1
|
Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int 2024; 74:438-453. [PMID: 38888200 DOI: 10.1111/pin.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
2
|
Yu Y, Chen W, Li B, Li Z, Wang Y, Mao Y, Fan W, Bai Y, Hu H, Zhen Q, Sun L. Cutaneous Calcium/Calmodulin-Dependent Protein Kinase II-γ-Positive Sympathetic Nerves Secreting Norepinephrine Dictate Psoriasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306772. [PMID: 38544478 PMCID: PMC11187923 DOI: 10.1002/advs.202306772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/06/2024] [Indexed: 06/20/2024]
Abstract
Cutaneous sympathetic nerve is a crucial part of neuropsychiatric factors contributing to skin immune response, but its role in the psoriasis pathogenesis remains unclear. It is found that cutaneous calcium/calmodulin-dependent protein kinase II-γ (CAMK2γ), expressed mainly in sympathetic nerves, is activated by stress and imiquimod in mouse skin. Camk2g-deficient mice exhibits attenuated imiquimod-induced psoriasis-like manifestations and skin inflammation. CaMK2γ regulates dermal γδT-cell interleukin-17 production in imiquimod-treated mice, dependent on norepinephrine production following cutaneous sympathetic nerve activation. Adrenoceptor β1, the primary skin norepinephrine receptor, colocalises with γδT cells. CaMK2γ aggravates psoriasiform inflammation via sympathetic nerve-norepinephrine-γδT cell-adrenoceptor β1-nuclear factor-κB and -p38 axis activation. Application of alcaftadine, a small-molecule CaMK2γ inhibitor, relieves imiquimod-induced psoriasis-like manifestations in mice. This study reveals the mechanisms of sympathetic-nervous-system regulation of γδT-cell interleukin-17 secretion, and provides insight into neuropsychiatric factors dictating psoriasis pathogenesis and new potential targets for clinical psoriasis treatment.
Collapse
Affiliation(s)
- Yafen Yu
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
- The Center for Scientific Researchthe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
| | - Weiwei Chen
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Bao Li
- The Comprehensive LabCollege of BasicAnhui Medical UniversityHefei230032China
| | - Zhuo Li
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yirui Wang
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yiwen Mao
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Wencheng Fan
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yuanming Bai
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610065China
| | - Qi Zhen
- North China University of Science and Technology Affiliated HospitalTangshan063210China
- Health Science CenterNorth China University of Science and TechnologyTangshan063210China
- School of Public HealthNorth China University of Science and TechnologyTangshan063210China
| | - Liangdan Sun
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- North China University of Science and Technology Affiliated HospitalTangshan063210China
- Health Science CenterNorth China University of Science and TechnologyTangshan063210China
- School of Public HealthNorth China University of Science and TechnologyTangshan063210China
- Inflammation and Immune Diseases Laboratory of North China University of Science and TechnologyTangshan063210China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| |
Collapse
|
3
|
Ding X, Chen J, Zeng W. Neuroimmune regulation in the pancreas. FUNDAMENTAL RESEARCH 2024; 4:201-205. [PMID: 38933519 PMCID: PMC11197567 DOI: 10.1016/j.fmre.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The pancreas exerts endocrine and exocrine functions in energy balance. The neural innervation and immune milieu are both crucial in supporting pancreatic homeostasis. The neuronal network connects the pancreas with the central nervous system (CNS) and the enteric nervous system (ENS) and sustains metabolic activities. The nerves in the pancreas are categorized as spinal sensory afferent fibers, vagal sensory afferent nerves, autonomic fibers of both sympathetic and parasympathetic divisions, and fibers from the ENS and intrapancreatic ganglia. They innervate different regions and various cell types, which collectively determine physiological functions. Studies have established that the diverse pathological conditions, including pancreatitis, diabetes, and pancreatic tumor, are attributed to aberrant immune reactions; however, it is largely not clear how the neuronal network may influence the disease conditions. Enlightened by the recent advances illuminating the organ-wide neuronal architecture and the dysfunctions in pancreatic disorders, this review will highlight emerging opportunities to explore the cellular interrelationship, particularly the neuroimmune components in pancreatic health and diseases.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
4
|
Ren W, Hua M, Cao F, Zeng W. The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306128. [PMID: 38039489 PMCID: PMC10885671 DOI: 10.1002/advs.202306128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Indexed: 12/03/2023]
Abstract
Sympathetic innervation plays a crucial role in maintaining energy balance and contributes to metabolic pathophysiology. Recent evidence has begun to uncover the innervation landscape of sympathetic projections and sheds light on their important functions in metabolic activities. Additionally, the immune system has long been studied for its essential roles in metabolic health and diseases. In this review, the aim is to provide an overview of the current research progress on the sympathetic regulation of key metabolic organs, including the pancreas, liver, intestine, and adipose tissues. In particular, efforts are made to highlight the critical roles of the peripheral nervous system and its potential interplay with immune components. Overall, it is hoped to underscore the importance of studying metabolic organs from a comprehensive and interconnected perspective, which will provide valuable insights into the complex mechanisms underlying metabolic regulation and may lead to novel therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Meng Hua
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Fang Cao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563000China
| | - Wenwen Zeng
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijing100084China
| |
Collapse
|
5
|
Agerskov RH, Nyeng P. Innervation of the pancreas in development and disease. Development 2024; 151:dev202254. [PMID: 38265192 DOI: 10.1242/dev.202254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The autonomic nervous system innervates the pancreas by sympathetic, parasympathetic and sensory branches during early organogenesis, starting with neural crest cell invasion and formation of an intrinsic neuronal network. Several studies have demonstrated that signals from pancreatic neural crest cells direct pancreatic endocrinogenesis. Likewise, autonomic neurons have been shown to regulate pancreatic islet formation, and have also been implicated in type I diabetes. Here, we provide an overview of recent progress in mapping pancreatic innervation and understanding the interactions between pancreatic neurons, epithelial morphogenesis and cell differentiation. Finally, we discuss pancreas innervation as a factor in the development of diabetes.
Collapse
Affiliation(s)
- Rikke Hoegsberg Agerskov
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| | - Pia Nyeng
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| |
Collapse
|
6
|
Vyakaranam AR, Mahamed MM, Hellman P, Eriksson O, Espes D, Christoffersson G, Sundin A. Non-invasive imaging of sympathetic innervation of the pancreas in individuals with type 2 diabetes. Diabetologia 2024; 67:199-208. [PMID: 37935826 PMCID: PMC10709256 DOI: 10.1007/s00125-023-06039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 11/09/2023]
Abstract
AIMS/HYPOTHESIS Compromised pancreatic sympathetic innervation has been suggested as a factor involved in both immune-mediated beta cell destruction and endocrine dysregulation of pancreatic islets. To further explore these intriguing findings, new techniques for in vivo assessment of pancreatic innervation are required. This is a retrospective study that aimed to investigate whether the noradrenaline (norepinephrine) analogue 11C-hydroxy ephedrine (11C-HED) could be used for quantitative positron emission tomography (PET) imaging of the sympathetic innervation of the human pancreas. METHODS In 25 individuals with type 2 diabetes and 64 individuals without diabetes, all of whom had previously undergone 11C-HED-PET/CT because of pheochromocytoma or paraganglioma (or suspicion thereof), the 11C-HED standardised uptake value (SUVmean), 11C-HED specific binding index (SBI), pancreatic functional volume (FV, in ml), functional neuronal volume (FNV, calculated as SUVmean × FV), specific binding index with functional volume (SBI FV, calculated as SBI × FV) and attenuation on CT (HU) were investigated in the entire pancreas, and additionally in six separate anatomical pancreatic regions. RESULTS Generally, 11C-HED uptake in the pancreas was high, with marked individual variation, suggesting variability in sympathetic innervation. Moreover, pancreatic CT attenuation (HU) (p<0.001), 11C-HED SBI (p=0.0049) and SBI FV (p=0.0142) were lower in individuals with type 2 diabetes than in individuals without diabetes, whereas 11C-HED SUVmean (p=0.15), FV (p=0.73) and FNV (p=0.30) were similar. CONCLUSIONS/INTERPRETATION We demonstrate the feasibility of using 11C-HED-PET for non-invasive assessment of pancreatic sympathetic innervation in humans. These findings warrant further prospective evaluation, especially in individuals with theoretical defects in pancreatic sympathetic innervation, such as those with type 1 diabetes.
Collapse
Affiliation(s)
- Achyut Ram Vyakaranam
- Department of Surgical Sciences, Section of Radiology & Molecular Imaging, Uppsala University, Uppsala, Sweden.
| | - Maryama M Mahamed
- Department of Surgical Sciences, Section of Radiology & Molecular Imaging, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Section of Radiology & Molecular Imaging, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gustaf Christoffersson
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Department of Surgical Sciences, Section of Radiology & Molecular Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Li S, Yuan H, Yang K, Li Q, Xiang M. Pancreatic sympathetic innervation disturbance in type 1 diabetes. Clin Immunol 2023; 250:109319. [PMID: 37024024 DOI: 10.1016/j.clim.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Pancreatic sympathetic innervation can directly affect the function of islet. The disorder of sympathetic innervation in islets during the occurrence of type 1 diabetes (T1D) has been reported to be controversial with the inducing factor unclarified. Several studies have uncovered the critical role that sympathetic signals play in controlling the local immune system. The survival and operation of endocrine cells can be regulated by immune cell infiltration in islets. In the current review, we focused on the impact of sympathetic signals working on islets cell regulation, and discussed the potential factors that can induce the sympathetic innervation disorder in the islets. We also summarized the effect of interference with the islet sympathetic signals on the T1D occurrence. Overall, complete understanding of the regulatory effect of sympathetic signals on islet cells and local immune system could facilitate to design better strategies to control inflammation and protect β cells in T1D therapy.
Collapse
Affiliation(s)
- Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Mott J, Gilor C. Glucose Counterregulation: Clinical Consequences of Impaired Sympathetic Responses in Diabetic Dogs and Cats. Vet Clin North Am Small Anim Pract 2023; 53:551-564. [PMID: 36898860 DOI: 10.1016/j.cvsm.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Insulin induced hypoglycemia (IIH) is common in veterinary patients and limits the clinician's ability to obtain adequate glycemic control with insulin therapy. Not all diabetic dogs and cats with IIH exhibit clinical signs and hypoglycemia might be missed by routine blood glucose curve monitoring. In diabetic patients, counterregulatory responses to hypoglycemia are impaired (lack of decrease in insulin levels, lack of increase in glucagon, and attenuation of the parasympathetic and sympathoadrenal autonomic nervous systems) and have been documented in people and in dogs but not yet in cats. Antecedent hypoglycemic episodes increase the patient's risk for future severe hypoglycemia.
Collapse
Affiliation(s)
- Jocelyn Mott
- College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610-0126, USA
| | - Chen Gilor
- Small Animal Internal Medicine, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610-0126, USA.
| |
Collapse
|
10
|
Richardson TM, Saunders DC, Haliyur R, Shrestha S, Cartailler JP, Reinert RB, Petronglo J, Bottino R, Aramandla R, Bradley AM, Jenkins R, Phillips S, Kang H, Caicedo A, Powers AC, Brissova M. Human pancreatic capillaries and nerve fibers persist in type 1 diabetes despite beta cell loss. Am J Physiol Endocrinol Metab 2023; 324:E251-E267. [PMID: 36696598 PMCID: PMC10027091 DOI: 10.1152/ajpendo.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The autonomic nervous system regulates pancreatic function. Islet capillaries are essential for the extension of axonal projections into islets, and both of these structures are important for appropriate islet hormone secretion. Because beta cells provide important paracrine cues for islet glucagon secretion and neurovascular development, we postulated that beta cell loss in type 1 diabetes (T1D) would lead to a decline in intraislet capillaries and reduction of islet innervation, possibly contributing to abnormal glucagon secretion. To define morphological characteristics of capillaries and nerve fibers in islets and acinar tissue compartments, we analyzed neurovascular assembly across the largest cohort of T1D and normal individuals studied thus far. Because innervation has been studied extensively in rodent models of T1D, we also compared the neurovascular architecture between mouse and human pancreas and assembled transcriptomic profiles of molecules guiding islet angiogenesis and neuronal development. We found striking interspecies differences in islet neurovascular assembly but relatively modest differences at transcriptome level, suggesting that posttranscriptional regulation may be involved in this process. To determine whether islet neurovascular arrangement is altered after beta cell loss in T1D, we compared pancreatic tissues from non-diabetic, recent-onset T1D (<10-yr duration), and longstanding T1D (>10-yr duration) donors. Recent-onset T1D showed greater islet and acinar capillary density compared to non-diabetic and longstanding T1D donors. Both recent-onset and longstanding T1D had greater islet nerve fiber density compared to non-diabetic donors. We did not detect changes in sympathetic axons in either T1D cohort. Additionally, nerve fibers overlapped with extracellular matrix (ECM), supporting its role in the formation and function of axonal processes. These results indicate that pancreatic capillaries and nerve fibers persist in T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components.NEW & NOTEWORTHY Defining the neurovascular architecture in the pancreas of individuals with type 1 diabetes (T1D) is crucial to understanding the mechanisms of dysregulated glucagon secretion. In the largest T1D cohort of biobanked tissues analyzed to date, we found that pancreatic capillaries and nerve fibers persist in human T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components. Because innervation has been studied extensively in rodent T1D models, our studies also provide the first rigorous direct comparisons of neurovascular assembly in mouse and human, indicating dramatic interspecies differences.
Collapse
Affiliation(s)
- Tiffany M Richardson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Diane C Saunders
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee, United States
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee, United States
| | - Rachel B Reinert
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jenna Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rita Bottino
- Imagine Pharma, Pittsburgh, Pennsylvania, United States
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Amber M Bradley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Regina Jenkins
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Program of Neuroscience, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Tennessee Valley Healthcare, Nashville, Tennessee, United States
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Zhao Y, Veysman B. Revisiting the Pathogenesis of Type 1 Diabetes: Importance of Neural Input to Pancreatic Islets and the Therapeutic Capability of Stem Cell Educator TM Therapy to Restore Their Integrity. Biomedicines 2023; 11:594. [PMID: 36831130 PMCID: PMC9952924 DOI: 10.3390/biomedicines11020594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with a shortage of islet β cells. To date, the etiology of T1D remains elusive. Increasing clinical evidence and animal studies demonstrate that autoimmune cells are directed against the nervous system of pancreatic islets, contributing to the development of T1D. Therefore, it highlights the necessity to explore novel clinical approaches to fundamentally correct the T1D autoimmunity not only focusing on islet β cells but also on protecting the islet nervous system. This allows the restoration of the integrity of islet innervation and the normal islet β-cell function. To address these issues, we developed a novel technology designated the Stem Cell Educator TM therapy, based on immune education by human cord-blood-derived multipotent stem cells (CB-SC). International amulticenter clinical trials demonstrated its clinical safety and efficacy to treat T1D and other autoimmune diseases. Stem Cell Educator TM therapy may have the potential to revolutionize the treatment of T1D, without the safety and ethical concerns associated with conventional immune and/or stem cell-based therapies.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | |
Collapse
|
12
|
Infante M, Ricordi C. The unique pathophysiological features of diabetes mellitus secondary to total pancreatectomy: proposal for a new classification distinct from diabetes of the exocrine pancreas. Expert Rev Endocrinol Metab 2023; 18:19-32. [PMID: 36692892 DOI: 10.1080/17446651.2023.2168645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Diabetes of the exocrine pancreas (DEP; a.k.a. pancreatic diabetes or pancreatogenic diabetes or type 3c diabetes mellitus or T3cDM) refers to different diabetes types resulting from disorders of the exocrine pancreas. DEP is characterized by the structural and functional loss of glucose-normalizing insulin secretion in the context of exocrine pancreatic dysfunction. Among these forms, new-onset diabetes mellitus secondary to total pancreatectomy (TP) has unique pathophysiological and clinical features, for which we propose a new nomenclature such as post-total pancreatectomy diabetes mellitus (PTPDM). AREAS COVERED TP results in the complete loss of pancreatic parenchyma, with subsequent absolute insulinopenia and lifelong need for exogenous insulin therapy. Patients with PTPDM also exhibit deficiency of glucagon, amylin and pancreatic polypeptide. These endocrine abnormalities, coupled with increased peripheral insulin sensitivity, deficiency of pancreatic enzymes and TP-related modifications of gastrointestinal anatomy, can lead to marked glucose variability and increased risk of iatrogenic (insulin-induced) severe hypoglycemic episodes ('brittle diabetes'). EXPERT OPINION We believe that diabetes mellitus secondary to TP should not be included in the DEP spectrum in light of its peculiar pathophysiological and clinical features. Therefore, we propose a new classification for this entity, that would likely provide more accurate prognosis and treatment strategies.
Collapse
Affiliation(s)
- Marco Infante
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
- Section of Diabetes and Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110:3597-3626. [PMID: 36327900 PMCID: PMC9986959 DOI: 10.1016/j.neuron.2022.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.
Collapse
Affiliation(s)
| | - Owen Sweeney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Davi Sidarta-Oliveira
- Physician-Scientist Graduate Program, Obesity and Comorbidities Research Center, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
14
|
Tamayo A, Gonçalves LM, Rodriguez-Diaz R, Pereira E, Canales M, Caicedo A, Almaça J. Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Glucose Homeostasis in Mice. Diabetes 2022; 71:1679-1693. [PMID: 35587617 PMCID: PMC9490358 DOI: 10.2337/db21-1104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022]
Abstract
The pancreatic islet depends on blood supply to efficiently sense plasma glucose levels and deliver insulin and glucagon into the circulation. Long believed to be passive conduits of nutrients and hormones, islet capillaries were recently found to be densely covered with contractile pericytes with the capacity to locally control blood flow. Here, we determined the contribution of pericyte regulation of islet blood flow to plasma insulin and glucagon levels and glycemia. Selective optogenetic activation of pericytes in intraocular islet grafts contracted capillaries and diminished blood flow. In awake mice, acute light-induced stimulation of islet pericytes decreased insulin and increased glucagon plasma levels, producing hyperglycemic effects. Interestingly, pericytes are the targets of sympathetic nerves in the islet, suggesting that sympathetic control of hormone secretion may occur in part by modulating pericyte activity and blood flow. Indeed, in vivo activation of pericytes with the sympathetic agonist phenylephrine decreased blood flow in mouse islet grafts, lowered plasma insulin levels, and increased glycemia. We further show that islet pericytes and blood vessels in living human pancreas slices responded to sympathetic input. Our findings indicate that pericytes mediate vascular responses in the islet that are required for adequate hormone secretion and glucose homeostasis. Vascular and neuronal alterations that are commonly seen in the islets of people with diabetes may impair regulation of islet blood flow and thus precipitate islet dysfunction.
Collapse
Affiliation(s)
- Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Melissa Canales
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Program of Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
15
|
Briggs JK, Schonblum A, Landsman L, Benninger RK. Going With the Flow: Pericyte-Regulated Islet Blood Flow Influences Glucose Homeostasis. Diabetes 2022; 71:1611-1613. [PMID: 35881835 PMCID: PMC9999034 DOI: 10.2337/dbi22-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Jennifer K. Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anat Schonblum
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard K.P. Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Corresponding author: Richard K.P. Benninger,
| |
Collapse
|
16
|
Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65:1069-1084. [PMID: 35348820 PMCID: PMC9205575 DOI: 10.1007/s00125-022-05691-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
The central and peripheral nervous systems play critical roles in regulating pancreatic islet function and glucose metabolism. Over the last century, in vitro and in vivo studies along with examination of human pancreas samples have revealed the structure of islet innervation, investigated the contribution of sympathetic, parasympathetic and sensory neural pathways to glucose control, and begun to determine how the structure and function of pancreatic nerves are disrupted in metabolic disease. Now, state-of-the art techniques such as 3D imaging of pancreatic innervation and targeted in vivo neuromodulation provide further insights into the anatomy and physiological roles of islet innervation. Here, we provide a summary of the published work on the anatomy of pancreatic islet innervation, its roles, and evidence for disordered islet innervation in metabolic disease. Finally, we discuss the possibilities offered by new technologies to increase our knowledge of islet innervation and its contributions to metabolic regulation.
Collapse
Affiliation(s)
- Rollie F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
He Y, Fu Q, Sun M, Qian Y, Liang Y, Zhang J, Gao R, Jiang H, Dai H, Liu Y, Xu X, Chen H, Xu K, Yang T. Phosphoproteome reveals molecular mechanisms of aberrant rhythm in neurotransmitter-mediated islet hormone secretion in diabetic mice. Clin Transl Med 2022; 12:e890. [PMID: 35758323 PMCID: PMC9235066 DOI: 10.1002/ctm2.890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acetylcholine (ACh) and norepinephrine (NE) are representative neurotransmitters of parasympathetic and sympathetic nerves, respectively, that antagonize each other to coregulate internal body functions. This also includes the control of different kinds of hormone secretion from pancreatic islets. However, the molecular mechanisms have not been fully elucidated, and whether innervation in islets is abnormal in diabetes mellitus also remains unclear. METHODS AND RESULTS Immunofluorescence colocalization and islet perfusion were performed and the results demonstrated that ACh/NE and their receptors were highly expressed in islet and rapidly regulated different hormones secretion. Phosphorylation is considered an important posttranslational modification in islet innervation and it was identified by quantitative proteomic and phosphoproteomic analyses in this study. The phosphorylated islet proteins were found involved in many biological and pathological processes, such as synaptic signalling transduction, calcium channel opening and insulin signalling pathway. Then, the kinases were predicted by motif analysis and further screened and verified by kinase-specific siRNAs in different islet cell lines (αTC1-6, Min6 and TGP52). After functional verification, Ksr2 and Pkacb were considered the key kinases of ACh and NE in insulin secretion, and Cadps, Mlxipl and Pdcd4 were the substrates of these kinases measured by immunofluorescence co-staining. Then, the decreased expression of receptors, kinases and substrates of ACh and NE were found in diabetic mice and the aberrant rhythm in insulin secretion could be improved by combined interventions on key receptors (M3 (pilocarpine) or α2a (guanfacine)) and kinases (Ksr2 or Pkacb). CONCLUSIONS Abnormal innervation was closely associated with the degree of islet dysfunction in diabetic mice and the aberrant rhythm in insulin secretion could be ameliorated significantly after intervention with key receptors and kinases in the early stage of diabetes mellitus, which may provide a promising therapeutic strategy for diabetes mellitus in the future.
Collapse
Affiliation(s)
- Yunqiang He
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi Fu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Sun
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu Qian
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yucheng Liang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jie Zhang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Rui Gao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Oxford Centre for DiabetesEndocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUK
| | - Hemin Jiang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Dai
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuwei Liu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xinyu Xu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Heng Chen
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kuanfeng Xu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tao Yang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
18
|
Yang YHC, Briant LJB, Raab CA, Mullapudi ST, Maischein HM, Kawakami K, Stainier DYR. Innervation modulates the functional connectivity between pancreatic endocrine cells. eLife 2022; 11:64526. [PMID: 35373736 PMCID: PMC9007585 DOI: 10.7554/elife.64526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/03/2022] [Indexed: 11/20/2022] Open
Abstract
The importance of pancreatic endocrine cell activity modulation by autonomic innervation has been debated. To investigate this question, we established an in vivo imaging model that also allows chronic and acute neuromodulation with genetic and optogenetic tools. Using the GCaMP6s biosensor together with endocrine cell fluorescent reporters, we imaged calcium dynamics simultaneously in multiple pancreatic islet cell types in live animals in control states and upon changes in innervation. We find that by 4 days post fertilization in zebrafish, a stage when islet architecture is reminiscent of that in adult rodents, prominent activity coupling between beta cells is present in basal glucose conditions. Furthermore, we show that both chronic and acute loss of nerve activity result in diminished beta–beta and alpha–beta activity coupling. Pancreatic nerves are in contact with all islet cell types, but predominantly with beta and delta cells. Surprisingly, a subset of delta cells with detectable peri-islet neural activity coupling had significantly higher homotypic coupling with other delta cells suggesting that some delta cells receive innervation that coordinates their output. Overall, these data show that innervation plays a vital role in the maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Christopher A Raab
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
19
|
Cui X, Li J, Li Y, Liu M, Qiao J, Wang D, Cao H, He W, Feng Y, Yang Z. Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120432. [PMID: 34607092 DOI: 10.1016/j.saa.2021.120432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diabetes has become one of the three chronic non-communicable diseases threatening human health in the world, and the detection of glucose concentration is of great importance for the prevention and treatment of diabetes. The noninvasive detection of glucose in tears has attracted interest over the past several decades, however, time-consuming, expensive equipment, and specialist technicians make tear analysis still challenging. Here, flexible surface-enhanced Raman scattering (SERS) substrates composed of gold nanoparticles (AuNPs) and two-dimensional MXene Ti3C2TX nanosheets have been designed. The GMXeP (gold nanoparticles with MXene nanosheets loaded on paper) SERS substrates show good sensitivity, reproducibility, and stability, yielding an enhancement factor (EF) of 3.7 × 105 at the concentration of 10-9 M. The GMXeP SERS substrates are used to detect glucose of diabetic tears within a linear range of 1-50 μM, the lowest detection concentration is 0.39 μM and the significant correlation between tear glucose and blood glucose indicates that this method is suitable for sensitive and noninvasive detection of blood glucose.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Yuting Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Mingyu Liu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Jinglong Qiao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Yun Feng
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China.
| |
Collapse
|
20
|
Zhao Y, Knight CM, Jiang Z, Delgado E, Van Hoven AM, Ghanny S, Zhou Z, Zhou H, Yu H, Hu W, Li H, Li X, Perez-Basterrechea M, Zhao L, Zhao Y, Giangola J, Weinberg R, Mazzone T. Stem Cell Educator therapy in type 1 diabetes: From the bench to clinical trials. Clin Exp Rheumatol 2022; 21:103058. [PMID: 35108619 DOI: 10.1016/j.autrev.2022.103058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function. To address these two key issues, we have developed a unique and novel procedure designated the Stem Cell Educator therapy, based on the immune education by cord-blood-derived multipotent stem cells (CB-SC). Over the last 10 years, this technology has been evaluated through international multi-center clinical studies, which have demonstrated its clinical safety and efficacy in T1D and other autoimmune diseases. Mechanistic studies revealed that Educator therapy could fundamentally correct the autoimmunity and induce immune tolerance through multiple molecular and cellular mechanisms such as the expression of a master transcription factor autoimmune regulator (AIRE) in CB-SC for T-cell modulation, an expression of Galectin-9 on CB-SC to suppress activated B cells, and secretion of CB-SC-derived exosomes to polarize human blood monocytes/macrophages into type 2 macrophages. Educator therapy is the leading immunotherapy to date to safely and efficiently correct autoimmunity and restore β cell function in T1D patients.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA.
| | - Colette M Knight
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
| | - Zhaoshun Jiang
- Department of Endocrinology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, China.
| | - Elias Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Department of Medicine, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain.
| | - Anne Marie Van Hoven
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Steven Ghanny
- Department of Pediatric, Division of Endocrinology and Diabetes, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, USA
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250020, China
| | - Xia Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Marcos Perez-Basterrechea
- Unit of Cell Therapy and Regenerative Medicine, Hematology and Hemotherapy, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yeqian Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Joseph Giangola
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Rona Weinberg
- MPN Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
21
|
Krivova YS, Proshchina AE, Otlyga DA, Leonova OG, Saveliev SV. Prenatal development of sympathetic innervation of the human pancreas. Ann Anat 2021; 240:151880. [PMID: 34896557 DOI: 10.1016/j.aanat.2021.151880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied. MATERIAL AND METHODS Pancreatic autopsy samples from 24 human fetuses were examined using immunohistochemistry with antibodies to tyrosine hydroxylase (TH). The density, concentration, and size (width, length, perimeter and area) of the TH-positive sympathetic nerves were compared in four developmental periods: pre-fetal (8-11 weeks post conception (w.p.c.), n = 6), early fetal (13-20 gestational weeks (g.w.), n = 7), middle fetal (21-28 g.w., n = 6) and late fetal (29-40 g.w., n = 5) using morphometric methods and statistical analysis (Multiple Comparisons p values). Double immunofluorescence with antibodies to TH and either insulin or glucagon and confocal microscopy were applied to analyze the interaction between the sympathetic nerves and endocrine cells, and the co-localization of TH with hormones. RESULTS TH-positive sympathetic nerves were detected in the fetal pancreas starting from the early stages (8 w.p.c.). The developmental dynamics of sympathetic nerves was follows: from the pre-fetal period, the amount of TH-positive nerves gradually increased and their branching occurred reaching the highest density and concentration in the middle fetal period, followed by a decrease in these parameters in the late fetal period. From the 14th g.w. onwards, thin TH-positive nerve fibers were mainly distributed in the vicinity of blood vessels and around the neurons of intrapancreatic ganglia, which is similar in adults. There were only rare TH-positive nerve fibers adjacent to acini or located at the periphery of some islets. The close interactions between the TH-positive nerve fibers and endocrine cells were observed in the neuro-insular complexes. Additionally, non-neuronal TH-containing cells were found in the pancreas of fetuses from the pre-fetal and early fetal periods. Some of these cells simultaneously contained glucagon. CONCLUSIONS The results demonstrate that sympathetic innervation of the human pancreas, including the formation of perivascular and intraganglionic nerve plexuses, extensively develops during prenatal period, while some processes, such as the formation of sympathetic innervation of islet capillaries, may occur postnatally. Non-neuronal TH-containing cells, as well as the interactions between the sympathetic terminals and endocrine cells observed in the fetal pancreas may be necessary for endocrine pancreas development in humans.
Collapse
Affiliation(s)
- Yuliya S Krivova
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | | | - Dmitry A Otlyga
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | - Ol'ga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova St. 32, 119991 Moscow, Russia.
| | - Sergey V Saveliev
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| |
Collapse
|
22
|
Panzer JK, Caicedo A. Targeting the Pancreatic α-Cell to Prevent Hypoglycemia in Type 1 Diabetes. Diabetes 2021; 70:2721-2732. [PMID: 34872936 PMCID: PMC8660986 DOI: 10.2337/dbi20-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
Life-threatening hypoglycemia is a limiting factor in the management of type 1 diabetes. People with diabetes are prone to develop hypoglycemia because they lose physiological mechanisms that prevent plasma glucose levels from falling. Among these so-called counterregulatory responses, secretion of glucagon from pancreatic α-cells is preeminent. Glucagon, a hormone secreted in response to a lowering in glucose concentration, counteracts a further drop in glycemia by promoting gluconeogenesis and glycogenolysis in target tissues. In diabetes, however, α-cells do not respond appropriately to changes in glycemia and, thus, cannot mount a counterregulatory response. If the α-cell could be targeted therapeutically to restore its ability to prevent hypoglycemia, type 1 diabetes could be managed more efficiently and safely. Unfortunately, the mechanisms that allow the α-cell to respond to hypoglycemia have not been fully elucidated. We know even less about the pathophysiological mechanisms that cause α-cell dysfunction in diabetes. Based on published findings and unpublished observations, and taking into account its electrophysiological properties, we propose here a model of α-cell function that could explain its impairment in diabetes. Within this frame, we emphasize those elements that could be targeted pharmacologically with repurposed U.S. Food and Drug Administration-approved drugs to rescue α-cell function and restore glucose counterregulation in people with diabetes.
Collapse
Affiliation(s)
- Julia K Panzer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
23
|
Piemonti L. Felix dies natalis, insulin… ceterum autem censeo "beta is better". Acta Diabetol 2021; 58:1287-1306. [PMID: 34027619 DOI: 10.1007/s00592-021-01737-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
One hundred years after its discovery, insulin remains the life-saving therapy for many patients with diabetes. It has been a 100-years-old success story thanks to the fact that insulin therapy has continuously integrated the knowledge developed over a century. In 1982, insulin becomes the first therapeutic protein to be produced using recombinant DNA technology. The first "mini" insulin pump and the first insulin pen become available in 1983 and 1985, respectively. In 1996, the first generation of insulin analogues were produced. In 1999, the first continuous glucose-monitoring device for reading interstitial glucose was approved by the FDA. In 2010s, the ultra-long action insulins were introduced. An equally exciting story developed in parallel. In 1966. Kelly et al. performed the first clinical pancreas transplant at the University of Minnesota, and now it is a well-established clinical option. First successful islet transplantations in humans were obtained in the late 1980s and 1990s. Their ability to consistently re-establish the endogenous insulin secretion was obtained in 2000s. More recently, the possibility to generate large numbers of functional human β cells from pluripotent stem cells was demonstrated, and the first clinical trial using stem cell-derived insulin producing cell was started in 2014. This year, the discovery of this life-saving hormone turns 100 years. This provides a unique opportunity not only to celebrate this extraordinary success story, but also to reflect on the limits of insulin therapy and renew the commitment of the scientific community to an insulin free world for our patients.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
24
|
Infante M, Baidal DA, Rickels MR, Fabbri A, Skyler JS, Alejandro R, Ricordi C. Dual-hormone artificial pancreas for management of type 1 diabetes: Recent progress and future directions. Artif Organs 2021; 45:968-986. [PMID: 34263961 PMCID: PMC9059950 DOI: 10.1111/aor.14023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, technological advances have led to tremendous improvement in the management of type 1 diabetes (T1D). Artificial pancreas systems have been shown to improve glucose control compared with conventional insulin pump therapy. However, clinically significant hypoglycemic and hyperglycemic episodes still occur with the artificial pancreas. Postprandial glucose excursions and exercise-induced hypoglycemia represent major hurdles in improving glucose control and glucose variability in many patients with T1D. In this regard, dual-hormone artificial pancreas systems delivering other hormones in addition to insulin (glucagon or amylin) may better reproduce the physiology of the endocrine pancreas and have been suggested as an alternative tool to overcome these limitations in clinical practice. In addition, novel ultra-rapid-acting insulin analogs with a more physiological time-action profile are currently under investigation for use in artificial pancreas devices, aiming to address the unmet need for further improvements in postprandial glucose control. This review article aims to discuss the current progress and future outlook in the development of novel ultra-rapid insulin analogs and dual-hormone closed-loop systems, which offer the next steps to fully closing the loop in the artificial pancreas.
Collapse
Affiliation(s)
- Marco Infante
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - David A. Baidal
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Fabbri
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
| | - Jay S. Skyler
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodolfo Alejandro
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Alvarsson A, Jimenez-Gonzalez M, Li R, Rosselot C, Tzavaras N, Wu Z, Stanley SA. Optical Clearing and 3D Analysis Optimized for Mouse and Human Pancreata. Bio Protoc 2021; 11:e4103. [PMID: 34458397 DOI: 10.21769/bioprotoc.4103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/02/2022] Open
Abstract
The pancreas is a heavily innervated organ, but pancreatic innervation can be challenging to comprehensively assess using conventional histological methods. However, recent advances in whole-mount tissue clearing and 3D rendering techniques have allowed detailed reconstructions of pancreatic innervation. Optical clearing is used to enhance tissue transparency and reduce light scattering, thus eliminating the need to section the tissue. Here, we describe a modified version of the optical tissue clearing protocol iDISCO+ (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) optimized for pancreatic innervation and endocrine markers. The protocol takes 13-19 days, depending on tissue size. In addition, we include protocols for imaging using light sheet and confocal microscopes and for 3D segmentation of pancreatic innervation and endocrine cells using Imaris.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- The Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhuhao Wu
- Department of Cell, Developmental, & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Bisgaard Bengtsen M, Møller N. Mini-review: Glucagon responses in type 1 diabetes - a matter of complexity. Physiol Rep 2021; 9:e15009. [PMID: 34405569 PMCID: PMC8371343 DOI: 10.14814/phy2.15009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years the role of altered alpha cell function and glucagon secretion in type 1 diabetes has attracted scientific attention. It is well established that glucagon responses to hypoglycemia are absent in type 1 diabetes, but more uncertain whether it is intact following other physiological and metabolic stimuli compared with nondiabetic individuals. The aim of this review is to (i) summarize current knowledge on glucagon responses during hypoglycemia in normal physiology and type 1 diabetes, and (ii) review human in vivo studies investigating glucagon responses after other stimuli in individuals with type 1 diabetes and nondiabetic individuals. Available data suggest that in type 1 diabetes the absence of glucagon secretion after hypoglycemia is irreversible. This is a scenario specific to hypoglycemia, since other stimuli, including administration of amino acids, insulin withdrawal, lipopolysaccharide exposure and exercise lead to substantial glucagon responses though attenuated compared to nondiabetic individuals in head-to-head studies. The derailed glucagon secretion is not confined to hypoglycemia as individuals with type 1 diabetes, as opposed to nondiabetic individuals display glucagon hypersecretion after meals, thereby potentially contributing to insulin resistance. The complexity of these phenomena may relate to activation of distinct regulatory pathways controlling glucagon secretion i.e., intra-islet paracrine signaling, direct and autonomic nervous signaling.
Collapse
Affiliation(s)
- Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
- Department of Internal MedicineRegional Hospital HorsensHorsensDenmark
| | - Niels Møller
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
27
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
28
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
29
|
Chen CC, Peng SJ, Wu PY, Chien HJ, Lee CY, Chung MH, Tang SC. Heterogeneity and neurovascular integration of intraportally transplanted islets revealed by 3-D mouse liver histology. Am J Physiol Endocrinol Metab 2021; 320:E1007-E1019. [PMID: 33900850 DOI: 10.1152/ajpendo.00605.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intraportal islet transplantation has been clinically applied for treatment of unstable type 1 diabetes. However, in the liver, systematic assessment of the dispersed islet grafts and the graft-hepatic integration remains difficult, even in animal models. This is due to the lack of global and in-depth analyses of the transplanted islets and their microenvironment. Here, we apply three-dimensional (3-D) mouse liver histology to investigate the islet graft microstructure, vasculature, and innervation. Streptozotocin-induced diabetic mice were used in syngeneic intraportal islet transplantation to achieve euglycemia. Optically cleared livers were prepared to enable 3-D morphological and quantitative analyses of the engrafted islets. 3-D image data reveal the clot- and plaque-like islet grafts in the liver: the former are derived from islet emboli and associated with ischemia, whereas the latter (minority) resemble the plaques on the walls of portal vessels (e.g., at the bifurcation) with mild, if any, perigraft tissue damage. Three weeks after transplantation, both types of grafts are revascularized, yet significantly more lymphatics are associated with the plaque- than clot-like grafts. Regarding the islet reinnervation, both types of grafts connect to the periportal nerve plexus and develop peri- and intragraft innervation. Specifically, the sympathetic axons and varicosities contact the α-cells, highlighting the graft-host neural integration. We present the heterogeneity of the intraportally transplanted islets and the graft-host neurovascular integration in mice. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue and cellular analyses of human islet grafts in the liver.NEW & NOTEWORTHY Modern 3-D histology identifies the clot- and plaque-like islet grafts in the mouse liver, which otherwise cannot be distinguished with the standard microtome-based histology. The two types of grafts are similar in blood microvessel density and sympathetic reinnervation. Their differences, however, are their locations, severity of associated liver injury, and access to lymphatic vessels. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue/cellular analyses of human islet grafts in the liver.
Collapse
Affiliation(s)
- Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yu Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Shiue-Cheng Tang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
30
|
Campbell-Thompson M, Butterworth EA, Boatwright JL, Nair MA, Nasif LH, Nasif K, Revell AY, Riva A, Mathews CE, Gerling IC, Schatz DA, Atkinson MA. Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Sci Rep 2021; 11:6562. [PMID: 33753784 PMCID: PMC7985489 DOI: 10.1038/s41598-021-85659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac β-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32610, USA.
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - J Lucas Boatwright
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Malavika A Nair
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lith H Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kamal Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Andy Y Revell
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Ivan C Gerling
- Department of Medicine-Endocrinology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
31
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
32
|
Guo K, Tian Q, Yang L, Zhou Z. The Role of Glucagon in Glycemic Variability in Type 1 Diabetes: A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:4865-4873. [PMID: 34992395 PMCID: PMC8710064 DOI: 10.2147/dmso.s343514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/01/2021] [Indexed: 01/20/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive disease as a result of the severe destruction of islet β-cell function, which leads to high glucose variability in patients. However, α-cell function is also compromised in patients with T1DM, characterized by aberrant fasting and postprandial glucagon secretion. According to recent studies, this aberrant glucagon secretion plays an increasing role in hyperglycemia, insulin-induced hypoglycemia and exercise-associated hypoglycemia in patients with T1DM. With application of continuous glucose monitoring system, dozens of metrics enable the assessment of glycemic variability, which is an integral component of glycemic control for patients with T1DM. There is growing evidences to illustrate the contribution of glucagon secretion to the glycemic variability in patients with T1DM, which may promote the development of new treatment strategies aiming to mitigate glycemic variability associated with aberrant glucagon secretion.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Qi Tian
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Correspondence: Lin Yang; Zhiguang Zhou Email ;
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| |
Collapse
|
33
|
Abstract
At the time of Ivan Pavlov, pancreatic innervation was studied by looking at pancreas secretions in response to electrical stimulation of nerves. Nowadays we have ways to visualize neuronal activity in real time thanks to advances in fluorescent reporters and imaging techniques. We also have very precise optogenetic and pharmacogenetic approaches that allow neuronal manipulations in a very specific manner. These technological advances have been extensively employed for studying the central nervous system and are just beginning to be incorporated for studying visceral innervation. Pancreatic innervation is complex, and the role it plays in physiology and pathophysiology of the organ is still not fully understood. In this review we highlight anatomical aspects of pancreatic innervation, techniques for pancreatic neuronal labeling, and approaches for imaging pancreatic innervation in vitro and in vivo.
Collapse
|
34
|
Weitz J, Menegaz D, Caicedo A. Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes 2021; 70:17-26. [PMID: 33355306 PMCID: PMC7881851 DOI: 10.2337/dbi19-0033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Pancreatic islets are clusters of hormone-secreting endocrine cells that rely on intricate cell-cell communication mechanisms for proper function. The importance of multicellular cooperation in islet cell physiology was first noted nearly 30 years ago in seminal studies showing that hormone secretion from endocrine cell types is diminished when these cells are dispersed. These studies showed that reestablishing cellular contacts in so-called pseudoislets caused endocrine cells to regain hormone secretory function. This not only demonstrated that cooperation between islet cells is highly synergistic but also gave birth to the field of pancreatic islet organoids. Here we review recent advances related to the mechanisms of islet cell cross talk. We first describe new developments that revise current notions about purinergic and GABA signaling in islets. Then we comment on novel multicellular imaging studies that are revealing emergent properties of islet communication networks. We finish by highlighting and discussing recent synthetic approaches that use islet organoids of varied cellular composition to interrogate intraislet signaling mechanisms. This reverse engineering of islets not only will shed light on the mechanisms of intraislet signaling and define communication networks but also may guide efforts aimed at restoring islet function and β-cell mass in diabetes.
Collapse
Affiliation(s)
- Jonathan Weitz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Danusa Menegaz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| |
Collapse
|
35
|
Gilor C, Duesberg C, Elliott DA, Feldman EC, Mundinger TO, Taborsky GJ, Nelson RW, Havel PJ. Co-impairment of autonomic and glucagon responses to insulin-induced hypoglycemia in dogs with naturally occurring insulin-dependent diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 319:E1074-E1083. [PMID: 33044845 PMCID: PMC7792666 DOI: 10.1152/ajpendo.00379.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aimed to investigate the contributions of two factors potentially impairing glucagon response to insulin-induced hypoglycemia (IIH) in insulin-deficient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and 2) defects in the activation of the autonomic inputs to the islet. Plasma glucagon responses during hyperinsulinemic-hypoglycemic clamps ([Formula: see text]40 mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to intravenous glucagon were measured to assess endogenous insulin secretion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine were measured as indices of parasympathetic and sympathoadrenal autonomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not increase during IIH (diabetic nonresponder [DMN]; ∆ = -6 ± 12 pg/mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon responses (∆ = +26 ± 12) were within the range of nondiabetic control dogs (∆ = +27 ± 16 pg/mL). C-peptide responses to intravenous glucagon were absent in diabetic dogs. Activation of all three autonomic responses were impaired in DMN dogs but remained intact in DMR dogs. Each of the three autonomic responses to IIH was positively correlated with glucagon responses across the three groups. The study conclusions are as follows: 1) Impairment of glucagon responses in DMN dogs is not due to generalized impairment of α-cell function. 2) Loss of tonic inhibition of glucagon secretion by insulin is not sufficient to produce loss of the glucagon response; impairment of autonomic activation is also required. 3) In dogs with major β-cell function loss, activation of the autonomic inputs is sufficient to mediate an intact glucagon response to IIH.NEW & NOTEWORTHY In dogs with naturally occurring, insulin-dependent (C-peptide negative) diabetes mellitus, impairment of glucagon responses is not due to generalized impairment of α-cell function. Loss of tonic inhibition of glucagon secretion by insulin is not sufficient, by itself, to produce loss of the glucagon response. Rather, impaired activation of the parasympathetic and sympathoadrenal autonomic inputs to the pancreas is also required. Activation of the autonomic inputs to the pancreas is sufficient to mediate an intact glucagon response to insulin-induced hypoglycemia in dogs with naturally occurring diabetes mellitus. These results have important implications that include leading to a greater understanding and insight into the pathophysiology, prevention, and treatment of hypoglycemia during insulin treatment of diabetes in companion dogs and in human patients.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida
| | - Cynthia Duesberg
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Denise A Elliott
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Edward C Feldman
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | | | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, Washington
| | - Richard W Nelson
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
36
|
Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci 2020; 44:189-202. [PMID: 33229051 DOI: 10.1016/j.tins.2020.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in animal models of obesity and diabetes. Together, these studies highlight the importance of peripheral nerves as a new therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Gilor C, Pires J, Greathouse R, Horn R, Huising MO, Marks SL, Murphy B, Kol A. Loss of sympathetic innervation to islets of Langerhans in canine diabetes and pancreatitis is not associated with insulitis. Sci Rep 2020; 10:19187. [PMID: 33154408 PMCID: PMC7645777 DOI: 10.1038/s41598-020-76091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Canine diabetes mellitus (DM) affects 0.6% of the canine population and yet, its etiology is poorly understood. Most affected dogs are diagnosed as adults and are insulin-dependent. We compared pan-leukocyte and sympathetic innervation markers in pancreatic islets of adult dogs with spontaneous DM (sDM), spontaneous pancreatitis (sPanc), both (sDMPanc), toxin-induced DM (iDM) and controls. We found evidence of decreased islet sympathetic innervation but no significant infiltration of islets with leukocytes in all disease groups. We show that loss of sympathetic innervation is ongoing in canine DM and does not necessarily precede it. We further found selective loss of islet-associated beta cells in dogs with sDM and sDMPanc, suggesting that collateral damage from inflammation in the exocrine pancreas is not a likely cause of DM in these dogs. The cause of this selective loss of beta cells needs to be further elucidated but overall, our findings are not supportive of an autoimmune process as a cause of sDM in adult dogs. The loss of sympathetic innervation in sPanc in dogs that do not suffer from DM links the disease in the exocrine pancreas to a pathological process in the endocrine pancreas, suggesting pancreatitis might be a potential precursor to DM.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA. .,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA.
| | - Jully Pires
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rachel Greathouse
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rebecca Horn
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Stanley L Marks
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Brian Murphy
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
38
|
Faber CL, Deem JD, Campos CA, Taborsky GJ, Morton GJ. CNS control of the endocrine pancreas. Diabetologia 2020; 63:2086-2094. [PMID: 32894319 PMCID: PMC7983553 DOI: 10.1007/s00125-020-05204-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that, although pancreatic islets can function autonomously to detect and respond to changes in the circulating glucose level, the brain cooperates with the islet to maintain glycaemic control. Here, we review the role of the central and autonomic nervous systems in the control of the endocrine pancreas, including mechanisms whereby the brain senses circulating blood glucose levels. We also examine whether dysfunction in these systems might contribute to complications of type 1 diabetes and the pathogenesis of type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Chelsea L Faber
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer D Deem
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos A Campos
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, WA, USA
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Gregory J Morton
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Christoffersson G, Ratliff SS, von Herrath MG. Interference with pancreatic sympathetic signaling halts the onset of diabetes in mice. SCIENCE ADVANCES 2020; 6:6/35/eabb2878. [PMID: 33052874 PMCID: PMC7531904 DOI: 10.1126/sciadv.abb2878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/13/2020] [Indexed: 05/04/2023]
Abstract
The notably lobular distribution of immune lesions in type 1 diabetes (T1D) has been hypothesized to be the result of innervation within the pancreas. To investigate whether neuroimmune interactions could explain this phenomenon, we explored the impact of sympathetic signaling in the RIP-LCMV-GP mouse model of autoimmune diabetes. In this model, the CD8+ T cell attack on β cells replicates a key pathogenic feature of human T1D. We found that inhibition of α1 adrenoceptors, ablation of sympathetic nerves, and surgical denervation all had a protective effect in this model, without affecting the systemic presence of β cell-reactive CD8+ T cells. In vivo multiphoton imaging revealed a local effect within pancreatic islets including limited infiltration of both macrophages and β cell-specific CD8+ T cells. Islet-resident macrophages expressed adrenoceptors and were responsive to catecholamines. Islet macrophages may therefore constitute a pivotal neuroimmune signaling relay and could be a target for future interventions in T1D.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
- Department of Medical Cell Biology, Uppsala University, Uppsala 75237, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
| | | | - Matthias G von Herrath
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
- Novo Nordisk Research Center, Seattle, WA 98109, USA
| |
Collapse
|
40
|
Schnell O, Valensi P, Standl E, Ceriello A. Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes. Endocrinol Diabetes Metab 2020; 3:e00129. [PMID: 32704554 PMCID: PMC7375088 DOI: 10.1002/edm2.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a major chronic disease with ever-increasing prevalence and a variety of serious complications for persons with DM, such as cardiovascular and/or renal complications. New glucose-lowering therapies like DPP-4 inhibitors, GLP-1 receptor agonists, and SGLT-2 inhibitors have undergone cardiovascular outcome trials (CVOTs) for type 2 diabetes (T2DM), as by the guidance of the FDA. However, CVOTs for type 1 diabetes (T1DM) are generally lacking. Both, persons with T1DM and T2DM, are burdened with a high incidence of cardiovascular and renal disease such as atherosclerotic cardiovascular disease (ASCVD) and diabetic kidney disease (DKD). Although pathologies of the two types of diabetes cannot be compared, similar mechanisms and risk factors like sex, hyperglycaemia, hypertension, endothelial damage and (background) inflammation have been identified in the development of CVD and DKD in T1DM and T2DM. Recent CVOTs in T2DM demonstrated that SGLT-2 inhibitors, besides exerting a glucose-lowering effect, have beneficial effects on cardiovascular and renal mechanisms. These mechanisms are reviewed in detail in this manuscript and evaluated for possible transferability to, and thus efficacy in, T1DM. Our review of current literature suggests that SGLT-2 inhibitors have cardioprotective benefits beyond their glucose-lowering effects. As this mainly has been observed in CVOTs in T2DM, further investigation in the adjunctive therapy for type 1 diabetes is suggested.
Collapse
Affiliation(s)
| | - Paul Valensi
- Department of Endocrinology Diabetology NutritionAPHP, Jean VERDIER Hospital, Paris Nord University, CINFO, CRNH‐IdFBondyFrance
| | | | - Antonio Ceriello
- Department of Cardiovascular and Metabolic DiseasesIRCCS MultiMedicaSesto San Giovanni (MI)Italy
| |
Collapse
|
41
|
Herat LY, Ward NC, Magno AL, Rakoczy EP, Kiuchi MG, Schlaich MP, Matthews VB. Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World J Gastroenterol 2020; 26:3225-3235. [PMID: 32684737 PMCID: PMC7336319 DOI: 10.3748/wjg.v26.i23.3225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is associated with major chronic microvascular complications which contribute significantly to diabetes associated morbidity. The protein primarily responsible for glucose reabsorption in the kidney is sodium glucose co-transporter 2 (SGLT2). Presently, SGLT2 inhibitors are widely used in diabetic patients to improve blood glucose levels and prevent cardiovascular and renal complications. Given the broad therapeutic application of SGLT2 inhibitors, we hypothesised that SGLT2 inhibition may exert its protective effects via alterations of the gut microbiome and tested this in a type 1 diabetic mouse model of diabetic retinopathy.
AIM To determine whether the treatment with two independent SGLT2 inhibitors affects gut health in a type 1 diabetic mouse model.
METHODS The SGLT2 inhibitors empagliflozin or dapagliflozin (25 mg/kg/d) or vehicle dimethylsulfoxide (DMSO) were administered to C57BL/6J, Akita, Kimba and Akimba mice at 10 wk of age for 8 wk via their drinking water. Serum samples were collected and the concentration of succinate and the short chain fatty acid (SCFA) butyric acid was measured using gas chromatography-mass spectrometry. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the concentration of insulin and leptin. Furthermore, the norepinephrine content in kidney tissue was determined using ELISA. Pancreatic tissue was collected and stained with haematoxylin and eosin and analysed using brightfield microscopy.
RESULTS Due to the presence of the Akita allele, both Akita and Akimba mice showed a reduction in insulin production compared to C57BL/6J and Kimba mice. Furthermore, Akita mice also showed the presence of apoptotic bodies within the pancreatic islets. The acinar cells of Akita and Akimba mice showed swelling which is indicative of acute injury or pancreatitis. After 8 wk of SGLT2 inhibition with dapagliflozin, the intermediate metabolite of gut metabolism known as succinate was significantly reduced in Akimba mice when compared to DMSO treated mice. In addition, empagliflozin resulted in suppression of succinate levels in Akimba mice. The beneficial SCFA known as butyric acid was significantly increased in Akita mice after treatment with dapagliflozin when compared to vehicle treated mice. The norepinephrine content in the kidney was significantly reduced with both dapagliflozin and empagliflozin therapy in Akita mice and was significantly reduced in Akimba mice treated with empagliflozin. In non-diabetic C57BL/6J and Kimba mice, serum leptin levels were significantly reduced after dapagliflozin therapy.
CONCLUSION The inhibition of SGLT2 reduces the intermediate metabolite succinate, increases SCFA butyric acid levels and reduces norepinephrine content in mouse models of T1D. Collectively, these improvements may represent an important mechanism underlying the potential benefits of SGLT2 inhibition in T1D and its complications.
Collapse
Affiliation(s)
- Lakshini Y Herat
- School of Biomedical Sciences, Dobney Hypertension Centre, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia
| | - Natalie C Ward
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia
- Faculty of Health Sciences, School of Public Health, Curtin University, Bentley 6102, Australia
| | - Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth 6000, Australia
| | - Elizabeth P Rakoczy
- Department of Molecular Ophthalmology, University of Western Australia, Crawley 6009, Australia
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth 6000, Australia
| | - Vance B Matthews
- School of Biomedical Sciences, Dobney Hypertension Centre, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia
| |
Collapse
|
42
|
Guo D, Mizukami H, Osonoi S, Takahashi K, Ogasawara S, Kudo K, Sasaki T, Yagihashi S. Beneficial effects of combination therapy of canagliflozin and teneligliptin on diabetic polyneuropathy and β-cell volume density in spontaneously type 2 diabetic Goto-Kakizaki rats. Metabolism 2020; 107:154232. [PMID: 32302619 DOI: 10.1016/j.metabol.2020.154232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
AIMS Parasympathetic nerve (PN) signaling plays a crucial role in the maintenance of pancreatic β-cell volume density (Vβ). PN may be pathologically affected in diabetic polyneuropathy (DPN). However, the association between the reduction of PNs in islets and Vβ and the therapeutic effects of a DPP4 inhibitor (DPP4i) and an SGLT2 inhibitor (SGLT2i) in nonobese type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats (GK) have not been investigated. MATERIALS AND METHODS We divided 5-week old male GK and Wistar rats (W) into a DPP4i-treated group (GKTe), SGLT2i-treated group (GKCa), and combination-treated group (GKCaTe). After 25 weeks, the pancreata was pathologically evaluated. RESULTS Vβ in GK was significantly decreased (p < 0.01 vs. W), whereas Vβ was the most well preserved in GKCaTe (p < 0.05 vs. GKTe), followed by GKTe (p < 0.05 vs. GK). The decreased amount of PNs in the islets and intraepidermal nerve fiber density (IENFD) in GK was significantly improved in the treated groups compared with GK (p < 0.05 vs. GKCa and GKTe and p < 0.01 vs. GKCaTe). PN density and IENFD were significantly correlated with Vβ (r = 0.55, p < 0.01 and r = 0.54, p < 0.01, respectively). IENFD was identified as a surrogate marker for the prediction of Vβ (cutoff value, 16.39). CONCLUSIONS The combination therapy of DPP4i and SGLT2i improved Vβ accompanied by PNs density and IENFD. IENFD was proportionally correlated with Vβ. Therefore, the prevention of DPN development may be concurrently beneficial for the preservation of Vβ in nonobese T2DM.
Collapse
Affiliation(s)
- Danyang Guo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiro Kudo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
43
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
44
|
Mateus Gonçalves L, Almaça J. Functional Characterization of the Human Islet Microvasculature Using Living Pancreas Slices. Front Endocrinol (Lausanne) 2020; 11:602519. [PMID: 33519711 PMCID: PMC7843926 DOI: 10.3389/fendo.2020.602519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islets are clusters of endocrine cells that secrete different hormones to regulate blood glucose levels. Efficient hormone secretion requires a close interaction of endocrine cells with their vascular system. Islets receive blood through feeding arteriole(s) that branch into capillaries made of endothelial cells covered by pericytes. While a lot is known about rodent islet blood vessels, the structure and function of the human islet microvasculature has been less investigated. In this study, we used living pancreas slices from non-diabetic human donors to examine the function of human islet blood vessels. Living human pancreas slices were incubated with a membrane permeant calcium indicator and pericytes/smooth muscle cells were visualized with a fluorescent antibody against the mural cell marker NG2 proteoglycan. By confocal microscopy, we simultaneously recorded changes in the diameter of lectin-labeled blood vessels and cytosolic calcium levels in mural cells in islets. We tested several stimuli with vasoactive properties, such as norepinephrine, endothelin-1 and adenosine and compared human vascular responses with those previously published for mouse islet blood vessels. Norepinephrine and endothelin-1 significantly constricted human islet feeding arterioles, while adenosine dilated them. Islet capillaries were less responsive and only 15-20% of the mouse and human islet capillary network showed vasomotion. Nevertheless, in these responsive regions, norepinephrine and endothelin-1 decreased both mouse and human islet capillary diameter. Changes in islet blood vessel diameter were coupled to changes in cytosolic calcium levels in adjacent mouse and human islet mural cells. Our study shows that mural cells in islets are the targets of different regulatory mechanisms of islet blood perfusion. Several alterations of the human islet microvasculature occur during diabetes progression. Elucidating their functional consequences in future studies will be critical for our understanding of disease pathogenesis.
Collapse
|
45
|
Holm LJ, Haupt-Jorgensen M, Giacobini JD, Hasselby JP, Bilgin M, Buschard K. Fenofibrate increases very-long-chain sphingolipids and improves blood glucose homeostasis in NOD mice. Diabetologia 2019; 62:2262-2272. [PMID: 31410530 PMCID: PMC6861358 DOI: 10.1007/s00125-019-04973-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Sphingolipid metabolism regulates beta cell biology and inflammation and is abnormal at the onset of type 1 diabetes. Fenofibrate, a regulator of sphingolipid metabolism, is known to prevent diabetes in NOD mice. Here, we aimed to investigate the effects of fenofibrate on the pancreatic lipidome, pancreas morphology, pancreatic sympathetic nerves and blood glucose homeostasis in NOD mice. METHODS We treated female NOD mice with fenofibrate from 3 weeks of age. The pancreatic lipidome was analysed using MS. Analysis of pancreas and islet volume was performed by stereology. Islet sympathetic nerve fibre volume was evaluated using tyrosine hydroxylase staining. The effect on blood glucose homeostasis was assessed by measuring non-fasting blood glucose from age 12 to 30 weeks. Furthermore, we measured glucose tolerance, fasting insulin and glucagon levels, and insulin tolerance. RESULTS We found that fenofibrate selectively increases the amount of very-long-chain sphingolipids in the pancreas of NOD mice. In addition, we found that fenofibrate causes a remodelling of the pancreatic lipidome with an increased amount of lysoglycerophospholipids. Fenofibrate did not affect islet or pancreas volume, but led to a higher volume of islet sympathetic nerve fibres and tyrosine hydroxylase-positive cells. Fenofibrate-treated NOD mice had a more stable blood glucose, which was associated with reduced non-fasting and increased fasting blood glucose. Furthermore, fenofibrate improved glucose tolerance, reduced fasting glucagon levels and prevented fasting hyperinsulinaemia. CONCLUSIONS/INTERPRETATION These data indicate that fenofibrate alters the pancreatic lipidome to a more anti-inflammatory and anti-apoptotic state. The beneficial effects on islet sympathetic nerve fibres and blood glucose homeostasis indicate that fenofibrate could be used as a therapeutic approach to improve blood glucose homeostasis and prevent diabetes-associated pathologies.
Collapse
Affiliation(s)
- Laurits J Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Haupt-Jorgensen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jano D Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
46
|
Bottasso E. Toward the Existence of a Sympathetic Neuroplasticity Adaptive Mechanism Influencing the Immune Response. A Hypothetical View-Part II. Front Endocrinol (Lausanne) 2019; 10:633. [PMID: 31620088 PMCID: PMC6760024 DOI: 10.3389/fendo.2019.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
In the preceding work, a hypothesis on the existence of a specific neural plasticity program from sympathetic fibers innervating secondary lymphoid organs was introduced. This proposed adaptive mechanism would involve segmental retraction and degeneration of noradrenergic terminals during the immune system (IS) activation followed by regeneration once the IS returns to the steady-state. Starting from such view, this second part presents clinical and experimental evidence allowing to envision that this sympathetic neural plasticity mechanism is also operative on inflamed non-lymphoid peripheral tissues. Importantly, the sympathetic nervous system regulates most of the physiological bodily functions, ranging from cardiovascular, respiratory and gastro-intestinal functions to endocrine and metabolic ones, among others. Thus, it seems sensible to think that compensatory programs should be put into place during inflammation in non-lymphoid tissues as well, to avoid the possible detrimental consequences of a sympathetic blockade. Nevertheless, in many pathological scenarios like severe sepsis, chronic inflammatory diseases, or maladaptive immune responses, such compensatory programs against noradrenergic transmission impairment would fail to develop. This would lead to a manifest sympathetic dysfunction in the above-mentioned settings, partly accounting for their underlying pathophysiological basis; which is also discussed. The physiological/teleological significance for the whole neural plasticity process is postulated, as well.
Collapse
Affiliation(s)
- Emanuel Bottasso
- Departments of Pathology and Physiology, Faculty of Medicine, Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Rosario, Argentina
| |
Collapse
|
47
|
Peters L, Posgai A, Brusko TM. Islet-immune interactions in type 1 diabetes: the nexus of beta cell destruction. Clin Exp Immunol 2019; 198:326-340. [PMID: 31309537 DOI: 10.1111/cei.13349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies in Type 1 Diabetes (T1D) support an emerging model of disease pathogenesis that involves intrinsic β-cell fragility combined with defects in both innate and adaptive immune cell regulation. This combination of defects induces systematic changes leading to organ-level atrophy and dysfunction of both the endocrine and exocrine portions of the pancreas, ultimately culminating in insulin deficiency and β-cell destruction. In this review, we discuss the animal model data and human tissue studies that have informed our current understanding of the cross-talk that occurs between β-cells, the resident stroma, and immune cells that potentiate T1D. Specifically, we will review the cellular and molecular signatures emerging from studies on tissues derived from organ procurement programs, focusing on in situ defects occurring within the T1D islet microenvironment, many of which are not yet detectable by standard peripheral blood biomarkers. In addition to improved access to organ donor tissues, various methodological advances, including immune receptor repertoire sequencing and single-cell molecular profiling, are poised to improve our understanding of antigen-specific autoimmunity during disease development. Collectively, the knowledge gains from these studies at the islet-immune interface are enhancing our understanding of T1D heterogeneity, likely to be an essential component for instructing future efforts to develop targeted interventions to restore immune tolerance and preserve β-cell mass and function.
Collapse
Affiliation(s)
- L Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - A Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - T M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
48
|
Rickels MR. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann N Y Acad Sci 2019; 1454:68-79. [PMID: 31389033 DOI: 10.1111/nyas.14214] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Hypoglycemia remains a major barrier to the achievement of target levels of glycemic control for most individuals with insulin-dependent type 1 diabetes (T1D). Both the loss of β cells and an accompanying defect in the α cell response to hypoglycemia predispose patients with T1D to the development of low blood glucose. Increased glucose variability, exposure to hypoglycemia, and impaired awareness of hypoglycemia all contribute to increased risk of experiencing severe hypoglycemia, which is explained by progressive impairment in epinephrine secretion and autonomic symptom generation in response to hypoglycemia leading to defective glucose counterregulation and hypoglycemia unawareness that characterize hypoglycemia-associated autonomic failure (HAAF). Interruption of HAAF requires interfering with the mechanisms of brain adaptation to low blood glucose that affect central glucose sensing and the autonomic response to hypoglycemia, or avoidance of hypoglycemia that may allow for eventual recovery of counterregulatory and autonomic symptom responses. Strategies for hypoglycemia avoidance that include continuous glucose monitoring may reduce, but do not eliminate, clinically significant hypoglycemia, with ongoing counterregulatory defects and impaired awareness of hypoglycemia. Complete avoidance of hypoglycemia can be achieved following pancreatic islet transplantation and allows for the restoration of counterregulatory and autonomic symptom responses that evidences the potential for reversing HAAF in T1D.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Brissova M, Haliyur R, Saunders D, Shrestha S, Dai C, Blodgett DM, Bottino R, Campbell-Thompson M, Aramandla R, Poffenberger G, Lindner J, Pan FC, von Herrath MG, Greiner DL, Shultz LD, Sanyoura M, Philipson LH, Atkinson M, Harlan DM, Levy SE, Prasad N, Stein R, Powers AC. α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Rep 2019. [PMID: 29514095 PMCID: PMC6368357 DOI: 10.1016/j.celrep.2018.02.032] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many patients with type 1 diabetes (T1D) have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.
Collapse
Affiliation(s)
- Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Diane Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Blodgett
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA; Math and Science Division, Babson College, Wellesley, MA 02457, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Radhika Aramandla
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory Poffenberger
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jill Lindner
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fong Cheng Pan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, the La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Dale L Greiner
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - May Sanyoura
- Departments of Medicine and Pediatrics, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Mark Atkinson
- Department of Pathology, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - David M Harlan
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Roland Stein
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
50
|
Li W, Yu G, Liu Y, Sha L. Intrapancreatic Ganglia and Neural Regulation of Pancreatic Endocrine Secretion. Front Neurosci 2019; 13:21. [PMID: 30842720 PMCID: PMC6391893 DOI: 10.3389/fnins.2019.00021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/10/2019] [Indexed: 01/03/2023] Open
Abstract
Extrapancreatic nerves project to pancreatic islets directly or converge onto intrapancreatic ganglia. Intrapancreatic ganglia constitute a complex information-processing center that contains various neurotransmitters and forms an endogenous neural network. Both intrapancreatic ganglia and extrapancreatic nerves have an important influence on pancreatic endocrine function. This review introduces the histomorphology, innervation, neurochemistry, and electrophysiological properties of intrapancreatic ganglia/neurons, and summarizes the modulatory effects of intrapancreatic ganglia and extrapancreatic nerves on endocrine function.
Collapse
Affiliation(s)
- Wenjing Li
- School of Pharmacy, China Medical University, Shenyang, China
| | - Guangjiao Yu
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yudan Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Lei Sha
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|