1
|
Hou X, Hu G, Wang H, Yang Y, Sun Q, Bai X. Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10602-5. [PMID: 40095198 DOI: 10.1007/s12265-025-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) is a clinical syndrome caused by structural or functional abnormalities in heart. Egr2 has been reported to be protective for multiple diseases, but its effect on HF remains unknown. The present study intended to investigate the potential role of Egr2 in HF and its possible downstream effectors. High Egr2 expression in heart was observed in HF mice. Egr2 knockdown alleviated cardiac damage and function in HF mice. Egr2 knockdown inhibited myocardial inflammation and apoptosis both in vivo and in vitro. Egr2 inhibited Acot1 transcription expression via directly binding to its promoter. Acot1 overexpression reduced Lipopolysaccharide (LPS)-induced cardiomyocyte inflammation and apoptosis. Functional rescue experiments revealed that Acot1 reversed the effects of Egr2 on LPS-induced cell apoptosis and inflammation. Overall, Egr2 knockdown might ameliorate HF by inhibiting inflammation and apoptosis in cardiomyocytes by targeting Acot1. This study might provide evidence to better understand the molecular mechanisms of HF pathogenesis.
Collapse
Affiliation(s)
- Xiaolu Hou
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China
| | - Guoling Hu
- Department of Geratology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Heling Wang
- Department of Cardiology, Langfang Changzheng Hospital, Langfang, China
| | - Ying Yang
- Department of Cardiology, Harbin 242 Hospital, Harbin, China
| | - Qi Sun
- Department of Cardiology, Beidahuang Group General Hospital, Harbin, China
| | - Xiuping Bai
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Bowers E, Entrup GP, Islam M, Mohan R, Lerner A, Mancuso P, Moore BB, Singer K. High fat diet feeding impairs neutrophil phagocytosis, bacterial killing, and neutrophil-induced hematopoietic regeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf024. [PMID: 40094316 DOI: 10.1093/jimmun/vkaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
The prevalence of obesity and metabolic diseases have risen significantly over the past decades. Chronic inflammation in obesity is a link between obesity and secondary disease. While macrophages and monocytes are known to contribute to metabolic disease risk during diet exposure, little is known about the contribution of neutrophils. We assessed the impact of obesity on neutrophils using a 16-week model of diet-induced obesity. Bone marrow (BM) neutrophils significantly expanded with chronic high-fat diet (HFD), significantly decreased TNFɑ protein release, and impaired neutrophil regenerative function compared to normal diet (ND) neutrophils. scRNAseq and flow cytometry demonstrated HFD neutrophil heterogeneity and validated that these cells do not have elevated expression of proinflammatory genes without secondary stimulation. HFD neutrophils showed elevated expression of genes associated with lipid metabolism-acyl-CoA thioesterase 1 (Acot1), carnitine palmitoyltransferase 1a (Cpt1a), and perilipin 2 (Plin2). Consistent with the importance of lipid metabolism in driving dysfunction, neutrophils from HFD-fed animals and neutrophils treated with palmitate had impaired bacterial phagocytosis and killing responses. These data shed light on the complex regulation of intracellular lipids and the role of metabolism on neutrophil function during homeostasis and disease.
Collapse
Affiliation(s)
- Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabrielle P Entrup
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ramkumar Mohan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Mancuso
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
- Department Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Park JY, Ha ES, Lee J, Brun PJ, Kim Y, Chung SS, Hwang D, Lee SA, Park KS. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med 2025; 57:554-566. [PMID: 40025173 PMCID: PMC11958748 DOI: 10.1038/s12276-025-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025] Open
Abstract
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear. Here we generated and studied transgenic mice that express human RBP4 (hRBP4), specifically in brown adipocytes (UCP1-RBP4 mice), to better understand these uncertainties. When fed a chow diet, these mice presented significantly lower body weights and fat mass than their littermate controls. The UCP1-RBP4 mice also showed significant improvements in glucose clearance, enhanced energy expenditure and increased thermogenesis in response to a cold challenge. This was associated with increased lipolysis and fatty acid oxidation in brown adipose tissue, which was attributed to the activation of canonical adrenergic signaling pathways. In addition, high-performance liquid chromatography analysis revealed that plasma RBP4 and retinol levels were elevated in the UCP1-RBP4 mice, whereas their hepatic retinol levels decreased in parallel with a chow diet. Steady-state brown fat levels of total retinol were significantly elevated in the UCP1-RBP4 mice, suggesting that their retinol uptake was increased in RBP4-expressing brown adipocytes when fed a chow diet. These findings reveal a critical role for RBP4 in canonical adrenergic signaling that promotes lipid mobilization and oxidation in brown adipocytes, where the harnessed energy is dissipated as heat by adaptive thermogenesis.
Collapse
Affiliation(s)
- Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun Sun Ha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeri Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ProGen Co. Ltd., 07789, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Xuan X, Zhang G, Zhang J, Zhu Q, Zhang Y, Liu L, Peng D, Wang D, Liu Y. Mechanism of PPARα agonist in alopecia areata. Am J Transl Res 2025; 17:844-855. [PMID: 40092073 PMCID: PMC11909512 DOI: 10.62347/jdyz3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 03/19/2025]
Abstract
OBJECTIVE To investigate the involvement and mechanisms of PPARα agonists in alopecia areata (AA). METHODS AA models were established using skin grafting, adoptive T-cell transfer, and TCR retrograde T-cell transfer methods. Relative PPARα expression levels in C3H/HeJ AA mice and AA patients were evaluated using qPCR and immunohistochemistry (IHC). Hair changes in mice following treatment were documented photographically, while immunofluorescence staining was employed to assess inflammatory factor dynamics in the skin. Additionally, ELISA and flow cytometry were used to analyze AA-related immune factors and cell populations in treated mice. RESULTS PPARα agonists demonstrated protective effects in C3H/HeJ skin graft AA models and TCR transgenic AA mice, promoting early reversal of AA. They effectively inhibited T effector cell function and exerted immunomodulatory effects. CONCLUSION The PPARα signaling pathway plays a key role in AA pathogenesis. PPARα agonists show therapeutic potential for AA as an inflammatory condition.
Collapse
Affiliation(s)
- Xiaomei Xuan
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Jinfang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Qing Zhu
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Yuli Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Lijuan Liu
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Dandan Peng
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Dongxue Wang
- Department of Dermatology, The First Hospital of Hebei Medical University Shijiazhuang 050031, Hebei, China
- Subcenter of National Clinical Research Center for Skin and Immune Diseases Shijiazhuang 050031, Hebei, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology Shijiazhuang 050031, Hebei, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University Shijiazhuang 050051, Hebei, China
| |
Collapse
|
5
|
Swaminathan A, Kenzior A, McCoin C, Price A, Weaver K, Hintermann A, Morris N, Keene AC, Rohner N. A repeatedly evolved mutation in Cryptochrome-1 of subterranean animals alters behavioral and molecular circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613894. [PMID: 39386508 PMCID: PMC11463651 DOI: 10.1101/2024.09.19.613894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The repeated evolution of similar phenotypes in independent lineages often occurs in response to similar environmental pressures, through similar or different molecular pathways. Recently, a repeatedly occurring mutation R263Q in a conserved domain of the protein Cryptochrome-1 (CRY1) was reported in multiple species inhabiting subterranean environments. Cryptochromes regulate circadian rhythms, and glucose and lipid metabolism. Subterranean species show changes to their circadian rhythm and metabolic pathways, making it likely that this mutation in CRY1 contributes to adaptive phenotypic changes. To identify the functional consequences of the CRY1 R263Q mutation, we generated a mouse model homozygous for this mutation. Indirect calorimetry experiments revealed delayed energy expenditure, locomotor activity and feeding patterns of mutant mice in the dark phase, but no further metabolic phenotypes - unlike a full loss of function of CRY1. Gene expression analyses showed altered expression of several canonical circadian genes in the livers of the mutant mice, fortifying the notion that CRY1 R263Q impacts metabolism. Our data provide the first characterization of a novel mutation that has repeatedly evolved in subterranean environments, supporting the idea that shared environmental constraints can drive the evolution of similar phenotypes through similar genetic changes.
Collapse
|
6
|
Wang A, Tian P, Zhang YD. TWAS-GKF: a novel method for causal gene identification in transcriptome-wide association studies with knockoff inference. Bioinformatics 2024; 40:btae502. [PMID: 39189955 PMCID: PMC11361808 DOI: 10.1093/bioinformatics/btae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024] Open
Abstract
MOTIVATION Transcriptome-wide association study (TWAS) aims to identify trait-associated genes regulated by significant variants to explore the underlying biological mechanisms at a tissue-specific level. Despite the advancement of current TWAS methods to cover diverse traits, traditional approaches still face two main challenges: (i) the lack of methods that can guarantee finite-sample false discovery rate (FDR) control in identifying trait-associated genes; and (ii) the requirement for individual-level data, which is often inaccessible. RESULTS To address this challenge, we propose a powerful knockoff inference method termed TWAS-GKF to identify candidate trait-associated genes with a guaranteed finite-sample FDR control. TWAS-GKF introduces the main idea of Ghostknockoff inference to generate knockoff variables using only summary statistics instead of individual-level data. In extensive studies, we demonstrate that TWAS-GKF successfully controls the finite-sample FDR under a pre-specified FDR level across all settings. We further apply TWAS-GKF to identify genes in brain cerebellum tissue from the Genotype-Tissue Expression (GTEx) v8 project associated with schizophrenia (SCZ) from the Psychiatric Genomics Consortium (PGC), and genes in liver tissue related to low-density lipoprotein cholesterol (LDL-C) from the UK Biobank, respectively. The results reveal that the majority of the identified genes are validated by Open Targets Validation Platform. AVAILABILITY AND IMPLEMENTATION The R package TWAS.GKF is publicly available at https://github.com/AnqiWang2021/TWAS.GKF.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Peixin Tian
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yan Dora Zhang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Sun B, Sun Y, Sun Y, Zhou X, Han X, Han Y, Ma Q. Leucine Supplementation Modulates Lipid Metabolism and Inflammation in Early Weaning Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38842880 DOI: 10.1021/acs.jafc.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Early weaning can induce the programmed dysregulation of glycolipid metabolism and inflammation in adult animals. The primary objective of this study was to evaluate the efficacy of leucine supplementation administered promptly after early weaning in mitigating these adverse effects in piglets. At day 21, 24 piglets were randomly selected and divided into 3 groups: EW group where the piglets were weaned at day 21 and fed basal diet, EWL group where the piglets were weaned at day 21 and fed the basal diet with supplementation of 1% leucine, and C group where the piglets were fed basal diet and weaned at 28 days. Each group contained eight replicates, with one piglet per replicate. The results indicated that early weaning had an impact on gut health and could activate the inhibitor of the kappa B kinase gamma/inhibitor kappa B alpha/NF-kappa-B (IKKγ/IκBα/NF-κB) signaling pathway to ameliorate pro-inflammatory factor and apoptosis levels. Furthermore, early weaning reduced the activity of fatty acid β oxidation (FAβO) and affected genes linked with lipid metabolism. Supplementing with leucine can improve the effects of these factors. In summary, leucine may alleviate the influences of early weaning on the lipid metabolism and inflammation in piglets.
Collapse
Affiliation(s)
- Bo Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinbo Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuesong Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Song J, Huang F, Ma K, Ding R, Tan K, Lv D, Soyano K, Zhao K. Bifenthrin induces changes in clinical poisoning symptoms, oxidative stress, DNA damage, histological characteristics, and transcriptome in Chinese giant salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172041. [PMID: 38554955 DOI: 10.1016/j.scitotenv.2024.172041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bifenthrin (BF) is a broad-spectrum insecticide that has gained widespread use due to its high effectiveness. However, there is limited research on the potential toxic effects of bifenthrin pollution on amphibians. This study aimed to investigate the 50 % lethal concentration (LC50) and safety concentration of Chinese giant salamanders (CGS) exposed to BF (at 0, 6.25,12.5,25 and 50 μg/L BF) for 96 h. Subsequently, CGS were exposed to BF (at 0, 0.04, and 4 μg/L BF) for one week to investigate its toxic effects. Clinical poisoning symptoms, liver pathology, oxidative stress factors, DNA damage, and transcriptome differences were observed and analyzed. The results indicate that exposure to BF at 4 μg/L significantly decreased the adenosine-triphosphate (ATP), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) contents in the brain, liver, and kidney of CGS. Additionally, the study found that the malondialdehyde (MDA), reactive oxygen species (ROS), and 8-hydroxydeoxyguanosine (8-OHdG) contents were increased. The liver tissue exhibited significant inflammatory reactions and structural malformations. RNA-seq analysis of the liver showed that BF caused abnormal antioxidant indices of CGS. This affected molecular function genes such as catalytic activity, ATP-dependent activity, metabolic processes, signaling and immune system processes, behavior, and detoxification, which were significantly upregulated, resulting in the differential genes significantly enriched in the calcium signaling pathway, PPARα signaling pathway and NF-kB signaling pathway. The results suggest that BF induces the abnormal production of free radicals, which overwhelms the body's self-defense system, leading to varying degrees of oxidative stress. This can result in oxidative damage, DNA damage, abnormal lipid metabolism, autoimmune diseases, clinical poisoning symptoms, and tissue inflammation. This work provides a theoretical basis for the rational application of bifenthrin and environmental risk assessment, as well as scientific guidance for the conservation of amphibian populations.
Collapse
Affiliation(s)
- Jing Song
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Fengyun Huang
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kun Ma
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Rui Ding
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kai Tan
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Dan Lv
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kiyoshi Soyano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kai Zhao
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| |
Collapse
|
9
|
Zhang J, Chen F. Integrated transcriptome and metabolome study reveal the therapeutic effects of nicotinamide riboside and nicotinamide mononucleotide on nonalcoholic fatty liver disease. Biomed Pharmacother 2024; 175:116701. [PMID: 38729053 DOI: 10.1016/j.biopha.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.
Collapse
Affiliation(s)
- Jingting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; College of Management, Liaoning Economy Vocational and Technical College, Shenyang, Liaoning 110122, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
10
|
Gonzalez-Latapi P, Bustos B, Dong S, Lubbe S, Simuni T, Krainc D. Alterations in Blood Methylome as Potential Epigenetic Biomarker in Sporadic Parkinson's Disease. Ann Neurol 2024; 95:1162-1172. [PMID: 38563317 DOI: 10.1002/ana.26923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bernabe Bustos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Siyuan Dong
- Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Steven Lubbe
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Sommerauer C, Gallardo-Dodd CJ, Savva C, Hases L, Birgersson M, Indukuri R, Shen JX, Carravilla P, Geng K, Nørskov Søndergaard J, Ferrer-Aumatell C, Mercier G, Sezgin E, Korach-André M, Petersson C, Hagström H, Lauschke VM, Archer A, Williams C, Kutter C. Estrogen receptor activation remodels TEAD1 gene expression to alleviate hepatic steatosis. Mol Syst Biol 2024; 20:374-402. [PMID: 38459198 PMCID: PMC10987545 DOI: 10.1038/s44320-024-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.
Collapse
Affiliation(s)
- Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Christina Savva
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Rajitha Indukuri
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Pablo Carravilla
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Clàudia Ferrer-Aumatell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Grégoire Mercier
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Erdinc Sezgin
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Marion Korach-André
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Hannes Hagström
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
12
|
Yuan Q, Zhang X, Yang X, Zhang Q, Wei X, Ding Z, Chen J, Hua H, Huang D, Xu Y, Wang X, Gao C, Liu S, Zhang H. Knockdown of ACOT4 alleviates gluconeogenesis and lipid accumulation in hepatocytes. Heliyon 2024; 10:e27618. [PMID: 38495177 PMCID: PMC10940928 DOI: 10.1016/j.heliyon.2024.e27618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Acyl-CoA thioesterase 4 (ACOT4) has been reported to be related to acetyl-CoA carboxylase activity regulation; However, its exact functions in liver lipid and glucose metabolism are still unclear. Here, we discovered explored the regulatory roles of ACOT4 in hepatic lipid and glucose metabolism in vitro. We found that the expression level of ACOT4 was significantly increased in the hepatic of db/db and ob/ob mice as well as obese mice fed a high fat diet. Adenovirus-mediated overexpression of ACOT4 promoted gluconeogenesis and high-glucose/high-insulin-induced lipid accumulation and impaired insulin sensitivity in primary mouse hepatocytes, whereas ACOT4 knockdown notably suppressed gluconeogenesis and decreased the triglycerides accumulation in hepatocytes. Furthermore, ACOT4 knockdown increased insulin-induced phosphorylation of AKT and GSK-3β in primary mouse hepatocytes. Mechanistically, we found that upregulation of ACOT4 expression inhibited AMP-activated protein kinase (AMPK) activity, and its knockdown had the opposite effect. However, activator A769662 and inhibitor compound C of AMPK suppressed the impact of the change in ACOT4 expression on AMPK activity. Our data indicated that ACOT4 is related to hepatic glucose and lipid metabolism, primarily via the regulation of AMPK activity. In conclusion, ACOT4 is a potential target for the therapy of non-alcoholic fatty liver (NAFLD) and type 2 diabetes.
Collapse
Affiliation(s)
- Qianqian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Zhimin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yongxia Xu
- Department of Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiuyun Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shengxiu Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230022, Anhui, China
| |
Collapse
|
13
|
Hu J, Li S, Zhong X, Wei Y, Sun Q, Zhong L. Human umbilical cord mesenchymal stem cells attenuate diet-induced obesity and NASH-related fibrosis in mice. Heliyon 2024; 10:e25460. [PMID: 38356602 PMCID: PMC10864966 DOI: 10.1016/j.heliyon.2024.e25460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) that may progress to cirrhosis and hepatocellular carcinoma but has no available treatment. Mesenchymal stem cells (MSCs) have become increasingly prominent in cell therapy. Human umbilical cord MSCs (hUC-MSCs) are considered superior to other MSCs due to their strong immunomodulatory ability, ease of collection, low immune rejection, and no tumorigenicity. Though hUC-MSCs have received increasing attention in research, they have been rarely applied in any investigations or treatments of NASH and associated fibrosis. Therefore, this study evaluated the therapeutic efficacy of hUC-MSCs in C57BL/6 mice with diet-induced NASH. At week 32, mice were randomized into two groups: phosphate-buffered saline and MSCs, which were injected into the tail vein. At week 40, glucose metabolism was evaluated using glucose and insulin tolerance tests. NASH-related indicators were examined using various biological methods. hUC-MSC administration alleviated obesity, glucose metabolism, hepatic steatosis, inflammation, and fibrosis. Liver RNA-seq showed that the expression of the acyl-CoA thioesterase (ACOT) family members Acot1, Acot2, and Acot3 involved in fatty acid metabolism were altered. The cytochrome P450 (CYP) members Cyp4a10 and Cyp4a14, which are involved in the peroxisome proliferator-activator receptor (PPAR) signaling pathway, were significantly downregulated after hUC-MSC treatment. In conclusion, hUC-MSCs effectively reduced Western diet-induced obesity, NASH, and fibrosis in mice, partly by regulating lipid metabolism and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yushuang Wei
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Qinjuan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
14
|
Wang H, Huang Z, Du C, Dong M. Iron Dysregulation in Cardiovascular Diseases. Rev Cardiovasc Med 2024; 25:16. [PMID: 39077672 PMCID: PMC11263000 DOI: 10.31083/j.rcm2501016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 07/31/2024] Open
Abstract
Iron metabolism plays a crucial role in various physiological functions of the human body, as it is essential for the growth and development of almost all organisms. Dysregulated iron metabolism-manifested either as iron deficiency or overload-is a significant risk factor for the development of cardiovascular disease (CVD). Moreover, emerging evidence suggests that ferroptosis, a form of iron-dependent programed cell death, may also contribute to CVD development. Understanding the regulatory mechanisms of iron metabolism and ferroptosis in CVD is important for improving disease management. By integrating different perspectives and expertise in the field of CVD-related iron metabolism, this overview provides insights into iron metabolism and CVD, along with approaches for diagnosing, treating, and preventing CVD associated with iron dysregulation.
Collapse
Affiliation(s)
- Hui Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Zhongmin Huang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Chenyan Du
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| |
Collapse
|
15
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
16
|
Sun Y, Sun B, Han X, Shan A, Ma Q. Leucine Supplementation Ameliorates Early-Life Programming of Obesity in Rats. Diabetes 2023; 72:1409-1423. [PMID: 37196349 DOI: 10.2337/db22-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
The advanced cessation of lactation elevates the risk of programmed obesity and obesity-related metabolic disorders in adulthood. This study used multiomic analysis to investigate the mechanism behind this phenomenon and the effects of leucine supplementation on ameliorating programmed obesity development. Wistar/SD rat offspring were subjected to early weaning (EW) at day 17 (EWWIS and EWSD groups) or normal weaning at day 21 (CWIS and CSD groups). Half of the rats from the EWSD group were selected to create a new group with 2-month leucine supplementation at day 150. The results showed that EW impaired lipid metabolic gene expression and increased insulin, neuropeptide Y, and feed intake, inducing obesity in adulthood. Six lipid metabolism-related genes (Acot1, Acot2, Acot4, Scd, Abcg8, and Cyp8b1) were influenced by EW during the entire experimental period. Additionally, adult early-weaned rats exhibited cholesterol and fatty acid β-oxidation disorders, liver taurine reduction, cholestasis, and insulin and leptin resistance. Leucine supplementation partly alleviated these metabolic disorders and increased liver L-carnitine, retarding programmed obesity development. This study provides new insights into the mechanism of programmed obesity development and the potential benefits of leucine supplementation, which may offer suggestions for life planning and programmed obesity prevention. ARTICLE HIGHLIGHTS Early-weaned adult rats showed excess lipid accumulation and metabolic defects. Early weaning disrupts lipid metabolism and secretion of neuropeptide Y and insulin. The altered lipid metabolic gene expression in this study is vital in programming. Leucine mitigates metabolic disorders and hampers programmed obesity development.
Collapse
Affiliation(s)
- Yuchen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bo Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuesong Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Arumugam TV, Alli-Shaik A, Liehn EA, Selvaraji S, Poh L, Rajeev V, Cho Y, Cho Y, Kim J, Kim J, Swa HLF, Hao DTZ, Rattanasopa C, Fann DYW, Mayan DC, Ng GYQ, Baik SH, Mallilankaraman K, Gelderblom M, Drummond GR, Sobey CG, Kennedy BK, Singaraja RR, Mattson MP, Jo DG, Gunaratne J. Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting. eLife 2023; 12:RP89214. [PMID: 37769126 PMCID: PMC10538958 DOI: 10.7554/elife.89214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
- Institute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
- National Institute of Pathology "Victor Babes"BucharestRomania
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Natural Products Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Hannah LF Swa
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - David Tan Zhi Hao
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of SingaporeSingaporeSingapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - David Castano Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Roshni R Singaraja
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| |
Collapse
|
18
|
Heden TD, Franklin MP, Dailey C, Mashek MT, Chen C, Mashek DG. ACOT1 deficiency attenuates high-fat diet-induced fat mass gain by increasing energy expenditure. JCI Insight 2023; 8:e160987. [PMID: 37561578 PMCID: PMC10561717 DOI: 10.1172/jci.insight.160987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Acyl-CoA thioesterase 1 (ACOT1) catalyzes the hydrolysis of long-chain acyl-CoAs to free fatty acids and CoA and is typically upregulated in obesity. Whether targeting ACOT1 in the setting of high-fat diet-induced (HFD-induced) obesity would be metabolically beneficial is not known. Here we report that male and female ACOT1KO mice are partially protected from HFD-induced obesity, an effect associated with increased energy expenditure without alterations in physical activity or food intake. In males, ACOT1 deficiency increased mitochondrial uncoupling protein-2 (UCP2) protein abundance while reducing 4-hydroxynonenal, a marker of oxidative stress, in white adipose tissue and liver of HFD-fed mice. Moreover, concurrent knockdown (KD) of UCP2 with ACOT1 in hepatocytes prevented increases in oxygen consumption observed with ACOT1 KD during high lipid loading, suggesting that UCP2-induced uncoupling may increase energy expenditure to attenuate weight gain. Together, these data indicate that targeting ACOT1 may be effective for obesity prevention during caloric excess by increasing energy expenditure.
Collapse
Affiliation(s)
- Timothy D. Heden
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Christina Dailey
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Chen Chen
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics and
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
吴 秀, 范 应, 叶 永, 李 萍, 朱 青, 陈 泽, 李 博, 王 文, 郑 磊. [A transcriptomic study of osteoporosis induced by ketogenic diet in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1440-1446. [PMID: 37712283 PMCID: PMC10505562 DOI: 10.12122/j.issn.1673-4254.2023.08.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the molecular mechanism of osteoporosis caused by ketogenic diet (KD) using transcriptomic analysis. METHODS Sixteen 8-week-old female C57BL/6J mice were divided into KD group and sham group for feeding with KD and normal diet for 3 months, respectively. Body weight, blood glucose and blood ketone levels of the mice were measured every two weeks. Microstructure of the cancellous bone in the distal femur was observed with Micro-CT. Total RNA was extracted from bone marrow cells for transcriptomic analysis and bioinformatics analysis. RT-qPCR was used to verify the expression levels of the genes with significant differential expression between the groups. RESULTS KD obviously weakened the microstructure of the cancellous bone in mice. Compared with those in the sham group, the mice in KD group showed 165 differentially expressed genes (94 up-regulated and 71 down-regulated ones), including Acot1, Mpig6b, Gp9, Ppbp, Slc2a9, etc. KEGG pathway enrichment analysis showed obvious enrichment of the Apelin signaling pathway, PI3K- Akt signaling pathway and ECM-receptor interaction signal transduction pathway with greater number of differential genes. RTqPCR results showed that the 5 differential genes screened by transcriptomics were significantly upregulated in KD group, among which Acot1, Mpig6b and Ppbp were upregulated by over two folds (2.49 ± 0.665, 2.58 ± 0.470, and 2.59 ± 0.611, respectively), suggesting their involvement in KD-induced osteoporosis. CONCLUSION The differentially expressed genes and enriched pathways identified in the mouse models provide new clues for studying the molecular mechanism and prevention of KD-induced osteoporosis.
Collapse
Affiliation(s)
- 秀华 吴
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 应静 范
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 永浓 叶
- 广州市番禺区中医院药学部, 广东 广州 511400Department of Pharmacy, Panyu Hospital of Traditional Chinese Medicine, Guangzhou 511400, China
| | - 萍 李
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 青安 朱
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 泽森 陈
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 博 李
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 文 王
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 磊 郑
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
21
|
Padiadpu J, Spooner MH, Li Z, Newman N, Löhr CV, Apperson KD, Dzutsev A, Trinchieri G, Shulzhenko N, Morgun A, Jump DB. Early transcriptome changes associated with western diet induced NASH in Ldlr-/- mice points to activation of hepatic macrophages and an acute phase response. Front Nutr 2023; 10:1147602. [PMID: 37609485 PMCID: PMC10440380 DOI: 10.3389/fnut.2023.1147602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFβ) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.
Collapse
Affiliation(s)
- Jyothi Padiadpu
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Melinda H. Spooner
- Nutrition Program, Colleges of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Zhipeng Li
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Nolan Newman
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - K. Denise Apperson
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NCI-NIH), Bethesda, MD, United States
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NCI-NIH), Bethesda, MD, United States
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Donald B. Jump
- Nutrition Program, Colleges of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
22
|
Cao T, Wang S, Qian L, Wu C, Huang T, Wang Y, Li Q, Wang J, Xia Y, Xu L, Wang L, Huang X. NPRA promotes fatty acid metabolism and proliferation of gastric cancer cells by binding to PPARα. Transl Oncol 2023; 35:101734. [PMID: 37418841 DOI: 10.1016/j.tranon.2023.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Among cancers, gastric cancer (GC) ranks third globally in morbidity and mortality, particularly in East Asia. Natriuretic peptide receptor A (NPRA), a receptor for guanylate cyclase, plays important roles in regulating water and sodium balance. Recent studies have suggested that NPRA is involved in tumorigenesis, but its role in GC development remains unclear. Herein, we showed that the expression level of NPRA was positively correlated with gastric tumor size and clinical stage. Patients with high NPRA expression had a lower five-year survival rate than those with low expression, and NPRA was identified as an independent predictor of GC prognosis. NPRA knockdown suppressed GC cell proliferation, migration and invasion. NPRA overexpression enhanced cell malignant behavior. Immunohistochemistry of collected tumor samples showed that tumors with high NPRA expression had higher peroxisome proliferator-activated receptor α (PPARα) levels. In vivo and in vitro studies showed that NPRA promotes fatty acid oxidation and tumor cell metastasis. Co-IP showed that NPRA binds to PPARα and prevents PPARα degradation. PPARα upregulation under NPRA protection activates arnitine palmitoyl transferase 1B (CPT1B) to promote fatty acid oxidation. In this study, new mechanisms by which NPRA promotes the development of GC and new regulatory mechanisms of PPARα were identified.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China; General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Tao Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Qian Li
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China.
| |
Collapse
|
23
|
Cao X, Mao K, Zhang Y, Yang M, Liu H, Wang X, Hao L. Integration of proteomics and network toxicology reveals the mechanism of mercury chloride induced hepatotoxicity, in mice and HepG2 cells. Food Chem Toxicol 2023; 177:113820. [PMID: 37172713 DOI: 10.1016/j.fct.2023.113820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Mercury is one heavy metal toxin that could cause severe health impairments. Mercury exposure has become a global environmental issue. Mercury chloride (HgCl2) is one of mercury's main chemical forms, but it lacks detailed hepatotoxicity data. The present study aimed to investigate the mechanism of hepatotoxicity induced by HgCl2 through proteomics and network toxicology at the animal and cellular levels. HgCl2 showed apparent hepatotoxicity after being administrated with C57BL/6 mice (16 mg/kg.bw, oral once a day, 28 days) and HepG2 cells (100 μmol/L, 12 h). Otherwise, oxidative stress, mitochondrial dysfunction and inflammatory infiltration play an important role in HgCl2-induced hepatotoxicity. The differentially expressed proteins (DEPs) after HgCl2 treatment and enriched pathways were obtained through proteomics and network toxicology. Western blot and RT-qPCR results showed Acyl-CoA thioesterase 1 (ACOT1), Acyl-CoA synthetase short chain family member 3 (ACSS3), Epidermal growth factor receptor (EGFR), Apolipoprotein B (APOB), Signal transducer and activator of transcription 3 (STAT3), Alanine--glyoxylate aminotransferase (AGXT), cytochrome P450 3A5(CYP3A5), CYP2E1 and CYP1A2 may be the major biomarkers for HgCl2-induced hepatotoxicity, which involved chemical carcinogenesis, fatty acid metabolism, CYPs-mediated metabolism, GSH metabolism and others. Therefore, this study can provide scientific evidence for the biomarkers and mechanism of HgCl2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xin Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yanan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Miao Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xinzheng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
24
|
Zhang LL, Tang RJ, Yang YJ. The underlying pathological mechanism of ferroptosis in the development of cardiovascular disease. Front Cardiovasc Med 2022; 9:964034. [PMID: 36003910 PMCID: PMC9393259 DOI: 10.3389/fcvm.2022.964034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been attracting the attention of academic society for decades. Numerous researchers contributed to figuring out the core mechanisms underlying CVDs. Among those, pathological decompensated cellular loss posed by cell death in different kinds, namely necrosis, apoptosis and necroptosis, was widely regarded to accelerate the pathological development of most heart diseases and deteriorate cardiac function. Recently, apart from programmed cell death revealed previously, ferroptosis, a brand-new cellular death identified by its ferrous-iron-dependent manner, has been demonstrated to govern the occurrence and development of different cardiovascular disorders in many types of research as well. Therefore, clarifying the regulatory function of ferroptosis is conducive to finding out strategies for cardio-protection in different conditions and improving the prognosis of CVDs. Here, molecular mechanisms concerned are summarized systematically and categorized to depict the regulatory network of ferroptosis and point out potential therapeutic targets for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yue-Jin Yang,
| |
Collapse
|
25
|
Identification of Shared Gene Signatures in Different Stages of Nonalcoholic Fatty Liver Disease Using Integrated Microarray Datasets. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease worldwide. Left untreated, it can be a risk factor for developing cirrhosis or hepatocellular carcinoma (HCC). Although experts have made many efforts to find the underlying mechanisms of NAFLD, they remain a mystery. Objectives: This study aimed to distinguish common gene signatures and pathways in the human liver during NAFLD progression through systems biology. Methods: In this study, the researchers selected three microarray datasets, GSE48452, GSE63067, and GSE89632, from the NCBI GEO database to explore differentially expressed genes (DEGs) among healthy controls, simple steatosis, and nonalcoholic steatohepatitis (NASH) patients. Furthermore, protein-protein interaction (PPI) networks and pathway enrichment analyses were used to detect common genes and biological pathways in different stages of NAFLD. Results: The current study included 45 healthy participants, 36 simple steatosis patients, and 46 NASH patients. Common genes for NAFLD progression were Chi3L1, ICAM1, MT1A, MT1H, ABCB11, ACOT1, CYP2C9, HSP90B1, and CPB2, which are involved in inflammation and oxidative stress pathways. Conclusions: The present study investigated the shared vital genes and pathways between different stages of NAFLD, which may facilitate understanding NAFLD mechanisms and identifying potential therapeutic targets in this disease.
Collapse
|
26
|
Chen B, Xiao W, Zou Z, Zhu J, Li D, Yu J, Yang H. Comparing Transcriptomes Reveals Key Metabolic Mechanisms in Superior Growth Performance Nile Tilapia ( Oreochromis niloticus). Front Genet 2022; 13:879570. [PMID: 35903360 PMCID: PMC9322659 DOI: 10.3389/fgene.2022.879570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic capacity is intrinsic to growth performance. To investigate superior growth performance in Nile tilapia, three full-sib families were bred and compared at the biochemical and transcriptome levels to determine metabolic mechanisms involved in significant growth differences between individuals under the same culture environment and feeding regime. Biochemical analysis showed that individuals in the higher growth group had significantly higher total protein, total triglyceride, total cholesterol, and high- and low-density lipoproteins, but significantly lower glucose, as compared with individuals in the lower growth group. Comparative transcriptome analysis showed 536 differentially expressed genes (DEGs) were upregulated, and 622 DEGs were downregulated. These genes were significantly enriched in three key pathways: the tricarboxylic acid cycle (TCA cycle), fatty acid biosynthesis and metabolism, and cholesterol biosynthesis and metabolism. Conjoint analysis of these key pathways and the biochemical parameters suggests that Nile tilapia with superior growth performance have higher ability to consume energy substrates (e.g., glucose), as well as higher ability to biosynthesize fatty acids and cholesterol. Additionally, the fatty acids biosynthesized by the superior growth performance individuals were less active in the catabolic pathway overall, but were more active in the anabolic pathway, and might be used for triglyceride biosynthesis to store excess energy in the form of fat. Furthermore, the tilapia with superior growth performance had lower ability to convert cholesterol into bile acids, but higher ability to convert it into sterols. We discuss the molecular mechanisms of the three key metabolic pathways, map the pathways, and note key factors that may impact the growth of Nile tilapia. The results provide an important guide for the artificial selection and quality enhancement of superior growth performance in tilapia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
27
|
Lu H, Lei X, Winkler R, John S, Kumar D, Li W, Alnouti Y. Crosstalk of hepatocyte nuclear factor 4a and glucocorticoid receptor in the regulation of lipid metabolism in mice fed a high-fat-high-sugar diet. Lipids Health Dis 2022; 21:46. [PMID: 35614477 PMCID: PMC9134643 DOI: 10.1186/s12944-022-01654-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α) and glucocorticoid receptor (GR), master regulators of liver metabolism, are down-regulated in fatty liver diseases. The present study aimed to elucidate the role of down-regulation of HNF4α and GR in fatty liver and hyperlipidemia. Methods Adult mice with liver-specific heterozygote (HET) and knockout (KO) of HNF4α or GR were fed a high-fat-high-sugar diet (HFHS) for 15 days. Alterations in hepatic and circulating lipids were determined with analytical kits, and changes in hepatic mRNA and protein expression in these mice were quantified by real-time PCR and Western blotting. Serum and hepatic levels of bile acids were quantified by LC-MS/MS. The roles of HNF4α and GR in regulating hepatic gene expression were determined using luciferase reporter assays. Results Compared to HFHS-fed wildtype mice, HNF4α HET mice had down-regulation of lipid catabolic genes, induction of lipogenic genes, and increased hepatic and blood levels of lipids, whereas HNF4α KO mice had fatty liver but mild hypolipidemia, down-regulation of lipid-efflux genes, and induction of genes for uptake, synthesis, and storage of lipids. Serum levels of chenodeoxycholic acid and deoxycholic acid tended to be decreased in the HNF4α HET mice but dramatically increased in the HNF4α KO mice, which was associated with marked down-regulation of cytochrome P450 7a1, the rate-limiting enzyme for bile acid synthesis. Hepatic mRNA and protein expression of sterol-regulatory-element-binding protein-1 (SREBP-1), a master lipogenic regulator, was induced in HFHS-fed HNF4α HET mice. In reporter assays, HNF4α cooperated with the corepressor small heterodimer partner to potently inhibit the transactivation of mouse and human SREBP-1C promoter by liver X receptor. Hepatic nuclear GR proteins tended to be decreased in the HNF4α KO mice. HFHS-fed mice with liver-specific KO of GR had increased hepatic lipids and induction of SREBP-1C and PPARγ, which was associated with a marked decrease in hepatic levels of HNF4α proteins in these mice. In reporter assays, GR and HNF4α synergistically/additively induced lipid catabolic genes. Conclusions induction of lipid catabolic genes and suppression of lipogenic genes by HNF4α and GR may mediate the early resistance to HFHS-induced fatty liver and hyperlipidemia. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01654-6.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Savio John
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
28
|
Transcriptomics Coupled to Proteomics Reveals Novel Targets for the Protective Role of Spermine in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5909378. [PMID: 35437457 PMCID: PMC9013312 DOI: 10.1155/2022/5909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Diabetic cardiomyopathy (DbCM) is the main complication and the cause of high mortality of diabetes. Exploring the transcriptomics and proteomics of DbCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). Methods and Results By using a mouse DbCM model, we analyzed the overall transcriptome and proteome of the myocardium, before/after treatment with SPM. The general state and cardiac structure and function changes of each group were also compared. Diabetes induced an increased blood glucose and serum triglyceride content, a decreased body weight, serum insulin level, and cardiac function-related indexes, accompanied by disrupted myocardial tissue morphology and ultrastructure damage. Using RNA sequencing (RNA-seq), we identified thousands of differentially expressed genes (DEGs) in DbCM with or without SPM treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in lipid metabolism and amino acid metabolism pathways. Specifically, quantitative real-time PCR (qRT-PCR) confirmed that SPM protected DbCM by reversing the expressions of lipid metabolism and amino acid metabolism-related genes, including Alox15, Gm13033, pla2g12a, Ptges, Pnpla2, and Acot1. To further reveal the pathogenesis of DbCM, we used proteome-based data-independent acquisition (DIA) and identified 139 differentially expressed proteins (DEPs) with 67 being upregulated and 72 being downregulated in DbCM. Venn intersection analysis showed 37 coexpressed genes and proteins in DbCM, including 29 upregulation and 8 downregulation in DbCM. In the protein-protein interaction (PPI) network constructed by the STRING database, the metabolism-related coexpressed genes and proteins, such as Acot2, Ephx2, Cyp1a1, Comt, Acox1, Hadhb, Hmgcs2, Acot1, Inmt, and Cat, can interact with the identified DEGs and DEPs. Conclusion The biomarkers and canonical pathways identified in this study may hold the key to understand the mechanisms of DbCM pathobiology and provide new targets for the therapeutic effect of SPM against DbCM by targeting lipid and amino acid metabolism pathways.
Collapse
|
29
|
Ferreira I, Machado de Oliveira R, Carvalho AS, Teshima A, Beck HC, Matthiesen R, Costa-Silva B, Macedo MP. Messages from the Small Intestine Carried by Extracellular Vesicles in Prediabetes: A Proteomic Portrait. J Proteome Res 2022; 21:910-920. [PMID: 35263542 PMCID: PMC8982452 DOI: 10.1021/acs.jproteome.1c00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) mediate communication in physiological and pathological conditions. In the pathogenesis of type 2 diabetes, inter-organ communication plays an important role in its progress and metabolic surgery leads to its remission. Moreover, gut dysbiosis is emerging as a diabetogenic factor. However, it remains unclear how the gut senses metabolic alterations and whether this is transmitted to other tissues via EVs. Using a diet-induced prediabetic mouse model, we observed that protein packaging in gut-derived EVs (GDE), specifically the small intestine, is altered in prediabetes. Proteins related to lipid metabolism and to oxidative stress management were more abundant in prediabetic GDE compared to healthy controls. On the other hand, proteins related to glycolytic activity, as well as those responsible for the degradation of polyubiquitinated composites, were depleted in prediabetic GDE. Together, our findings show that protein packaging in GDE is markedly modified during prediabetes pathogenesis, thus suggesting that prediabetic alterations in the small intestine are translated into modified GDE proteomes, which are dispersed into the circulation where they can interact with and influence the metabolic status of other tissues. This study highlights the importance of the small intestine as a tissue that propagates prediabetic metabolic dysfunction throughout the body and the importance of GDE as the messengers. Data are available via ProteomeXchange with identifier PXD028338.
Collapse
Affiliation(s)
- Inês Ferreira
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal.,Bioengineering─Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, University of Lisbon, Lisbon 1049-001, Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rita Machado de Oliveira
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Ana Sofia Carvalho
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Akiko Teshima
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense 5000, Denmark
| | - Rune Matthiesen
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria Paula Macedo
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal.,APDP-ERC Portuguese Diabetes Association Education and Research Centre, Lisbon 1250-189, Portugal.,Departament of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
30
|
Lu D, Liu Y, Luo Y, Zhao J, Feng C, Xue L, Xu J, Wang Q, Yan T, Xiao P, Krausz KW, Gonzalez FJ, Xie C. Intestinal farnesoid X receptor signaling controls hepatic fatty acid oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159089. [PMID: 34856412 PMCID: PMC8864892 DOI: 10.1016/j.bbalip.2021.159089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
In addition to maintaining bile acid, cholesterol and glucose homeostasis, farnesoid X receptor (FXR) also regulates fatty acid β-oxidation (FAO). To explore the different roles of hepatic and intestinal FXR in liver FAO, FAO-associated metabolites, including acylcarnitines and fatty acids, and FXR target gene mRNAs were profiled using an integrated metabolomic and transcriptomic analysis in control (Fxrfl/fl), liver-specific Fxr-null (FxrΔHep) and intestine-specific Fxr-null (FxrΔIE) mice, treated either with the FXR agonist obeticholic acid (OCA) or vehicle (VEH). Activation of FXR by OCA treatment significantly increased fatty acyl-CoA hydrolysis (Acot1) and decreased FAO-associated mRNAs in Fxrfl/fl mice, resulting in reduced levels of total acylcarnitines and relative accumulation of long/medium chain acylcarnitines and fatty acids in liver. FxrΔHep mice responded to OCA treatment in a manner similar to Fxrfl/fl mice while FxrΔIE mice responded differently, thus illustrating that intestinal FXR plays a critical role in the regulation of hepatic FAO. A significant negative-correlation between intestinal FXR-FGF15 and hepatic CREB-PGC1A pathways was observed after both VEH and OCA treatment, suggesting that OCA-induced activation of the intestinal FXR-FGF15 axis downregulates hepatic PGC1α signaling via inactivation of hepatic CREB, thus repressing FAO. This mechanism was confirmed in experiments based on human recombinant FGF19 treatment and intestinal Fgf15-null mice. This study revealed an important role for the intestinal FXR-FGF15 pathway in hepatic FAO repression.
Collapse
Affiliation(s)
- Dasheng Lu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America; Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jie Zhao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Liming Xue
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Jiale Xu
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America.
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
31
|
St Clair LA, Mills SA, Lian E, Soma PS, Nag A, Montgomery C, Ramirez G, Chotiwan N, Gullberg RC, Perera R. Acyl-Coa Thioesterases: A Rheostat That Controls Activated Fatty Acids Modulates Dengue Virus Serotype 2 Replication. Viruses 2022; 14:v14020240. [PMID: 35215835 PMCID: PMC8875275 DOI: 10.3390/v14020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
During infection with dengue viruses (DENVs), the lipid landscape within host cells is significantly altered to assemble membrane platforms that support viral replication and particle assembly. Fatty acyl-CoAs are key intermediates in the biosynthesis of complex lipids that form these membranes. They also function as key signaling lipids in the cell. Here, we carried out loss of function studies on acyl-CoA thioesterases (ACOTs), a family of enzymes that hydrolyze fatty acyl-CoAs to free fatty acids and coenzyme A, to understand their influence on the lifecycle of DENVs. The loss of function of the type I ACOTs 1 (cytoplasmic) and 2 (mitochondrial) together significantly increased DENV serotype 2 (DENV2) viral replication and infectious particle release. However, isolated knockdown of mitochondrial ACOT2 significantly decreased DENV2 protein translation, genome replication, and infectious virus release. Furthermore, loss of ACOT7 function, a mitochondrial type II ACOT, similarly suppressed DENV2. As ACOT1 and ACOT2 are splice variants, these data suggest that functional differences and substrate specificities due to the location (cytosol and mitochondria, respectively) of these proteins may account for the differences in DENV2 infection phenotype. Additionally, loss of mitochondrial ACOT2 and ACOT7 expression also altered the expression of several ACOTs located in multiple organelle compartments within the cell, highlighting a complex relationship between ACOTs in the DENV2 virus lifecycle.
Collapse
|
32
|
Cavalli M, Diamanti K, Dang Y, Xing P, Pan G, Chen X, Wadelius C. The Thioesterase ACOT1 as a Regulator of Lipid Metabolism in Type 2 Diabetes Detected in a Multi-Omics Study of Human Liver. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:652-659. [PMID: 34520261 PMCID: PMC8812507 DOI: 10.1089/omi.2021.0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Type 2 diabetes (T2D) is characterized by pathophysiological alterations in lipid metabolism. One strategy to understand the molecular mechanisms behind these abnormalities is to identify cis-regulatory elements (CREs) located in chromatin-accessible regions of the genome that regulate key genes. In this study we integrated assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) data, widely used to decode chromatin accessibility, with multi-omics data and publicly available CRE databases to identify candidate CREs associated with T2D for further experimental validations. We performed high-sensitive ATAC-seq in nine human liver samples from normal and T2D donors, and identified a set of differentially accessible regions (DARs). We identified seven DARs including a candidate enhancer for the ACOT1 gene that regulates the balance of acyl-CoA and free fatty acids (FFAs) in the cytoplasm. The relevance of ACOT1 regulation in T2D was supported by the analysis of transcriptomics and proteomics data in liver tissue. Long-chain acyl-CoA thioesterases (ACOTs) are a group of enzymes that hydrolyze acyl-CoA esters to FFAs and coenzyme A. ACOTs have been associated with regulation of triglyceride levels, fatty acid oxidation, mitochondrial function, and insulin signaling, linking their regulation to the pathogenesis of T2D. Our strategy integrating chromatin accessibility with DNA binding and other types of omics provides novel insights on the role of genetic regulation in T2D and is extendable to other complex multifactorial diseases.
Collapse
Affiliation(s)
- Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Klev Diamanti
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yonglong Dang
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pengwei Xing
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xingqi Chen
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Aryankalayil MJ, Martello S, Bylicky MA, Chopra S, May JM, Shankardass A, MacMillan L, Sun L, Sanjak J, Vanpouille-Box C, Eke I, Coleman CN. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med 2021; 19:336. [PMID: 34364390 PMCID: PMC8349067 DOI: 10.1186/s12967-021-02998-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation therapy is integral to effective thoracic cancer treatments, but its application is limited by sensitivity of critical organs such as the heart. The impacts of acute radiation-induced damage and its chronic effects on normal heart cells are highly relevant in radiotherapy with increasing lifespans of patients. Biomarkers for normal tissue damage after radiation exposure, whether accidental or therapeutic, are being studied as indicators of both acute and delayed effects. Recent research has highlighted the potential importance of RNAs, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as biomarkers to assess radiation damage. Understanding changes in mRNA and non-coding RNA expression will elucidate biological pathway changes after radiation. Methods To identify significant expression changes in mRNAs, lncRNAs, and miRNAs, we performed whole transcriptome microarray analysis of mouse heart tissue at 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray (Gy). We also validated changes in specific lncRNAs through RT-qPCR. Ingenuity Pathway Analysis (IPA) was used to identify pathways associated with gene expression changes. Results We observed sustained increases in lncRNAs and mRNAs, across all doses of radiation. Alas2, Aplnr, and Cxc3r1 were the most significantly downregulated mRNAs across all doses. Among the significantly upregulated mRNAs were cell-cycle arrest biomarkers Gdf15, Cdkn1a, and Ckap2. Additionally, IPA identified significant changes in gene expression relevant to senescence, apoptosis, hemoglobin synthesis, inflammation, and metabolism. LncRNAs Abhd11os, Pvt1, Trp53cor1, and Dino showed increased expression with increasing doses of radiation. We did not observe any miRNAs with sustained up- or downregulation across all doses, but miR-149-3p, miR-6538, miR-8101, miR-7118-5p, miR-211-3p, and miR-3960 were significantly upregulated after 12 Gy. Conclusions Radiation-induced RNA expression changes may be predictive of normal tissue toxicities and may indicate targetable pathways for radiation countermeasure development and improved radiotherapy treatment plans. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02998-w.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | | | - Landy Sun
- Gryphon Scientific, Takoma Park, MD, 20912, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
34
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the number of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
Collapse
|
35
|
Identifying potential biomarkers of nonalcoholic fatty liver disease via genome-wide analysis of copy number variation. BMC Gastroenterol 2021; 21:171. [PMID: 33853536 PMCID: PMC8045212 DOI: 10.1186/s12876-021-01750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of Non-alcoholic fatty liver disease (NAFLD) is increasing and emerging as a global health burden. In addition to environmental factors, numerous studies have shown that genetic factors play an important role in the development of NAFLD. Copy number variation (CNV) as a genetic variation plays an important role in the evaluation of disease susceptibility and genetic differences. The aim of the present study was to assess the contribution of CNV to the evaluation of NAFLD in a Chinese population. METHODS Genome-wide analysis of CNV was performed using high-density comparative genomic hybridisation microarrays (ACGH). To validate the CNV regions, TaqMan real-time quantitative PCR (qPCR) was utilized. RESULTS A total of 441 CNVs were identified, including 381 autosomal CNVs and 60 sex chromosome CNVs. By merging overlapping CNVs, a genomic CNV map of NAFLD patients was constructed. A total of 338 autosomal CNVRs were identified, including 275 CNVRs with consistent trends (197 losses and 78 gains) and 63 CNVRs with inconsistent trends. The length of the 338 CNVRs ranged from 5.7 kb to 2.23 Mb, with an average size of 117.44 kb. These CNVRs spanned 39.70 Mb of the genome and accounted for ~ 1.32% of the genome sequence. Through Gene Ontology and genetic pathway analysis, we found evidence that CNVs involving nine genes may be associated with the pathogenesis of NAFLD progression. One of the genes (NLRP4 gene) was selected and verified by quantitative PCR (qPCR) method with large sample size. We found the copy number deletion of NLRP4 was related to the risk of NAFLD. CONCLUSIONS This study indicate the copy number variation is associated with NAFLD. The copy number deletion of NLRP4 was related to the risk of NAFLD. These results could prove valuable for predicting patients at risk of developing NAFLD.
Collapse
|
36
|
Ni C, Zheng K, Gao Y, Chen Y, Shi K, Ni C, Jin G, Yu G. ACOT4 accumulation via AKT-mediated phosphorylation promotes pancreatic tumourigenesis. Cancer Lett 2021; 498:19-30. [PMID: 33148467 DOI: 10.1016/j.canlet.2020.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The acyl-CoA thioesterase (ACOT) family catalyses the hydrolysis of acyl-CoA thioesters to their corresponding non-esterified fatty acid and coenzyme A (CoA). Increasing evidence suggests that cancer cells generally have altered lipid metabolism in different aspects. However, the roles of the ACOT family in cancer, especially in pancreatic ductal carcinoma (PDAC), are largely unknown. In the present study, we mined data to determine the clinical significance of all eleven ACOT genes among nine major solid tumour types from TCGA database and found that the expression of ACOT4 in PDAC was negatively correlated with patient survival, establishing ACOT4 as a potential biomarker of PDAC. Depletion of ACOT4 attenuated the proliferation and tumour formation of PDAC cells. Using mass spectrometry, HSPA1A was found to associate with ACOT4. Furthermore, we found that phosphorylation of ACOT4 at S392 by AKT decreased the binding of ACOT4 to HSPA1A, resulting in ACOT4 accumulation. The ACOT4 elevation promotes pancreatic tumourigenesis by producing excessive CoA to support tumour cell metabolism. Thus, our study expands the relationship between AKT signalling and lipid metabolism and establishes a functional role of ACOT4 in PDAC.
Collapse
Affiliation(s)
- Chenming Ni
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kailian Zheng
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yunshu Gao
- Department of Oncology, PLA General Hospital, Beijing, 100853, China
| | - Ying Chen
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China
| | - Canrong Ni
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Gang Jin
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Guanzhen Yu
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China.
| |
Collapse
|
37
|
Filip R, Desrochers GF, Lefebvre DM, Reed A, Singaravelu R, Cravatt BF, Pezacki JP. Profiling of MicroRNA Targets Using Activity-Based Protein Profiling: Linking Enzyme Activity to MicroRNA-185 Function. Cell Chem Biol 2021; 28:202-212.e6. [PMID: 33450181 DOI: 10.1016/j.chembiol.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) act as cellular signal transducers through repression of protein translation. Elucidating targets using bioinformatics and traditional quantitation methods is often insufficient to uncover global miRNA function. Herein, alteration of protein function caused by miRNA-185 (miR-185), an immunometabolic miRNA, was determined using activity-based protein profiling, transcriptomics, and lipidomics. Fluorophosphonate-based activity-based protein profiling of miR-185-induced changes to human liver cells revealed that exclusively metabolic serine hydrolase enzymes were regulated in activity, some with roles in lipid and endocannabinoid metabolism. Lipidomic analysis linked enzymatic changes to levels of cellular lipid species, such as components of very-low-density lipoprotein particles. Additionally, inhibition of one miR-185 target, monoglyceride lipase, led to decreased hepatitis C virus levels in an infectious model. Overall, the approaches used here were able to identify key functional changes in serine hydrolases caused by miR-185 that are targetable pharmacologically, such that a small molecule inhibitor can recapitulate the miRNA phenotype.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Geneviève F Desrochers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - David M Lefebvre
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Alex Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ragunath Singaravelu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
38
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
39
|
Sato T, Sayama N, Inoue M, Morita A, Miura S. The enhancement of fat oxidation during the active phase and suppression of body weight gain in glycerol-3-phosphate dehydrogenase 1 deficient mice. Biosci Biotechnol Biochem 2020; 84:2367-2373. [PMID: 32662756 DOI: 10.1080/09168451.2020.1792268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated whether the deletion of glycerol-3-phosphate dehydrogenase (GPD) 1 would affect carbohydrate oxidation, fat oxidation, and body weight by using the GPD1 null mice (BALB/cHeA (HeA)). We found that fat oxidation in HeA mice was significantly high during the early active phase than in BALB/cBy (By) mice used as a control under ad libitum conditions. Metabolic tracer experiment revealed that fatty acid oxidation in the skeletal muscle of HeA mice tended to be high. The energy expenditure and fat oxidation in HeA mice under fasting conditions were significantly higher than that in the By mice. Moreover, we monitored body weight gain in HeA mice under ad libitum feeding and found lower body weight gain. These data indicate that GPD1 deficiency induces enhancement of fat oxidation with suppression of weight gain. We propose that GPD1 deletion contributes to the reduction of body weight gain via enhancement of fat oxidation.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science , Tokyo, Japan
| | - Neo Sayama
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Mizuki Inoue
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| |
Collapse
|
40
|
Jung YH, Bu SY. Suppression of long chain acyl-CoA synthetase blocks intracellular fatty acid flux and glucose uptake in skeletal myotubes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158678. [DOI: 10.1016/j.bbalip.2020.158678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
|
41
|
Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched‐chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J 2020; 34:9727-9739. [DOI: 10.1096/fj.202000195r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Christopher A. Bishop
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Matthias B. Schulze
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
- Department of Molecular Epidemiology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Karolin Weitkunat
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| |
Collapse
|
42
|
Vacca M, Leslie J, Virtue S, Lam BYH, Govaere O, Tiniakos D, Snow S, Davies S, Petkevicius K, Tong Z, Peirce V, Nielsen MJ, Ament Z, Li W, Kostrzewski T, Leeming DJ, Ratziu V, Allison MED, Anstee QM, Griffin JL, Oakley F, Vidal-Puig A. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat Metab 2020; 2:514-531. [PMID: 32694734 PMCID: PMC7617436 DOI: 10.1038/s42255-020-0214-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by lipotoxicity, inflammation and fibrosis, ultimately leading to end-stage liver disease. The molecular mechanisms promoting NASH are poorly understood, and treatment options are limited. Here, we demonstrate that hepatic expression of bone morphogenetic protein 8B (BMP8B), a member of the transforming growth factor beta (TGFβ)-BMP superfamily, increases proportionally to disease stage in people and animal models with NASH. BMP8B signals via both SMAD2/3 and SMAD1/5/9 branches of the TGFβ-BMP pathway in hepatic stellate cells (HSCs), promoting their proinflammatory phenotype. In vivo, the absence of BMP8B prevents HSC activation, reduces inflammation and affects the wound-healing responses, thereby limiting NASH progression. Evidence is featured in primary human 3D microtissues modelling NASH, when challenged with recombinant BMP8. Our data show that BMP8B is a major contributor to NASH progression. Owing to the near absence of BMP8B in healthy livers, inhibition of BMP8B may represent a promising new therapeutic avenue for NASH treatment.
Collapse
Affiliation(s)
- Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Virtue
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Brian Y H Lam
- Yeo Group and Genomics and Transcriptomics Core, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Susan Davies
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
| | - Kasparas Petkevicius
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Zhen Tong
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vivian Peirce
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Zsuzsanna Ament
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Wei Li
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Michael E D Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Antonio Vidal-Puig
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
- Welcome Trust Sanger Institute, Hinxton, UK.
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, P R China.
| |
Collapse
|
43
|
Perez VM, Gabell J, Behrens M, Wase N, DiRusso CC, Black PN. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARα-regulated genes. J Biol Chem 2020; 295:5737-5750. [PMID: 32188695 PMCID: PMC7186177 DOI: 10.1074/jbc.ra120.012730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2-/-) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2-/- mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2-/- mice and a total of 91 in female Fatp2-/- mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator-activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2-/- liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.
Collapse
Affiliation(s)
- Vincent M Perez
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Jeffrey Gabell
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Mark Behrens
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Nishikant Wase
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Concetta C DiRusso
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, Nebraska 68588
| | - Paul N Black
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
44
|
Du Y, Li X, Su C, Xi M, Zhang X, Jiang Z, Wang L, Hong B. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br J Pharmacol 2020; 177:1754-1772. [PMID: 31769014 PMCID: PMC7070171 DOI: 10.1111/bph.14933] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The gut microbial metabolite butyrate is linked to the modulation of metabolic disease. The mechanism by which butyrate effects in atherosclerosis is unknown. Hence, the present investigation into effects of butyrate on high-fat diet-fed ApoE-/- mice after 16 weeks' administration. EXPERIMENTAL APPROACH Gut microbiota composition was analysed via 16S rRNA gene sequencing of caecal contents. The effects of butyrate on atherosclerosis were evaluated in vivo using the ApoE-/- mice model. Serum lipids and glucose were analysed for physiological changes and differentially expressed genes in liver samples were identified by hepatic transcriptome profiling. The proteins involved in reverse cholesterol transport were quantified by Western blot and immunohistochemical staining. Finally, the up-regulatory effects of butyrate on ATP-binding cassette sub-family A member 1 (ABCA1) were further evaluated in RAW 264.7 cells along with role of specificity protein 1 by inhibition and silencing. KEY RESULTS Oral gavage of butyrate altered microbiota composition and enhanced gut microbial diversity that was decreased by high fat diet (HFD). Butyrate treatment significantly inhibited the HFD-induced atherosclerosis as well as hepatic steatosis without changing body weight gain in ApoE-/- mice. Butyrate had metabolic effects on the liver by regulation of gene expression involved in lipid/glucose metabolism. Furthermore, ABCA1 was significantly induced by butyrate in vivo, ex vivo and in vitro and Sp1 pathway was identified as a potential mechanism. CONCLUSION AND IMPLICATIONS Butyrate ameliorates HFD-induced atherosclerosis in ApoE-/- mice via ABCA1-mediated cholesterol efflux in macrophages, which suggesting a promising therapeutic strategy for protecting against atherosclerosis.
Collapse
Affiliation(s)
- Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chunyan Su
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mei Xi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiumin Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhibo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
45
|
Karri K, Waxman DJ. Widespread Dysregulation of Long Noncoding Genes Associated With Fatty Acid Metabolism, Cell Division, and Immune Response Gene Networks in Xenobiotic-exposed Rat Liver. Toxicol Sci 2020; 174:291-310. [PMID: 31926019 PMCID: PMC7098378 DOI: 10.1093/toxsci/kfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic exposure dysregulates hundreds of protein-coding genes in mammalian liver, impacting many physiological processes and inducing diverse toxicological responses. Little is known about xenobiotic effects on long noncoding RNAs (lncRNAs), many of which have important regulatory functions. Here, we present a computational framework to discover liver-expressed, xenobiotic-responsive lncRNAs (xeno-lncs) with strong functional, gene regulatory potential and elucidate the impact of xenobiotic exposure on their gene regulatory networks. We assembled the long noncoding transcriptome of xenobiotic-exposed rat liver using RNA-seq datasets from male rats treated with 27 individual chemicals, representing 7 mechanisms of action (MOAs). Ortholog analysis was combined with coexpression data and causal inference methods to infer lncRNA function and deduce gene regulatory networks, including causal effects of lncRNAs on protein-coding gene expression and biological pathways. We discovered > 1400 liver-expressed xeno-lncs, many with human and/or mouse orthologs. Xenobiotics representing different MOAs often regulated common xeno-lnc targets: 123 xeno-lncs were dysregulated by ≥ 10 chemicals, and 5 xeno-lncs responded to ≥ 20 of the 27 chemicals investigated; 81 other xeno-lncs served as MOA-selective markers of xenobiotic exposure. Xeno-lnc-protein-coding gene coexpression regulatory network analysis identified xeno-lncs closely associated with exposure-induced perturbations of hepatic fatty acid metabolism, cell division, or immune response pathways, and with apoptosis or cirrhosis. We also identified hub and bottleneck lncRNAs, which are expected to be key regulators of gene expression. This work elucidates extensive networks of xeno-lnc-protein-coding gene interactions and provides a framework for understanding the widespread transcriptome-altering actions of foreign chemicals in a key-responsive mammalian tissue.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
46
|
Bekeova C, Anderson-Pullinger L, Boye K, Boos F, Sharpadskaya Y, Herrmann JM, Seifert EL. Multiple mitochondrial thioesterases have distinct tissue and substrate specificity and CoA regulation, suggesting unique functional roles. J Biol Chem 2019; 294:19034-19047. [PMID: 31676684 PMCID: PMC6916504 DOI: 10.1074/jbc.ra119.010901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate β-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and kidney robustly expressed Acot2, -9, and -13; Acot9 levels were substantially higher in brown adipose tissue and kidney mitochondria, as was activity for C4:0-CoA, a unique Acot9 substrate. In all tissues, Acot2 accounted for about half of the thioesterase activity for C14:0-CoA and C16:0-CoA. In contrast, liver mitochondria from fed and fasted mice expressed little Acot activity, which was confined to long-chain CoAs and due mainly to Acot7 and Acot13 activities. Matrix Acots occupied different functional niches, based on substrate specificity (Acot9 versus Acot2 and -13) and strong CoA inhibition (Acot7, -9, and -13, but not Acot2). Interpreted in the context of β-oxidation, CoA inhibition would prevent Acot-mediated suppression of β-oxidation, while providing a release valve when CoA is limiting. In contrast, CoA-insensitive Acot2 could provide a constitutive siphon for long-chain fatty acyl-CoAs. These results reveal how the family of matrix Acots can mitigate β-oxidation overload and prevent CoA limitation.
Collapse
Affiliation(s)
- Carmen Bekeova
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lauren Anderson-Pullinger
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kevin Boye
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Felix Boos
- Division of Cellular Biology, Department of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yana Sharpadskaya
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Johannes M Herrmann
- Division of Cellular Biology, Department of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Erin L Seifert
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
47
|
Han L, Bittner S, Dong D, Cortez Y, Dulay H, Arshad S, Shen WJ, Kraemer FB, Azhar S. Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Mol Cell Endocrinol 2019; 498:110538. [PMID: 31415794 PMCID: PMC7273809 DOI: 10.1016/j.mce.2019.110538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
Creosote bush (Larrea tridentata)-derived nordihydroguaiaretic acid (NDGA) was shown to have profound effects on the core components of metabolic syndrome. This study investigated the in vivo potential of NDGA for prevention or attenuation of the pathophysiologic abnormalities of NASH. A novel dietary NASH model with feeding C57BL/6J mice with a high trans-fat, high cholesterol and high fructose (HTF) diet, was used. The HTF diet fed mice exhibited obesity, insulin resistance, hepatic steatosis, fibrosis, inflammation, ER stress, oxidative stress, and liver injury. NDGA attenuated these metabolic abnormalities as well as hepatic steatosis and fibrosis together with attenuated expression of genes encoding fibrosis, progenitor and macrophage markers with no effect on the levels of mRNAs for lipogenic enzymes. NDGA increased expression of fatty acid oxidation genes. In conclusion, NDGA exerts anti-NASH/anti-fibrotic actions and raises the therapeutic potential of NDGA for treatment of NASH patients with fibrosis and other associated complications.
Collapse
Affiliation(s)
- Lu Han
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Hunter Dulay
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Sara Arshad
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA.
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA.
| |
Collapse
|
48
|
Liang X, Pan J, Cao C, Zhang L, Zhao Y, Fan Y, Li K, Tao C, Wang Y. Transcriptional Response of Subcutaneous White Adipose Tissue to Acute Cold Exposure in Mice. Int J Mol Sci 2019; 20:ijms20163968. [PMID: 31443159 PMCID: PMC6720191 DOI: 10.3390/ijms20163968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Beige adipose tissue has been considered to have potential applications in combating obesity and its related metabolic diseases. However, the mechanisms of acute cold-stimulated beige formation still remain largely unknown. Here, transcriptional analysis of acute cold-stimulated (4 °C for 4 h) subcutaneous white adipose tissue (sWAT) was conducted to determine the molecular signatures that might be involved in beige formation. Histological analysis confirmed the appearance of beige adipocytes in acute cold-treated sWAT. The RNA-sequencing data revealed that 714 genes were differentially expressed (p-value < 0.05 and fold change > 2), in which 221 genes were upregulated and 493 genes were downregulated. Gene Ontology (GO) analyses showed that the upregulated genes were enriched in the GO terms related to lipid metabolic process, fatty acid metabolic process, lipid oxidation, fatty acid oxidation, etc. In contrast, downregulated genes were assigned the GO terms of regulation of immune response, regulation of response to stimulus, defense response, etc. The expressions of some browning candidate genes were validated in cold-treated sWAT and 3T3-L1 cell browning differentiation. In summary, our results illustrated the transcriptional response of sWAT to acute cold exposure and identified the genes, including Acad11, Cyp2e1, Plin5, and Pdk2, involved in beige adipocyte formation in mice.
Collapse
Affiliation(s)
- Xiaojuan Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Yiping Fan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China.
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China.
| |
Collapse
|
49
|
Makwana K, Gosai N, Poe A, Kondratov RV. Calorie restriction reprograms diurnal rhythms in protein translation to regulate metabolism. FASEB J 2018; 33:4473-4489. [PMID: 30566374 DOI: 10.1096/fj.201802167r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calorie restriction (CR) delays aging and affects the circadian clocks by reprogramming circadian rhythms in gene expression. To expand on the circadian mechanisms in CR, we assayed rhythms in the protein translation by analyzing polysome-associated mRNAs in the liver of mice fed ad libitum (AL) and CR diets. Global comparison of the diets revealed that <1% of transcripts were differentially abundant in the polysomes. In contrast, the large differential, up to 10%, was detected when CR and AL diets were compared at individual times throughout the day. Most transcripts that were rhythmic under AL lost their rhythms, and many new transcripts gained rhythms under CR. Only a small fraction of transcripts, including the circadian clock genes, were rhythmic under both diets. Thus, CR strongly reprograms translation. CR affected translation of enzymes regulating long-chain acetyl-coenzyme A (Acyl-CoA) metabolism. The expression of the Acyl-CoA thioesterase (ACOT) family was induced upon CR, leading to the increased transcriptional activity of peroxisome proliferator-activated receptor α, the transcriptional factor regulated by the ACOT products. We propose that the differential translation induced by CR leads to a temporal partition and reprogramming of metabolic processes and provides a link between CR, lipid metabolism, and the circadian clock.-Makwana, K., Gosai, N., Poe, A., Kondratov, R. V. Calorie restriction reprograms diurnal rhythms in protein translation to regulate metabolism.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Neha Gosai
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V Kondratov
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Sasaki N, Katagiri S, Komazaki R, Watanabe K, Maekawa S, Shiba T, Udagawa S, Takeuchi Y, Ohtsu A, Kohda T, Tohara H, Miyasaka N, Hirota T, Tamari M, Izumi Y. Endotoxemia by Porphyromonas gingivalis Injection Aggravates Non-alcoholic Fatty Liver Disease, Disrupts Glucose/Lipid Metabolism, and Alters Gut Microbiota in Mice. Front Microbiol 2018; 9:2470. [PMID: 30405551 PMCID: PMC6207869 DOI: 10.3389/fmicb.2018.02470] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Many risk factors related to the development of non-alcoholic fatty liver disease (NAFLD) have been proposed, including the most well-known of diabetes and obesity as well as periodontitis. As periodontal pathogenic bacteria produce endotoxins, periodontal treatment can result in endotoxemia. The aim of this study was to investigate the effects of intravenous, sonicated Porphyromonas gingivalis (Pg) injection on glucose/lipid metabolism, liver steatosis, and gut microbiota in mice. Endotoxemia was induced in C57BL/6J mice (8 weeks old) by intravenous injection of sonicated Pg; Pg was deactivated but its endotoxin remained. The mice were fed a high-fat diet and administered sonicated Pg (HFPg) or saline (HFco) injections for 12 weeks. Liver steatosis, glucose metabolism, and gene expression in the liver were evaluated. 16S rRNA gene sequencing with metagenome prediction was performed on the gut microbiota. Compared to HFco mice, HFPg mice exhibited impaired glucose tolerance and insulin resistance along with increased liver steatosis. Liver microarray analysis demonstrated that 1278 genes were differentially expressed between HFco and HFPg mice. Gene set enrichment analysis showed that fatty acid metabolism, hypoxia, and TNFα signaling via NFκB gene sets were enriched in HFPg mice. Although sonicated Pg did not directly reach the gut, it changed the gut microbiota and decreased bacterial diversity in HFPg mice. Metagenome prediction in the gut microbiota showed enriched citrate cycle and carbon fixation pathways in prokaryotes. Overall, intravenous injection of sonicated Pg caused impaired glucose tolerance, insulin resistance, and liver steatosis in mice fed high-fat diets. Thus, blood infusion of Pg contributes to NAFLD and alters the gut microbiota.
Collapse
Affiliation(s)
- Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haruka Tohara
- Gerodontology and Oral Rehabilitation, Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoyuki Miyasaka
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Research Center for Medical Science, Core Research Facilities for Basic Science (Molecular Genetics), The Jikei University School of Medicine, Tokyo, Japan
| | - Mayumi Tamari
- Research Center for Medical Science, Core Research Facilities for Basic Science (Molecular Genetics), The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|