1
|
Tricò D, Rebelos E, Astiarraga B, Baldi S, Scozzaro T, Sacchetta L, Chiriacò M, Mari A, Ferrannini E, Muscelli E, Natali A. Effects of Hypertriglyceridemia With or Without NEFA Elevation on β-cell Function and Insulin Clearance and Sensitivity. J Clin Endocrinol Metab 2025; 110:e667-e674. [PMID: 38635405 DOI: 10.1210/clinem/dgae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT Hypertriglyceridemia is a risk factor for developing type 2 diabetes (T2D) and might contribute to its pathogenesis either directly or through elevation of nonesterified fatty acids (NEFAs). OBJECTIVE This study aimed at comparing the glucometabolic effects of acute hypertriglyceridemia alone or combined with NEFA elevation in subjects without diabetes. METHODS Twenty-two healthy lean volunteers underwent 5-hour intravenous infusions of either saline or Intralipid, without (n = 12) or with heparin (I + H; n = 10) to activate the release of NEFAs. Oral glucose tolerance tests (OGTTs) were performed during the last 3 hours of infusion. Insulin sensitivity, insulin secretion rate (ISR), model-derived β-cell function, and insulin clearance were measured after 2 hours of lipid infusion and during the OGTTs. RESULTS In fasting conditions, both lipid infusions increased plasma insulin and ISR and reduced insulin clearance without affecting plasma glucose and insulin sensitivity. These effects on insulin and ISR were more pronounced for I + H than Intralipid alone. During the OGTT, the lipid infusions markedly impaired glucose tolerance, increased plasma insulin and ISR, and decreased insulin sensitivity and clearance, without significant group differences. Intralipid alone inhibited glucose-stimulated insulin secretion (ie, β-cell glucose sensitivity) and increased β-cell potentiation, whereas I + H had neutral effects on these β-cell functions. CONCLUSION In healthy nonobese subjects, mild acute hypertriglyceridemia directly reduces glucose tolerance and insulin sensitivity and clearance, and has selective and opposite effects on β-cell function that are neutralized by NEFAs. These findings provide new insight into plausible biological signals that generate and sustain insulin resistance and chronic hyperinsulinemia in the development of T2D.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Brenno Astiarraga
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Tiziana Scozzaro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Luca Sacchetta
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, 35127 Padua, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elza Muscelli
- Department of Internal Medicine, University of Campinas, 13083-887 Campinas, Brazil
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Zhao X, Wang Y, Zhou L, Ye A, Zhu Q. Changes of CA19-9 levels and related influencing factors in patients with type 2 diabetes mellitus after antidiabetic therapy. Sci Rep 2025; 15:1264. [PMID: 39779798 PMCID: PMC11711652 DOI: 10.1038/s41598-025-85807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Abnormalities of carbohydrate antigen 19 - 9 (CA19-9) are common in patients with type 2 diabetes mellitus (T2DM), and in some patients, CA19-9 returns to normal level after glycemic control. The aim of this study was to investigate the factors associated with CA19-9 levels in patients with T2DM and the associated influences on the degree of reduction of CA19-9 levels after antidiabetic therapy (AT). This study was an observational cross-sectional study. A total of 213 patients with T2DM were enrolled in this study, of whom 105 with abnormal CA19-9 and 108 with normal CA19-9. Socio-demographic information, complete blood counts, biochemical indicators, thyroid function indicators, and CA19-9 level were collected separately for each subject. Levels of glycosylated hemoglobin, type A1C (HbA1c), fasting blood glucose (FBG) were significantly higher in T2DM patients with abnormal CA19-9 compared to patients with normal CA19-9 (both FDR < 0.001). CA19-9 level was significantly and positively correlated with neutrophil/lymphocyte ratio (NLR) (r = 0.16, P = 0.02), monocyte/lymphocyte ratio (MLR) (r = 0.16, P = 0.02), and FBG (r = 0.38, P < 0.001), while significantly and negatively correlated with free triiodothyronine (FT3) (r=-0.22, P = 0.002) and albumin count (r=-0.18, P = 0.007). After AT, the degree of decrease in CA19-9 level in T2DM patients with abnormal CA19-9 was significantly positively correlated with degree of decrease in FBG (r = 0.33, P < 0.001), as well as CA19-9 level before AT (r = 0.73, P < 0.001), NLR (r = 0.20, P = 0.04), and MLR (r = 0.25, P = 0.01). In this study, we investigated the influencing factors associated with CA19-9 level and the factors influencing degree of CA19-9 reduction after AT in T2DM patients with abnormal CA19-9.
Collapse
Affiliation(s)
- Xiafei Zhao
- Affiliated Xiaoshan Hospital, Hangzhou Normal University/Zhejiang Xiaoshan Hospital, 728 Yucai North Road, Hangzhou, 311200, China
| | - Yan Wang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University/Zhejiang Xiaoshan Hospital, 728 Yucai North Road, Hangzhou, 311200, China
| | - Ling Zhou
- Affiliated Xiaoshan Hospital, Hangzhou Normal University/Zhejiang Xiaoshan Hospital, 728 Yucai North Road, Hangzhou, 311200, China
| | - Aili Ye
- Affiliated Xiaoshan Hospital, Hangzhou Normal University/Zhejiang Xiaoshan Hospital, 728 Yucai North Road, Hangzhou, 311200, China.
| | - Quanfeng Zhu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University/Zhejiang Xiaoshan Hospital, 728 Yucai North Road, Hangzhou, 311200, China.
| |
Collapse
|
4
|
Liu X, Gong M, Wu N. Research progress on the relationship between free fatty acid profile and type 2 diabetes complicated by coronary heart disease. Front Endocrinol (Lausanne) 2024; 15:1503704. [PMID: 39713052 PMCID: PMC11658973 DOI: 10.3389/fendo.2024.1503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a 2 to 3 times higher risk of cardiovascular disease compared to non-diabetic individuals, and cardiovascular disease has consistently been a leading cause of death among diabetic patients. Therefore, preventing cardiovascular disease in diabetic patients remains a significant challenge. In addition to classic indicators such as cholesterol and lipoproteins, previous studies have demonstrated that plasma level of free fatty acid (FFA) is closely related to the occurrence of atherosclerosis, particularly in T2DM patients. In recent years, with further research and advancements in testing technologies, the FFA profile has garnered widespread attention. The FFA profile includes many different types of FFAs, and changes in the plasma FFA profile and concentrations in T2DM patients may lead to the development of insulin resistance, causing damage to vascular endothelial cells and promoting the occurrence and progression of atherosclerosis. Furthermore, some FFAs have shown potential in predicting cardiovascular complications in T2DM and are associated with the severity of these complications. Here, we aim to review the changes in the FFA profile in T2DM and discuss the relationship between the FFA profile and the occurrence of vascular complications in T2DM.
Collapse
Affiliation(s)
- Xiuyan Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
6
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
7
|
Akl MM, Ahmed A. Exploring the Interplay between the Warburg Effect and Glucolipotoxicity in Cancer Development: A Novel Perspective on Cancer Etiology. Adv Pharm Bull 2024; 14:705-713. [PMID: 39494260 PMCID: PMC11530886 DOI: 10.34172/apb.2024.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
The Warburg effect, first observed by Otto Warburg in the 1920s, delineates a metabolic phenomenon in which cancer cells exhibit heightened glucose uptake and lactate production, even under normoxic conditions. This metabolic shift towards glycolysis, despite the presence of oxygen, fuels the energy demands of rapidly proliferating cancer cells. Dysregulated glucose metabolism, characterized by the overexpression of glucose transporters and the redirection of metabolic pathways towards glycolysis, lies at the crux of this metabolic reprogramming. Consequently, the accumulation of lactate as a byproduct contributes to the creation of an acidic tumor microenvironment, fostering tumor progression and metastasis. However, recent research, notably proposed by Maher Akl, introduces a novel perspective regarding the role of glycolipids in cancer metabolism. Akl's glucolipotoxicity hypothesis posits that aberrant glycolipid metabolism, specifically the intracellular buildup of glycolipids, significantly influences tumor initiation and progression. This hypothesis underscores the disruptive impact of accumulated glycolipids on cellular homeostasis, thereby activating oncogenic pathways and promoting carcinogenesis. This perspective aims to synthesize the intricate mechanisms underlying both the Warburg effect and glucolipotoxicity, elucidating their collective contributions to tumor growth and malignancy. By comprehensively understanding these metabolic aberrations, novel avenues for therapeutic intervention targeting the fundamental drivers of cancer initiation and progression emerge, holding promise for more efficacious treatment strategies in the future.
Collapse
Affiliation(s)
- Maher Monir Akl
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr Ahmed
- The Public Health Department, Riyadh First Health Cluster, Ministry of Health, Saudi Arabia
| |
Collapse
|
8
|
Zhu H, Yu Y, Li Y, Chang S, Liu Y. Puerarin ameliorates high glucose-induced MIN6 cell injury by activating PINK1/Parkin-mediated mitochondrial autophagy. Heliyon 2024; 10:e36176. [PMID: 39224278 PMCID: PMC11367457 DOI: 10.1016/j.heliyon.2024.e36176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The dysfunction of pancreatic β-cells plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite numerous studies demonstrating the anti-inflammatory and antioxidant properties of puerarin, the protective effects of puerarin on β-cells remain poorly understood. Hence, this study aimed to explore the effects of puerarin on β-cell dysfunction in a hyperglycemic environment via the PINK/Parkin-mediated mitochondrial autophagy pathway. The alterations in cell viability of MIN6 cells exposed to glucose concentrations of 5 mM, 10 mM, 20 mM, and 30 mM for 24 h, 48 h, and 72 h, respectively, were assessed using the CCK-8 assay to optimize the modeling conditions. Subsequently, cellular insulin secretion was measured using enzyme-linked immunosorbent assay (ELISA), apoptosis rate by flow cytometry, mitochondrial membrane potential alteration by JC-1, cellular ROS production by the DCFH-DA fluorescent probe, and fusion of cellular autophagosomes and lysosomes through adenoviral infection analysis. Furthermore, gene and protein expression levels of the PINK/Parkin-mediated mitochondrial autophagy pathway and mitochondrial apoptosis pathway were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Results indicated a significant decrease in MIN6 cell viability following 48 h of exposure to 30 mM glucose concentration. Puerarin intervention markedly attenuated ROS production, restored mitochondrial membrane potential, induced PINK/Parkin-mediated mitochondrial autophagy, suppressed activation of the mitochondrial apoptotic pathway, mitigated apoptosis, and enhanced insulin secretion in a high glucose (HG) environment. The findings of this investigation contribute to a deeper understanding of the precise mechanism underlying the protective effects of puerarin on β-cells and offer a theoretical foundation for advancing puerarin-based therapeutics aimed at ameliorating T2DM.
Collapse
Affiliation(s)
- Hongyang Zhu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - You Yu
- The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Yuting Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shiyao Chang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
9
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
10
|
Minato-Inokawa S, Honda M, Tsuboi-Kaji A, Takeuchi M, Kitaoka K, Kurata M, Wu B, Kazumi T, Fukuo K. Associations of adipose insulin resistance index with pancreatic β cell function (inverse) and glucose excursion (positive) in young Japanese women. Sci Rep 2024; 14:18590. [PMID: 39127728 PMCID: PMC11316777 DOI: 10.1038/s41598-024-69181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The relationship of adipose tissue insulin resistance (AT-IR, a product of fasting insulin and free fatty acids) and homeostasis-model assessment-insulin resistance (HOMA-IR) to β-cell function was studied cross-sectionally in the setting of subtle glucose dysregulation. Associations of AT-IR and HOMA-IR with fasting and post-glucose glycemia and β-cell function inferred from serum insulin kinetics during a 75 g oral glucose tolerance test were studied in 168 young female Japanese students. β-cell function was evaluated by disposition index calculated as a product of the insulinogenic index (IGI) and Matsuda index. AT-IR, not HOMA-IR, showed positive associations with post-glucose glycemia and area under the glucose response curve although both indices were associated with fasting glycemia. HOMA-IR, not AT-IR, was associated positively with log IGI whereas both indices were inversely associated with Matsuda index. AT-IR, not HOMA-IR, showed inverse associations with log disposition index. Associations of adipose tissue insulin resistance with β-cell function (inverse) and glucose excursion in young Japanese women may suggest that lipotoxicity to pancreatic β-cells for decades may be associated with β cell dysfunction found in Japanese patients with type 2 diabetes. Positive association of HOMA-IR with insulinogenic index may be associated with compensatory increased insulin secretion.
Collapse
Affiliation(s)
- Satomi Minato-Inokawa
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Mari Honda
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Ayaka Tsuboi-Kaji
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Mika Takeuchi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Advanced Epidemiology, Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Miki Kurata
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Bin Wu
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
- Department of Medicine, Kohan Kakogawa Hospital, Kakogawa, Hyogo, Japan.
| | - Keisuke Fukuo
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
11
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
12
|
Yagan M, Najam S, Hu R, Wang Y, Dadi P, Xu Y, Simmons AJ, Stein R, Adams CM, Jacobson DA, Lau K, Liu Q, Gu G. Atf4 protects islet β-cell identity and function under acute glucose-induced stress but promotes β-cell failure in the presence of free fatty acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601249. [PMID: 39005465 PMCID: PMC11244863 DOI: 10.1101/2024.06.28.601249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Glucolipotoxicity, caused by combined hyperglycemia and hyperlipidemia, results in β-cell failure and type 2 diabetes (T2D) via cellular stress-related mechanisms. Activating transcription factor 4 (Atf4) is an essential effector of stress response. We show here that Atf4 expression in β-cells is dispensable for glucose homeostasis in young mice, but it is required for β-cell function during aging and under obesity-related metabolic stress. Henceforth, aged Atf4- deficient β-cells display compromised secretory function under acute hyperglycemia. In contrast, they are resistant to acute free fatty acid-induced loss-of identity and dysfunction. At molecular level, Atf4 -deficient β-cells down-regulate genes involved in protein translation, reducing β-cell identity gene products under high glucose. They also upregulate several genes involved in lipid metabolism or signaling, likely contributing to their resistance to free fatty acid-induced dysfunction. These results suggest that Atf4 activation is required for β-cell identity and function under high glucose, but this paradoxically induces β-cell failure in the presence of high levels of free fatty acids. Different branches of Atf4 activity could be manipulated for protecting β-cells from metabolic stress-induced failure. Highlights Atf4 is dispensable in β-cells in young miceAtf4 protects β-cells under high glucoseAtf4 exacerbate fatty acid-induced β-cell defectsAtf4 activates translation but depresses lipid-metabolism.
Collapse
|
13
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
14
|
Lv J, Su M, Wang Y, Yang J, Liang Y, Chen L, Lei L. Yunvjian decoction mitigates hyperglycemia in rats induced by a high-fat diet and streptozotocin via reducing oxidative stress in pancreatic beta cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118045. [PMID: 38479546 DOI: 10.1016/j.jep.2024.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.
Collapse
Affiliation(s)
- Jie Lv
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| | - Meng Su
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| | - Yansong Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Juan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Yanni Liang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China
| | - Liyan Lei
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China; Department of Pharmacology, Shaanxi University of Chinese Medicine & Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine & Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, 712046, China.
| |
Collapse
|
15
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
16
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
18
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Cao X, Chen N, Li Y. Editorial: Beta cell function and diabetes remission. Front Endocrinol (Lausanne) 2023; 14:1298101. [PMID: 38161979 PMCID: PMC10754965 DOI: 10.3389/fendo.2023.1298101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
| | | | - Yanbing Li
- Department of Endocrinology, First Affiliatted Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
22
|
Kassem NM, Abdelmegid YA, El-Sayed MK, Sayed RS, Abdel-Aalla MH, Kassem HA. Nutrigenomics and microbiome shaping the future of personalized medicine: a review article. J Genet Eng Biotechnol 2023; 21:134. [PMID: 37993702 PMCID: PMC10665279 DOI: 10.1186/s43141-023-00599-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The relationship between nutrition and genes has long been hinted at and sometimes plainly associated with certain diseases. Now, after many years of research and coincidental findings, it is believed that this relationship, termed "Nutrigenomics," is certainly a factor of major importance in various conditions. In this review article, we discuss nutrigenomics, starting with basics definitions and enzymatic functions and ending with its palpable association with cancer. Now, diet is basically what we eat on a daily basis. Everything that enters through our alimentary tract ends up broken down to minute molecules and amino acids. These molecules interact with our microbiome and genome in discreet ways. For instance, we demonstrate how proper intake of probiotics enhances beneficial bacteria and may alleviate IBS and prevent colorectal cancer on the long term. We also show how a diet rich in folic acid is essential for methylenetetrahydrofolate reductase (MTHFR) function, which lowers risk of colorectal cancer. Also, we discuss how certain diets were associated with development of certain cancers. For example, red and processed meat are highly associated with colorectal and prostate cancer, salty diets with stomach cancer, and obesity with breast cancer. The modification of these diets significantly lowered the risk and improved prognosis of these cancers among many others. We also examined how micronutrients had a role in cancer prevention, as vitamin A and C exert anti-carcinogenic effects through their function as antioxidants. In addition, we show how folic acid prevent DNA mutations by enhancing protein methylation processes. Finally, after a systematic review of myriad articles on the etiology and prevention of cancer, we think that diet should be a crucial feature in cancer prevention and treatment programs. In the future, healthy diets and micronutrients may even be able to successively alter the liability to genetic mutations that result in cancer. It also will play a role in boosting treatment and improving prognosis of diagnosed cancers.
Collapse
Affiliation(s)
- Neemat M Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| | | | - Mahmoud K El-Sayed
- Faculty of Medicine, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Rana S Sayed
- Faculty of Medicine, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud H Abdel-Aalla
- Faculty of Medicine, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Hebatallah A Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Perrier J, Nawrot M, Madec AM, Chikh K, Chauvin MA, Damblon C, Sabatier J, Thivolet CH, Rieusset J, Rautureau GJP, Panthu B. Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate. Nutrients 2023; 15:4791. [PMID: 38004183 PMCID: PMC10674605 DOI: 10.3390/nu15224791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.
Collapse
Affiliation(s)
- Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne-Marie Madec
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Karim Chikh
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Marie-Agnès Chauvin
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des Sciences, Université de Liège, 99131 Liège, Belgium
| | - Julia Sabatier
- Laboratory of Cell Therapy for Diabetes (LTCD), PRIMS Facility, Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, 34295 Montpellier, France
| | - Charles H. Thivolet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082 CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| |
Collapse
|
24
|
Min R, Xu Y, Peng B. The clinical value of glycosylated hemoglobin level in newly diagnosed ketosis-prone type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1244008. [PMID: 38027130 PMCID: PMC10667908 DOI: 10.3389/fendo.2023.1244008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To evaluate the clinical value of glycosylated hemoglobin (HbA1c) in newly diagnosed ketosis-prone type 2 diabetes (KPD). Methods A total of 330 patients with newly diagnosed type 2 diabetes (T2DM) hospitalized in our department with an average age of 48.72 ± 13.07 years old were selected and divided into T2DM group (193 cases) and KPD group (137 cases) according to whether they were combined with ketosis. According to the quartile level of HbA1c, they were divided into group A (HbA1c < 8.90%, 84 cases), group B (8.90%≤HbA1c < 10.70%, 86 cases), group C (10.70%≤HbA1c ≤ 12.40%, 85 cases) and group D (HbA1c > 12.40%, 75 cases). The general clinical features, laboratory indicators and islet function of each group were compared. Spearman correlation analysis was used to explore the correlation between HbA1c and β- Hydroxybutyric acid (β- HB) and islet function. ROC curve was used to analyze the sensitivity and specificity of HbA1c in diagnosing KPD, and the optimal tangent point was obtained. Results HbA1c, β-HB, FFA, RBG, insulin dosage, GSP, OGTT (0, 0.5, 1, 2, 3h) in KPD group were significantly higher than those in T2DM group (P< 0.001). HDL-C, IRT (0, 0.5, 1, 2, 3h), HOMA-β, HOMA-IR, HOMA-IS, ΔC30/ΔG30, AUC insulin were significantly lower than those in T2DM group (P< 0.001). With the increase of HbA1c level, the incidence of ketosis, β-HB, FFA and insulin dosage increased, while IRT (0, 0.5, 1, 2, 3h), ΔC30/ΔG30, AUC insulin, HOMA-β and HOMA-IS decreased accordingly (P< 0.001). In all newly diagnosed T2DM patients, Spearman correlation analysis showed that HbA1c was positively correlated with β-HB (r=0.539, P < 0.001), and was negatively correlated with HOMA-β (r=-0.564, P < 0.001), HOMA-IS (r=-0.517, P < 0.01, P < 0.001), HOMA-IR (r=-0.177, P < 0.001), ΔC30/ΔG30 (r=-0.427, P < 0.01) and AUC insulin (r=-0.581, P < 0.001). In ROC curve analysis, the optimal threshold for the diagnosis of KPD was 10.15%, Youden index was 0.616, area under the curve (AUC) was 0.882, sensitivity = 92.70%, specificity = 70.50%. Conclusion In newly diagnosed T2DM patients, if HbA1c > 10.15%, it is more likely to develop KPD. Monitoring HbA1c level is conducive to timely detection of high-risk individuals with KPD and taking appropriate measures to prevent the occurrence and development of the disease.
Collapse
Affiliation(s)
- Rui Min
- Department of Geriatrics, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Bocheng Peng
- Department of Pain, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
25
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
26
|
Yasuda T, Harada N. Effects of nutrient metabolism on pancreatic β-cell mass and function: Recent findings. J Diabetes Investig 2023; 14:1234-1236. [PMID: 37424266 PMCID: PMC10583648 DOI: 10.1111/jdi.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023] Open
Abstract
This article summarizes recent findings on the effects of nutrients on pancreatic ß-cell mass and function. Further studies are expected to facilitate the prevention of the onset and treatment of diabetes by nutritional therapy.
Collapse
Affiliation(s)
- Takuma Yasuda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
27
|
Li Y, Li R, Luo X, Xu F, Yang M, Zheng L, Wu Q, Jiang W, Li Y. Vascular endothelial growth factor B regulates insulin secretion in β cells of type 2 diabetes mellitus mice via PLCγ and the IP3R‑evoked Ca2 +/CaMK2 signaling pathway. Mol Med Rep 2023; 28:197. [PMID: 37681454 PMCID: PMC10510031 DOI: 10.3892/mmr.2023.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Vascular endothelial growth factor B (VEGFB) plays a crucial role in glucolipid metabolism and is highly associated with type 2 diabetes mellitus (T2DM). The role of VEGFB in the insulin secretion of β cells remains unverified. Thus, the present study aimed to discuss the effect of VEGFB on regulating insulin secretion in T2DM development, and its underlying mechanism. A high‑fat diet and streptozocin (STZ) were used for inducing T2DM in mice model, and VEGFB gene in islet cells of T2DM mice was knocked out by CRISPR Cas9 and overexpressed by adeno‑Associated Virus (AAV) injection. The effect of VEGFB and its underlying mechanism was assessed by light microscopy, electron microscopy and fluorescence confocal microscopy, enzyme‑linked immunosorbent assay, mass spectrometer and western blot analysis. The decrement of insulin secretion in islet β cell of T2DM mice were aggravated and blood glucose remained at a high level after VEGFB knockout (KO). However, glucose tolerance and insulin sensitivity of T2DM mice were improved after the AAV‑VEGFB186 injection. VEGFB KO or overexpression can inhibit or activate PLCγ/IP3R in a VEGFR1‑dependent manner. Then, the change of PLCγ/IP3R caused by VEGFB/VEGFR1 will alter the expression of key factors on the Ca2+/CaMK2 signaling pathway such as PPP3CA. Moreover, VEGFB can cause altered insulin secretion by changing the calcium concentration in β cells of T2DM mice. These findings indicated that VEGFB activated the Ca2+/CaMK2 pathway via VEGFR1‑PLCγ and IP3R pathway to regulate insulin secretion, which provides new insight into the regulatory mechanism of abnormal insulin secretion in T2DM.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Rongrong Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xu Luo
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
- Department of Laboratory, Guiyang Centers for Disease Control and Prevention, Guiyang, Guizhou 550000, P.R. China
| | - Fang Xu
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Lanhui Zheng
- The First School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Qihao Wu
- The First School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Wenguo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yana Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
28
|
Lofrumento DD, Miraglia A, La Pesa V, Treglia AS, Chieppa M, De Nuccio F, Nicolardi G, Miele C, Beguinot F, Garbi C, Di Jeso B. Increased hexosamine biosynthetic pathway flux alters cell-cell adhesion in INS-1E cells and murine islets. Endocrine 2023; 81:492-502. [PMID: 37306934 PMCID: PMC10403402 DOI: 10.1007/s12020-023-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE In type 2 Diabetes, β-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of β-cell physiology, that is β-cell-β-cell homotypic interactions. METHODS We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and β-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation. RESULTS E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and β-catenin. CONCLUSION Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on β-cells.
Collapse
Affiliation(s)
| | - Alessandro Miraglia
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Velia La Pesa
- Institute of Experimental Neurology and Division of Neuroscience, Neuropathology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Marcello Chieppa
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Francesco De Nuccio
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Nicolardi
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Claudia Miele
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Francesco Beguinot
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Corrado Garbi
- Dip. Medicina Molecolare e Biotecnologie Mediche, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Bruno Di Jeso
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy.
| |
Collapse
|
29
|
Weir GC, Bonner-Weir S. Induction of remission in diabetes by lowering blood glucose. Front Endocrinol (Lausanne) 2023; 14:1213954. [PMID: 37409234 PMCID: PMC10318898 DOI: 10.3389/fendo.2023.1213954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
As diabetes continues to grow as major health problem, there has been great progress in understanding the important role of pancreatic beta-cells in its pathogenesis. Diabetes develops when the normal interplay between insulin secretion and the insulin sensitivity of target tissues is disrupted. With type 2 diabetes (T2D), glucose levels start to rise when beta-cells are unable to meet the demands of insulin resistance. For type 1 diabetes (T1D) glucose levels rise as beta-cells are killed off by autoimmunity. In both cases the increased glucose levels have a toxic effect on beta-cells. This process, called glucose toxicity, has a major inhibitory effect on insulin secretion. This beta-cell dysfunction can be reversed by therapies that reduce glucose levels. Thus, it is becoming increasingly apparent that an opportunity exists to produce a complete or partial remission for T2D, both of which will provide health benefit.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
30
|
Lin SC, Tsou SH, Kuo CY, Chen WL, Wu KW, Lin CL, Huang CN. Denosumab Attenuates Glucolipotoxicity-Induced β-Cell Dysfunction and Apoptosis by Attenuating RANK/RANKL Signals. Int J Mol Sci 2023; 24:10289. [PMID: 37373436 DOI: 10.3390/ijms241210289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is strongly associated with insulin sensitivity in type 2 diabetes (T2D), mainly because free fatty acids (FFAs) are released from excess fat tissue. Long-term exposure to high levels of FFAs and glucose leads to glucolipotoxicity, causing damage to pancreatic β-cells, thus accelerating the progression of T2D. Therefore, the prevention of β-cell dysfunction and apoptosis is essential to prevent the development of T2D. Unfortunately, there are currently no specific clinical strategies for protecting β-cells, highlighting the need for effective therapies or preventive approaches to improve the survival of β-cells in T2D. Interestingly, recent studies have shown that the monoclonal antibody denosumab (DMB), used in osteoporosis, displays a positive effect on blood glucose regulation in patients with T2D. DMB acts as an osteoprotegerin (OPG) by inhibiting the receptor activator of the NF-κB ligand (RANKL), preventing the maturation and function of osteoclasts. However, the exact mechanism by which the RANK/RANKL signal affects glucose homeostasis has not been fully explained. The present study used human 1.4 × 107 β-cells to simulate the T2D metabolic condition of high glucose and free fatty acids (FFAs), and it investigated the ability of DMB to protect β-cells from glucolipotoxicity. Our results show that DMB effectively attenuated the cell dysfunction and apoptosis caused by high glucose and FFAs in β-cells. This may be caused by blocking the RANK/RANKL pathway that reduced mammalian sterile 20-like kinase 1 (MST1) activation and indirectly increased pancreatic and duodenal homeobox 1 (PDX-1) expression. Furthermore, the increase in inflammatory cytokines and ROS caused by the RANK/RANKL signal also played an important role in glucolipotoxicity-induced cytotoxicity, and DMB can also protect β-cells by reducing the mechanisms mentioned above. These findings provide detailed molecular mechanisms for the future development of DMB as a potential protective agent of β-cells.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Orthopaedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Yin Kuo
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Liang Chen
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kuan-Wen Wu
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
31
|
Tariq M, de Souza AH, Bensellam M, Chae H, Jaffredo M, Close AF, Deglasse JP, Santos LRB, Buemi A, Mourad NI, Wojtusciszyn A, Raoux M, Gilon P, Broca C, Jonas JC. Prolonged culture of human pancreatic islets under glucotoxic conditions changes their acute beta cell calcium and insulin secretion glucose response curves from sigmoid to bell-shaped. Diabetologia 2023; 66:709-723. [PMID: 36459178 DOI: 10.1007/s00125-022-05842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
AIMS/HYPOTHESIS The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.
Collapse
Affiliation(s)
- Mohammad Tariq
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Arnaldo H de Souza
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Mohammed Bensellam
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Manon Jaffredo
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Deglasse
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Laila R B Santos
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Antoine Buemi
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Nizar I Mourad
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Anne Wojtusciszyn
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
- Service d'Endocrinologie, Diabétologie et Métabolisme, Centre Hospitalier Universitaire Vaudois and Université de Lausanne, Lausanne, Switzerland
| | - Matthieu Raoux
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Patrick Gilon
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Broca
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
32
|
Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol (Lausanne) 2023; 14:1076343. [PMID: 37008937 PMCID: PMC10050720 DOI: 10.3389/fendo.2023.1076343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
More than 500 million adults suffer from diabetes worldwide, and this number is constantly increasing. Diabetes causes 5 million deaths per year and huge healthcare costs per year. β-cell death is the major cause of type 1 diabetes. β-cell secretory dysfunction plays a key role in the development of type 2 diabetes. A loss of β-cell mass due to apoptotic death has also been proposed as critical for the pathogenesis of type 2 diabetes. Death of β-cells is caused by multiple factors including pro-inflammatory cytokines, chronic hyperglycemia (glucotoxicity), certain fatty acids at high concentrations (lipotoxicity), reactive oxygen species, endoplasmic reticulum stress, and islet amyloid deposits. Unfortunately, none of the currently available antidiabetic drugs favor the maintenance of endogenous β-cell functional mass, indicating an unmet medical need. Here, we comprehensively review over the last ten years the investigation and identification of molecules of pharmacological interest for protecting β-cells against dysfunction and apoptotic death which could pave the way for the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, France
| | - Eric Renard
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
- Laboratoire de Thérapie Cellulaire du Diabète, Centre Hospitalier Universitaire, Montpellier, France
- Département d’Endocrinologie, Diabètologie, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|
33
|
Bar-Tana J. mTORC1 syndrome (TorS): unified paradigm for diabetes/metabolic syndrome. Trends Endocrinol Metab 2023; 34:135-145. [PMID: 36717300 DOI: 10.1016/j.tem.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
'Glucolipotoxicity' and 'insulin resistance' are claimed to drive type 2 diabetes (T2D) and the non-glycemic diseases of the metabolic syndrome (MetS) (obesity, dyslipidemia, hypertension). In line with that, glycemic and/or insulin control are considered to be primary goal in treating T2D/MetS. However, recent standard-of-care (SOC) treatments of T2D, initially designed to control T2D hyperglycemia, appear now to alleviate the cardio-renal and non-glycemic diseases of T2D/MetS independently of glucose lowering and insulin resistance, and in non-T2D patients altogether, calling for an alternative unifying pathophysiology/treatment paradigm for T2D/MetS. This opinion article proposes to replace the current 'glucolipotoxic/insulin-resistance' paradigm of T2D/MetS with an 'mammalian target of rapamycin complex 1 (mTORC1) syndrome' (TorS) paradigm, implying an exhaustive cohesive disease entity driven by an upstream hyperactive mTORC1, and which includes diabetic hyperglycemia, diabetic dyslipidemia, hypertension, diabetic macrovascular and microvascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome (PCOS), psoriasis, and others. The TorS paradigm may account for the insulin-resistant glycemic context of TorS, combined with response to insulin of the non-glycemic diseases of TorS. The TorS paradigm may account for the efficacy of current antidiabetic SOC treatments in diabetic and nondiabetic patients. Most importantly, the TorS paradigm may generate novel treatments for TorS.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
34
|
Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, Greenberg M, Hahm J, Hilton NZ, Lamb K, Jentz EM, Larsen M, Locatelli CAA, Maloney M, MacGibbon C, Mersali F, Mulchandani CM, Najam A, Singh I, Weisz T, Wong J, Senior PA, Estall JL, Mulvihill EE, Screaton RA. Recent Developments in Islet Biology: A Review With Patient Perspectives. Can J Diabetes 2023; 47:207-221. [PMID: 36481263 PMCID: PMC9640377 DOI: 10.1016/j.jcjd.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic β cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived β cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.
Collapse
Affiliation(s)
- Lahari Basu
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Vriti Bhagat
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ma Enrica Angela Ching
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Sylvie Dostie
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Dana Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marley Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jiwon Hahm
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - N Zoe Hilton
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Krista Lamb
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Emelien M Jentz
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Matt Larsen
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Cassandra A A Locatelli
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - MaryAnn Maloney
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Farida Mersali
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Adhiyat Najam
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ishnoor Singh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tom Weisz
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jordan Wong
- Alberta Diabetes Institute and Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Senior
- Alberta Diabetes Institute and Department of Medicine, Edmonton, Alberta, Canada
| | - Jennifer L Estall
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Center for Cardiometabolic Health, Montréal, Québec, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Screaton
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
von Hanstein AS, Tsikas D, Lenzen S, Jörns A, Plötz T. Potentiation of Lipotoxicity in Human EndoC-βH1 β-Cells by Glucose is Dependent on the Structure of Free Fatty Acids. Mol Nutr Food Res 2023; 67:e2200582. [PMID: 36629272 DOI: 10.1002/mnfr.202200582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
SCOPE Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-βH1 β-cells. METHODS AND RESULTS β-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of β-cell dysfunction and death in the manifestation of T2DM.
Collapse
Affiliation(s)
- Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
36
|
Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. Int J Biol Macromol 2023; 236:123846. [PMID: 36863675 DOI: 10.1016/j.ijbiomac.2023.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked β-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked β-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated β-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.
Collapse
|
37
|
Dong G, Adak S, Spyropoulos G, Zhang Q, Feng C, Yin L, Speck SL, Shyr Z, Morikawa S, Kitamura RA, Kathayat RS, Dickinson BC, Ng XW, Piston DW, Urano F, Remedi MS, Wei X, Semenkovich CF. Palmitoylation couples insulin hypersecretion with β cell failure in diabetes. Cell Metab 2023; 35:332-344.e7. [PMID: 36634673 PMCID: PMC9908855 DOI: 10.1016/j.cmet.2022.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased β cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to β cell failure, modeling the evolution of some forms of human type 2 diabetes.
Collapse
Affiliation(s)
- Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - George Spyropoulos
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Zeenat Shyr
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Shuntaro Morikawa
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rie Asada Kitamura
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rahul S Kathayat
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xue Wen Ng
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - David W Piston
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Blériot C, Dalmas É, Ginhoux F, Venteclef N. Inflammatory and immune etiology of type 2 diabetes. Trends Immunol 2023; 44:101-109. [PMID: 36604203 DOI: 10.1016/j.it.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes (T2D) represents a global threat affecting millions of patients worldwide. However, its causes remain incompletely dissected and we lack the tools to predict which individuals will develop T2D. Although there is a clear proven clinical association of T2D with metabolic disorders such as obesity and nonalcoholic fatty liver disease (NAFLD), the existence of a significant number of nondiabetic obese subjects suggests yet-uncovered features of such relationships. Here, we propose that a significant proportion of individuals may harbor an immune profile that renders them susceptible to developing T2D. We note the heterogeneity of circulating monocytes and tissue macrophages in organs that are key to metabolic disorders such as liver, white adipose tissue (WAT), and endocrine pancreas, as well as their contribution to T2D genesis.
Collapse
Affiliation(s)
- Camille Blériot
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France.
| | - Élise Dalmas
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), Singapore 138648, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| |
Collapse
|
39
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
40
|
Griess K, Rieck M, Müller N, Karsai G, Hartwig S, Pelligra A, Hardt R, Schlegel C, Kuboth J, Uhlemeyer C, Trenkamp S, Jeruschke K, Weiss J, Peifer-Weiss L, Xu W, Cames S, Yi X, Cnop M, Beller M, Stark H, Kondadi AK, Reichert AS, Markgraf D, Wammers M, Häussinger D, Kuss O, Lehr S, Eizirik D, Lickert H, Lammert E, Roden M, Winter D, Al-Hasani H, Höglinger D, Hornemann T, Brüning JC, Belgardt BF. Sphingolipid subtypes differentially control proinsulin processing and systemic glucose homeostasis. Nat Cell Biol 2023; 25:20-29. [PMID: 36543979 PMCID: PMC9859757 DOI: 10.1038/s41556-022-01027-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Abstract
Impaired proinsulin-to-insulin processing in pancreatic β-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in β-cell function and demise is unclear. Here we define the lipid signature of T2D-associated β-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. β-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in β-cell function and T2D-associated β-cell failure.
Collapse
Affiliation(s)
- Kerstin Griess
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michael Rieck
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gergely Karsai
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Pelligra
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon Peifer-Weiss
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Weiwei Xu
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sandra Cames
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems and Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Markgraf
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Wammers
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Heiko Lickert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
41
|
Yoshino M, Yoshino J, Smith GI, Stein RI, Bittel AJ, Bittel DC, Reeds DN, Sinacore DR, Cade WT, Patterson BW, Cho K, Patti GJ, Mittendorfer B, Klein S. Worksite-based intensive lifestyle therapy has profound cardiometabolic benefits in people with obesity and type 2 diabetes. Cell Metab 2022; 34:1431-1441.e5. [PMID: 36084645 PMCID: PMC9728552 DOI: 10.1016/j.cmet.2022.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Lifestyle therapy (energy restriction and exercise) is the cornerstone of therapy for people with type 2 diabetes (T2D) but is difficult to implement. We conducted an 8-month randomized controlled trial in persons with obesity and T2D (17 women and 1 man) to determine the therapeutic effects and potential mechanisms of intensive lifestyle therapy on cardiometabolic function. Intensive lifestyle therapy was conducted at the worksite to enhance compliance and resulted in marked (17%) weight loss and beneficial changes in body fat mass, intrahepatic triglyceride content, cardiorespiratory fitness, muscle strength, glycemic control, β cell function, and multi-organ insulin sensitivity, which were associated with changes in muscle NAD+ biosynthesis, sirtuin signaling, and mitochondrial function and in adipose tissue remodeling. These findings demonstrate that intensive lifestyle therapy provided at the worksite has profound therapeutic clinical and physiological effects in people with T2D, which are likely mediated by specific alterations in skeletal muscle and adipose tissue biology.
Collapse
Affiliation(s)
- Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA; Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Richard I Stein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Adam J Bittel
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel C Bittel
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - David R Sinacore
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA; Department of Physical Therapy, High Point University, High Point, NC, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry, Washington University School of Medicine, St Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA; Sansum Diabetes Research Institute, Santa Barbara, CA, USA.
| |
Collapse
|
42
|
Jain C, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4:1097-1108. [PMID: 36131204 DOI: 10.1038/s42255-022-00618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of β cell insulin signalling might protect and/or regenerate β cells as an improved treatment of patients with diabetes.
Collapse
Affiliation(s)
- Chirag Jain
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair of β-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, München, Germany.
| |
Collapse
|
43
|
Tricò D, Mengozzi A, Baldi S, Bizzotto R, Olaniru O, Toczyska K, Huang GC, Seghieri M, Frascerra S, Amiel SA, Persaud S, Jones P, Mari A, Natali A. Lipid-induced glucose intolerance is driven by impaired glucose kinetics and insulin metabolism in healthy individuals. Metabolism 2022; 134:155247. [PMID: 35760117 DOI: 10.1016/j.metabol.2022.155247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
AIMS Hypertriglyceridemia is associated with an increased risk of type 2 diabetes. We aimed to comprehensively examine the effects of hypertriglyceridemia on major glucose homeostatic mechanisms involved in diabetes progression. METHODS In this randomized, cross-over, single-blinded study, two dual-labeled, 3-hour oral glucose tolerance tests were performed during 5-hour intravenous infusions of either 20 % Intralipid or saline in 12 healthy subjects (age 27.9 ± 2.6 years, 11 men, BMI 22.6 ± 1.4 kg/m2) to evaluate lipid-induced changes in insulin metabolism and glucose kinetics. Insulin sensitivity, β cell secretory function, and insulin clearance were assessed by modeling glucose, insulin and C-peptide data. Intestinal glucose absorption, endogenous glucose production, and glucose clearance were assessed from glucose tracers. The effect of triglycerides on β-cell secretory function was examined in perifusion experiments in murine pseudoislets and human pancreatic islets. RESULTS Mild acute hypertriglyceridemia impaired oral glucose tolerance (mean glucose: +0.9 [0.3, 1.5] mmol/L, p = 0.008) and whole-body insulin sensitivity (Matsuda index: -1.67 [-0.50, -2.84], p = 0.009). Post-glucose hyperinsulinemia (mean insulin: +99 [17, 182] pmol/L, p = 0.009) resulted from reduced insulin clearance (-0.16 [-0.32, -0.01] L min-1 m-2, p = 0.04) and enhanced hyperglycemia-induced total insulin secretion (+11.9 [1.1, 22.8] nmol/m2, p = 0.02), which occurred despite a decline in model-derived β cell glucose sensitivity (-41 [-74, -7] pmol min-1 m-2 mmol-1 L, p = 0.04). The analysis of tracer-derived glucose metabolic fluxes during lipid infusion revealed lower glucose clearance (-96 [-152, -41] mL/kgFFM, p = 0.005), increased 2-hour oral glucose absorption (+380 [42, 718] μmol/kgFFM, p = 0.04) and suppressed endogenous glucose production (-448 [-573, -123] μmol/kgFFM, p = 0.005). High-physiologic triglyceride levels increased acute basal insulin secretion in murine pseudoislets (+11 [3, 19] pg/aliquot, p = 0.02) and human pancreatic islets (+286 [59, 512] pg/islet, p = 0.02). CONCLUSION Our findings support a critical role for hypertriglyceridemia in the pathogenesis of type 2 diabetes in otherwise healthy individuals and dissect the glucose homeostatic mechanisms involved, encompassing insulin sensitivity, β cell function and oral glucose absorption.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Oladapo Olaniru
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marta Seghieri
- Diabetes and Metabolic Diseases Unit, "San Giovanni Di Dio" Hospital, Florence, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stephanie A Amiel
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shanta Persaud
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far? Curr Atheroscler Rep 2022; 24:867-884. [PMID: 36044100 DOI: 10.1007/s11883-022-01062-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To discuss evidence supporting the use of glucagon-like peptide 1 receptor agonists (GLP-1RA) to treat obesity and their role as a cardioprotective drug. Obesity is not just a hypertrophy of the adipose tissue because it may become dysfunctional and inflamed resulting in increased insulin resistance. Being overweight is associated with increased incidence of cardiovascular events and weight loss achieved through lifestyle changes lowers risk factors, but has no clear effect on cardiovascular outcomes. In contrast, treating obesity with GLP-1RA decreases cardiovascular risk and the possible mechanisms of cardioprotection achieved by this class of drugs are discussed. GLP-1RA were initially developed to treat type 2 diabetes patients, in whom the effects upon glycemia and, moreover, weight loss, especially with long-acting GLP-1RA, were evident. However, cardiovascular safety trials in type 2 diabetes patients, the majority presenting cardiovascular disease and excess weight, showed that GLP-1 receptor agonists were indeed capable of decreasing cardiovascular risk. RECENT FINDINGS Type 2 diabetes treatment with GLP-1RA liraglutide and semaglutide paved way to a ground-breaking therapy specific for obesity, as shown with the SCALE 3 mg/day liraglutide program and the STEP 2.4 mg/week semaglutide program. A novel molecule with superior performance is tirzepatide, a GLP-1 and GIP (Gastric Inhibitory Peptide) receptor agonist and recent results from the SURPASS and SURMOUNT programs are briefly described. Liraglutide was approved without a CVOT (Cardiovascular Outcome Trial) because authorities accepted the results from the LEADER study, designed for superiority. The SELECT study with semaglutide will report results only in 2023 and tirzepatide is being tested in patients with diabetes in the SURPASS-CVOT. Clinical studies highlight that GLP-1RA to treat obesity, alongside their concomitant cardioprotective effects, have become a hallmark in clinical science.
Collapse
|
45
|
Sugiyama T, Yamada Y, Ito Y, Mineo R, Iwamoto R, Tamba S, Fujimoto T, Yamamoto K, Matsuzawa Y. Increase in glycemic set point, alongside a decrease in waist circumference, in the non-diabetic population during the Japanese National Intervention Program for metabolic syndrome: A single-center, large-scale, matched-pair analysis. PLoS One 2022; 17:e0268450. [PMID: 35947600 PMCID: PMC9365144 DOI: 10.1371/journal.pone.0268450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 05/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background In 2008, the Japanese government implemented a National Intervention Program for metabolic syndrome. Low-risk individuals were not direct targets of this intervention. Nevertheless, they were indirectly enlightened by this massive campaign. Documentation of the metabolic shifts in low-risk individuals following the program launch may inform public health policy regarding approaches to metabolic risks in the general population. Methods We conducted a cross-sectional analysis of data from non-diabetic participants who underwent general health check-ups at the Physical Check-up Center of Sumitomo Hospital. Participants during 2007–2008 were pair-matched with those during 2015–2016 with respect to sex, age, smoking status, hemoglobin level, and red blood cell (RBC) count. Each participant was included only once in the study. Results Totals of 3,140 men and 2,048 women were pair-matched. The non-diabetic participants showed lower waist circumference, blood pressure, heart rate, and serum lipid concentrations during the second study period. In contrast, the entire distributions of fasting plasma glucose (FPG) concentration in both sexes and glycated hemoglobin (HbA1c) in women were shifted upwards. In men, Δ FPG was +1.6 mg/dL (P < 0.001) and Δ HbA1c was ±0% (P = 0.6). In women, Δ FPG was +3.0 mg/dL (P < 0.001), and Δ HbA1c was +0.1% (P < 0.001). Δ Homeostasis model assessment of β-cell function was −6.6 in men (P < 0.001) and −10.3 in women (P < 0.001). The homeostasis model assessment of insulin resistance did not change significantly. Conclusions The “glycemic set point” has increased in non-diabetic people in Japan during recent years. Lifestyle or environmental changes may have caused this metabolic shift through obesity-independent pathways, possibly through effects on pancreatic β-cell function. The underlying mechanism awaits further investigation.
Collapse
Affiliation(s)
- Takuya Sugiyama
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
- * E-mail:
| | - Yuya Yamada
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Yoshito Ito
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Ryohei Mineo
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Ryuya Iwamoto
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Sachiko Tamba
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | | | - Koji Yamamoto
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Yuji Matsuzawa
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
46
|
Kumar R, García-Compeán D, Maji T. Hepatogenous diabetes: Knowledge, evidence, and skepticism. World J Hepatol 2022; 14:1291-1306. [PMID: 36158904 PMCID: PMC9376767 DOI: 10.4254/wjh.v14.i7.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The diabetogenic potential of liver cirrhosis (LC) has been known for a long time, and the name "hepatogenous diabetes" (HD) was coined in 1906 to define the condition. Diabetes mellitus (DM) that develops as a consequence of LC is referred to as HD. In patients with LC, the prevalence rates of HD have been reported to vary from 21% to 57%. The pathophysiological basis of HD seems to involve insulin resistance (IR) and pancreatic β-cell dysfunction. The neurohormonal changes, endotoxemia, and chronic inflammation of LC initially create IR; however, the toxic effects eventually lead to β-cell dysfunction, which marks the transition from impaired glucose tolerance to HD. In addition, a number of factors, including sarcopenia, sarcopenic obesity, gut dysbiosis, and hyperammonemia, have recently been linked to impaired glucose metabolism in LC. DM is associated with complications and poor outcomes in patients with LC, although the individual impact of each type 2 DM and HD is unknown due to a lack of categorization of diabetes in most published research. In fact, there is much skepticism within scientific organizations over the recognition of HD as a separate disease and a consequence of LC. Currently, T2DM and HD are being treated in a similar manner although no standardized guidelines are available. The different pathophysiological basis of HD may have an impact on treatment options. This review article discusses the existence of HD as a distinct entity with high prevalence rates, a strong pathophysiological basis, clinical and therapeutic implications, as well as widespread skepticism and knowledge gaps.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Diego García-Compeán
- Department of Gastroenterology, University Hospital, Universidad Autónoma de Nuevo León, México, Monterrey 64700, México
| | - Tanmoy Maji
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| |
Collapse
|
47
|
Moon S, Jung HS. Endoplasmic Reticulum Stress and Dysregulated Autophagy in Human Pancreatic Beta Cells. Diabetes Metab J 2022; 46:533-542. [PMID: 35929171 PMCID: PMC9353561 DOI: 10.4093/dmj.2022.0070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/28/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic beta cell homeostasis is crucial for the synthesis and secretion of insulin; disruption of homeostasis causes diabetes, and is a treatment target. Adaptation to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR) and adequate regulation of autophagy, which are closely linked, play essential roles in this homeostasis. In diabetes, the UPR and autophagy are dysregulated, which leads to beta cell failure and death. Various studies have explored methods to preserve pancreatic beta cell function and mass by relieving ER stress and regulating autophagic activity. To promote clinical translation of these research results to potential therapeutics for diabetes, we summarize the current knowledge on ER stress and autophagy in human insulin-secreting cells.
Collapse
Affiliation(s)
- Seoil Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hye Seung Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
48
|
Lee K, Chan JY, Liang C, Ip CK, Shi YC, Herzog H, Hughes WE, Bensellam M, Delghingaro-Augusto V, Koina ME, Nolan CJ, Laybutt DR. XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and protects against diabetic beta cell failure during metabolic stress in mice. Diabetologia 2022; 65:984-996. [PMID: 35316840 PMCID: PMC9076738 DOI: 10.1007/s00125-022-05669-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states. METHODS Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate. RESULTS Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response. CONCLUSIONS/INTERPRETATION These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states.
Collapse
Affiliation(s)
- Kailun Lee
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chi Kin Ip
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Viviane Delghingaro-Augusto
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mark E Koina
- ACT Pathology, Canberra Health Services, Garran, ACT, Australia
| | - Christopher J Nolan
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Endocrinology, The Canberra Hospital, Garran, ACT, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
49
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Huang XT, Xiong DY, Xiao JN, Deng L, Liu W, Tang SY. Kindlin-2 protects pancreatic β cells through inhibiting NLRP3 inflammasome activation in diabetic mice. Biochem Biophys Res Commun 2022; 614:1-8. [PMID: 35567938 DOI: 10.1016/j.bbrc.2022.04.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus has been a major public health problem worldwide, characterized by insulin resistance and dysfunction of β-cells. A previous study showed that Kindlin-2 loss in β-cells dramatically reduces insulin secretion and decreases β-cell mass, resulting in severe diabetes-like phenotypes. It suggests that Kindlin-2 in β-cells play an important role in regulating glucose homeostasis. However, the effect of Kindlin-2 on the function of β-cells under chronic hyperglycemia in diabetes has not been explored. Here we report that Kindlin-2 overexpression ameliorates diabetes and improves insulin secretion in mice induced by streptozocin. In contrast, Kindlin-2 insufficiency exacerbates diabetes and promotes β-cells dysfunction and inflammation in β-cells induced by a high-fat diet (HFD). In vitro, Kindlin-2 overexpression prevented high-glucose (HG)-induced dysfunction in β-cells. Kindlin-2 overexpression also decreased the expression of pro-inflammatory cytokines and NLRP3 inflammasome expression in β-cells exposed to HG. Furthermore, the loss of Kindlin-2 aggravates the expression of inflammatory cytokines and NLRP3 induced by HG in β-cells. Collectively, we demonstrate that Kindlin-2 protects against diabetes by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Da-Yan Xiong
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Jin-Nan Xiao
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|