1
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Kanbay M, Copur S, Guldan M, Ozbek L, Mallamaci F, Zoccali C. Glucagon and glucagon-like peptide-1 dual agonist therapy: A possible future towards fatty kidney disease. Eur J Clin Invest 2024:e14330. [PMID: 39400355 DOI: 10.1111/eci.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Obesity is a growing epidemic affecting approximately 40% of the adult population in developed countries with major health consequences and comorbidities, including diabetes mellitus and insulin resistance, metabolically associated fatty liver disease, atherosclerotic cardiovascular and cerebrovascular diseases and chronic kidney disease. Pharmacotherapies targeting significant weight reduction may have beneficial effects on such comorbidities, though such therapeutic options are highly limited. In this narrative review, we aim to evaluate current knowledge regarding dual agonist therapies and potential implications for managing fatty kidney and chronic kidney disease. RESULTS AND CONCLUSION Glucagon-like peptide-1 agonists and sodium-glucose cotransporter-2 inhibitors are two novel classes of glucose-lowering medications with potential implications and beneficiary effects on renal outcomes, including estimated glomerular filtration rate, albuminuria and chronic kidney disease progression. Recently, dual agonist therapies targeting glucagon-like peptide-1 and glucagon receptors, namely survodutide and cotadutide, have been evaluated in managing metabolically associated fatty liver disease, a well-established example of visceral obesity. Fatty kidney is another novel concept implicated in the pathophysiology of chronic kidney disease among patients with visceral obesity.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
3
|
Zheng Y, Wang Y, Xiong X, Zhang L, Zhu J, Huang B, Liu X, Liu J, Zhu Z, Yang G, Qu H, Zheng H. CD9 Counteracts Liver Steatosis and Mediates GCGR Agonist Hepatic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400819. [PMID: 38837628 PMCID: PMC11304330 DOI: 10.1002/advs.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Bangliang Huang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jinbo Liu
- Department of EndocrinologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinologythe Third Affiliated Hospital of Army Medical UniversityChongqing400042China
| | - Gangyi Yang
- Department of Endocrinologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
4
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
6
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Hadi NR, Assiri AA, Alrouji M, Welson NN, Alexiou A, Papadakis M, Batiha GES. Hypoglycemia and Alzheimer Disease Risk: The Possible Role of Dasiglucagon. Cell Mol Neurobiol 2024; 44:55. [PMID: 38977507 PMCID: PMC11230952 DOI: 10.1007/s10571-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment and cognitive dysfunctions. It has been shown that hypoglycemia can adversely affect AD neuropathology. It is well-known that chronic hyperglycemia in type 2 diabetes (T2D) is regarded as a potential risk factor for the development and progression of AD. However, the effect of recurrent hypoglycemia on the pathogenesis of AD was not deeply discussed, and how recurrent hypoglycemia affects AD at cellular and molecular levels was not intensely interpreted by the previous studies. The underlying mechanisms for hypoglycaemia-induced AD are diverse such as endothelial dysfunction, thrombosis, and neuronal injury that causing tau protein hyperphosphorylation and the accumulation of amyloid beta (Aβ) in the brain neurons. Of note, the glucagon hormone, which controls blood glucose, can also regulate the cognitive functions. Glucagon increases blood glucose by antagonizing the metabolic effect of insulin. Therefore, glucagon, through attenuation of hypoglycemia, may prevent AD neuropathology. Glucagon/GLP-1 has been shown to promote synaptogenesis, hippocampal synaptic plasticity, and learning and memory, while attenuating amyloid and tau pathologies. Therefore, activation of glucagon receptors in the brain may reduce AD neuropathology. A recent glucagon receptor agonist dasiglucagon which used in the management of hypoglycemia may be effective in preventing hypoglycemia and AD neuropathology. This review aims to discuss the potential role of dasiglucagon in treating hypoglycemia in AD, and how this drug reduce AD neuropathology.
Collapse
Affiliation(s)
- Naif H Ali
- Assistant Professor of Neurology, Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Head of Jabir Ibn, Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq
| | - Najah R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
- University Centre for Research & Development, Chandigarh University, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
7
|
McGlone ER, Hope DCD, Davies I, Dore M, Goldin R, Jones B, Liu Z, Li JV, Vorkas PA, Khoo B, Carling D, Minnion J, Bloom SR, Tan TMM. Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity. Biomed Pharmacother 2024; 176:116888. [PMID: 38861859 DOI: 10.1016/j.biopha.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C D Hope
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marian Dore
- Genomics facility, MRC Laboratory of Medical Sciences (LMS), Imperial College London, London, UK
| | - Rob Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Panagiotis A Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (INAB|CERTH), Thessaloniki 57001, Greece; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - David Carling
- Cellular Stress group, MRC LMS, Imperial College London, London, UK
| | - James Minnion
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Richter MM, Kemp IM, Heebøll S, Winther-Sørensen M, Kjeldsen SAS, Jensen NJ, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Madsbad S, Schiødt FV, Nørgaard K, Schmidt S, Gluud LL, Haugaard SB, Holst JJ, Nielsen S, Rungby J, Wewer Albrechtsen NJ. Glucagon augments the secretion of FGF21 and GDF15 in MASLD by indirect mechanisms. Metabolism 2024; 156:155915. [PMID: 38631460 DOI: 10.1016/j.metabol.2024.155915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Glucagon receptor agonism is currently explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The metabolic effects of glucagon receptor agonism may in part be mediated by increases in circulating levels of Fibroblast Growth Factor 21 (FGF21) and Growth Differentiation Factor 15 (GDF15). The effect of glucagon agonism on FGF21 and GDF15 levels remains uncertain, especially in the context of elevated insulin levels commonly observed in metabolic diseases. METHODS We investigated the effect of a single bolus of glucagon and a continuous infusion of glucagon on plasma concentrations of FGF21 and GDF15 in conditions of endogenous low or high insulin levels. The studies included individuals with overweight with and without MASLD, healthy controls (CON) and individuals with type 1 diabetes (T1D). The direct effect of glucagon on FGF21 and GDF15 was evaluated using our in-house developed isolated perfused mouse liver model. RESULTS FGF21 and GDF15 correlated with plasma levels of insulin, but not glucagon, and their secretion was highly increased in MASLD compared with CON and T1D. Furthermore, FGF21 levels in individuals with overweight with or without MASLD did not increase after glucagon stimulation when insulin levels were kept constant. FGF21 and GDF15 levels were unaffected by direct stimulation with glucagon in the isolated perfused mouse liver. CONCLUSION The glucagon-induced secretion of FGF21 and GDF15 is augmented in MASLD and may depend on insulin. Thus, glucagon receptor agonism may augment its metabolic benefits in patients with MASLD through enhanced secretion of FGF21 and GDF15.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ida M Kemp
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sara Heebøll
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Frederik H Linden
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Frank Vinholt Schiødt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Signe Schmidt
- Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Gastro Unit, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
9
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
10
|
Luo Z, Du Z, Huang Y, Zhou T, Wu D, Yao X, Shen L, Yu S, Yong K, Wang B, Cao S. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia. mSystems 2024; 9:e0002324. [PMID: 38501812 PMCID: PMC11019918 DOI: 10.1128/msystems.00023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as β-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenlong Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia-Dominguez J, Farmer B, Donahue EP, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. Am J Physiol Endocrinol Metab 2024; 326:E428-E442. [PMID: 38324258 PMCID: PMC11193521 DOI: 10.1152/ajpendo.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher J Ramnanan
- Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason J Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
12
|
Blüher M, Rosenstock J, Hoefler J, Manuel R, Hennige AM. Dose-response effects on HbA 1c and bodyweight reduction of survodutide, a dual glucagon/GLP-1 receptor agonist, compared with placebo and open-label semaglutide in people with type 2 diabetes: a randomised clinical trial. Diabetologia 2024; 67:470-482. [PMID: 38095657 PMCID: PMC10844353 DOI: 10.1007/s00125-023-06053-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/17/2023] [Indexed: 01/25/2024]
Abstract
AIMS/HYPOTHESIS The aim of this study was to assess the dose-response effects of the subcutaneous glucagon receptor/glucagon-like peptide-1 receptor dual agonist survodutide (BI 456906) on HbA1c levels and bodyweight reduction. METHODS This Phase II, multicentre, randomised, double-blind, parallel-group, placebo-controlled study, conducted in clinical research centres, assessed survodutide in participants aged 18-75 years with type 2 diabetes, an HbA1c level of 53-86 mmol/mol (7.0-10.0%) and a BMI of 25-50 kg/m2 on a background of metformin therapy. Participants were randomised via interactive response technology to receive survodutide (up to 0.3, 0.9, 1.8 or 2.7 mg once weekly [qw; dose group (DG) 1-4, respectively] or 1.2 or 1.8 mg twice weekly [DG 5 and 6, respectively]), placebo or semaglutide (up to 1.0 mg qw). Participants and all those involved in the trial conduct/analysis were blinded; the semaglutide arm was open-label. The primary endpoint was absolute change from baseline in HbA1c after 16 weeks' treatment. The key secondary endpoint was relative change from baseline in bodyweight after 16 weeks' treatment. RESULTS A total of 413 participants were randomised (DG1, n=50; DG2, n=50; DG3, n=52; DG4, n=50; DG5, n=51; DG6, n=50; semaglutide, n=50; placebo, n=60). The full analysis set comprised 411 treated participants (DG6, n=49; placebo, n=59). Adjusted mean (95% CI) HbA1c decreased from baseline (mean ± SD 64.7±9.2 mmol/mol [8.07±0.84%] after 16 weeks' treatment: DG1 (n=41), -9.92 mmol/mol (-12.27, -7.56; -0.91% [-1.12, -0.69]); DG2 (n=46), -15.95 mmol/mol (-18.27, -13.63; -1.46% [-1.67, -1.25]); DG3 (n=36), -18.72 mmol/mol (-21.15, -16.29; -1.71% [-1.94, -1.49]); DG4 (n=33), -17.01 mmol/mol (-19.59, -14.43; -1.56% [-1.79, -1.32]); DG5 (n=44), -17.84 mmol/mol (-20.18, -15.51; -1.63% [-1.85, -1.42]); DG6 (n=36), -18.38 mmol/mol (-20.90, -15.87; -1.68% [-1.91, -1.45]). The mean reduction in HbA1c was similar with low-dose survodutide (DG2: -15.95 mmol/mol [-1.46%]; n=46) and semaglutide (-16.07 mmol/mol [-1.47%]; n=45). Mean (95% CI) bodyweight decreased dose-dependently up to -8.7% (-10.1, -7.3; DG6, n=37); survodutide ≥1.8 mg qw produced greater bodyweight reductions than semaglutide (-5.3% [-6.6, -4.1]; n=45). Adverse events (AEs) were reported for 77.8% of survodutide-treated participants (mainly gastrointestinal), 52.5% receiving placebo and 52.0% receiving semaglutide. CONCLUSIONS/INTERPRETATION Survodutide reduced HbA1c levels and bodyweight after 16 weeks' treatment in participants with type 2 diabetes. Dose-related gastrointestinal AEs could be mitigated with slower dose escalations. TRIAL REGISTRATION ClinicalTrials.gov NCT04153929 and EudraCT 2019-002390-60. FUNDING Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | | | - Josef Hoefler
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Raymond Manuel
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Biberach an der Riß, Germany.
| |
Collapse
|
13
|
Melander SA, Kayed A, Andreassen KV, Karsdal MA, Henriksen K. OXM-104, a potential candidate for the treatment of obesity, NASH and type 2 diabetes. Eur J Pharmacol 2024; 962:176215. [PMID: 38056618 DOI: 10.1016/j.ejphar.2023.176215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
14
|
Klein T, Augustin R, Hennige AM. Perspectives in weight control in diabetes - Survodutide. Diabetes Res Clin Pract 2024; 207:110779. [PMID: 37330144 DOI: 10.1016/j.diabres.2023.110779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved treatments for Type 2 diabetes mellitus, with liraglutide and semaglutide also approved for the treatment of obesity. The natural gut hormone oxyntomodulin is a weak dual agonist of the glucagon receptor (GCGR) and GLP-1R. Development of poly-agonists mimicking oxyntomodulin, such as the novel dual GCGR/GLP-1R agonist survodutide, represents an important step towards a more effective treatment for people with Type 2 diabetes mellitus and obesity. Survodutide is a 29-amino acid peptide derived from glucagon, with the incorporation of potent GLP-1 activities. It contains a C18 diacid which mediates binding to albumin, thereby prolonging the half-life to enable once-weekly subcutaneous dosing. The utilisation of GCGR agonism aims to enhance body weight-lowering effects by increasing energy expenditure in addition to the anorectic action of GLP-1R agonists. Glucose-lowering efficacy of survodutide has been demonstrated in a Phase II trial in patients with Type 2 diabetes mellitus and obesity and was associated with clinically meaningful body weight loss. These data highlight the potential of dual GCGR/GLP-1R agonism for reducing glycated haemoglobin and body weight in patients with Type 2 diabetes mellitus, and for greater therapeutic efficacy compared with GLP-1R agonism alone.
Collapse
Affiliation(s)
- Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
15
|
Lasher AT, Sun LY. Distinct physiological characteristics and altered glucagon signaling in GHRH knockout mice: Implications for longevity. Aging Cell 2023; 22:e13985. [PMID: 37667562 PMCID: PMC10726877 DOI: 10.1111/acel.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
Our previous research has demonstrated that mice lacking functional growth hormone-releasing hormone (GHRH) exhibit distinct physiological characteristics, including an extended lifespan, a preference for lipid utilization during rest, mild hypoglycemia, and heightened insulin sensitivity. They also show a further increase in lifespan when subjected to caloric restriction. These findings suggest a unique response to fasting, which motivated our current study on the response to glucagon, a key hormone released from the pancreas during fasting that regulates glucose levels, energy expenditure, and metabolism. Our study investigated the effects of an acute glucagon challenge on female GHRH knockout mice and revealed that they exhibit reduced glucose production, likely due to suppressed gluconeogenesis. However, these mice showed an increase in energy expenditure. We also observed alterations in pancreatic islet architecture, with smaller islets and a reduction of insulin-producing beta cells but no changes in glucagon-producing alpha cells. Additionally, the analysis of hepatic glucagon signaling showed a decrease in glucagon receptor expression and phosphorylated CREB. In conclusion, our findings suggest that the unique metabolic phenotype observed in these long-lived mice may be partly explained by changes in glucagon signaling. Further exploration of this pathway may lead to new insights into the regulation of longevity in mammals.
Collapse
Affiliation(s)
- A. Tate Lasher
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
16
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
17
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Chang R, Zhang Y, Sun J, Xu K, Li C, Zhang J, Mei W, Zhang H, Zhang J. Maternal pre-pregnancy body mass index and offspring with overweight/obesity at preschool age: The possible role of epigenome-wide DNA methylation changes in cord blood. Pediatr Obes 2023; 18:e12969. [PMID: 36102013 DOI: 10.1111/ijpo.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies have identified some DNA methylation sites associated with body mass index (BMI) or obesity. Studies in the Asian population are lacking. OBJECTIVE To examine the association of cord blood genome-wide DNA methylation (GWDm) changes with maternal pre-pregnancy BMI and children's BMI-z score at preschool age. Additionally, we also explored the genome-wide differentially methylated regions and differentially methylated probes between preschoolers with overweight/obesity and normal-weight counterparts. METHODS This two-stage study design included (1) a GWDm analysis of 30 mother-child pairs from 633 participants of the Zhuhai birth cohort with data on newborn cord blood, maternal pre-pregnancy BMI, and children's BMI at 3 years of age; and (2) a targeted validation analysis of the cord blood of ten children with overweight/obesity and ten matched controls to validate the CpG sites. RESULTS In the first stage, no significant CpG sites were found to be associated with children's BMI-z score at preschool age after FDR correction with the p-values of the CpG sites in FOXN3 (cg23501836) and ZNF264 (cg27437574) being close to 1 × 10-6 . In the second stage, a significant difference of CpG sites in AHRR (chr5:355067-355068) and FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) was found between the ten children with overweight/obesity and ten controls (p < 0.05). The CpG sites in FOXN3 (chr14:89630264-89630272 and chr14:89630295-89630296) and ZNF264 (chr19: 57703104-57703107 and chr19: 57703301-57703307) were associated with children's BMI-z score; and the CpG sites in FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) were associated with maternal pre-pregnancy BMI. CONCLUSIONS DNA methylation in FOXN3 and AHRR is associated with overweight/obesity in preschool-aged children, and the methylation in FOXN3 and ZNF264 might be associated with children's BMI-z score. FOXN3 methylation may be associated with maternal pre-pregnancy BMI, suggesting its potential role in the children's BMI-z score or overweight/obesity. Our results provide novel insights into the mechanisms of children's obesity.
Collapse
Affiliation(s)
- Ruixia Chang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Sun
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Zhang
- Traditional Chinese Medicine Hospital, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Hongzhong Zhang
- Zhuhai Women and Children's Hospital, Zhuhai, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Hope DCD, Hinds CE, Lopes T, Vincent ML, Shrewsbury JV, Yu ATC, Davies I, Scott R, Jones B, Murphy KG, Minnion JS, Sardini A, Carling D, Lutz TA, Bloom SR, Tan TMM, Owen BM. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. Cell Rep Med 2022; 3:100810. [PMID: 36384093 PMCID: PMC9729826 DOI: 10.1016/j.xcrm.2022.100810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Charlotte E Hinds
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tatiana Lopes
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Matthew L Vincent
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jed V Shrewsbury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Arthur T C Yu
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rebecca Scott
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kevin G Murphy
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James S Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
20
|
Elmelund E, Galsgaard KD, Johansen CD, Trammell SA, Bomholt AB, Winther-Sørensen M, Hunt JE, Sørensen CM, Kruse T, Lau JF, Grevengoed TJ, Holst JJ, Wewer Albrechtsen NJ. Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. iScience 2022; 25:105296. [PMID: 36325048 PMCID: PMC9618771 DOI: 10.1016/j.isci.2022.105296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/09/2023] Open
Abstract
The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism. Glucagon receptor agonism increases amino acid catabolism and hepatic CPS-1 activity Glucagon receptor signaling regulates the number of pancreatic alpha cells Glucagon regulates the hepatic transcription of genes involved in amino acid metabolism
Collapse
Affiliation(s)
- Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel A.J. Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark
- Corresponding author
| |
Collapse
|
21
|
Kim T, Nason S, Antipenko J, Finan B, Shalev A, DiMarchi R, Habegger KM. Hepatic mTORC2 Signaling Facilitates Acute Glucagon Receptor Enhancement of Insulin-Stimulated Glucose Homeostasis in Mice. Diabetes 2022; 71:2123-2135. [PMID: 35877180 PMCID: PMC9501720 DOI: 10.2337/db21-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022]
Abstract
Long-term glucagon receptor (GCGR) agonism is associated with hyperglycemia and glucose intolerance, while acute GCGR agonism enhances whole-body insulin sensitivity and hepatic AKTSer473 phosphorylation. These divergent effects establish a critical gap in knowledge surrounding GCGR action. mTOR complex 2 (mTORC2) is composed of seven proteins, including RICTOR, which dictates substrate binding and allows for targeting of AKTSer473. We used a liver-specific Rictor knockout mouse (RictorΔLiver) to investigate whether mTORC2 is necessary for insulin receptor (INSR) and GCGR cross talk. RictorΔLiver mice were characterized by impaired AKT signaling and glucose intolerance. Intriguingly, RictorΔLiver mice were also resistant to GCGR-stimulated hyperglycemia. Consistent with our prior report, GCGR agonism increased glucose infusion rate and suppressed hepatic glucose production during hyperinsulinemic-euglycemic clamp of control animals. However, these benefits to insulin sensitivity were ablated in RictorΔLiver mice. We observed diminished AKTSer473 and GSK3α/βSer21/9 phosphorylation in RictorΔLiver mice, whereas phosphorylation of AKTThr308 was unaltered in livers from clamped mice. These signaling effects were replicated in primary hepatocytes isolated from RictorΔLiver and littermate control mice, confirming cell-autonomous cross talk between GCGR and INSR pathways. In summary, our study reveals the necessity of RICTOR, and thus mTORC2, in GCGR-mediated enhancement of liver and whole-body insulin action.
Collapse
Affiliation(s)
- Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shelly Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
| | - Anath Shalev
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
23
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
24
|
Knerr PJ, Mowery SA, Douros JD, Premdjee B, Hjøllund KR, He Y, Kruse Hansen AM, Olsen AK, Perez-Tilve D, DiMarchi RD, Finan B. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol Metab 2022; 63:101533. [PMID: 35809773 PMCID: PMC9305623 DOI: 10.1016/j.molmet.2022.101533] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Pharmacological strategies that engage multiple mechanisms-of-action have demonstrated synergistic benefits for metabolic disease in preclinical models. One approach, concurrent activation of the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptors (i.e. triagonism), combines the anorectic and insulinotropic activities of GLP-1 and GIP with the energy expenditure effect of glucagon. While the efficacy of triagonism in preclinical models is known, the relative contribution of GcgR activation remains unassessed. This work aims to addresses that central question. Methods Herein, we detail the design of unimolecular peptide triagonists with an empirically optimized receptor potency ratio. These optimized peptide triagonists employ a protraction strategy permitting once-weekly human dosing. Additionally, we assess the effects of these peptides on weight-reduction, food intake, glucose control, and energy expenditure in an established DIO mouse model compared to clinically relevant GLP-1R agonists (e.g. semaglutide) and dual GLP-1R/GIPR agonists (e.g. tirzepatide). Results Optimized triagonists normalize body weight in DIO mice and enhance energy expenditure in a manner superior to that of GLP-1R mono-agonists and GLP-1R/GIPR co-agonists. Conclusions These pre-clinical data suggest unimolecular poly-pharmacology as an effective means to target multiple mechanisms contributing to obesity and further implicate GcgR activation as the differentiating factor between incretin receptor mono- or dual-agonists and triagonists. Details the design of unimolecular peptide triagonists for GLP-1R/GIPR/GCGR. Optimal weight-loss is achieved when receptor potency ratio is weighted toward GCGR vs GLP-1R or GIPR. These agonists are protracted for once-weekly human dosing. Optimized triagonists normalizes body weight & enhance energy expenditure in mice. Efficacy of optimized triagonists is superior to GLP-1R & GLP-1R/GIPR agonists.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Chen Y, Xu YN, Ye CY, Feng WB, Zhou QT, Yang DH, Wang MW. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43:1156-1166. [PMID: 34934197 PMCID: PMC9061743 DOI: 10.1038/s41401-021-00836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), as a severe form of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. The pathogenesis of NASH is complex and multifactorial, obesity and type 2 diabetes mellitus (T2DM) have been implicated as major risk factors. Glucagon-like peptide-1 receptor (GLP-1R) is one of the most successful drug targets of T2DM and obesity, and its peptidic ligands have been proposed as potential therapeutic agents for NASH. In this article we provide an overview of the pathophysiology and management of NASH, with a special focus on the pharmacological effects and possible mechanisms of GLP-1 mimetics in treating NAFLD/NASH, including dual and triple agonists at GLP-1R, glucose-dependent insulinotropic polypeptide receptor or glucagon receptor.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Yu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Bo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - De-Hua Yang
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
26
|
Zhao S, Yan Z, Du Y, Li Z, Tang C, Jing L, Sun L, Yang Q, Tang X, Yuan Y, Han J, Jiang N. A GLP-1/glucagon/CCK-2 receptors tri-agonist provides new therapy for obesity and diabetes. Br J Pharmacol 2022; 179:4360-4377. [PMID: 35484823 DOI: 10.1111/bph.15860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) dual agonists have exerted promising therapeutic effects for the treatment of obesity and diabetes in clinical development. Moreover, GLP-1R and cholecystokinin 2 receptor (CCK-2R) dual agonists have been shown to restore pancreas function and improve glycemic control in many preclinical studies. In the present study, we describe for the first time that the beneficial effects of GLP-1R/GCGR and GLP-1R/CCK-2R dual agonists can be integrated into one peptide, resulting in significant anti-diabetes and anti-obesity effectiveness. EXPERIMENTAL APPROACH The in vitro potency of a novel GLP-1R/GCGR/CCK-2R tri-agonist (xGLP/GCG/gastrin) against GLP-1R, GCGR, CCK-1R and CCK-2R was determined on cells expressing the corresponding receptors by cAMP accumulation or ERK1/2 phosphorylation assays. The in vivo anti-diabetes and anti-obesity effects of xGLP/GCG/gastrin were studied in both db/db and diet induced obesity (DIO) mice. KEY RESULTS xGLP/GCG/gastrin was a potent and selective GLP-1R, GCGR, and CCK-2R tri-agonist. In DIO mice, the metabolic benefits of xGLP-1/GCG/gastrin such as reduction of body weight and hepatic lipid contents were significantly better than those of ZP3022 (GLP-1R/CCK-2R dual agonist) and liraglutide. In the short term study in db/db mice, xGLP/GCG/gastrin treatment exerted considerable effects on increasing islet numbers, islet areas, and insulin content. In the long-term treatment study in db/db mice, xGLP-1/GCG/gastrin displayed a significantly sustained improvement in glucose tolerance and glucose control compared with those of liraglutide, ZP3022, cotadutide (GLP-1R/GCGR dual agonist), and xGLP/GCG-15. CONCLUSIONS AND IMPLICATIONS These results demonstrate the therapeutic promise of xGLP-1/GCG/gastrin for obesity and diabetes.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhiming Yan
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yue Du
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zeyun Li
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Lidan Sun
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Qimeng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Xueling Tang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Yongliang Yuan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
27
|
Fournier C, Karagounis LG, Sacco SM, Horcajada MN, Decaens T, Offord EA, Bouzakri K, Ammann P. Impact of moderate dietary protein restriction on glucose homeostasis in a model of oestrogen deficiency. J Nutr Biochem 2022; 102:108952. [PMID: 35122999 DOI: 10.1016/j.jnutbio.2022.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The need to consume adequate dietary protein to preserve physical function during ageing is well recognized. However, the effect of protein intakes on glucose metabolism is still intensively debated. During age-related oestrogen withdrawal at the time of the menopause, it is known that glucose homeostasis may be impaired but the influence of dietary protein levels in this context is unknown. The aim of the present study is to elucidate the individual and interactive effects of oestrogen deficiency and suboptimal protein intake on glucose homeostasis in a preclinical model involving ovariectomy (OVX) and a 13-week period of a moderately reduced protein intake in 7-month-old ageing rats. To investigate mechanisms of action acting via the pancreas-liver-muscle axis, fasting circulating levels of insulin, glucagon, IGF-1, FGF21 and glycemia were measured. The hepatic lipid infiltration and the protein expression of GLUT4 in the gastrocnemius were analyzed. The gene expression of some hepatokines, myokines and lipid storage/oxidation related transcription factors were quantified in the liver and the gastrocnemius. We show that, regardless of the oestrogen status, moderate dietary protein restriction increases fasting glycaemia without modifying insulinemia, body weight gain and composition. This fasting hyperglycaemia is associated with oestrogen status-specific metabolic alterations in the muscle and liver. In oestrogen-replete (SHAM) rats, GLUT4 was down-regulated in skeletal muscle while in oestrogen-deficient (OVX) rats, hepatic stress-associated hyperglucagonaemia and high serum FGF21 were observed. These findings highlight the importance of meeting dietary protein needs to avoid disturbances in glucose homeostasis in ageing female rats with or without oestrogen withdrawal.
Collapse
Affiliation(s)
- Carole Fournier
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Epalinges, Switzerland; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Sandra M Sacco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elizabeth A Offord
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland; UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Patrick Ammann
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
28
|
Conceição-Furber E, Coskun T, Sloop KW, Samms RJ. Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity? Front Endocrinol (Lausanne) 2022; 13:868037. [PMID: 35547006 PMCID: PMC9081793 DOI: 10.3389/fendo.2022.868037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
A major challenge of obesity therapy is to sustain clinically relevant weight loss over time. Achieving this goal likely requires both reducing daily caloric intake and increasing caloric expenditure. Over the past decade, advances in pharmaceutical engineering of ligands targeting G protein-coupled receptors have led to the development of highly effective anorectic agents. These include mono-agonists of the GLP-1R and dual GIPR/GLP-1R co-agonists that have demonstrated substantial weight loss in experimental models and in humans. By contrast, currently, there are no medicines available that effectively augment metabolic rate to promote weight loss. Here, we present evidence indicating that activation of the GCGR may provide a solution to this unmet therapeutic need. In adult humans, GCGR agonism increases energy expenditure to a magnitude sufficient for inducing a negative energy balance. In preclinical studies, the glucagon-GCGR system affects key metabolically relevant organs (including the liver and white and brown adipose tissue) to boost whole-body thermogenic capacity and protect from obesity. Further, activation of the GCGR has been shown to augment both the magnitude and duration of weight loss that is achieved by either selective GLP-1R or dual GIPR/GLP-1R agonism in rodents. Based on the accumulation of such findings, we propose that the thermogenic activity of GCGR agonism will also complement other anti-obesity agents that lower body weight by suppressing appetite.
Collapse
|
29
|
Hinds CE, Owen BM, Hope DCD, Pickford P, Jones B, Tan TM, Minnion JS, Bloom SR. A glucagon analogue decreases body weight in mice via signalling in the liver. Sci Rep 2021; 11:22577. [PMID: 34799628 PMCID: PMC8604983 DOI: 10.1038/s41598-021-01912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Glucagon receptor agonists show promise as components of next generation metabolic syndrome pharmacotherapies. However, the biology of glucagon action is complex, controversial, and likely context dependent. As such, a better understanding of chronic glucagon receptor (GCGR) agonism is essential to identify and mitigate potential clinical side-effects. Herein we present a novel, long-acting glucagon analogue (GCG104) with high receptor-specificity and potent in vivo action. It has allowed us to make two important observations about the biology of sustained GCGR agonism. First, it causes weight loss in mice by direct receptor signalling at the level of the liver. Second, subtle changes in GCG104-sensitivity, possibly due to interindividual variation, may be sufficient to alter its effects on metabolic parameters. Together, these findings confirm the liver as a principal target for glucagon-mediated weight loss and provide new insights into the biology of glucagon analogues.
Collapse
Affiliation(s)
- Charlotte E Hinds
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Bryn M Owen
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - David C D Hope
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Philip Pickford
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James S Minnion
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
30
|
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021; 57:101351. [PMID: 34626851 PMCID: PMC8859548 DOI: 10.1016/j.molmet.2021.101351] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RA) augment glucose-dependent insulin release and reduce glucagon secretion and gastric emptying, enabling their successful development for the treatment of type 2 diabetes (T2D). These agents also inhibit food intake and reduce body weight, fostering investigation of GLP1RA for the treatment of obesity. SCOPE OF REVIEW Here I discuss the physiology of Glucagon-like peptide-1 (GLP-1) action in the control of food intake in animals and humans, highlighting the importance of gut vs. brain-derived GLP-1 for the control of feeding and body weight. The widespread distribution and function of multiple GLP-1 receptor (GLP1R) populations in the central and autonomic nervous system are outlined, and the importance of pathways controlling energy expenditure in preclinical studies vs. reduction of food intake in both animals and humans is highlighted. The relative contributions of vagal afferent pathways vs. GLP1R+ populations in the central nervous system for the physiological reduction of food intake and the anorectic response to GLP1RA are compared and reviewed. Key data enabling the development of two GLP1RA for obesity therapy (liraglutide 3 mg daily and semaglutide 2.4 mg once weekly) are discussed. Finally, emerging data potentially supporting the combination of GLP-1 with additional peptide epitopes in unimolecular multi-agonists, as well as in fixed-dose combination therapies, are highlighted. MAJOR CONCLUSIONS The actions of GLP-1 to reduce food intake and body weight are highly conserved in obese animals and humans, in both adolescents and adults. The well-defined mechanisms of GLP-1 action through a single G protein-coupled receptor, together with the extensive safety database of GLP1RA in people with T2D, provide reassurance surrounding the long-term use of these agents in people with obesity and multiple co-morbidities. GLP1RA may also be effective in conditions associated with obesity, such as cardiovascular disease and non-alcoholic steatohepatitis (NASH). Progressive improvements in the efficacy of GLP1RA suggest that GLP-1-based therapies may soon rival bariatric surgery as viable options for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
31
|
Bethea M, Bozadjieva-Kramer N, Sandoval DA. Preproglucagon Products and Their Respective Roles Regulating Insulin Secretion. Endocrinology 2021; 162:6329397. [PMID: 34318874 PMCID: PMC8375443 DOI: 10.1210/endocr/bqab150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Historically, intracellular function and metabolic adaptation within the α-cell has been understudied, with most of the attention being placed on the insulin-producing β-cells due to their role in the pathophysiology of type 2 diabetes mellitus. However, there is a growing interest in understanding the function of other endocrine cell types within the islet and their paracrine role in regulating insulin secretion. For example, there is greater appreciation for α-cell products and their contributions to overall glucose homeostasis. Several recent studies have addressed a paracrine role for α-cell-derived glucagon-like peptide-1 (GLP-1) in regulating glucose homeostasis and responses to metabolic stress. Further, other studies have demonstrated the ability of glucagon to impact insulin secretion by acting through the GLP-1 receptor. These studies challenge the central dogma surrounding α-cell biology describing glucagon's primary role in glucose counterregulation to one where glucagon is critical in regulating both hyper- and hypoglycemic responses. Herein, this review will update the current understanding of the role of glucagon and α-cell-derived GLP-1, placing emphasis on their roles in regulating glucose homeostasis, insulin secretion, and β-cell mass.
Collapse
Affiliation(s)
- Maigen Bethea
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Darleen A Sandoval
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Correspondence: Darleen A. Sandoval, PhD, University of Colorado Anschut, Division of Endocrinology, Metabolism, and Diabetes,12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO 80045, USA. E-mail:
| |
Collapse
|
32
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
33
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
34
|
Okun JG, Rusu PM, Chan AY, Wu Y, Yap YW, Sharkie T, Schumacher J, Schmidt KV, Roberts-Thomson KM, Russell RD, Zota A, Hille S, Jungmann A, Maggi L, Lee Y, Blüher M, Herzig S, Keske MA, Heikenwalder M, Müller OJ, Rose AJ. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat Metab 2021; 3:394-409. [PMID: 33758419 DOI: 10.1038/s42255-021-00369-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Andrea Y Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yuqin Wu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yann W Yap
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Thomas Sharkie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Jonas Schumacher
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin V Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Annika Zota
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Andreas Jungmann
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Ludovico Maggi
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
35
|
Lui DTW, Lee CH, Chau VWK, Fong CHY, Yeung KMY, Lam JKY, Lee ACH, Chow WS, Tan KCB, Woo YC, Lam KSL. Potential role of fibroblast growth factor 21 in the deterioration of bone quality in impaired glucose tolerance. J Endocrinol Invest 2021; 44:523-530. [PMID: 32602078 DOI: 10.1007/s40618-020-01337-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Findings on trabecular bone score (TBS), an index of bone quality, have been reported in prediabetes defined by impaired fasting glucose or HbA1c. Here, we assessed the bone mineral density (BMD) and TBS in prediabetes individuals with impaired glucose tolerance (IGT), and investigated the association of these bone parameters with serum levels of fibroblast growth factor 21 (FGF21), a hormone implicated in bone metabolism and with higher levels in IGT. METHODS Chinese postmenopausal women aged 55-80 years, without diabetes, were recruited from the Hong Kong Cardiovascular Risk Factor Prevalence Study in 2016-2018. Normal glucose tolerance (NGT) was defined by fasting glucose < 5.6 mmol/L and 2-h plasma glucose (2hG) < 7.8 mmol/L, and IGT by 2hG 7.8-11 mmol/L. Serum levels of FGF21 and other bone metabolism regulators were measured. Insulin sensitivity was assessed by the Matsuda index. Independent determinants of TBS were evaluated using multivariable stepwise linear regression. RESULTS 173 individuals with NGT and 73 with IGT were included. TBS was lower in those with IGT compared to those with NGT, while BMD was comparable. Individuals with IGT had significantly higher serum FGF21 levels, which in turn showed an independent inverse relationship with TBS, attenuated after inclusion of the Matsuda index. Serum FGF21 levels, however, did not correlate with BMD. CONCLUSION Among Chinese postmenopausal women, bone quality was worse in IGT, despite comparable bone density. FGF21 levels showed a significant independent inverse relationship with TBS, partly attributed to insulin resistance. Whether FGF21 contributes to the impaired bone quality in IGT remains speculative.
Collapse
Affiliation(s)
- D T W Lui
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - C H Lee
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - V W K Chau
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - C H Y Fong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - K M Y Yeung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - J K Y Lam
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - A C H Lee
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - W S Chow
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - K C B Tan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Y C Woo
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| | - K S L Lam
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Nason SR, Antipenko J, Presedo N, Cunningham SE, Pierre TH, Kim T, Paul JR, Holleman C, Young ME, Gamble KL, Finan B, DiMarchi R, Hunter CS, Kharitonenkov A, Habegger KM. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight 2021; 6:141323. [PMID: 33411693 PMCID: PMC7934938 DOI: 10.1172/jci.insight.141323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon’s weight loss effects. FGF21 signaling requires an obligate coreceptor (β-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Natalie Presedo
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Stephen E Cunningham
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA.,Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | | | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
37
|
Finan B, Parlee SD, Yang B. Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH. Mol Metab 2020; 46:101153. [PMID: 33359400 PMCID: PMC8085542 DOI: 10.1016/j.molmet.2020.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a spectrum of histological liver pathologies ranging from hepatocyte fat accumulation, hepatocellular ballooning, lobular inflammation, and pericellular fibrosis. Based on early investigations, it was discovered that visceral fat accumulation, hepatic insulin resistance, and atherogenic dyslipidemia are pathological triggers for NASH progression. As these pathogenic features are common with obesity, type 2 diabetes (T2D), and atherosclerosis, therapies that target dysregulated core metabolic pathways may hold promise for treating NASH, particularly as first-line treatments. Scope of Review In this review, the latest clinical data on nuclear hormone- and peptide hormone-based drug candidates for NASH are reviewed and contextualized, culminating with a discovery research perspective on emerging combinatorial therapeutic approaches that merge nuclear and peptide strategies. Major Conclusion Several drug candidates targeting the metabolic complications of NASH have shown promise in early clinical trials, albeit with unique benefits and challenges, but questions remain regarding their translation to larger and longer clinical trials, as well as their utility in a more diseased patient population. Promising polypharmacological approaches can potentially overcome some of these perceived challenges, as has been suggested in preclinical models, but deeper characterizations are required to fully evaluate these opportunities. Despite no approved treatments for NASH, several drug candidates have shown promise in early clinical trials. Therapies targeting metabolic pathologies of NASH have shown efficacy to reduce hepatic fat content and improve fibrosis. Many of these therapies have been rationally designed to mimic nuclear hormone or peptide hormone action. Despite provocative preclinical findings of nuclear and peptide hormone combination, clinical translation remains unproven.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., United States.
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Inc., United States
| |
Collapse
|
38
|
Zhao L, Xuan Z, Song W, Zhang S, Li Z, Song G, Zhu X, Xie H, Zheng S, Song P. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med 2020; 24:12848-12861. [PMID: 33029898 PMCID: PMC7686993 DOI: 10.1111/jcmm.15881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The farnesoid X receptor (FXR), as a bile acid (BA) sensor, plays an important role in the regulation of lipid metabolism. However, the effects and underlying molecular mechanisms of FXR on intestinal glucose homeostasis remain elusive. Herein, we demonstrated that FXR and glucose transporter 2 (GLUT2) are essential for BA‐mediated glucose homeostasis in the intestine. BA‐activated FXR enhanced glucose uptake in intestinal epithelial cells by increasing the expression of GLUT2, which depended on ERK1/2 phosphorylation via S1PR2. However, it also reduced the cell energy generation via inhibition of oxidative phosphorylation, which is crucial for intestinal glucose transport. Moreover, BA‐activated FXR signalling potently inhibited specific glucose flux through the intestinal epithelium to the circulation, which reduced the increase in blood glucose levels in mice following oral glucose administration. This trend was supported by the changed ratio of GLUT2 to SGLT1 in the brush border membrane (BBM), including especially decreased GLUT2 abundance in the BBM. Furthermore, impaired intestinal FXR signalling was observed in the patients with intestinal bile acid deficiency (IBAD). These findings uncover a novel function by which FXR sustains the intestinal glucose homeostasis and provide a rationale for FXR agonists in the treatment of IBAD‐related hyperglycaemia.
Collapse
Affiliation(s)
- Long Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shiyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
39
|
Aliakbarian H, Bhutta HY, Heshmati K, Unes Kunju S, Sheu EG, Tavakkoli A. Pre-operative Predictors of Weight Loss and Weight Regain Following Roux-en-Y Gastric Bypass Surgery: a Prospective Human Study. Obes Surg 2020; 30:4852-4859. [PMID: 32748203 DOI: 10.1007/s11695-020-04877-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There are currently few pre-operative predictors of initial and long-term weight loss following bariatric surgery. OBJECTIVES We evaluated the role of pre-operative patient characteristics and baseline gut and adipose-derived hormones in predicting maximal total body weight loss (WLmax) and risk of weight regain (WR) after Roux-en-Y gastric bypass (RYGB) surgery. METHODS One hundred five adult patients undergoing primary RYGB were prospectively recruited. Baseline demographics were recorded and fasting plasma glucose, glycosylated hemoglobin (A1C), insulin, glucagon, leptin, active ghrelin, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured on day of surgery. RESULTS Our cohort had a mean age of 44.4 ± 13.0 years, and initial BMI (body mass index) of 45.1 ± 6.7 kg/m2 with mean post-operative follow-up of 40 months. Eighty patients were female and 26 had type 2 diabetes mellitus (T2D). Average WLmax was 35.3 ± 7.4%. On univariate analysis, higher baseline fasting ghrelin, lower age, lower CRP (C-reactive protein), lower A1C, and negative T2D status were associated with greater WLmax (p < 0.05). Controlling for these variables using stepwise multivariate regression, only higher fasting ghrelin and younger age were associated significantly with greater WLmax (p < 0.05). In subgroup multivariate regression analysis of T2D patients, higher ghrelin and glucagon were significantly associated with greater WLmax. Following stepwise multivariate regression, lower initial BMI and lower glucagon were associated with greater WR (p < 0.05). CONCLUSIONS Incorporation of baseline biological and hormonal markers may help in developing more accurate predictive models for weight loss following bariatric surgery that help inform patient counseling and decision-making.
Collapse
Affiliation(s)
- Hassan Aliakbarian
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Hina Y Bhutta
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Shebna Unes Kunju
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Ebbeling CB, Bielak L, Lakin PR, Klein GL, Wong JMW, Luoto PK, Wong WW, Ludwig DS. Energy Requirement Is Higher During Weight-Loss Maintenance in Adults Consuming a Low- Compared with High-Carbohydrate Diet. J Nutr 2020; 150:2009-2015. [PMID: 32470981 PMCID: PMC7398766 DOI: 10.1093/jn/nxaa150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Longer-term feeding studies suggest that a low-carbohydrate diet increases energy expenditure, consistent with the carbohydrate-insulin model of obesity. However, the validity of methodology utilized in these studies, involving doubly labeled water (DLW), has been questioned. OBJECTIVE The aim of this study was to determine whether dietary energy requirement for weight-loss maintenance is higher on a low- compared with high-carbohydrate diet. METHODS The study reports secondary outcomes from a feeding study in which the primary outcome was total energy expenditure (TEE). After attaining a mean Run-in weight loss of 10.5%, 164 adults (BMI ≥25 kg/m2; 70.1% women) were randomly assigned to Low-Carbohydrate (percentage of total energy from carbohydrate, fat, protein: 20/60/20), Moderate-Carbohydrate (40/40/20), or High-Carbohydrate (60/20/20) Test diets for 20 wk. Calorie content was adjusted to maintain individual body weight within ± 2 kg of the postweight-loss value. In analyses by intention-to-treat (ITT, completers, n = 148) and per protocol (PP, completers also achieving weight-loss maintenance, n = 110), we compared the estimated energy requirement (EER) from 10 to 20 wk of the Test diets using ANCOVA. RESULTS Mean EER was higher in the Low- versus High-Carbohydrate group in models of varying covariate structure involving ITT [ranging from 181 (95% CI: 8-353) to 246 (64-427) kcal/d; P ≤0.04] and PP [ranging from 245 (43-446) to 323 (122-525) kcal/d; P ≤0.02]. This difference remained significant in sensitivity analyses accounting for change in adiposity and possible nonadherence. CONCLUSIONS Energy requirement was higher on a low- versus high-carbohydrate diet during weight-loss maintenance in adults, commensurate with TEE. These data are consistent with the carbohydrate-insulin model and lend qualified support for the validity of the DLW method with diets varying in macronutrient composition. This trial was registered at clinicaltrials.gov as NCT02068885.
Collapse
Affiliation(s)
- Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston, MA, USA
| | - Lisa Bielak
- New Balance Foundation Obesity Prevention Center, Boston, MA, USA
| | - Paul R Lakin
- Institutional Centers for Clinical and Translational Research; Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gloria L Klein
- New Balance Foundation Obesity Prevention Center, Boston, MA, USA
| | - Julia M W Wong
- New Balance Foundation Obesity Prevention Center, Boston, MA, USA
| | - Patricia K Luoto
- Department of Food and Nutrition, Framingham State University, Framingham, MA, USA
| | - William W Wong
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine,Houston, TX, USA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston, MA, USA
| |
Collapse
|
41
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Finan B, Capozzi ME, Campbell JE. Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes. Diabetes 2020; 69:532-541. [PMID: 31178432 PMCID: PMC7085250 DOI: 10.2337/dbi19-0004] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Glucagon is historically described as the counterregulatory hormone to insulin, induced by fasting/hypoglycemia to raise blood glucose through action mediated in the liver. However, it is becoming clear that the biology of glucagon is much more complex and extends beyond hepatic actions to exert control on glucose metabolism. We discuss the inconsistencies with the canonical view that glucagon is primarily a hyperglycemic agent driven by fasting/hypoglycemia and highlight the recent advances that have reshaped the metabolic role of glucagon. These concepts are placed within the context of both normal physiology and the pathophysiology of disease and then extended to discuss emerging strategies that incorporate glucagon agonism in the pharmacology of treating diabetes.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
43
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
44
|
Nason SR, Kim T, Antipenko JP, Finan B, DiMarchi R, Hunter CS, Habegger KM. Glucagon-Receptor Signaling Reverses Hepatic Steatosis Independent of Leptin Receptor Expression. Endocrinology 2020; 161:bqz013. [PMID: 31673703 PMCID: PMC7188084 DOI: 10.1210/endocr/bqz013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023]
Abstract
Glucagon (GCG) is an essential regulator of glucose and lipid metabolism that also promotes weight loss. We have shown that glucagon-receptor (GCGR) signaling increases fatty acid oxidation (FAOx) in primary hepatocytes and reduces liver triglycerides in diet-induced obese (DIO) mice; however, the mechanisms underlying this aspect of GCG biology remains unclear. Investigation of hepatic GCGR targets elucidated a potent and previously unknown induction of leptin receptor (Lepr) expression. Liver leptin signaling is known to increase FAOx and decrease liver triglycerides, similar to glucagon action. Therefore, we hypothesized that glucagon increases hepatic LEPR, which is necessary for glucagon-mediated reversal of hepatic steatosis. Eight-week-old control and liver-specific LEPR-deficient mice (LeprΔliver) were placed on a high-fat diet for 12 weeks and then treated with a selective GCGR agonist (IUB288) for 14 days. Liver triglycerides and gene expression were assessed in liver tissue homogenates. Administration of IUB288 in both lean and DIO mice increased hepatic Lepr isoforms a-e in acute (4 hours) and chronic (72 hours,16 days) (P < 0.05) settings. LeprΔliver mice displayed increased hepatic triglycerides on a chow diet alone (P < 0.05), which persisted in a DIO state (P < 0.001), with no differences in body weight or composition. Surprisingly, chronic administration of IUB288 in DIO control and LeprΔliver mice reduced liver triglycerides regardless of genotype (P < 0.05). Together, these data suggest that GCGR activation induces hepatic Lepr expression and, although hepatic glucagon and leptin signaling have similar liver lipid targets, these appear to be 2 distinct pathways.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teayoun Kim
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica P Antipenko
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Richard DiMarchi
- Novo Nordisk Research Center, Indianapolis, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Beaudry JL, Drucker DJ. Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology 2020; 161:5648010. [PMID: 31782955 DOI: 10.1210/endocr/bqz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Proglucagon-derived peptides (PGDPs) and related gut hormones exemplified by glucose-dependent insulinotropic polypeptide (GIP) regulate energy disposal and storage through actions on metabolically sensitive organs, including adipose tissue. The actions of glucagon, glucagon-like peptide (GLP)-1, GLP-2, GIP, and their rate-limiting enzyme dipeptidyl peptidase-4, include direct and indirect regulation of islet hormone secretion, food intake, body weight, all contributing to control of white and brown adipose tissue activity. Moreover, agents mimicking actions of these peptides are in use for the therapy of metabolic disorders with disordered energy homeostasis such as diabetes, obesity, and intestinal failure. Here we highlight current concepts and mechanisms for direct and indirect actions of these peptides on adipose tissue depots. The available data highlight the importance of indirect peptide actions for control of adipose tissue biology, consistent with the very low level of endogenous peptide receptor expression within white and brown adipose tissue depots. Finally, we discuss limitations and challenges for the interpretation of available experimental observations, coupled to identification of enduring concepts supported by more robust evidence.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| |
Collapse
|
46
|
Abstract
Maintenance of systemic homeostasis and the response to nutritional and environmental challenges require the coordination of multiple organs and tissues. To respond to various metabolic demands, higher organisms have developed a system of inter-organ communication through which one tissue can affect metabolic pathways in a distant tissue. Dysregulation of these lines of communication contributes to human pathologies, including obesity, diabetes, liver disease and atherosclerosis. In recent years, technical advances such as data-driven bioinformatics, proteomics and lipidomics have enabled efforts to understand the complexity of systemic metabolic cross-talk and its underlying mechanisms. Here, we provide an overview of inter-organ signals and their roles in metabolic control, and highlight recent discoveries in the field. We review peptide, small-molecule and lipid mediators secreted by metabolic tissues, as well as the role of the central nervous system in orchestrating peripheral metabolic functions. Finally, we discuss the contributions of inter-organ signalling networks to the features of metabolic syndrome.
Collapse
Affiliation(s)
- Christina Priest
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Jiang HC, Chen XR, Sun HF, Nie YW. Tumor promoting effects of glucagon receptor: a promising biomarker of papillary thyroid carcinoma via regulating EMT and P38/ERK pathways. Hum Cell 2019; 33:175-184. [PMID: 31782107 DOI: 10.1007/s13577-019-00284-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Glucagon is a crucial hormone involved in the maintenance of glucose homeostasis. Large efforts to define the role of glucagon receptor (GCGR) have been continuously made in recent years, but it is still incomplete about its function and mechanism. We performed this study to verify its potential impacts on papillary thyroid carcinoma (PTC) progression. Correlation between GCGR expression and PTC was elaborated using The Cancer Genome Atlas (TCGA) database. The Kaplan-Meier method was used to analyze the connection between GCGR expression and prognosis of PTC patients. GCGR expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis; simultaneously, cell viability was elucidated using cell proliferation and colony formation assays following siRNAs strategy. Transwell analyses were conducted to measure the invasion and migration of PTC cells. Flow cytometry analysis was conducted to examine apoptotic ability. The cAMP ELISA kit was employed to measure the cAMP level in PTC cells. Our data determined that the expression level of GCGR was increased in PTC tissues and cells in contrast to normal tissues and Nthy-ori 3-1, respectively. Up-regulated GCGR expression was linked with the lower survival rate in patients with PTC. Functional analysis in vitro suggested that GCGR knockdown attenuated PTC cell proliferation, colony formation, invasion, and migration whilst intensified apoptosis. Down-regulated GCGR was able to increase cAMP level. Furthermore, reduction of GCGR could result in the inactivation of epithelial-mesenchymal transition (EMT) and P38/ERK pathways. In conclusion, the findings of this study disclosed that GCGR promoted PTC cell behaviors by mediating the EMT and P38/ERK pathways, serving as a potential diagnostic and prognostic biomarker as well as therapeutic target for PTC.
Collapse
Affiliation(s)
- Hong-Chun Jiang
- Eye 3 Division of Red Flag Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Xiang-Ru Chen
- Color Doppler Ultrasound Room, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Hai-Feng Sun
- Department of Endocrinology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Yuan-Wen Nie
- Hepatobiliary Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China.
| |
Collapse
|
48
|
Yang J, Zhu A, Xiao S, Zhang T, Wang L, Wang Q, Han L. Anthraquinones in the aqueous extract of Cassiae semen cause liver injury in rats through lipid metabolism disorder. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153059. [PMID: 31401496 DOI: 10.1016/j.phymed.2019.153059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cassiae semen has been used as the tea or medicine component to treat hyperlipidemia or for hepatoprotection. However, Cassiae semen was reported to be a potentially hepatotoxic herb, and the underlying hepatotoxicity mechanisms or specific hepatotoxic components of Cassiae semen are unknown. PURPOSE In this study, we aimed to explore the potential hepatotoxicity mechanisms and the hepatotoxic components of Cassiae semen. METHODS Both young adult male and female SD rats were orally administrated with the aqueous extract of the seeds of Senna obtusifolia (L.) H.S.Irwin & Barneby at doses of 4.73, 15.75, 47.30 g/kg for 28 days, and the body weight, liver coefficient, bile acids, histopathology, serum levels of TC, TG, LDL, HDL, ALP, ALT, AST, and LDH were examined. Lipidomic analysis of rat serum was performed by LC-MS to investigate the specifically changed lipids caused by the aqueous extract treatment. The components absorbed in plasma were detected by UHPLC-Q-Exactive-MS. MTT assay was used to evaluate the cytotoxicity of these components absorbed in plasma. RESULTS The serum levels of ALP, AST, ALT, LDH were increased on day 7 with some of which gradually dropped to normal level on day 28. In high dose of the aqueous extract treated group, the histopathological changes were observed based on the cytoplasmic vacuolation in the liver and the increase of bile acids, indicating the hepatotoxicity of the aqueous extract. The changes of TC, TG, LDL, HDL indicated the disorder of lipid metabolism. By comparing the difference in lipids between high dose group and control group, the results showed that the alterations were primarily focused on glycerophospholipid metabolism in both male and female rats. In addition, the glycerolipid metabolism in female rats also changed. Further analyses found that PC (18:2/20:4) and LysoPC 18:0 were significantly increased. Among these phytochemicals detected in plasma, nine components in the aqueous extract were considered to have the highest concentrations, particularly some types of anthraquinones (AQs) existing in Cassiae semen (AQs-in-CS), such as obtusifolin, aurantio-obtusin, and obtusin. The MTT assay showed that emodin, obtusifolin, rhein, aurantio-obtusin, and obtusin inhibited cell viability. Considering plasma concentrations and cytotoxicity of these components, our study indicates that the AQs-in-CS (obtusifolin, aurantio-obtusin and obtusin), emodin and rhein are the potential hepatotoxic phytochemicals in the aqueous extract.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Liming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
49
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
50
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|