1
|
Lv X, Gao J, Yang J, Zou Y, Chen J, Sun Y, Song J, Liu Y, Wang L, Xia L, Yu S, Wei Z, Chen L, Hou X. Clinical and functional characterization of a novel KCNJ11 (c.101G > A, p.R34H) mutation associated with maturity-onset diabetes mellitus of the young type 13. Endocrine 2024; 86:515-527. [PMID: 38761346 DOI: 10.1007/s12020-024-03873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to describe the clinical features, diagnostic and therapeutic course of a patient with MODY13 caused by KCNJ11 (c.101G > A, p.R34H) and how it contributes to the pathogenesis of MODY13, and to explore new therapeutic targets. METHODS Whole-exome sequencing was used to screen prediagnosed individuals and family members with clinically suspected KCNJ11 mutations. Real-time fluorescence quantitative PCR, western blotting, thallium flux of potassium channels, glucose-stimulated insulin secretion (GSIS), and immunofluorescence assays were used to analyze the regulation of insulin secretion by the KCNJ11 mutant in MIN6 cells. Daily blood glucose levels were continuously monitored for 14 days in the proband using the ambulatory blood glucose meter (SIBIONICS). RESULTS Mutation screening of the entire exon of the gene identified a heterozygous KCNJ11 (c.101G > A, p.R34H) mutation in the proband and his mother. Cell-based GSIS assays after transfection of MIN6 using wild-type and mutant plasmids revealed that this mutation impaired insulin secretory function. Furthermore, we found that this impaired secretory function is associated with reduced functional activity of the mutant KCNJ11 protein and reduced expression of the insulin secretion-associated exocytosis proteins STXBP1 and SNAP25. CONCLUSION For the first time, we revealed the pathogenic mechanism of KCNJ11 (c.101G > A, p.R34H) associated with MODY13. This mutant can cause alterations in KATP channel activity, reduce sensitivity to glucose stimulation, and impair pancreatic β-cell secretory function by downregulating insulin secretion-associated exocytosis proteins. Therefore, oral sulfonylurea drugs can lower blood glucose levels through pro-insulinotropic effects and are more favorable for patients with this mutation.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiran Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shijia Yu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Tanaka S, Akagawa H, Azuma K, Higuchi S, Ujiie A, Hashimoto K, Iwasaki N. High prevalence of copy number variations in the Japanese participants with suspected MODY. Clin Genet 2024; 106:293-304. [PMID: 38733153 DOI: 10.1111/cge.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kenkou Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Ujiie
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Naoko Iwasaki
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| |
Collapse
|
3
|
Alwithenani R, Alzahrani J, Allugmani E, Hakami F. Co-inheritance of Rare Variants of Maturity-Onset Diabetes of the Young (MODY): A Case Report and Review of the Literature. Cureus 2024; 16:e69039. [PMID: 39391454 PMCID: PMC11464862 DOI: 10.7759/cureus.69039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Maturity onset diabetes of the young (MODY) is a rare, monogenic autosomal dominant form of diabetes that is characterized by early-onset, non-insulin-dependent hyperglycemia, strong family history, and is often misdiagnosed as type 1 or type 2 diabetes. Co-inheritance of multiple MODY genes, however, is rare. We describe here a case of MODY involving co-inherited rare variants in the ABCC8 and B-lymphocyte kinase (BLK) genes. A 55-year-old non-obese man with a past medical history of dyslipidemia and premature ischemic heart disease was initially misdiagnosed with type 2 diabetes for more than 18 years. He is a smoker with a strong family history of diabetes affecting both of his parents and most of his siblings. Despite treatment with different oral antihyperglycemics, his diabetes remained uncontrolled with glycated hemoglobin (HBA1c) between 8 and 10% until the addition of gliclazide, which improved his HBA1c to 5.7%. Based on all the previous information, MODY was suspected, and genetic testing was done, which showed rare variants in the BLK and ABCC8 genes and suggested a co-occurrence of MODY11 and MODY12. This case highlights the importance of accurate genetic testing, which is crucial for proper MODY subtyping, enabling tailored treatment strategies and potentially improving patient outcomes. Moreover, the consistent presence of the BLK gene variant in limited cases of co-inheritance raises questions about its causative role in MODY, suggesting a need for further investigation into its clinical significance.
Collapse
Affiliation(s)
- Raad Alwithenani
- Department of Medicine, Division of Endocrinology and Diabetes, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Jehad Alzahrani
- Department of Medicine, Division of Endocrinology and Diabetes, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Ebtesam Allugmani
- Department of Medicine, Division of Endocrinology and Diabetes, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Fahad Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Jeddah, SAU
| |
Collapse
|
4
|
Narasimhegowda M, Nagarajappa VH, Palany R. A case series of maturity-onset diabetes of the young highlighting atypical presentations and the implications of genetic diagnosis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230239. [PMID: 39420905 PMCID: PMC11326734 DOI: 10.20945/2359-4292-2023-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/05/2024] [Indexed: 10/19/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic diabetes characterized by onset at a young age and an autosomal dominant mode of inheritance. Notably, MODY accounts for 2%-5% of all diabetes cases, and its distinction from types 1 (T1DM) and 2 (T2DM) diabetes mellitus is often challenging. We report herein the cases of two girls and a boy who presented initially with diabetic ketoacidosis. In view of the strong family history of diabetes in all three of them, the diagnosis of MODY was considered and confirmed by molecular testing. The patient in Case 1 (a 10-year-old girl) had a variation in the HNF1A gene (MODY 3). The patient in Case 2 (a 13-year-old girl) had a variation in the HNF1B gene (MODY 5) and was also clinically diagnosed with HNF1B MODY due to short stature, abnormal renal function, renal cysts, unicornuate uterus, and diabetic ketoacidosis at presentation. The patient in Case 3 (a 14-year-old boy) had a variation in the KCNJ11 gene (MODY 13) and presented with diabetic ketoacidosis; after initially being treated as having T1DM, he developed progressive weight gain, acanthosis nigricans, and decreased requirement of insulin. The patients in Cases 1 and 3 were subsequently treated with oral sulfonylureas and insulin was gradually tapered and interrupted, resulting in drastic improvement in glucose control. The patient in Case 2 remained on insulin, as this is the appropriate management for MODY 5. This case series demonstrates that atypical cases of MODY with ketoacidosis do occur, underscoring the potential for this complication within the phenotypic spectrum of MODY. In patients with atypical presentations, a thorough family history taking may reveal the diagnosis of MODY.
Collapse
Affiliation(s)
- Meghana Narasimhegowda
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Vani Hebbal Nagarajappa
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Raghupathy Palany
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| |
Collapse
|
5
|
Bhattacharya S, Pappachan JM. Monogenic diabetes in children: An underdiagnosed and poorly managed clinical dilemma. World J Diabetes 2024; 15:1051-1059. [PMID: 38983823 PMCID: PMC11229976 DOI: 10.4239/wjd.v15.i6.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes, constituting 1%-2% of global diabetes cases, arises from single gene defects with distinctive inheritance patterns. Despite over 50 ass-ociated genetic disorders, accurate diagnoses and management of monogenic diabetes remain inadequate, underscoring insufficient clinician awareness. The disease spectrum encompasses maturity-onset diabetes of the young (MODY), characterized by distinct genetic mutations affecting insulin secretion, and neonatal diabetes mellitus (NDM) - a heterogeneous group of severe hyperglycemic disorders in infants. Mitochondrial diabetes, autoimmune monogenic diabetes, genetic insulin resistance and lipodystrophy syndromes further diversify the monogenic diabetes landscape. A tailored approach based on phenotypic and biochemical factors to identify candidates for genetic screening is recommended for suspected cases of MODY. NDM diagnosis warrants immediate molecular genetic testing for infants under six months. Identifying these genetic defects presents a unique opportunity for precision medicine. Ongoing research aimed to develop cost-effective genetic testing methods and gene-based therapy can facilitate appropriate identification and optimize clinical outcomes. Identification and study of new genes offer a valuable opportunity to gain deeper insights into pancreatic cell biology and the pathogenic mechanisms underlying common forms of diabetes. The clinical review published in the recent issue of World Journal of Diabetes is such an attempt to fill-in our knowledge gap about this enigmatic disease.
Collapse
Affiliation(s)
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Cardoso P, McDonald TJ, Patel KA, Pearson ER, Hattersley AT, Shields BM, McKinley TJ. Comparison of Bayesian approaches for developing prediction models in rare disease: application to the identification of patients with Maturity-Onset Diabetes of the Young. BMC Med Res Methodol 2024; 24:128. [PMID: 38834992 PMCID: PMC11149229 DOI: 10.1186/s12874-024-02239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Clinical prediction models can help identify high-risk patients and facilitate timely interventions. However, developing such models for rare diseases presents challenges due to the scarcity of affected patients for developing and calibrating models. Methods that pool information from multiple sources can help with these challenges. METHODS We compared three approaches for developing clinical prediction models for population screening based on an example of discriminating a rare form of diabetes (Maturity-Onset Diabetes of the Young - MODY) in insulin-treated patients from the more common Type 1 diabetes (T1D). Two datasets were used: a case-control dataset (278 T1D, 177 MODY) and a population-representative dataset (1418 patients, 96 MODY tested with biomarker testing, 7 MODY positive). To build a population-level prediction model, we compared three methods for recalibrating models developed in case-control data. These were prevalence adjustment ("offset"), shrinkage recalibration in the population-level dataset ("recalibration"), and a refitting of the model to the population-level dataset ("re-estimation"). We then developed a Bayesian hierarchical mixture model combining shrinkage recalibration with additional informative biomarker information only available in the population-representative dataset. We developed a method for dealing with missing biomarker and outcome information using prior information from the literature and other data sources to ensure the clinical validity of predictions for certain biomarker combinations. RESULTS The offset, re-estimation, and recalibration methods showed good calibration in the population-representative dataset. The offset and recalibration methods displayed the lowest predictive uncertainty due to borrowing information from the fitted case-control model. We demonstrate the potential of a mixture model for incorporating informative biomarkers, which significantly enhanced the model's predictive accuracy, reduced uncertainty, and showed higher stability in all ranges of predictive outcome probabilities. CONCLUSION We have compared several approaches that could be used to develop prediction models for rare diseases. Our findings highlight the recalibration mixture model as the optimal strategy if a population-level dataset is available. This approach offers the flexibility to incorporate additional predictors and informed prior probabilities, contributing to enhanced prediction accuracy for rare diseases. It also allows predictions without these additional tests, providing additional information on whether a patient should undergo further biomarker testing before genetic testing.
Collapse
Affiliation(s)
- Pedro Cardoso
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Kashyap A Patel
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Ewan R Pearson
- University of Dundee. Address: Division of Population Health & Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew T Hattersley
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Trevelyan J McKinley
- University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
7
|
Urakami T, Terada H, Mine Y, Aoki M, Suzuki J, Morioka I. Clinical characteristics in children with maturity-onset diabetes of the young detected by urine glucose screening at schools in the Tokyo Metropolitan Area. Clin Pediatr Endocrinol 2024; 33:113-123. [PMID: 38993716 PMCID: PMC11234186 DOI: 10.1297/cpe.2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 07/13/2024] Open
Abstract
This study aimed to examine the clinical characteristics of young children diagnosed with maturity-onset diabetes (MODY) using urine glucose screening at schools. The study participants were 70 non-obese children who were clinically diagnosed with type 2 diabetes through urine glucose screening at schools in Tokyo between 1974 and 2020. Of these children, 55 underwent genetic testing, and 21 were finally diagnosed with MODY: MODY2 in eight, MODY3 in eight, MODY1 in four and MODY5 in one. A family history of diabetes was found in 76.2% of the patients. Fasting plasma glucose levels did not differ between the different MODY subtypes, while patients with MODY 3, 1, and 5 had significantly higher levels of glycosylated hemoglobin and 2-hour glucose in an oral glucose tolerance test than those with MODY2. In contrast, most patients exhibit mild insulin resistance and sustained β-cell function. In the initial treatment, all patients with MODY2 were well controlled with diet and exercise, whereas the majority of those with MODY3, 1, and 5 required pharmacological treatment within one month of diagnosis. In conclusion, urine glucose screening in schools appears to be one of the best opportunities for early detection of the disease and providing appropriate treatment to patients.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Terada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Enders-Seidlitz H, Raile K, Gong M, Galler A, Kuehnen P, Wiegand S. Insulin Secretion Defect in Children and Adolescents with Obesity: Clinical and Molecular Genetic Characterization. J Diabetes Res 2024; 2024:5558634. [PMID: 38550917 PMCID: PMC10977255 DOI: 10.1155/2024/5558634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction Childhood obesity is increasing worldwide and presents as a global health issue due to multiple metabolic comorbidities. About 1% of adolescents with obesity develop type 2 diabetes (T2D); however, little is known about the genetic and pathophysiological background at young age. The objective of this study was to assess the prevalence of impaired glucose regulation (IGR) in a large cohort of children and adolescents with obesity and to characterize insulin sensitivity and insulin secretion. We also wanted to investigate adolescents with insulin secretion disorder more closely and analyze possible candidate genes of diabetes in a subcohort. Methods We included children and adolescents with obesity who completed an oral glucose tolerance test (OGTT, glucose + insulin) in the outpatient clinic. We calculated Matsuda index, the area under the curve (AUC (Ins/Glu)), and an oral disposition index (ISSI-2) to estimate insulin resistance and beta-cell function. We identified patients with IGR and low insulin secretion (maximum insulin during OGTT < 200 mU/l) and tested a subgroup using next generation sequencing to identify possible mutations in 103 candidate genes. Results The total group consisted of 903 children and adolescents with obesity. 4.5% showed impaired fasting glucose, 9.4% impaired glucose tolerance, and 1.2% T2D. Matsuda index and Total AUC (Ins/Glu) showed a hyperbolic relationship. Out of 39 patients with low insulin secretion, we performed genetic testing on 12 patients. We found five monogenetic defects (ABCC8 (n = 3), GCK (n = 1), and GLI2/PTF1A (n = 1)). Conclusion Using surrogate parameters of beta-cell function and insulin resistance can help identify patients with insulin secretion disorder. A prevalence of 40% mutations of known diabetes genes in the subgroup with low insulin secretion suggests that at least 1.7% of patients with adolescent obesity have monogenic diabetes. A successful molecular genetic diagnosis can help to improve individual therapy.
Collapse
Affiliation(s)
| | | | - Maolian Gong
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Zhao J, Chen Y, Ma F, Shu H, Zheng L, Liu Y, Li X, Xu T, Zhou Z, Zhou K. MODY Probability Calculator Is Suitable for MODY Screening in China: A Population-based Study. J Endocr Soc 2024; 8:bvae047. [PMID: 38562131 PMCID: PMC10983078 DOI: 10.1210/jendso/bvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Context Selecting appropriate individuals for genetic testing is essential due to the optimal treatment for maturity-onset diabetes of the young (MODY). However, how to effectively screen for MODY in China remains unclear. Objective To validate the performance of current screening strategies in selecting patients with MODY based on a nationwide type 2 diabetes cohort. Methods A panel of 14 MODY genes was analyzed from 1911 type 2 diabetes patients who were ages 15 to 35 years. Variants were evaluated according to the American College of Medical Genetics and Genomics guidelines. Based on this cohort, we simulated the 2 most frequently used screening strategies, including the traditional MODY criteria and the MODY probability calculator (MPC), to assess their ability to select patients with MODY. Results From a total of 1911 participants, 42 participants harbored pathogenic/likely pathogenic variants. The performance of the traditional criteria was sensitivity: 19.0%, specificity: 72.9%, positive predictive value (PPV): 1.6%, and missing rate: 81.0%. The optimal cut-off for MPC was 40.7%. Based on this cut-off value, the performance was sensitivity: 54.8%, specificity: 81.0%, PPV: 6.1%, and missing rate: 45.2%. Moreover, hemoglobin A1c, insulin treatment, and family history of diabetes have poor discrimination between MODY and young-onset type 2 diabetes. Conclusion The MPC is better than traditional criteria in terms of both sensitivity and PPV. To ensure more MODY patients benefit from optimal treatment, we therefore suggest that routine genetic testing be performed on all type 2 diabetes patients who are between the ages of 15 and35 years and have MPC probability value over 40.7%.
Collapse
Affiliation(s)
- Jing Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fuhui Ma
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830001, China
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China
| | - Li Zheng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tao Xu
- Guangzhou Laboratory, Guangdong Province, Guangdong 510005, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangdong Province, Guangdong 510005, China
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| |
Collapse
|
10
|
Balogun WO, Naylor R, Adedokun BO, Ogunniyi A, Olopade OI, Dagogo-Jack SE, Bell GI, Philipson LH. Implementing genetic testing in diabetes: Knowledge, perceptions of healthcare professionals, and barriers in a developing country. POPULATION MEDICINE 2024; 6:9. [PMID: 38681897 PMCID: PMC11052599 DOI: 10.18332/popmed/184210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Maturity-Onset Diabetes of the Young (MODY) is an unusual type of diabetes often missed in clinical practice, especially in Africa. Treatment decisions for MODY depend on a precise diagnosis, only made by genetic testing. We aimed to determine MODY knowledge among Nigerian healthcare professionals (HCPs), their perceptions, and barriers to the implementation of genetic testing in diabetes patients. METHODS A cross-sectional survey was conducted among doctors and nurses in three levels of public and private healthcare institutions in Ibadan, Nigeria, from December 2018 to June 2019. In all, 70% and 30% of a total 415 participants were recruited from public and private centers, respectively. HCPs were recruited in a 60:40% ratio, respectively. A 51-item instrument was used to assess MODY knowledge, perceptions of HCPs, and barriers to the implementation of genetic testing in diabetes patients. RESULTS In the survey, 43.4% self-rated their current MODY knowledge to be at least moderate. About 68%, 73% and 86%, respectively, correctly answered 3 of 5 questions on basic genetics' knowledge. However, only 1 of 7 MODY-specific questions was answered correctly by 72.7% of the respondents. The mean basic genetics and MODY-specific knowledge scores were 2.6/5 (SD=1.0) and 1.8/9 (SD=1.3), respectively. Multiple linear regression showed higher mean scores among those aged 30-49 years, those with degrees and fellowships (except PhD), and general practitioners; 360 (80.0%) perceived that genetic testing plays a central role in diabetes care. Barriers to genetic testing were lack of access to testing facilities, guidance on the use of and updates/educational materials on genetic testing (82.7%, 62.1% and 50.3%, respectively). CONCLUSIONS The level of MODY awareness and knowledge among Nigerian HCPs is unacceptably low with a lack of access to genetic testing facilities. These can hinder the implementation of precision diabetes medicine. Increased awareness, provision of decision support aids, and genetic testing facilities are urgently needed.
Collapse
Affiliation(s)
- Williams O. Balogun
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Rochelle Naylor
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| | - Babatunde O. Adedokun
- Department of Epidemiology and Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Haematology Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Samuel E. Dagogo-Jack
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Division of Endocrinology and Metabolism, University of Tennessee Health Science Center, Tennessee, United States of America
| | - Graeme I. Bell
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Loui H. Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Ying L, Ding Y, Li J, Zhang Q, Chang G, Yu T, Wang J, Zhu Z, Wang X. Clinical characteristics and genetic analysis of a child with specific type of diabetes mellitus caused by missense mutation of GATA6 gene. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:732-737. [PMID: 38105674 PMCID: PMC10764185 DOI: 10.3724/zdxbyxb-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
- Clinical Research Ward, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jian Wang
- Central Laboratory, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
- Clinical Research Ward, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
12
|
Lian H, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Prevalence and Clinical Characteristics of PDX1 Variant Induced Diabetes in Chinese Early-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:e1686-e1694. [PMID: 37279936 DOI: 10.1210/clinem/dgad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
CONTEXT Maturity-onset diabetes of the young 4 (MODY4) is caused by mutations of PDX1; its prevalence and clinical features are not well known. OBJECTIVE This study aimed to investigate the prevalence and clinical characteristics of MODY4 in Chinese people clinically diagnosed with early-onset type 2 diabetes (EOD), and to evaluate the relationship between the PDX1 genotype and the clinical phenotype. METHOD The study cohort consisted of 679 patients with EOD. PDX1 mutations were screened by DNA sequencing, and their pathogenicity was evaluated by functional experiments and American College of Medical Genetics and Genomics guidelines. MODY4 was diagnosed in individuals with diabetes who carry a pathogenic or likely pathogenic PDX1 variant. All reported cases were reviewed for analyzing the genotype-phenotype relationship. RESULT 4 patients with MODY4 were identified, representing 0.59% of this Chinese EOD cohort. All the patients were diagnosed before 35 years old, either obese or not obese. Combined with previously reported cases, the analysis revealed that the carriers of homeodomain variants were diagnosed earlier than those with transactivation domain variants (26.10 ± 11.00 vs 41.85 ± 14.66 years old, P < .001), and the proportions of overweight and obese individuals with missense mutation were higher than those with nonsense or frameshift mutations (27/34 [79.4%] vs 3/8 [37.5%], P = .031). CONCLUSION Our study suggested that MODY4 was prevalent in 0.59% of patients with EOD in a Chinese population. It was more difficult to identify clinically than other MODY subtypes owning to its clinical similarity to EOD. Also, this study revealed that there is some relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xirui Wang
- Department of Endocrinology, Beijing Airport Hospital. No. 49, Beijing 101318, China
| | - Fang Wang
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital. No. 59, Beijing 101200, China
| | - Liyong Zhong
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| |
Collapse
|
13
|
Cai X, Xue Z, Zeng FF, Tang J, Yue L, Wang B, Ge W, Xie Y, Miao Z, Gou W, Fu Y, Li S, Gao J, Shuai M, Zhang K, Xu F, Tian Y, Xiang N, Zhou Y, Shan PF, Zhu Y, Chen YM, Zheng JS, Guo T. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome. Cell Rep Med 2023; 4:101172. [PMID: 37652016 PMCID: PMC10518601 DOI: 10.1016/j.xcrm.2023.101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
Collapse
Affiliation(s)
- Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Zhangzhi Xue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China
| | - Jun Tang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liang Yue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bo Wang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zelei Miao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wanglong Gou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanqing Fu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jinlong Gao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Menglei Shuai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ke Zhang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fengzhe Xu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yunyi Tian
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Nan Xiang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yan Zhou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Peng-Fei Shan
- Department of Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ju-Sheng Zheng
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
14
|
Geneş D, Pekkolay Z, Şimşek M, Saraçoğlu H, Turgut M, Tekeş S, Tuzcu A. COMPARISON OF C-PEPTIDE LEVELS IN MONOGENIC FORMS OF DIABETES WITH OTHER TYPES OF DIABETES: A SINGLE-CENTER STUDY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:281-285. [PMID: 38356972 PMCID: PMC10863950 DOI: 10.4183/aeb.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Objective This study aimed to evaluate the utility of C-peptide levels in the differentiation of monogenic forms of diabetes from type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in clinical practice. Subjects and Methods A total of 104 patients aged >16 who visited the Dicle University's Faculty of Medicine between April 2011 and December 2020 and were diagnosed with monogenic diabetes by genetic analysis or with T1DM and T2DM were randomly selected for retrospective evaluation. The C-peptide levels of these patients at the time of diagnosis of diabetes were compared. Results Of the 104 patients, 24 (23%) were diagnosed with maturity-onset diabetes of the young (MODY), 40 (38.5%) with T1DM, and 40 (38.5%) with T2DM. Median C-peptide levels (ng/mL) (interquartile range) were 1.78 (1.24-2.88) in MODY group, 0.86 (0.34-1.22) in T1DM group, and 2.38 (1.58-4.27) in T2DM group. Conclusions There was a difference in C-peptide levels between MODY and T1DM groups but not between MODY and T2DM groups. As per clinical evaluations, although C-peptide levels of patients with MODY are similar to those of patients with T2DM patients, the possibility of C-peptide levels being similar to those required for T1DM diagnosis should also be considered.
Collapse
Affiliation(s)
- D. Geneş
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - Z. Pekkolay
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - M. Şimşek
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - H. Saraçoğlu
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - M. Turgut
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - S. Tekeş
- Medical Biology and Genetics, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - A.K. Tuzcu
- Department of Adult Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| |
Collapse
|
15
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
16
|
Thewjitcharoen Y, Soontaree N, Waralee C, Siriwan B, Sirinate K, Ekgaluck W, Thep H. Prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Heliyon 2023; 9:e14262. [PMID: 36923852 PMCID: PMC10009731 DOI: 10.1016/j.heliyon.2023.e14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background It is critical to determine the exact type of diabetes because misclassification led to inappropriate treatments. The classification of DM can be aided by the measurement of pancreatic autoantibodies and plasma C-peptide levels. Previous studies suggested that random plasma C-peptide testing in those with clinically diagnosed adult T1DM of at least 3 years duration has led to reclassification in some cases. Aim This study aimed to assess the prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Methods A cross-sectional study of adult Thai patients diagnosed with clinically diagnosed T1DM and DM duration of at least 3 years at Theptarin Hospital, a diabetes center in Bangkok, Thailand was studied. Clinically misdiagnosis of T1DM was defined by preserved endogenous insulin secretion. Characteristics of the misdiagnosed patients were compared with definite T1DM patients. Results A total of 73 patients (females 52.1%, mean age 42.2 ± 12.5 years, duration of DM 20.3 ± 11.3 years) were studied. The prevalence of available anti-GAD and anti-IA2 were 53.3% and 20.8%, respectively. Preserved endogenous insulin secretion evaluated by random C-peptide or stimulated C-peptide was found in 8 patients (11.0%). The misdiagnosed patients had higher prevalence of hypertension and diabetic complications. Three patients were suspected to have monogenic diabetes and five patients were reclassified as possible T2DM. Conclusions Approximately one-tenth of adult T1DM patients were misdiagnosed. Random plasma C-peptide testing at least 3 years after a diagnosis of T1DM was superior to the measurement of pancreatic autoantibodies. Our present study highlights the need to increase accuracy in the diagnosis of T1DM patients by re-assessing endogenous insulin production with measurement of random plasma C-peptide levels.
Collapse
|
17
|
Zhang N, Zhao H, Li C, Zhang FZ. Novel gene mutation in maturity-onset diabetes of the young: A case report. World J Clin Cases 2023; 11:1099-1105. [PMID: 36874436 PMCID: PMC9979303 DOI: 10.12998/wjcc.v11.i5.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic type of diabetes. Recently, 14 gene mutations have been found to be associated with MODY. In addition, the KLF11 gene mutation is the pathogenic gene of MODY7. To date, the clinical and functional characteristics of the novel KLF11 mutation c. G31A have not yet been reported.
CASE SUMMARY We report of a 30-year-old male patient with a one-year history of nonketosis-prone diabetes and a 3-generation family history of diabetes. The patient was found to carry a KLF11 gene mutation. Therefore, the clinical data of family members were collected and investigated. A total of four members of the family were found to have heterozygous mutations in the KLF11 gene c. G31A, which resulted in a change in the corresponding amino acid p.D11N. Three patients had diabetes mellitus, and one patient had impaired glucose tolerance.
CONCLUSION The heterozygous mutation of the KLF11 gene c.G31A (p. D11N) is a new mutation site of MODY7. Subsequently, the main treatment included dietary interventions and oral drugs.
Collapse
Affiliation(s)
- Na Zhang
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Hui Zhao
- Department of Endocrinology, Binzhou Central Hospital, Binzhou 251700, Shandong Province, China
| | - Cui Li
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Feng-Zhi Zhang
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
18
|
Chen Y, Zhao J, Li X, Xie Z, Huang G, Yan X, Zhou H, Zheng L, Xu T, Zhou K, Zhou Z. Prevalence of maturity-onset diabetes of the young in phenotypic type 2 diabetes in young adults: a nationwide, multi-center, cross-sectional survey in China. Chin Med J (Engl) 2023; 136:56-64. [PMID: 36723869 PMCID: PMC10106210 DOI: 10.1097/cm9.0000000000002321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic diabetes. The aim of this study was to assess the prevalence of MODY in phenotypic type 2 diabetes (T2DM) among Chinese young adults. METHODS From April 2015 to October 2017, this cross-sectional study involved 2429 consecutive patients from 46 hospitals in China, newly diagnosed between 15 years and 45 years, with T2DM phenotype and negative for standardized glutamic acid decarboxylase antibody at the core laboratory. Sequencing using a custom monogenic diabetes gene panel was performed, and variants of 14 MODY genes were interpreted as per current guidelines. RESULTS The survey determined 18 patients having genetic variants causing MODY (6 HNF1A , 5 GCK , 3 HNF4A , 2 INS , 1 PDX1 , and 1 PAX4 ). The prevalence of MODY was 0.74% (95% confidence interval [CI]: 0.40-1.08%). The clinical characteristics of MODY patients were not specific, 72.2% (13/18) of them were diagnosed after 35 years, 47.1% (8/17) had metabolic syndrome, and only 38.9% (7/18) had a family history of diabetes. No significant difference in manifestations except for hemoglobin A1c levels was found between MODY and non-MODY patients. CONCLUSION The prevalence of MODY in young adults with phenotypic T2DM was 0.74%, among which HNF1A -, GCK -, and HNF4A -MODY were the most common subtypes. Clinical features played a limited role in the recognition of MODY.
Collapse
Affiliation(s)
- Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zhao
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Kaixin Zhou
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
19
|
Aditya Jadhav R, Arun Maiya G, Umakanth S, Shivashankara K. External validation of Prediabetes Risk Test in Indian population for screening prediabetes. Med J Armed Forces India 2023. [DOI: 10.1016/j.mjafi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Yılmaz Uzman C, Erbaş İM, Giray Bozkaya Ö, Paketçi A, Çağlayan AO, Abacı A, Kulalı MA, Böber E, Kekilli A, Çinleti T, Erçal MD, Demir K. Hemoglobin A 1C can differentiate subjects with GCK mutations among patients suspected to have MODY. J Pediatr Endocrinol Metab 2022; 35:1528-1536. [PMID: 36197956 DOI: 10.1515/jpem-2022-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of this study is to determine the clinical and molecular characteristics enabling differential diagnosis in a group of Turkish children clinically diagnosed with MODY and identify the cut-off value of HbA1c, which can distinguish patients with GCK variants from young-onset type 1 and type 2 diabetes. METHODS The study included 49 patients from 48 unrelated families who were admitted between 2018 and 2020 with a clinical diagnosis of MODY. Clinical and laboratory characteristics of the patients at the time of the diagnosis were obtained from hospital records. Variant analysis of ten MODY genes was performed using targeted next-generation sequencing (NGS) panel and the variants were classified according to American Collage of Medical Genetics and Genomics (ACMG) Standards and Guidelines recommendations. RESULTS A total of 14 (28%) pathogenic/likely pathogenic variants were detected among 49 patients. 11 variants in GCK and 3 variants in HNF1A genes were found. We identified four novel variants in GCK gene. Using ROC analysis, we found that best cut-off value of HbA1c at the time of diagnosis for predicting the subjects with a GCK variant among patients suspected to have MODY was 6.95% (sensitivity 90%, specificity 86%, AUC 0.89 [95% CI: 0.783-1]). Most of the cases without GCK variant (33/38 [86%]) had an HbA1c value above this cutoff value. We found that among participants suspected of having MODY, family history, HbA1c at the time of diagnosis, and not using insulin therapy were the most differentiating variables of patients with GCK variants. CONCLUSIONS Family history, HbA1c at the time of diagnosis, and not receiving insulin therapy were found to be the most distinguishing variables of patients with GCK variants among subjects suspected to have MODY.
Collapse
Affiliation(s)
- Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - İbrahim Mert Erbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Özlem Giray Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahu Paketçi
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ayhan Abacı
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Melike Ataseven Kulalı
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ece Böber
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Arda Kekilli
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Tayfun Çinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Murat Derya Erçal
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey.,Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
21
|
Wang DW, Yuan J, Yang FY, Qiu HY, Lu J, Yang JK. Early-onset diabetes involving three consecutive generations had different clinical features from age-matched type 2 diabetes without a family history in China. Endocrine 2022; 78:47-56. [PMID: 35921062 PMCID: PMC9474578 DOI: 10.1007/s12020-022-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Early-onset, multigenerational diabetes is a heterogeneous disease, which is often simplistically classified as type 1 diabetes (T1D) or type 2 diabetes(T2D). However, its clinical and genetic characteristics have not been clearly elucidated. The aim of our study is to investigate the clinical features of early-onset diabetes involving three consecutive generations (eDia3) in a Chinese diabetes cohort. METHODS Of 6470 type 2 diabetic patients, 105 were identified as eDia3 (1.6%). After a case-control match on age, we compared the clinical characteristics of 89 eDia3 patients with 89 early-onset T2D patients without a family history of diabetes (eDia0). WES was carried out in 89 patients with eDia3. We primarily focused on 14 known maturity-onset diabetes of the young (MODY) genes. Variants were predicted by ten tools (SIFT, PolyPhen2_HDIV, PolyPhen2_HVAR, LRT, Mutation Assessor, Mutation Taster, FATHMM, GERP++, PhyloP, and PhastCons). All suspected variants were then validated by Sanger sequencing and further investigated in the proband families. RESULTS Compared to age-matched eDia0, eDia3 patients had a younger age at diagnosis (26.5 ± 5.8 vs. 29.4 ± 5.3 years, P = 0.001), lower body mass index (25.5 ± 3.9 vs. 27.4 ± 4.6 kg/m2, P = 0.003), lower systolic blood pressure (120 ± 15 vs. 128 ± 18 mmHg, P = 0.003), and better metabolic profiles (including glucose and lipids). Of the 89 eDia3 patients, 10 (11.2%) carried likely pathogenic variants in genes (KLF11, GCK, ABCC8, PAX4, BLK and HNF1A) of MODY. CONCLUSIONS eDia3 patients had unique clinical features. Known MODY genes were not common causes in these patients.
Collapse
Affiliation(s)
- Da-Wei Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of General Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jing Yuan
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Fang-Yuan Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing, 100730, China
| | - Hai-Yan Qiu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing, 100730, China
| | - Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing, 100730, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing, 100730, China.
| |
Collapse
|
22
|
Perge K, Nicolino M. Variable phenotypes of individual and family monogenic cases with hyperinsulinism and diabetes: a systematic review. Rev Endocr Metab Disord 2022; 23:1063-1078. [PMID: 35996042 DOI: 10.1007/s11154-022-09749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Maturity-Onset Diabetes of the Youth (MODY) diabetes remains commonly misdiagnosed. A monogenic form should be suspected in individuals presenting hyperinsulinemic hypoglycemia (HH) associated with, either later development of MODY (hypoglycemia-remission-diabetes sequence), or with first/second-degree family history of diabetes. Herein, we aimed to describe this individual or family monogenic association between HH and diabetes, and identify potential genotype-phenotype correlations. We conducted a systematic review of 26 studies, including a total of 67 patients with this association resulting from variants in GCK (n = 5 cases), ABCC8 (n = 29), HNF1A (n = 5), or HNF4A (n = 28). A family history of hypoglycemia and/or diabetes was present in 91% of cases (61/67). Median age at first hypoglycemia was 24 h after birth. Diazoxide was initiated in 46 children (46/67-69%); responsiveness was found in 91% (42/46). Median HH duration was three years (1 day-25 years). Twenty-three patients (23/67-34%) later developed diabetes (median age: 13 years; range: 8-48); more frequently in those untreated with diazoxide. This association was most commonly inherited in an autosomal dominant manner (43/48-90%). Some genes were associated with less severe initial hypoglycemia (HNF1A), shorter duration of HH (HNF4A), and more maternal (ABCC8) or paternal (HNF4A) transmission. This study illustrates that the same genotype can give a biphasic phenotype in the same person or a reverse phenotype in the same family. Wider awareness of this association is necessary in pediatrics to establish annual monitoring of patients who have presented HH, and during maternity to screen diabetes and optimize genetic counseling and management of pregnancy, childbirth, and the newborn.PROSPERO registration: CRD42020178265.
Collapse
Affiliation(s)
- Kevin Perge
- Service d'Endocrinologie Pédiatrique Et Pédiatrie Générale, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, 59 Boulevard Pinel, 69677, Bron, France
- Université Claude Bernard, Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Marc Nicolino
- Service d'Endocrinologie Pédiatrique Et Pédiatrie Générale, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, 59 Boulevard Pinel, 69677, Bron, France.
- Université Claude Bernard, Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
23
|
Zhang H, Kleinberger JW, Maloney KA, Guan Y, Mathias TJ, Bisordi K, Streeten EA, Blessing K, Snyder MN, Bromberger LA, Goehringer J, Kimball A, Damcott CM, Taylor CO, Nicholson M, Nwaba D, Palmer K, Sewell D, Ambulos N, Jeng LJB, Shuldiner AR, Levin P, Carey DJ, Pollin TI. Model for Integration of Monogenic Diabetes Diagnosis Into Routine Care: The Personalized Diabetes Medicine Program. Diabetes Care 2022; 45:1799-1806. [PMID: 35763601 PMCID: PMC9346978 DOI: 10.2337/dc21-1975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/03/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To implement, disseminate, and evaluate a sustainable method for identifying, diagnosing, and promoting individualized therapy for monogenic diabetes. RESEARCH DESIGN AND METHODS Patients were recruited into the implementation study through a screening questionnaire completed in the waiting room or through the patient portal, physician recognition, or self-referral. Patients suspected of having monogenic diabetes based on the processing of their questionnaire and other data through an algorithm underwent next-generation sequencing for 40 genes implicated in monogenic diabetes and related conditions. RESULTS Three hundred thirteen probands with suspected monogenic diabetes (but most diagnosed with type 2 diabetes) were enrolled from October 2014 to January 2019. Sequencing identified 38 individuals with monogenic diabetes, with most variants found in GCK or HNF1A. Positivity rates for ascertainment methods were 3.1% for clinic screening, 5.3% for electronic health record portal screening, 16.5% for physician recognition, and 32.4% for self-referral. The algorithmic criterion of non-type 1 diabetes before age 30 years had an overall positivity rate of 15.0%. CONCLUSIONS We successfully modeled the efficient incorporation of monogenic diabetes diagnosis into the diabetes care setting, using multiple strategies to screen and identify a subpopulation with a 12.1% prevalence of monogenic diabetes by molecular testing. Self-referral was particularly efficient (32% prevalence), suggesting that educating the lay public in addition to clinicians may be the most effective way to increase the diagnosis rate in monogenic diabetes. Scaling up this model will assure access to diagnosis and customized treatment among those with monogenic diabetes and, more broadly, access to personalized medicine across disease areas.
Collapse
Affiliation(s)
- Haichen Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China.,Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kristin A Maloney
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Yue Guan
- Rollins School of Public Health, Emory University, Atlanta, GA
| | - Trevor J Mathias
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Katharine Bisordi
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Elizabeth A Streeten
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Lee A Bromberger
- Metabolism, Osteoporosis/Obesity, Diabetes, Endocrinology and Lipids (MODEL) Clinical Research, Research Division of Bay Endocrinology Associates, Baltimore, MD
| | | | - Amy Kimball
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD
| | - Coleen M Damcott
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Casey O Taylor
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michaela Nicholson
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Devon Nwaba
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kathleen Palmer
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Danielle Sewell
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Ambulos
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Linda J B Jeng
- Division of Rare Diseases and Medical Genetics, US Food and Drug Administration, Silver Spring, MD
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Philip Levin
- Bay West Endocrinology Associates, Baltimore, MD
| | | | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Kettunen JLT, Rantala E, Dwivedi OP, Isomaa B, Sarelin L, Kokko P, Hakaste L, Miettinen PJ, Groop LC, Tuomi T. A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY. Diabetologia 2022; 65:632-643. [PMID: 34951657 PMCID: PMC8894160 DOI: 10.1007/s00125-021-05631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum. METHODS We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.(Gly292fs) variant with the non-carrier relatives irrespective of diabetes status. During more than two decades, 145 carriers and 131 non-carriers from 12 families participated in the study, and 208 underwent an OGTT at least once. We assessed the polygenic risk score for type 2 diabetes, age at onset of diabetes and measures of body composition, as well as plasma glucose, serum insulin, proinsulin, C-peptide, glucagon and NEFA response during the OGTT. RESULTS Half of the carriers remained free of diabetes at 23 years, one-third at 33 years and 13% even at 50 years. The median age at diagnosis was 21 years (IQR 17-35). We could not identify clinical factors affecting the age at conversion; sex, BMI, insulin sensitivity or parental carrier status had no significant effect. However, for 1 SD unit increase of a polygenic risk score for type 2 diabetes, the predicted age at diagnosis decreased by 3.2 years. During the OGTT, the carriers had higher levels of plasma glucose and lower levels of serum insulin and C-peptide than the non-carriers. The carriers were also leaner than the non-carriers (by 5.0 kg, p=0.012, and by 2.1 kg/m2 units of BMI, p=2.2 × 10-4, using the first adult measurements) and, possibly as a result of insulin deficiency, demonstrated higher lipolytic activity (with medians of NEFA at fasting 621 vs 441 μmol/l, p=0.0039; at 120 min during an OGTT 117 vs 64 μmol/l, p=3.1 × 10-5). CONCLUSIONS/INTERPRETATION The most common causal variant of HNF1A-MODY, p.(Gly292fs), presents not only with hyperglycaemia and insulin deficiency, but also with increased lipolysis and markedly lower adult BMI. Serum insulin was more discriminative than C-peptide between carriers and non-carriers. A considerable proportion of carriers develop diabetes after young adulthood. Even among individuals with a monogenic form of diabetes, polygenic risk of diabetes modifies the age at onset of diabetes.
Collapse
Affiliation(s)
- Jarno L T Kettunen
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | | | - Om P Dwivedi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Bo Isomaa
- Folkhälsan Research Center, Helsinki, Finland
| | | | - Paula Kokko
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Liisa Hakaste
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Leif C Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
25
|
Üstay Ö, Apaydın T, Elbasan O, Polat H, Günhan G, Dinçer C, Şeker L, Ateş EA, Yabacı A, Güney Aİ, Yavuz DG. When do we need to suspect maturity onset diabetes of the young in patients with type 2 diabetes mellitus? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:32-39. [PMID: 35029855 PMCID: PMC9991031 DOI: 10.20945/2359-3997000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Maturity onset diabetes of the young (MODY) patients have clinical heterogeneity as shown by many studies. Thus, often it is misdiagnosed to type 1 or type 2 diabetes(T2DM). The aim of this study is to evaluate MODY mutations in adult T2DM patients suspicious in terms of MODY, and to show clinical and laboratory differences between these two situations. METHODS In this study, we analyzed 72 type 2 diabetic patients and their relatives (35F/37M) who had been suspected for MODY and referred to genetic department for mutation analysis. The gene mutations for MODY have been assessed in the laboratory of Marmara University genetics. Totally 67 (32F/35M; median age 36.1) diabetic patients were analyzed for 7 MODY mutations. Twelve patients who have uncertain mutation (VUS) were excluded from study for further evaluation. MODY(+) (n:30) patients and T2DM patients (n:25) were compared for clinical and laboratory parameters. RESULTS In MODY(+) subjects, mutations in GCK (MODY 2) (n:12; 40%) were the most common followed by HNF4A (MODY 1) (n:4; 13.3%). Diabetes diagnosis age was younger in MODY(+) group but not statistically significant. Sixty-six percent of MODY(+) subjects had diabetes history at 3-consecutive generations in their family compared with 28% of T2DM patients statistically significant (p:0.006). Gender, BMI, C-peptide, HbA1c, lipid parameters, creatinine, GFR, microalbuminuria, vitamin D and calcium were not statistically different between the groups. CONCLUSION According to present study results, MODY mutation positivity is most probable in young autoantibody (-) diabetic patients diagnosed before 30 years of age, who have first degree family history of diabetes.
Collapse
Affiliation(s)
- Özlem Üstay
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey,
| | - Tuğçe Apaydın
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Onur Elbasan
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Hamza Polat
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Gizem Günhan
- Marmara University School of Medicine, Internal Medicine, Istanbul, Turkey
| | - Ceyda Dinçer
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Lamia Şeker
- Marmara University School of Medicine, Internal Medicine, Istanbul, Turkey
| | - Esra Arslan Ateş
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Ayşegül Yabacı
- Bezmialem Vakif University School of Medicine, Department of Biostatistics, Istanbul, Turkey
| | - Ahmet İlter Güney
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Dilek Gogas Yavuz
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| |
Collapse
|
26
|
Pace NP, Grech CA, Vella B, Caruana R, Vassallo J. Frequency and spectrum of glucokinase mutations in an adult Maltese population. Acta Diabetol 2022; 59:339-348. [PMID: 34677673 DOI: 10.1007/s00592-021-01814-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
AIM To investigate the frequency and spectrum of glucokinase (GCK) mutations in a cohort of adults from an island population having a high prevalence of diabetes mellitus (DM). METHODS A single-centre cohort study was conducted, including 145 non-obese adults of Maltese-Caucasian ethnicity with impaired fasting glycaemia (IFG) or non-autoimmune diabetes diagnosed before the age of 40 years. Bidirectional sequencing of the GCK coding regions was performed. Genotype-phenotype associations and familial segregation were explored and the effects of missense variants on protein structure were evaluated using computational analysis. RESULTS Three probands with pathogenic/likely pathogenic GCK variants in the heterozygous state having clinical features consistent with GCK-diabetes were detected. The missense variants have structurally destabilising effects on protein structure. GCK variant carriers exhibited a significantly lower body mass index and serum triglyceride levels when compared to GCK variant non-carriers. CONCLUSIONS The frequency of GCK-diabetes is approximately 2% in non-obese Maltese adults with diabetes or prediabetes. This study broadens the mutational spectrum of GCK and highlights clinical features that could be useful in discriminating GCK-DM from type 2 DM or prediabetes. It reinforces the need for increased molecular testing in young adults with diabetes having a suspected monogenic aetiology.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta.
| | - Celine Ann Grech
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Barbara Vella
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Ruth Caruana
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
27
|
Zhang Y, Hu S, Huang H, Liu J. A case report of Maturity-onset diabetes of the young 12: large fragment deletion in ABCC8 gene with literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:378. [PMID: 35434002 PMCID: PMC9011213 DOI: 10.21037/atm-22-807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Background Maturity-onset diabetes of the young (MODY) is one type of monogenic diabetes that is often misdiagnosed. The case refers to a case of maturity-onset diabetes of the young 12 (MODY12) who was misdiagnosed with type 1 diabetes (T1DM), and this was the first case of MODY12 induced by a large deletion of the ATP-binding cassette transporter C8 gene (ABCC8). Additionally, a literature review was conducted regarding the pathological mechanisms, clinical manifestations, diagnosis, and treatment of ABCC8-mutated diabetes. Case Description A 22 years old, male patient had been misdiagnosed with T1DM for 4 years and had experienced poor glucose control with multiple daily insulin injections. Their glycated hemoglobin (HbA1c) was 12.9% at the time of admission and they had been experiencing frequent hypoglycemia. Next-generation sequencing found that the chr11p15.1 region had large fragment heterozygous deletion of exon 17 of the ABCC8 gene. According to the genetic test results, the patient was diagnosed as MODY12, insulin treatment was gradually stopped and converted to glimepiride for oral administration, and HbA1c decreased to 6.1%. After oral treatment for 8 months, the glimepride was stopped; however, HbA1c was 5.9% after 6 months of drug withdrawal and C-peptide level became elevated [fasting C-peptide (FCP) increase from 0.8 to 7.5 ng/mL, and 2 h postprandial C-peptide increase from 0.7 to. 4.1 ng/mL]. Conclusions It is easy for underweight MODY patients to be misdiagnosed with T1DM. For T1DM patients with poor insulin treatment effects, repeated hypoglycemia, and persistent insulin secretion level, ABCC8 or other genes related to monogenic diabetes should be screened. An early diagnosis and transition of treatment can help improve prognosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China.,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Shengzhao Hu
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Haihua Huang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
29
|
Zhao Q, Ding L, Yang Y, Sun J, Wang M, Li X, Liu M. Clinical Characteristics of Patients With HNF1-alpha MODY: A Literature Review and Retrospective Chart Review. Front Endocrinol (Lausanne) 2022; 13:900489. [PMID: 35795147 PMCID: PMC9252268 DOI: 10.3389/fendo.2022.900489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestation of hepatocyte nuclear factor-1-alpha (HNF1-alpha) maturity-onset diabetes of the young (MODY) is highly variable. This study aims to investigate the clinical characteristics of patients with HNF1-alpha MODY in general, by geographical regions (Asian or non-Asian), HNF1-alpha mutations, and islet autoantibody status. A literature review and a chart review of patients with HNF1-alpha MODY were performed. The means and proportions from studies were pooled using the inverse variance method for pooling, and subgroup analyses were performed. A total of 109 studies involving 1,325 patients [41.5%, 95% confidence interval (CI): 35.2, 48.1; male] were identified. The mean age of diagnosis was 20.3 years (95% CI: 18.3-22.2), and the mean glycated hemoglobin was 7.3% (95% CI: 7.2-7.5). In comparison, Asian patients exhibited significantly higher HbA1c (p = 0.007) and 2-h post-load C-peptide (p = 0.012) levels and lower levels of triglyceride (TG) (p < 0.001), total cholesterol (TC) (p < 0.001), and high-density lipoprotein cholesterol (HDL-c) (p < 0.001) and less often had macrovascular complications (p = 0.014). The age of diagnosis was oldest in patients with mutations in the transactivation domain (p < 0.001). The levels of 2-h post-load C-peptide (p < 0.001), TG (p = 0.007), TC (p = 0.017), and HDL-c (p = 0.001) were highest and the prevalence of diabetic neuropathy was lowest (p = 0.024) in patients with DNA-binding domain mutations. The fasting (p = 0.004) and 2-h post-load glucose (p = 0.003) levels and the prevalence of diabetic neuropathy (p = 0.010) were higher among patients with positive islet autoantibodies. The study demonstrated that the clinical manifestations of HNF1-alpha MODY differed by geographical regions, HNF1-alpha mutations, and islet autoantibody status.
Collapse
Affiliation(s)
- Qinying Zhao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Endocrinology, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| |
Collapse
|
30
|
McCarthy A, Liew A, O'Keeffe D. The value of risk factor calculators in the guiding referral for genetic testing in Maturity Onset Diabetes of the Young (MODY). Diabetes Res Clin Pract 2022; 183:109173. [PMID: 34883187 DOI: 10.1016/j.diabres.2021.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Aisling McCarthy
- Department of Endocrinology, University Hospital Galway, Co, Galway, Ireland
| | - Aaron Liew
- Department of Endocrinology, University Hospital Galway, Co, Galway, Ireland
| | - Derek O'Keeffe
- Department of Endocrinology, University Hospital Galway, Co, Galway, Ireland.
| |
Collapse
|
31
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021; 64:2609-2652. [PMID: 34590174 PMCID: PMC8481000 DOI: 10.1007/s00125-021-05568-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycaemia, behavioural considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that healthcare professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors. Graphical abstract.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Profil Institute for Metabolic Research, Neuss, Germany
| | - Amy Hess-Fischl
- Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - Irl B Hirsch
- UW Medicine Diabetes Institute, Seattle, WA, USA
| | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Anne L Peters
- Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
32
|
Karakilic E, Saygili ES, Silan F, Onduc GG, Agcaoglu U. New results for monogenic diabetes with analysis of causative genes using next-generation sequencing: a tertiary centre experience from Turkey. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
34
|
Saboo B, Agarwal S, Gupta S, Makkar B, Panneerselvam A, Sahoo AK, Ramchandani GD, Das S, Erande S, Kadam Y, Abhyankar MV, Revankar S. REAL-world evidence of risk factors and comorbidities in YOUNG Indian adults with type 2 diabetes mellitus: A REAL YOUNG (diabetes) study. J Family Med Prim Care 2021; 10:3444-3452. [PMID: 34760771 PMCID: PMC8565132 DOI: 10.4103/jfmpc.jfmpc_2010_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/01/2021] [Indexed: 11/04/2022] Open
Abstract
Objective To assess the clinical characteristics, risk factors, and comorbidities associated with type 2 diabetes mellitus (T2DM) in young adult patients. Methods This is a retrospective, multicentric real-world study that included young adults (18-45 years) with T2DM. Primary information including demographics, medical and family history, biochemical measures (pre-and post-prandial blood glucose levels, glycosylated hemoglobin [HbA1c] and blood pressure, and lipid parameters) smoking and drinking habits were collected retrospectively from the medical records of the respective hospitals/clinics. Data were analyzed using descriptive and appropriate comparative statistics. Results A total of 22,921 patients from 623 sites were included. The median age was 37.0 years and the majority were men (61.6%). The proportion of patients from the age group >35-≤45 years was 62.7%. Among all patients, 46.9% had only T2DM; however, 53.1% of patients had T2DM with other comorbidities (T2DM with hypertension, dyslipidemia, and both). The majority of patients had elevated body mass index (BMI) (overweight, 46.6%; and obese, 22.9%). Family history of T2DM (68.1%) was most common in overall population. Sedentary lifestyle (63.1%), alcohol consumption (38.9%), and regular smoking (23.1%) were the most common associations in patients with T2DM with dyslipidemia and hypertension. Uncontrolled HbA1c level (≥7%) were observed in 79.2% of patients. The level of HbA1c was significantly increased with the duration of T2DM and sedentary lifestyle (p < 0.001). Conclusion Higher BMI, family history of T2DM, sedentary lifestyle, alcohol consumption, and smoking were the most common risk facors, while hypertension and dyslipidemia were the most prevalent comorbidities associated with T2DM in young Indian adults.
Collapse
Affiliation(s)
- Banshi Saboo
- Department of Diabetology, Diabetes Care and Hormone Clinic, Ambawadi, Ahmedabad, Gujarat, India
| | - Sanjay Agarwal
- Department of Internal Medicine, Dr. Sanjay Agarwal's Aegle Clinic, City, Pune, Maharashtra, India
| | - Sunil Gupta
- Department of Diabetology, Sunil's Diabetes Care Research Centre, Nagpur, Maharashtra, India
| | - Brij Makkar
- Department of Diabetology, Dr. Makkar's Diabetes and Obesity Centre, Delhi, India
| | - A Panneerselvam
- Department of Diabetology, Aruna Diabetes Centre, Chennai, Tamil Nadu, India
| | - Abhay Kumar Sahoo
- Department of Endocrinology, IMS and SUM Hospital, Bhubaneshwar, Odisha, India
| | - G D Ramchandani
- Ramachandani Diabetes Care and Research Centre, Kota, Rajasthan, India
| | - Sambit Das
- Department of Endocrinology, Endeavour Clinics, Bhubaneswar, Odisha, India
| | - Suhas Erande
- Department of Diabetology, Akshay Hospital and Diabetic Speciality Centre and Insulin Pump Centre, Pune, Maharashtra, India
| | - Yogesh Kadam
- Department of Diabetology, Poona Diabetes Centre, Pune, Maharashtra, India
| | - Mahesh V Abhyankar
- Department of Scientific Services, Scientific Services, USV Private Limited, Mumbai, Maharashtra, India
| | - Santosh Revankar
- Department of Scientific Services, Scientific Services, USV Private Limited, Mumbai, Maharashtra, India
| |
Collapse
|
35
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021; 44:2589-2625. [PMID: 34593612 DOI: 10.2337/dci21-0043] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycemia, behavioral considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management, and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that health care professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K. .,Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands.,Profil Institute for Metabolic Research, Neuss, Germany
| | | | | | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | |
Collapse
|
36
|
Todd JN, Kleinberger JW, Zhang H, Srinivasan S, Tollefsen SE, Levitsky LL, Levitt Katz LE, Tryggestad JB, Bacha F, Imperatore G, Lawrence JM, Pihoker C, Divers J, Flannick J, Dabelea D, Florez JC, Pollin TI. Monogenic Diabetes in Youth With Presumed Type 2 Diabetes: Results From the Progress in Diabetes Genetics in Youth (ProDiGY) Collaboration. Diabetes Care 2021; 44:dc210491. [PMID: 34362814 PMCID: PMC8929184 DOI: 10.2337/dc21-0491] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 or type 2 diabetes. Correct diagnosis may result in a change in clinical treatment and impacts prediction of complications and familial risk. In this study, we aimed to assess the prevalence of MODY in multiethnic youth under age 20 years with a clinical diagnosis of type 2 diabetes. RESEARCH DESIGN AND METHODS We evaluated whole-exome sequence data of youth with a clinical diagnosis of type 2 diabetes. We considered participants to have MODY if they carried a MODY gene variant classified as likely pathogenic (LP) or pathogenic (P) according to current guidelines. RESULTS Of 3,333 participants, 93 (2.8%) carried an LP/P variant in HNF4A (16 participants), GCK (23), HNF1A (44), PDX1 (5), INS (4), and CEL (1). Compared with those with no LP/P variants, youth with MODY had a younger age at diagnosis (12.9 ± 2.5 vs. 13.6 ± 2.3 years, P = 0.002) and lower fasting C-peptide levels (3.0 ± 1.7 vs. 4.7 ± 3.5 ng/mL, P < 0.0001). Youth with MODY were less likely to have hypertension (6.9% vs. 19.5%, P = 0.007) and had higher HDL cholesterol (43.8 vs. 39.7 mg/dL, P = 0.006). CONCLUSIONS By comprehensively sequencing the coding regions of all MODY genes, we identified MODY in 2.8% of youth with clinically diagnosed type 2 diabetes; importantly, in 89% (n = 83) the specific diagnosis would have changed clinical management. No clinical criterion reliably separated the two groups. New tools are needed to find ideal criteria for selection of individuals for genetic testing.
Collapse
Affiliation(s)
- Jennifer N Todd
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Vermont, Burlington, VT
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Haichen Zhang
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Shylaja Srinivasan
- Division of Pediatric Endocrinology, University of California, San Francisco, San Francisco, CA
| | - Sherida E Tollefsen
- Department of Pediatrics, Saint Louis University Health Sciences Center, St. Louis, MO
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lorraine E Levitt Katz
- Children's Hospital of Philadelphia, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA
| | - Jeanie B Tryggestad
- Section of Diabetes & Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | | | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | | | - Jasmin Divers
- New York University Langone Medical Center, New York, NY
| | - Jason Flannick
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jose C Florez
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Liu Y, Xie Z, Sun X, Wang Y, Xiao Y, Luo S, Huang G, Li X, Xia Y, Zhou Z. A new screening strategy and whole-exome sequencing for the early diagnosis of maturity-onset diabetes of the young. Diabetes Metab Res Rev 2021; 37:e3381. [PMID: 32621647 DOI: 10.1002/dmrr.3381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/01/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
AIMS This study aimed to establish a systematic screening strategy to select candidates for genetic testing among patients with maturity-onset diabetes of the young (MODY) and to accomplish early diagnosis of MODY. MATERIALS AND METHODS We enrolled 1478 sporadic patients from the outpatient department of endocrinology. Out of the1478 patients, 1279 participants were successfully screened according to the "AACM" strategy, which includes the age of onset, autoantibody to islet antigen, C-peptide and metabolic syndrome. Another six probands and their families who fulfilled the common clinical criteria for MODY were also examined for causative gene mutations. Whole-exome sequencing (WES) was performed to examine the mutations. RESULTS A total of 24 out of 1279 sporadic patients with newly diagnosed diabetes were eligible for genetic testing. Mutations were found in 4/24 participants in the cohort, as well as in 2/6 pedigrees. A likely pathogenic alteration, a likely benign alteration and three alterations with uncertain significance were identified with WES. Most of the mutant genes recognised in our trial were not the most common causative genes of MODY, and all of the mutations were specifically reported in Asian patients only, suggesting a unique genetic background of MODY in different ethnicities. CONCLUSIONS In this systematic study of MODY in a new-onset diabetes cohort, MODY cases were incorrectly diagnosed as type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), suggesting that an observant clinician is necessary for early and correct MODY diagnosis. This systematic approach to screening is practical and specific enough to identify patients who are most appropriate for genetic testing.
Collapse
Affiliation(s)
- Yue Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xiaoxiao Sun
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yanfei Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Ying Xia
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
38
|
César Ernesto LC, Álvaro EO, Yayoi SK, Juanita SS, María Teresa TL, Almeda-Valdes P. Differentiating Among Type 1, Type 2 Diabetes, and MODY: Raising Awareness About the Clinical Implementation of Genetic Testing in Latin America. AACE Clin Case Rep 2021; 7:138-140. [PMID: 34095472 PMCID: PMC8053617 DOI: 10.1016/j.aace.2020.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective To describe a case of maturity-onset diabetes of the young (MODY) to highlight the importance of a correct diabetes diagnosis. Methods We describe a Mexican family misdiagnosed with T1D and T2D. Results A 36-year-old woman with diabetes and adverse outcomes during 2 pregnancies had been diagnosed with T2D 10 years ago. Genetic testing was performed due to clinical and family history, which showed a pathogenic heterozygous variant c.544G>T (p.Val182Leu) in the GCK gene. This mutation was also confirmed in most of the family members who had been diagnosed with diabetes. Conclusion This case highlights the need for a correct diabetes classification. Reassessment of diabetes etiology is justified, especially in individuals with unclear clinical presentation or when family history is suggestive.
Collapse
Affiliation(s)
- Lam-Chung César Ernesto
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Elizondo Ochoa Álvaro
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Segura Kato Yayoi
- Molecular Biology and Genomic Medicine Unit; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Silva-Serrano Juanita
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Tusié Luna María Teresa
- Molecular Biology and Genomic Medicine Unit; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paloma Almeda-Valdes
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
- Address correspondence and reprint requests to Dr. Paloma Almeda-Valdes, Department of Endocrinology and Metabolism,Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan 14080, México City, México.
| |
Collapse
|
39
|
Lee DH, Kwak SH, Park HS, Ku EJ, Jeon HJ, Oh TK. Identification of candidate gene variants of monogenic diabetes using targeted panel sequencing in early onset diabetes patients. BMJ Open Diabetes Res Care 2021; 9:9/1/e002217. [PMID: 34135026 PMCID: PMC8211067 DOI: 10.1136/bmjdrc-2021-002217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Monogenic diabetes is attributed to genetic variations in a single gene. Maturity-onset diabetes of the young (MODY) is the most common phenotype associated with monogenic diabetes, but is frequently misdiagnosed as either type 1 or type 2 diabetes. Increasing our basic understanding of genetic variations in MODY may help to improve the accuracy of providing the correct diagnosis and personalize subsequent treatment regimens in different racial populations. For this reason, this study was designed to identify nucleotide variants in early onset diabetes patients with clinically suspected MODY in a Korean population. RESEARCH DESIGN AND METHODS Among 2908 Korean patients diagnosed with diabetes, we selected 40 patients who were diagnosed before 30 years old and were clinically suspected of MODY. Genetic testing was performed using a targeted gene sequencing panel that included 30 known monogenic diabetes genes. The pathogenicity of the identified variants was assessed according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology (ACMG-AMP) guidelines. RESULTS A total of six rare missense variants (p.Ala544Thr in HNF1A, p.Val601Ile and p.His103Tyr in ABCC8, p.Pro33Ala in PDX1, p.Gly18Glu in INS, and p.Arg164Gln in PAX4) in five distinct MODY genes were identified in five patients. In addition, a variant was identified in mitochondrial DNA at 3243A>G in one patient. The identified variants were either absent or detected at a rare frequency in the 1000 Genomes Project. These variants were classified as uncertain significance using the ACMG-AMP guidelines. CONCLUSION Using a targeted gene sequencing panel, we identified seven variants in either MODY genes or mitochondrial DNA using a Korean patient population with early onset diabetes who were clinically suspected of MODY. This genetic approach provides the ability to compare distinct populations of racial and ethnic groups to determine whether specific gene is involved in their diagnosis of MODY.
Collapse
Affiliation(s)
- Dong-Hwa Lee
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| | - Soo-Heon Kwak
- Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Hee Sue Park
- Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| | - Eu Jeong Ku
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| | - Hyun Jeong Jeon
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| | - Tae Keun Oh
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| |
Collapse
|
40
|
Breidbart E, Deng L, Lanzano P, Fan X, Guo J, Leibel RL, LeDuc CA, Chung WK. Frequency and characterization of mutations in genes in a large cohort of patients referred to MODY registry. J Pediatr Endocrinol Metab 2021; 34:633-638. [PMID: 33852230 PMCID: PMC8970616 DOI: 10.1515/jpem-2020-0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. METHODS We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. RESULTS Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. CONCLUSIONS Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.
Collapse
Affiliation(s)
- Emily Breidbart
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, NYU School of Medicine, NY, NY USA
| | - Liyong Deng
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Patricia Lanzano
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Xiao Fan
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Jiancheng Guo
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Wendy K. Chung
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| |
Collapse
|
41
|
Quilichini E, Fabre M, Nord C, Dirami T, Le Marec A, Cereghini S, Pasek RC, Gannon M, Ahlgren U, Haumaitre C. Insights into the etiology and physiopathology of MODY5/HNF1B pancreatic phenotype with a mouse model of the human disease. J Pathol 2021; 254:31-45. [PMID: 33527355 PMCID: PMC8251562 DOI: 10.1002/path.5629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total β-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | - Mélanie Fabre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | | | - Thassadite Dirami
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Axelle Le Marec
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Silvia Cereghini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Raymond C Pasek
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Maureen Gannon
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ulf Ahlgren
- Umeå Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| |
Collapse
|
42
|
Molecular and clinical assessment of maturity-onset diabetes of the young revealed low mutational rate in Moroccan families. Int J Pediatr Adolesc Med 2021; 9:98-103. [PMID: 35663783 PMCID: PMC9152556 DOI: 10.1016/j.ijpam.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Background Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes characterized by autosomal dominant inheritance. To offer an adequate patient management and therapeutic treatment for MODY patients, in addition to an early efficient diagnosis of their asymptomatic relatives, it is crucial to set an accurate molecular diagnosis. Hence, our aim was to determine the frequency of HNF1A and GCK genes among Moroccan-suspected MODY patients. Methods Twenty suspected MODY patients were screened for HNF1A and GCK mutations using Sanger sequencing and MLPA methods. Segregation analysis of identified mutations was performed among family members. The pathogenic nature of missense variants was predicted using bioinformatic tools. Results A total of two mutations were revealed among all patients raising the diagnostic rate to 10%. We identified a large novel GCK deletion (c.209-?_1398+?del) by MLPA in one patient and a previously reported missense substitution (c.92G > A) in HNF1A gene. Conclusion This is the first investigation to perform the molecular diagnosis of MODY suspected patients. Our findings constitute a primary contribution towards unraveling the genetic landscape involved in the pathogenesis of MODY disease in Morocco.
Collapse
|
43
|
Ali AS, Brown F, Ekinci EI. Treatment implications of a delayed diagnosis of maturity-onset diabetes of the young. Intern Med J 2021; 51:116-120. [PMID: 33572031 DOI: 10.1111/imj.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 01/26/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a rare form of monogeneic diabetes that classically presents as non-insulin requiring diabetes with evidence of autosomal dominant inheritance in individuals who are typically young and lean. However, these criteria do not capture all cases and can also overlap with other types of diabetes. The hepatocyte nuclear factor-1 alpha (HNF1A) mutation is a common cause of MODY and is highly sensitive to sulphonylureas, which should be first-line therapy. Our case represents the diagnostic challenges of HNF1A MODY and the implications of a delayed diagnosis, which can lead to reduced success of sulphonylurea treatment.
Collapse
Affiliation(s)
- Aleena S Ali
- Department of General Medicine, Austin Health, Melbourne, Victoria, Australia
| | - Fran Brown
- Melbourne Diabetes Education and Support, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 2021; 131:142244. [PMID: 33529164 PMCID: PMC7843214 DOI: 10.1172/jci142244] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monogenic diabetes refers to diabetes mellitus (DM) caused by a mutation in a single gene and accounts for approximately 1%-5% of diabetes. Correct diagnosis is clinically critical for certain types of monogenic diabetes, since the appropriate treatment is determined by the etiology of the disease (e.g., oral sulfonylurea treatment of HNF1A/HNF4A-diabetes vs. insulin injections in type 1 diabetes). However, achieving a correct diagnosis requires genetic testing, and the overlapping of the clinical features of monogenic diabetes with those of type 1 and type 2 diabetes has frequently led to misdiagnosis. Improvements in sequencing technology are increasing opportunities to diagnose monogenic diabetes, but challenges remain. In this Review, we describe the types of monogenic diabetes, including common and uncommon types of maturity-onset diabetes of the young, multiple causes of neonatal DM, and syndromic diabetes such as Wolfram syndrome and lipodystrophy. We also review methods of prioritizing patients undergoing genetic testing, and highlight existing challenges facing sequence data interpretation that can be addressed by forming collaborations of expertise and by pooling cases.
Collapse
Affiliation(s)
- Haichen Zhang
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, and,Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Millan AL, Trobo SI, de Dios A, Cerrato García M, Pérez MS, Cerrone GE, Frechtel GD, López AP. MODY patients exhibit shorter telomere length than non-diabetic subjects. Diabetes Metab Res Rev 2021; 37:e3374. [PMID: 32588935 DOI: 10.1002/dmrr.3374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Given the increasing evidence supporting the association between telomere shortening and diabetes, the aim of the present work was to establish whether MODY patients suffer a reduction in telomere lenght (TL) due to oxidative stress produced by chronic hyperglycemia, despite not presenting insulin resistance or inflammation. METHODS We analysed clinical and biochemical parameters in 35 MODY2 and 12 MODY3 patients compared with 48 control subjects. The absolute telomere length (aTL) of peripheral blood leukocytes was measured using the quantitative polymerase chain reaction (qPCR). RESULTS A significant negative correlation was observed between aTL and age in the whole population, among MODY patients and in each subtype studied, MODY2 and MODY3, which allowed us to validate the method. We found, for the first time, that MODY patients have shorter aTL with respect to non-diabetic controls (6.49 ± 3.31 kbp vs 11.13 ± 7.82 kbp, p = .006). However, no differences were found between MODY2 and MODY3. In addition, aTL showed a negative correlation with duration of the disease and fasting plasma glucose (FPG) levels in MODY patients in general and also with HbA1c in MODY2 patients in particular. CONCLUSIONS Both MODY2 and MODY3 types present telomere shortening, which, at least partly, responds to HbA1c and FPG levels. These findings suggest comparable mechanisms underlying the attrition of TL. Taken together, our results on aTL in MODY patients may provide a parameter relatively easy and inexpensive to quantify in order to measure the impact of high glucose levels and potentially carry out antidiabetic treatment with stricter targets.
Collapse
Affiliation(s)
- Andrea L Millan
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofía I Trobo
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro de Dios
- Hospital de Clínicas José de San Martín, Facultad de Medicina, División Nutrición, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martina Cerrato García
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Gloria E Cerrone
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo D Frechtel
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
- Hospital de Clínicas José de San Martín, Facultad de Medicina, División Nutrición, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel P López
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
- Hospital de Clínicas José de San Martín, Facultad de Medicina, Programa de Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Moalla M, Safi W, Babiker Mansour M, Hadj Kacem M, Mahfood M, Abid M, Kammoun T, Hachicha M, Mnif-Feki M, Hadj Kacem F, Hadj Kacem H. Tunisian Maturity-Onset Diabetes of the Young: A Short Review and a New Molecular and Clinical Investigation. Front Endocrinol (Lausanne) 2021; 12:684018. [PMID: 34393998 PMCID: PMC8358796 DOI: 10.3389/fendo.2021.684018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION/AIMS Maturity-Onset Diabetes of the Young (MODY) is a monogenic non-autoimmune diabetes with 14 different genetic forms. MODY-related mutations are rarely found in the Tunisian population. Here, we explored MODY related genes sequences among seventeen unrelated Tunisian probands qualifying the MODY clinical criteria. MATERIALS AND METHODS The GCK and HNF1A genes were systematically analyzed by direct sequencing in all probands. Then, clinical exome sequencing of 4,813 genes was performed on three unrelated patients. Among them, 130 genes have been reported to be involved in the regulation of glucose metabolism, β-cell development, differentiation and function. All identified variants were analyzed according to their frequencies in the GnomAD database and validated by direct sequencing. RESULTS We identified the previously reported GCK mutation (rs1085307455) in one patient. The clinical features of the MODY2 proband were similar to previous reports. In this study, we revealed rare and novel alterations in GCK (rs780806456) and ABCC8 (rs201499958) genes with uncertain significance. We also found two likely benign alterations in HNF1A (rs1800574) and KLF11 (rs35927125) genes with minor allele frequencies similar to those depicted in public databases. No pathogenic variants have been identified through clinical exome analysis. CONCLUSIONS The most appropriate patients were selected, following a strict clinical screening approach, for genetic testing. However, the known MODY1-13 genes could not explain most of the Tunisian MODY cases, suggesting the involvement of unidentified genes in the majority of Tunisian affected families.
Collapse
Affiliation(s)
- Mariam Moalla
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Safi
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Maab Babiker Mansour
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Hadj Kacem
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abid
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mongia Hachicha
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Hassen Hadj Kacem,
| |
Collapse
|
47
|
Sun Y, Qu J, Wang J, Zhao R, Wang C, Chen L, Hou X. Clinical and Functional Characteristics of a Novel KLF11 Cys354Phe Variant Involved in Maturity-Onset Diabetes of the Young. J Diabetes Res 2021; 2021:7136869. [PMID: 33604390 PMCID: PMC7870296 DOI: 10.1155/2021/7136869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/18/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in human KLF11 may lead to the development of maturity-onset diabetes of the young 7 (MODY7). This occurs due to impaired insulin synthesis in the pancreas. To date, the clinical and functional characteristics of the novel KLF11 mutation c.1061G > T have not yet been reported. METHODS Whole-exon sequencing was used to screen the proband and family members with clinical suspicion of the KLF11 variant. Luciferase reporter assays were used to investigate whether the KLF11 variant binds to the insulin promoter. Real-time PCR, western blotting, and glucose-stimulated insulin secretion (GSIS) analysis were used to analyze the KLF11 variant that regulates insulin expression and insulin secretion activity in beta cell lines. The Freestyle Libre H (Abbott Diabetes Care Ltd) was used to dynamically monitor the proband daily blood glucose levels. RESULTS Mutation screening for the whole exon genes identified a heterozygous KLF11 (c.1061G > T) variant in the proband, her mother, and her maternal grandfather. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed that the KLF11 (c.1061G > T) variant had impaired insulin promoter regulation activity. Moreover, this variant was found to impair insulin expression and insulin secretion in pancreatic beta cells. The proband had better blood glucose control without staple food intake (p < 0.05). CONCLUSIONS Herein, for the first time, we report a novel KLF11 (c.1061G > T) monogenic mutation associated with MODY7. This variant has impaired insulin promoter regulation activity and impairs insulin expression and secretion in pancreatic beta cells. Therefore, administering oral antidiabetic drugs along with dietary intervention may benefit the proband.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Jingru Qu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Jing Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| |
Collapse
|
48
|
Tang C, Meng L, Zhang P, Liang X, Dang C, Liang H, Wu J, Lan H, Qin Y. Case Report: A Novel ABCC8 Variant in a Chinese Pedigree of Maturity-Onset Diabetes of the Young. Front Endocrinol (Lausanne) 2021; 12:758723. [PMID: 35002955 PMCID: PMC8734027 DOI: 10.3389/fendo.2021.758723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to analyze a novel ABCC8 variant of a Chinese patient with suspected maturity-onset diabetes of the young (MODY) and to provide evidence for precise diagnosis and appropriate treatment. METHOD A Chinese family with suspected MODY was recruited in this study, which included a 15-year-old female patient with diabetes. Clinical data and blood samples were collected from the proband and other family members. All of the living relatives were given an oral glucose tolerance test. Next-generation sequencing was performed to identify the mutated genes in the proband. Sanger sequencing was utilized to confirm the location of the pathogenic variant in all subjects. Further treatment was referred to targeted family members according to genetic testing. RESULTS The proband was found to have a random blood glucose level of 244.8 mg/dl and an HbA1c level of 9.2%. Before this investigation, her grandparents had been diagnosed with diabetes. The second uncle, two aunts, mother, and cousin of the proband were diagnosed with diabetes by abnormal HbA1C (6.5-12.1%) and fasting blood glucose (FBG, 91.4-189.7 mg/dl). The second aunt of the proband had impaired glucose homeostasis (HbA1C = 6.4% and FBG = 88.0 mg/dl). One novel missense variant c.1432G>A (p.A478T) in exon 9 of the ABCC8 gene was detected in the proband with suspected MODY. The variant was also found in six family members with diabetes or impaired glucose homeostasis, including her second uncle, two aunts, mother, and cousin. After the treatment was switched to glimepiride, the fasting blood glucose was adjusted to 99.54 mg/dl, the 2-h postprandial blood glucose was 153.54 mg/dl, serum fructosamine was 259 μmol/l, and HbA1c was 5.8%. The glycemic control remained optimal, and no hypoglycemic episodes were observed in the living relatives. CONCLUSION This study revealed one novel missense variant of the ABCC8 gene in Chinese families. The present findings indicated that the members of this family responded to treatment with sulfonylureas as previously seen in ABCC8 MODY.
Collapse
Affiliation(s)
- Chaoyan Tang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Liheng Meng
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Zhang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Xinghuan Liang
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaozhi Dang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Hui Liang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Junfeng Wu
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Haiyun Lan
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Yingfen Qin
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Keskinler MV, Erbakan AN, Oguz A. MODY Probability Ratios in Patients Diagnosed with Type 2 Diabetes Mellitus at a Young Age. Medeni Med J 2020; 35:290-294. [PMID: 33717620 PMCID: PMC7945726 DOI: 10.5222/mmj.2020.56805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022] Open
Abstract
Objective Maturity-onset diabetes of the young (MODY) is a non-rare group of monogenic inherited diabetes which is commonly confused with type 1 and type 2 diabetes. Due to high costs of genetic tests that provide a definitive diagnosis, some screening scales are used to identify the high-risk patients. In this study, we aimed to evaluate whether (MODY Probability Calculator [MPC]) which is one of the screening tests will be helpful in identifying our high-risk patients among young patients with type 2 diabetes Method The patients received the diagnosis of type 2 diabetes aged <35 years were included in the study. The anthropometric characteristics of the patients, the treatments they received at the time of diagnosis, and the current treatments were recorded by retrospectively scanning patient files.The patients with the diagnosis of type 1 diabetes having autoantibodies to the pancreas were excluded from the study. The probability of MODY was calculated using MPC.. Results The mean age of 72 patients (40% female) was 41.5±7.2 years. Eighteen of the patients (25%) were using insulin at the time of diagnosis. The mean HbA1c was 8.6±2.2% and C-peptide was 2.35±1.52 ng/ml. The mean MODY positive predictive score calculated by MPC for risk of MODY was 11.23 percent. There were 61 patients (84.7%) with a risk of ≤20%, 9 patients (12.5%) with a risk of 20-50%, and 2 patients (2.8%) with ≥50%. In the group with MODY PPV score >20%, the age of onset of diabetes and the body mass index was significantly lower than the others (p<0.05, for both). There was no significant difference between current treatments of both groups. Conclusion It has been reported that MODY risk calculated by MPC may yield different results in different populations. The results of this study showed that 15% of our young-onset diabetes patients had an MPC score above 20 percent. Requesting MODY genetic tests in this 15% of the patient group can be presented as a practical suggestion.
Collapse
Affiliation(s)
- Mirac Vural Keskinler
- Istanbul Medeniyet University, Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| | - Ayse Naciye Erbakan
- Istanbul Medeniyet University, Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| | - Aytekin Oguz
- Istanbul Medeniyet University, Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| |
Collapse
|
50
|
Rajkumar KV, Lakshmanan G, Sekar D. Identification of miR-802-5p and its involvement in type 2 diabetes mellitus. World J Diabetes 2020; 11:567-571. [PMID: 33384764 PMCID: PMC7754171 DOI: 10.4239/wjd.v11.i12.567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNA) are recently discovered endogenous, small noncoding RNAs (of 22 nucleotides) that play pivotal roles in gene regulation. They are involved in post-transcriptional control of gene expression. miRNAs are emerging as important regulators of cell proliferation, development, cancer formation, stress responses, cell death and physiological conditions. Increasing evidence has demonstrated the human miRNAs bind to their target mRNA sequences with perfect or near-perfect sequence complementarily. This provides a powerful strategy for discovering potential type 2 diabetes mellitus (T2DM) targets and gives the probability to exploit them for diagnostic and therapeutic causes. About 6% of the world population is affected by T2DM, and it is recognized as a global epidemic by the World Health Organization. At present there is no valid biomarker to control or manage T2DM. Therefore, the present study applied a mature sequence of miRNAs from publicly accessible databases to identify the miRNA from T2DM expressed sequence tags, and the results are detailed and discussed below.
Collapse
Affiliation(s)
- Kaushik Vishnu Rajkumar
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|