begins early in childhood, which is different from the pathological characteristics and influencing factors of adipose immunity in adults. Here, we explore the current understanding of the roles of childhood and early life events that result in high risks for obesity by influencing adipose tissue immune dysfunction under the pathological condition of obesity. Such knowledge will help in determining the mechanisms of childhood and early life obesity in efforts to ameliorate chronic inflammation-related metabolic diseases.
Collapse
Affiliation(s)
- Wanlin Dai
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China; Innovation Institute, China Medical University, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiyan Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Han Su
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xuan Li
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China; Innovation Institute, China Medical University, China Medical University, Shenyang 110122, Liaoning, China
| | - Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
27
|
Tovy A, Rosas C, Gaikwad AS, Medrano G, Zhang L, Reyes JM, Huang YH, Arakawa T, Kurtz K, Conneely SE, Guzman AG, Aguilar R, Gao A, Chen CW, Kim JJ, Carter MT, Lasa-Aranzasti A, Valenzuela I, Van Maldergem L, Brunetti L, Hicks MJ, Marcogliese AN, Goodell MA, Rau RE. Perturbed hematopoiesis in individuals with germline DNMT3A overgrowth Tatton-Brown-Rahman syndrome. Haematologica 2022; 107:887-898. [PMID: 34092059 PMCID: PMC8968878 DOI: 10.3324/haematol.2021.278990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.
Collapse
Affiliation(s)
- Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Amos S Gaikwad
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Geraldo Medrano
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Tastuhiko Arakawa
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kristen Kurtz
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Rogelio Aguilar
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Anne Gao
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jean J Kim
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona
| | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, University of Franche-Comté, Besancon, France
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, Perugia
| | - M John Hicks
- Department of Pathology Texas Children's Hospital and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Andrea N Marcogliese
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX.
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
28
|
Laparoscopic sleeve gastrectomy for morbid obesity improves gut microbiota balance, increases colonic mucosal-associated invariant T cells and decreases circulating regulatory T cells. Surg Endosc 2022; 36:7312-7324. [PMID: 35182212 DOI: 10.1007/s00464-022-09122-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Laparoscopic sleeve gastrectomy (LSG) for morbid obesity may improve gut microbiota balance and decrease chronic inflammation. This study examines the changes in gut microbiota and immune environment, including mucosal-associated invariant T cells (MAIT cells) and regulatory T cells (Treg cells) caused by LSG. METHODS Ten morbidly obese patients underwent LSG at our institution between December 2018 and March 2020. Flow cytometry for Th1/Th2/Th17 cells, Treg cells and MAIT cells in peripheral blood and colonic mucosa and 16S rRNA analysis of gut microbiota were performed preoperatively and then 12 months postoperatively. RESULTS Twelve months after LSG, the median percent total weight loss was 30.3% and the median percent excess weight loss was 66.9%. According to laboratory data, adiponectin increased, leptin decreased, and chronic inflammation improved after LSG. In the gut microbiota, Bacteroidetes and Fusobacteria increased after LSG, and indices of alpha diversity increased after LSG. In colonic mucosa, the frequency of MAIT cells increased after LSG. In peripheral blood, the frequency of Th1 cells and effector Treg cells decreased after LSG. CONCLUSIONS After LSG for morbid obesity, improvement in chronic inflammation in obesity is suggested by change in the constituent bacterial species, increase in the diversity of gut microbiota, increase in MAIT cells in the colonic mucosa, and decrease in effector Treg cells in the peripheral blood.
Collapse
|
29
|
She Y, Mangat R, Tsai S, Proctor SD, Richard C. The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Front Nutr 2022; 9:840209. [PMID: 35252310 PMCID: PMC8891442 DOI: 10.3389/fnut.2022.840209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity has emerged as a leading global health concern. It is characterized by chronic low-grade inflammation, which impairs insulin signaling, lipid metabolism and immune function. Recent findings from animal and clinical studies have begun to elucidate the underlying mechanisms of immune dysfunction seen in the context of obesity. Here, we provide a brief review on the current understanding of the interplay between obesity, dyslipidemia and immunity. We also emphasize the advantages and shortcomings of numerous applicable research models including rodents and large animal swine that aim at unraveling the molecular basis of disease and clinical manifestations. Although there is no perfect model to answer all questions at once, they are often used to complement each other. Finally, we highlight some emerging nutritional strategies to improve immune function in the context of obesity with a particular focus on choline and foods that contains high amounts of choline.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Fuseini H, Smith R, Nochowicz CH, Simmons JD, Hannah L, Wanjalla CN, Gabriel CL, Mashayekhi M, Bailin SS, Castilho JL, Hasty AH, Koethe JR, Kalams SA. Leptin Promotes Greater Ki67 Expression in CD4 + T Cells From Obese Compared to Lean Persons Living With HIV. Front Immunol 2022; 12:796898. [PMID: 35111163 PMCID: PMC8801429 DOI: 10.3389/fimmu.2021.796898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
While antiretroviral therapy (ART) has proven effective in suppressing viremia and disease progression among people living with human immunodeficiency virus (HIV; PLWH), suboptimal CD4+ T cell reconstitution remains a major obstacle in nearly 30% of ART-treated individuals. Epidemiological studies demonstrate that obesity, or a body mass index (BMI) ≥ 30 kg/m2, is positively correlated with greater CD4+ T cell recovery in PLWH on ART. Leptin is a known immunomodulator that is produced in proportion to fat mass and is increased in obese individuals, including PLWH. We hypothesized that CD4+ T cells from obese PLWH have increased cell proliferation and cytokine production compared to cells from lean PLWH, potentially modulated by differential effects of leptin signaling. To test this hypothesis, peripheral blood mononuclear cells from obese and lean PLWH with long-term virologic suppression on the same ART regimen were pretreated with recombinant leptin and then stimulated with anti-CD3/CD28 or PMA/ionomycin to measure Ki67 expression, leptin receptor (LepR) surface expression and cytokine production. In the absence of leptin, Ki67 expression and IL-17A production were significantly higher in CD4+ T cells from obese compared to lean PLWH. However, LepR expression was significantly lower on CD4+ T cells from obese compared to lean PLWH. After leptin treatment, Ki67 expression was significantly increased in CD4+ T cells from obese PLWH compared to the lean participants. Leptin also increased IL-17A production in CD4+ T cells from obese healthy controls. In contrast, leptin decreased IL-17A production in CD4+ T cells from both obese and lean PLWH. Combined, these results demonstrate that obesity is associated with greater CD4+ T cell proliferation among PLWH, and that higher circulating leptin levels in obesity may contribute to improved CD4+ T reconstitution in PLWH initiating ART.
Collapse
Affiliation(s)
- Hubaida Fuseini
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rita Smith
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cindy H. Nochowicz
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - LaToya Hannah
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Celestine N. Wanjalla
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samuel S. Bailin
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica L. Castilho
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- The Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
| | - John R. Koethe
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- The Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
| | - Spyros A. Kalams
- Divison of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Taylor JM, Li A, McLachlan CS. Immune cell profile and immune-related gene expression of obese peripheral blood and liver tissue. FEBS Lett 2022; 596:199-210. [PMID: 34850389 DOI: 10.1002/1873-3468.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Obesity is associated with changes in immune cell subpopulations. However, tissue and blood obesity-responsive immune phenotypic pathways have not been contrasted. Here, the local niche immune cell population and gene expression in fatty liver is compared to peripheral blood of obese individuals. The Cibersort algorithm enumerated increased fractions of memory CD4+ T lymphocytes and reductions in natural killer and memory B cells in obese liver tissue and obese blood, with similar reductions found in nonalcoholic fatty liver disease tissue. Gene expression analysis identified inflammatory immune signatures of regulatory CD4+ T cells with inferred Th1, Th17, Th2, or Treg phenotypes that differed between liver and blood. Our study suggests that the local tissue-specific immune phenotype in the liver differs from the obese peripheral circulation, with the latter reflective of multisystemic persistent inflammation that is characteristic of obesity.
Collapse
Affiliation(s)
- Jude M Taylor
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| | - Amy Li
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, Australia
| | - Craig S McLachlan
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| |
Collapse
|
32
|
GPR75: An exciting new target in metabolic syndrome and related disorders. Biochimie 2022; 195:19-26. [DOI: 10.1016/j.biochi.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
33
|
Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses 2021; 14:v14010025. [PMID: 35062229 PMCID: PMC8779521 DOI: 10.3390/v14010025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
The number of obese adults and children is increasing worldwide, with obesity now being a global epidemic. Around 2.8 million people die annually from clinical overweight or obesity. Obesity is associated with numerous comorbid conditions including hypertension, cardiovascular disease, type 2 diabetes, hypercholesterolemia, hypertriglyceridemia, nonalcoholic fatty liver disease, and cancer, and even the development of severe disease after infection with viruses. Over the past twenty years, a number of new viruses has emerged and entered the human population. Moreover, influenza (H1N1)pdm09 virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused pandemics. During pandemics, the number of obese patients presents challenging and complex issues in medical and surgical intensive care units. Morbidity amongst obese individuals is directly proportional to body mass index. In this review, we describe the impact of obesity on the immune system, adult mortality, and immune response after infection with pandemic influenza virus and SARS-CoV-2. Finally, we address the effect of obesity on vaccination.
Collapse
|
34
|
Matia-Garcia I, Vadillo E, Pelayo R, Muñoz-Valle JF, García-Chagollán M, Loaeza-Loaeza J, Vences-Velázquez A, Salgado-Goytia L, García-Arellano S, Parra-Rojas I. Th1/Th2 Balance in Young Subjects: Relationship with Cytokine Levels and Metabolic Profile. J Inflamm Res 2021; 14:6587-6600. [PMID: 34908860 PMCID: PMC8664383 DOI: 10.2147/jir.s342545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose We aim to identify Th1 and Th2 cell clusters in young subjects, including their clinical and metabolic characteristics and the Th1/Th2 balance. Patients and Methods A total of 100 participants were included. The frequencies of Th1 and Th2 cells in peripheral blood were determined by flow cytometry. Serum C-reactive protein was measured using a turbidimetric assay, and insulin levels were quantified with an enzyme-linked immunosorbent assay. Circulating cytokine levels were analyzed using a multiplex system. Results A cluster analysis was performed to determine the Th1/Th2 balance in a group of young people, and 3 clusters were formed with the following characteristics: 1) subjects with a higher prevalence of hyperglycemia (38%), dyslipidemia (38–75%), and insulin resistance (50%), as well as a higher percentage of Th1 cells and Th1/Th2 ratio, including elevated IFN-ɣ levels; 2) subjects with a lower prevalence of hyperglycemia (23%) and insulin resistance (15.4%), but a higher prevalence of dyslipidemia (8–85%) with a predominance of Th2 cells, and lower Th1/Th2 ratio; 3) subjects with a lower prevalence of hyperglycemia (6%), insulin resistance (41%), and dyslipidemia (10–63%), as well as a balance of Th1 and Th2 cells and lower Th1/Th2 ratio, including low IFN-ɣ levels. Positive correlations between Th1 cells with IFN-γ, IL-12, and IL-1β and between Th2 cells with IFN-γ, IL-2, and IL-4 were found (p < 0.05). A significant increase in Th1 cells was observed in the presence of hyperglycemia and high LDL-C levels, as well as increased Th2 cells in the absence of abdominal obesity and high blood pressure, including low HDL-C levels. The Th1/Th2 ratio was higher in the group with high cardiometabolic risk (p = 0.03). Conclusion Th1/Th2 balance is related to metabolic abnormalities that may occur in young population, and thus the timely identification of different phenotypes may help predict an increased cardiometabolic risk.
Collapse
Affiliation(s)
- Ines Matia-Garcia
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Mariel García-Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Jaqueline Loaeza-Loaeza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Amalia Vences-Velázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Lorenzo Salgado-Goytia
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
35
|
Kalafati M, Kutmon M, Evelo CT, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, Consortium BIOS, Blaak EE, van Greevenbroek MMJ, Adriaens M. An interferon-related signature characterizes the whole blood transcriptome profile of insulin-resistant individuals—the CODAM study. GENES & NUTRITION 2021; 16:22. [PMID: 34886800 PMCID: PMC8903498 DOI: 10.1186/s12263-021-00702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022]
Abstract
Background Worldwide, the prevalence of obesity and insulin resistance has grown dramatically. Gene expression profiling in blood represents a powerful means to explore disease pathogenesis, but the potential impact of inter-individual differences in a cell-type profile is not always taken into account. The objective of this project was to investigate the whole blood transcriptome profile of insulin-resistant as compared to insulin-sensitive individuals independent of inter-individual differences in white blood cell profile. Results We report a 3% higher relative amount of monocytes in the insulin-resistant individuals. Furthermore, independent of their white blood cell profile, insulin-resistant participants had (i) higher expression of interferon-stimulated genes and (ii) lower expression of genes involved in cellular differentiation and remodeling of the actin cytoskeleton. Conclusions We present an approach to investigate the whole blood transcriptome of insulin-resistant individuals, independent of their DNA methylation-derived white blood cell profile. An interferon-related signature characterizes the whole blood transcriptome profile of the insulin-resistant individuals, independent of their white blood cell profile. The observed signature indicates increased systemic inflammation possibly due to an innate immune response and whole-body insulin resistance, which can be a cause or a consequence of insulin resistance. Altered gene expression in specific organs may be reflected in whole blood; hence, our results may reflect obesity and/or insulin resistance-related organ dysfunction in the insulin-resistant individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00702-7.
Collapse
|
36
|
Alarcon PC, Damen MSMA, Madan R, Deepe GS, Spearman P, Way SS, Divanovic S. Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunol 2021; 14:1224-1234. [PMID: 33958704 PMCID: PMC8100369 DOI: 10.1038/s41385-021-00404-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological evidence establishes obesity as an independent risk factor for increased susceptibility and severity to viral respiratory pneumonias associated with H1N1 influenza and SARS-CoV-2 pandemics. Given the global obesity prevalence, a better understanding of the mechanisms behind obese susceptibility to infection is imperative. Altered immune cell metabolism and function are often perceived as a key causative factor of dysregulated inflammation. However, the contribution of adipocytes, the dominantly altered cell type in obesity with broad inflammatory properties, to infectious disease pathogenesis remains largely ignored. Thus, skewing of adipocyte-intrinsic cellular metabolism may lead to the development of pathogenic inflammatory adipocytes, which shape the overall immune responses by contributing to either premature immunosenescence, delayed hyperinflammation, or cytokine storm in infections. In this review, we discuss the underappreciated contribution of adipocyte cellular metabolism and adipocyte-produced mediators on immune system modulation and how such interplay may modify disease susceptibility and pathogenesis of influenza and SARS-CoV-2 infections in obese individuals.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, Cincinnati, OH, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, Cincinnati, OH, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Zulu MZ, Sureshchandra S, Pinski AN, Doratt B, Shen W, Messaoudi I. Obesity Correlates With Pronounced Aberrant Innate Immune Responses in Hospitalized Aged COVID-19 Patients. Front Immunol 2021; 12:760288. [PMID: 34707619 PMCID: PMC8542887 DOI: 10.3389/fimmu.2021.760288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Both age and obesity are leading risk factors for severe coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, although most infections occur in individuals under the age of 55 years, 95% of hospitalizations, admissions to the intensive care unit, and deaths occur in those over the age of 55 years. Moreover, hospitalized COVID-19 patients have a higher prevalence of obesity. It is generally believed that chronic low-grade inflammation and dysregulated innate and adaptive immune responses that are associated with aging and obesity are responsible for this elevated risk of severe disease. However, the impact of advanced age and obesity on the host response to SARS-CoV-2 infection remains poorly defined. In this study, we assessed changes in the concentration of soluble immune mediators, IgG antibody titers, frequency of circulating immune cells, and cytokine responses to mitogen stimulation as a function of BMI and age. We detected significant negative correlations between BMI and myeloid immune cell subsets that were more pronounced in aged patients. Similarly, inflammatory cytokine production by monocytes was also negatively correlated with BMI in aged patients. These data suggest that the BMI-dependent impact on host response to SARS-CoV-2 is more pronounced on innate responses of aged patients.
Collapse
Affiliation(s)
- Michael Z Zulu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Brianna Doratt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Weining Shen
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States.,Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
38
|
Dendritic Cells and T Cell Subsets in the Development of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with steatosis, inflammation and fibrosis. Liver dendritic cells (DCs) are usually tolerogenic in the sinusoidal milleu composed of immunosuppressive cytokines. In NAFLD and NASH, DCs become pro-inflammatory and modulate hepatic immune response. Murine liver DCs are three major subtypes: classical (lymphoid) cDC1 or the crosspresenters (CD8α+CD103+), classical (myeloid) cDC2 (CD11b+) and plasmacytoid pDCs (PDCA-1+Siglec-H+) and two additional subtypes or lymphoid + myeloid DCs and NKDCs. Similarly, human liver DCs are three subtypes or CD141+CLEC9A+, CD1c+ (BDCA1+) and pDCs (CD303+BDCA2+). Compared to blood human hepatic DCs are less immature and predominantly induce regulatory T cells (Tregs) and IL-4 secreting T cells (Th2). DCs polarize T cells into different Th types that are in interrelations in NAFLD/NASH. T helper 1 (Th1) (T-bet) cells are associated with adipose tissue inflammation. The differentiation of Th2 (GATA3) cells is induced by IL-4 DCs, increased in NAFLD. Similarly, Th17 cells (RORγt/ RORc) are increased in NAFLD and NASH. Tregs (FoxP3) are increased in the liver in steatosis and Th22 cells (AHR) are elevated in diabetes mellitus 2 (DM2) and adiposity. CD8+ T cells γδT cells and MAIT cells also contribute to liver inflammation.
Collapse
|
39
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
40
|
Amin M, Fatema K, Arefin S, Hussain F, Bhowmik D, Hossain M. Obesity, a major risk factor for immunity and severe outcomes of COVID-19. Biosci Rep 2021; 41:BSR20210979. [PMID: 34350941 PMCID: PMC8380923 DOI: 10.1042/bsr20210979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
An influenza-like virus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19 disease and spread worldwide within a short time. COVID-19 has now become a significant concern for public health. Obesity is highly prevalent worldwide and is considered a risk factor for impairing the adaptive immune system. Although diabetes, hypertension, cardiovascular disease (CVD), and renal failure are considered the risk factors for COVID-19, obesity is not yet well-considered. The present study approaches establishing a systemic association between the prevalence of obesity and its impact on immunity concerning the severe outcomes of COVID-19 utilizing existing knowledge. Overall study outcomes documented the worldwide prevalence of obesity, its effects on immunity, and a possible underlying mechanism covering obesity-related risk pathways for the severe outcomes of COVID-19. Overall understanding from the present study is that being an immune system impairing factor, the role of obesity in the severe outcomes of COVID-19 is worthy.
Collapse
Affiliation(s)
- Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Kaniz Fatema
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhlai-3814, Bangladesh
| | - Sayema Arefin
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Fahad Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
41
|
Rosa Neto JC, Calder PC, Curi R, Newsholme P, Sethi JK, Silveira LS. The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. Int J Mol Sci 2021; 22:ijms22168460. [PMID: 34445165 PMCID: PMC8395092 DOI: 10.3390/ijms22168460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and lymphocytes demonstrate metabolic plasticity, which is dependent partly on their state of activation and partly on the availability of various energy yielding and biosynthetic substrates (fatty acids, glucose, and amino acids). These substrates are essential to fuel-based metabolic reprogramming that supports optimal immune function, including the inflammatory response. In this review, we will focus on metabolism in macrophages and lymphocytes and discuss the role of fatty acids in governing the phenotype, activation, and functional status of these important cells. We summarize the current understanding of the pathways of fatty acid metabolism and related mechanisms of action and also explore possible new perspectives in this exciting area of research.
Collapse
Affiliation(s)
- Jose Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
- LIM-26, Hospital das Clínicas of the University of São Paulo, Sao Paulo 01246-903, Brazil
- Correspondence:
| | - Philip C. Calder
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK; (P.C.C.); (J.K.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil;
| | - Philip Newsholme
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Jaswinder K. Sethi
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK; (P.C.C.); (J.K.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Loreana S. Silveira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| |
Collapse
|
42
|
Akimova T, Zhang T, Christensen LM, Wang Z, Han R, Negorev D, Samanta A, Sasson IE, Gaddapara T, Jiao J, Wang L, Bhatti TR, Levine MH, Diamond JM, Beier UH, Simmons RA, Cantu E, Wilkes DS, Lederer DJ, Anderson M, Christie JD, Hancock WW. Obesity-related IL-18 Impairs Treg Function and Promotes Lung Ischemia-reperfusion Injury. Am J Respir Crit Care Med 2021; 204:1060-1074. [PMID: 34346860 DOI: 10.1164/rccm.202012-4306oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Primary graft dysfunction (PGD) is a severe form of acute lung injury, leading to increased early morbidity and mortality after lung transplantation. Obesity is a major health problem, and recipient obesity is one of the most significant risk factors for developing PGD. OBJECTIVES We hypothesized that T-regulatory (Treg) cells are able to dampen early ischemia/reperfusion events and thereby decrease risk of PGD, whereas that action is impaired in obese recipients. METHODS We evaluated Treg, T cells and inflammatory markers, plus clinical data, in 79 lung and 41 liver or kidney transplant recipients and studied two groups of mice on high fat diet (HFD), who developed ("inflammatory" HFD) or not ("healthy" HFD) low-grade inflammation with decreased Treg function. RESULTS We identified increased levels of IL-18 as a previously unrecognized mechanism that impairs Treg suppressive function in obese individuals. IL-18 decreases levels of FOXP3, the key Treg transcription factor, decreases FOXP3 di- and oligomerization and increases the ubiquitination and proteasomal degradation of FOXP3. IL-18-treated Tregs or Treg from obese mice fail to control PGD, while IL-18 inhibition ameliorates lung inflammation. The IL-18 driven impairment in Treg suppressive function pre-transplant was associated with increased risk and severity of PGD in clinical lung transplant recipients. CONCLUSION Obesity-related IL-18 induces Treg dysfunction that may contribute to the pathogenesis of PGD. Evaluation of Treg suppressive function along with IL-18 levels may serve as screening tools to identify pre-transplant obese recipients with increased risk of PGD.
Collapse
Affiliation(s)
- Tatiana Akimova
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Tianyi Zhang
- The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Lanette M Christensen
- The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Zhonglin Wang
- University of Pennsylvania, 6572, Division of Transplant Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Rongxiang Han
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Dmitry Negorev
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Arabinda Samanta
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Isaac E Sasson
- University of Pennsylvania, 6572, Department of Obstetrics and Gynecology, Philadelphia, Pennsylvania, United States
| | - Trivikram Gaddapara
- University of Pennsylvania, 6572, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Jing Jiao
- The Children's Hospital of Philadelphia, 6567, Division of Nephrology, Department of Pediatrics, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, 6572, Pathology, Philadelphia, Pennsylvania, United States
| | - Liqing Wang
- University of Pennsylvania, 6572, Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Tricia R Bhatti
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Matthew H Levine
- University of Pennsylvania, 6572, Division of Transplant Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Joshua M Diamond
- University of Pennsylvania, 6572, Pulmonary/Critical Care, Philadelphia, Pennsylvania, United States
| | - Ulf H Beier
- The Children's Hospital of Philadelphia, 6567, Division of Nephrology, Department of Pediatrics, Philadelphia, Pennsylvania, United States.,University of Pennsylvania Perelman School of Medicine, 14640, Philadelphia, Pennsylvania, United States
| | - Rebecca A Simmons
- The Children's Hospital of Philadelphia, 6567, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Edward Cantu
- University of Pennsylvania Perelman School of Medicine, 14640, Surgery, Philadelphia, Pennsylvania, United States
| | - David S Wilkes
- Indiana University School of Medicine, 12250, Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indianapolis, Indiana, United States.,University of Virginia School of Medicine, 12349, Charlottesville, Virginia, United States
| | - David J Lederer
- Columbia University Vagelos College of Physicians and Surgeons, 12294, Division of Pulmonary, Allergy, and Critical Care Medicine, New York, New York, United States.,Regeneron Pharmaceuticals Inc, 7845, Tarrytown, New York, United States
| | - Michaela Anderson
- Columbia University Medical Center, 21611, Medicine, New York, New York, United States
| | - Jason D Christie
- University of Pennsylvania, 6572, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, 6572, Division of Cardiovascular Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Wayne W Hancock
- University of Pennsylvania, 6572, Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
43
|
Djusad S, Meutia AP, Suastika A, Hidayah GN, Surya IU, Priangga M, Fadhly R, Harzif AK. Maternal Death Caused by Severe-Critical COVID-19 in Jakarta: Case Series. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: As of January 2021, Indonesia had the 21st highest number of total COVID-19 cases and the 17th highest total deaths among all countries. COVID-19 infection in pregnant women seems to negatively affect both maternal and neonatal outcomes.
CASE REPORT: We describe four cases of pregnant women confirmed with severe and critical COVID-19 that resulted in maternal death from November until December 2020. The first case was complicated with thrombocytopenia, her condition quickly deteriorated post-delivery. Pulmonary embolism was suspected as the cause of death. Second and third cases were complicated with preeclampsia, obesity, and advanced maternal age. Second case came in sepsis condition. Her SARS CoV-2 RTPCR swab test came out after her death. Third patient did not have COVID-19 symptoms at admission. She starts having symptoms on second day and was confirmed positive a day after. She falls in septic shock. Fourth patient has history of fever, cough, and dyspnea. She was confirmed positive on first day and her condition worsened, diagnosed with bacterial co-infection sepsis on day eight. All patients underwent cesarean section.
CONCLUSION: Limited information and studies for COVID-19 management in pregnant women are challenging for obstetricians. Management should be individualized weighing the benefit and risks in presence of comorbidities or accompanying disease.
Collapse
|
44
|
Wijngaarden LH, van der Harst E, Klaassen RA, Dunkelgrun M, Kuijper TM, Klepper M, Ambagtsheer G, IJzermans JNM, de Bruin RWF, Litjens NHR. Effects of Morbid Obesity and Metabolic Syndrome on the Composition of Circulating Immune Subsets. Front Immunol 2021; 12:675018. [PMID: 34354700 PMCID: PMC8330422 DOI: 10.3389/fimmu.2021.675018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Morbid obesity is characterized by chronic, low-grade inflammation, which is associated with ‘inflamm-aging’. The presence of metabolic syndrome (MetS) might accelerate this phenomenon of metaflammation. In this study, we assessed the effects of morbid obesity and MetS on the composition of a broad spectrum of immune cells present within the circulation. A total of 117 morbidly obese patients (MOP) without MetS (MetS-), 127 MOP with MetS (MetS+) and 55 lean controls (LC) were included in this study. Absolute numbers of T cell, B cell, NK cell and monocyte subsets were assessed within peripheral blood using flow cytometry. Both absolute cell numbers and proportion of cells were evaluated correcting for covariates age, body mass index and cytomegalovirus serostatus. Although the absolute number of circulating CD4+ T cells was increased in the MetS+ group, the CD4+ T cell composition was not influenced by MetS. The CD8+ T cell and B cell compartment contained more differentiated cells in the MOP, but was not affected by MetS. Even though the absolute numbers of NK cells and monocytes were increased in the MOP as compared to LC, there was no difference in proportions of NK and monocyte subsets between the three study groups. In conclusion, although absolute numbers of CD4+ and CD8+ T cells, B cells, NK cells and monocytes are increased in MOP, obesity-induced effects of the composition of the immune system are confined to a more differentiated phenotype of CD8+ T cells and B cells. These results were not affected by MetS.
Collapse
Affiliation(s)
- Leontine H Wijngaarden
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - René A Klaassen
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - Martin Dunkelgrun
- Department of Surgery, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | | | - Mariska Klepper
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gisela Ambagtsheer
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
45
|
Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. CHILDREN-BASEL 2021; 8:children8070554. [PMID: 34199040 PMCID: PMC8305706 DOI: 10.3390/children8070554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.
Collapse
|
46
|
Rizk NM, Fadel A, AlShammari W, Younes N, Bashah M. The Immunophenotyping Changes of Peripheral CD4+ T Lymphocytes and Inflammatory Markers of Class III Obesity Subjects After Laparoscopic Gastric Sleeve Surgery - A Follow-Up Study. J Inflamm Res 2021; 14:1743-1757. [PMID: 33981153 PMCID: PMC8108539 DOI: 10.2147/jir.s282189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Obesity is a chronic disorder characterized by a low-grade inflammatory state and immune cell irregularities. The study aimed to follow up on the changes in the peripheral CD4+ T lymphocytes and the pro-inflammatory cytokines; IL-6, TNF-alpha, MCP-1, and IL-10 at baseline and 12 weeks post-surgical intervention by the laparoscopic gastric sleeve (LGS) in morbidly obese patients (class III obesity subjects). Materials and Methods A prospective longitudinal research included 24 class III obesity subjects with a BMI > 40 kg/m2. The subjects were enrolled from the Metabolic/Surgical Department at Hamad Medical Corporation (HMC)-Qatar. Fasting blood samples were collected at admission to LGS for weight loss and after 12 weeks of LGS. The immunophenotype of CD4+ T-cell populations; naïve (CD45RA+and CD27+), central memory T cells (CD45RO+ and CD27+), and effector memory (CD45RO+and CD27-) and T-regulatory cell (CD4+CD25+ FoxP3+) were identified using flow cytometry. Plasma pro-inflammatory cytokines and adipokines were evaluated. A control group of lean subjects was used to compare changes of T-regulatory and inflammatory biomarkers with postoperative changes in obese patients. Results The means (SD) of age and BMI of class III obesity subjects was 32.32 (8.36) years and 49.02 (6.28) kg/m2, respectively. LGS caused a significant reduction in BMI by 32%, p<0.0001. LGS intervention significantly decreased CD4+ T-lymphocytes and effector memory (TEM) cells but increased T-regulatory (Treg), naïve, and central memory (TCM) cells, with all p values < 0.05. The increase of Treg cells postoperative is significantly lower compared to lean subjects, p < 0.05. A significant reduction of plasma IL-6, TNF-α, and MCP-1, but IL-10 significantly increased after LGS, with all p<0.05. Adiponectin/leptin ratio improved after LGS by 2.9 folds, p<0.0001. Conclusion Weight loss by LGS accomplished a substantial rise of Treg and decreased EM T-lymphocytes with a shift from pro-inflammatory to the anti-inflammatory pattern.
Collapse
Affiliation(s)
- Nasser M Rizk
- Biomedical Sciences Department-College of Health Sciences, QU Health-Qatar University.,Biomedical Research Center, Qatar University.,Biomedical and Pharmaceutical Research Unit, QU Health-Qatar University
| | - Amina Fadel
- Biomedical Sciences Department-College of Health Sciences, QU Health-Qatar University
| | - Wasaif AlShammari
- Biomedical Sciences Department-College of Health Sciences, QU Health-Qatar University
| | - Noura Younes
- Clinical Chemistry Lab, Hamad Medical Corporation, Doha, Qatar
| | - Moataz Bashah
- Metabolic Unit, Surgery Department, Hammed Medical Corporation (HMC), Doha, Qatar
| |
Collapse
|
47
|
Wen J, Liu Q, Liu M, Wang B, Li M, Wang M, Shi X, Liu H, Wu J. Increasing Imbalance of Treg/Th17 Indicates More Severe Glucose Metabolism Dysfunction in Overweight/obese Patients. Arch Med Res 2021; 52:339-347. [PMID: 33317842 DOI: 10.1016/j.arcmed.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic low-grade inflammation and dysfunction of metabolism has been reported to be involved in obesity. Regulatory T cell (Treg) and helper T cell 17 (Th17) are involved in chronic inflammatory diseases. Impaired balance of Treg/Th17 is one of the major factors contributing to inflammatory status in obesity. METHODS Overweight/obese patients (n = 80) were recruited and classified into three subgroups: normal glucose tolerance group (NGT, n = 32), impaired glucose regulation group (IGR, n = 19) and type two diabetes mellitus group (T2DM, n = 29). Healthy individuals were paired as normal control group (NC, n = 37). We used flow cytometry to test the frequencies of circulating Treg and Th17 cells of all subjects. Serum IL-6, IL-10, TNF-α, IL-17A levels were detected by cytometric bead array and clinical information was extracted from medical records. RESULTS In group IGR and T2DM, we revealed a severe decrease in peripheral ratio of Treg/Th17 compared with NC, but no significant difference was seen in group NGT. The serum level of IL-6 in group NGT and T2DM was higher than healthy subjects. The FPG and HbA1c levels were negatively correlated with the ratio of Treg/Th17 in overweight/obese patients. ROC curve analysis revealed that peripheral Treg/Th17 ratio <1.255 was a risk factor for prediabetes and diabetes in overweight/obese patients. CONCLUSION Peripheral Treg/Th17 imbalance exists in overweight/obese patients with IGR or T2DM and peripheral Treg/Th17 imbalance might be a risk factor for prediabetes and diabetes in overweight/obese patients.
Collapse
Affiliation(s)
- Jie Wen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingjing Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengmeng Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bian Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiajie Shi
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat Commun 2021; 12:1970. [PMID: 33785752 PMCID: PMC8010079 DOI: 10.1038/s41467-021-22097-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet. Here we show in the substudy of NCT02099968, investigating the clinical parameters, the immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syndrome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index at three months post intervention compared to a modified Dietary Approach to Stop Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene modules associated with short-chain fatty acid production. Cross-system analyses reveal a positive correlation of circulating mucosa-associated invariant T cells, non-classical monocytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells positively correlate with body-mass index and weight. Machine learning analysis of baseline immunome or microbiome data predicts sustained systolic blood pressure response within the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as important contributors to the model. Here we report that the high-resolution multi-omics data highlight fasting as a promising non-pharmacological intervention for the treatment of high blood pressure in metabolic syndrome patients. Nutritional modification including fasting has been shown to reduce cardiometabolic risk linked to western diet. Here the authors show implementation of fasting resulted in alterations to the intestinal microbiota, and circulating immune cells, improving blood pressure and body weight in patients with metabolic syndrome.
Collapse
|
49
|
Mahmoud N, Mohammadreza HA, Abdolhosein TK, Mehdi N, Arent SM. Serum myokine levels after linear and flexible non-linear periodized resistance training in overweight sedentary women. Eur J Sport Sci 2021; 22:658-668. [PMID: 33655812 DOI: 10.1080/17461391.2021.1895893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study compared the capacity of linear-(LP) and non-linear periodized (NLP) resistance training to improve select myokines and metabolic parameters in overweight sedentary women. An additional purpose was to compare these variables between the overweight and lean women. Fitness- and age-matched overweight women between 28 and 43 years old were randomly allocated to LP (body fat [BF]% = 38.7 ± 2.6, n = 10), NLP (BF% = 39.3 ± 2.4, n = 9) and control (BF% = 39.8 ± 2.6, n = 9) groups. Lean women (BF% = 29.1 ± 2.3, n = 16) matched for age and fitness were also included for baseline comparison. Resistance training programmes (12 weeks, 3 d.wk-1, 9 exercises, 60-90% of 1-repetition maximum [1RM]) were performed with different periodization schemes. Glucose, insulin, interleukin (IL)-7, IL-15, and insulin-like growth factor (IGF)-1 levels were measured at baseline and after training. Overweight subjects had significantly lower IL-15, IGF-1 and higher insulin, glucose, and insulin resistance (homeostasis model assessment, HOMA-IR) than lean subjects at baseline (all, P < .05). IL-15 and VO2max increased significantly after NLP compared with CON, which was accompanied by a significant decrease in HOMA-IR (all, P < .03). Muscular endurance improved significantly in both models after training compared to CON (all, P < .01), but it increased more in NLP than in LP (P = .01). Both training protocols were equally effective at reducing BF% and increasing IGF-1, IL-7, muscle mass and bench press 1RM (P < .01). It appears that LP and NLP are both effective strategies for improving health markers in overweight women, but LP is not as effective as NLP to improve IL-15, HOMA-IR and aerobic capacity.Highlights Overweight women had a significantly lower IL-15 and IGF-1 compared to lean encounters, but no significant difference was noted for maximal strength, aerobic capacity, muscle mass, IL-7 and neutrophil/lymphocyte ratio.Twelve weeks of either linear or flexible non-linear periodized resistance training resulted in reduction in BF% and neutrophil/lymphocyte ratio, and increased IGF-1, IL-7, muscle mass and bench press 1RM, with no difference between the two training protocols.Linear protocol is not as effective as non-linear protocol to improve IL-15, HOMA-IR and aerobic capacity.
Collapse
Affiliation(s)
- Nikseresht Mahmoud
- Department of Exercise Physiology, Ilam Branch, Islamic Azad University, Ilam, Iran.,Department of Pathobiology, Ilam University of Medical Sciences, Ilam, Iran
| | | | | | - Nikseresht Mehdi
- Department of Exercise Physiology, Mazandaran University, Babolsar, Iran
| | - Shawn M Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
50
|
Tylutka A, Morawin B, Gramacki A, Zembron-Lacny A. Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatr 2021; 21:200. [PMID: 33752623 PMCID: PMC7986285 DOI: 10.1186/s12877-021-02128-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Interaction of physical activity and overall immune profile is very complex and depends on the intensity, duration and frequency of undertaken physical activity, the exposure to cytomegalovirus (CMV) infection and the age-related changes in the immune system. Daily physical activity, which particularly influences immunity, declines dramatically with age. Therefore, the aim of the study was to explain whether physical activity sustained throughout life can attenuate or reverse immunosenescence. Methods Ninety-nine older adults (60–90 years) were recruited for the study. According to the 6-min walk test (6WMT), the Åstrand-Ryhming bike test (VO2max) and Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire, the individuals were classified as physically active (n = 34) and inactive (n = 20) groups. The analysis of T lymphocytes between active vs. inactive participants was performed using eight-parameter flow cytometry. Results Analysis of the baseline peripheral naïve and memory T lymphocytes showed a significant relationship of lifestyle exercise with the CD4/CD8 ratio. Above 50% of physically active participants demonstrated the CD4/CD8 ratio ≥ 1 or ≤ 2.5 contrary to the inactive group who showed the ratio < 1. The older adults with the result of 6WMT > 1.3 m/s and VO2max > 35 mL/kg/min had a significantly higher CD4+CD45RA+ T lymphocyte percentage and also a higher ratio of CD4+CD45RA+/CD4+CD45RO+. Interestingly, in active older adults with IgG CMV+ (n = 30) the count of CD4+CD45RA+ T lymphocytes was higher than in the inactive group with IgG CMV+ (n = 20). Conclusion Based on the flow cytometry analysis, we concluded that lifestyle exercise could lead to rejuvenation of the immune system by increasing the percentage of naïve T lymphocytes or by reducing the tendency of the inverse CD4/CD8 ratio.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Artur Gramacki
- Faculty of Computer, Electrical and Control Engineering, Institute of Control and Computation Engineering University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland.
| |
Collapse
|