1
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Identification of small molecule glucokinase activators for the treatment of diabetes based on plants from the traditional Chinese medicine: In silico analysis. Microb Pathog 2024; 195:106851. [PMID: 39197693 DOI: 10.1016/j.micpath.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
Mutations in glucokinase (GCK) can either enhance or inhibit insulin secretion, leading to different forms of diabetes, including gestational diabetes. While many glucokinase activators (GKAs) have been explored as treatments, their long-term effectiveness has often been unsatisfactory. However, recent interest has surged with the introduction of dorzagliatin and TTP399. This study investigates the efficacy of four previously studied compounds (Swertiamarin, Apigenin, Mangiferin, and Tatanan A) in activating GCK using computational methods. Initial molecular docking revealed binding affinities ranging from -6.7 to -8.6 kcal/mol. The compounds were then evaluated for drug-likeness and pharmacokinetic properties. Re-docking studies were performed for validation. Based on their favorable binding affinities and compliance with Lipinski's rule and ADMET criteria, three compounds (Swertiamarin, Apigenin, and Tatanan A) were selected for molecular dynamics (MD) simulations. MD simulations demonstrated that Swertiamarin showed excellent stability, as indicated by analyses of RMSD, RMSF, radius of gyration (Rg), hydrogen bonding, and principal component analysis (PCA). These results suggest that Swertiamarin holds promise for further investigation in in vivo and clinical settings to evaluate its potential in enhancing GCK activity and treating diabetes. This study assessed the potential of four compounds as GCK activators using molecular docking, pharmacokinetic profiling, and MD simulations. Swertiamarin, in particular, showed significant stability and adherence to drug-likeness criteria, making it a promising candidate for further research in combating diabetes.
Collapse
Affiliation(s)
- Jihane Khamlich
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Imane Douiyeh
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Asmae Saih
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Samya Moussamih
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Anas Regragui
- Faculty of Medicine and Pharmacy Casablanca (FMPC), Hassan II University, Morocco.
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco; Mohammed VI Center for Research & Innovation, Rabat, Morocco & Mohammed VI University of Health Sciences, Casablanca, Morocco.
| | - Amal Safi
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco.
| |
Collapse
|
2
|
Serbis A, Kantza E, Siomou E, Galli-Tsinopoulou A, Kanaka-Gantenbein C, Tigas S. Monogenic Defects of Beta Cell Function: From Clinical Suspicion to Genetic Diagnosis and Management of Rare Types of Diabetes. Int J Mol Sci 2024; 25:10501. [PMID: 39408828 PMCID: PMC11476815 DOI: 10.3390/ijms251910501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient or permanent neonatal diabetes, maturity-onset diabetes of the young (MODY), and various syndromes associated with diabetes. Causative mutations have been identified in genes regulating the development or function of the pancreatic beta cells responsible for normal insulin production and/or release. To date, more than 40 monogenic diabetes subtypes have been described, with those caused by mutations in HNF1A and GCK genes being the most prevalent. Despite being caused by a single gene mutation, each type of monogenic diabetes, especially MODY, can appear with various clinical phenotypes, even among members of the same family. This clinical heterogeneity, its rarity, and the fact that it shares some features with more common types of diabetes, can make the clinical diagnosis of monogenic diabetes rather challenging. Indeed, several cases of MODY or syndromic diabetes are accurately diagnosed in adulthood, after having been mislabeled as type 1 or type 2 diabetes. The recent widespread use of more reliable sequencing techniques has improved monogenic diabetes diagnosis, which is important to guide appropriate treatment and genetic counselling. The current review aims to summarize the latest knowledge on the clinical presentation, genetic confirmation, and therapeutic approach of the various forms of monogenic defects of beta cell function, using three imaginary clinical scenarios and highlighting clinical and laboratory features that can guide the clinician in reaching the correct diagnosis.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Evanthia Kantza
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Ekaterini Siomou
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism and Aghia Sophia ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stelios Tigas
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
3
|
Peghinelli VV, De Sibio MT, Depra IDC, Teles Bezerra MG, Sakalem ME, Júnior AFDM, da Rocha PB, Tilli HP, Gonçalves BM, Vieira EM, Lourenço MM, Nogueira CR. MODY calculator applied in patients with clinical diagnosis of type 1 diabetes mellitus: Is a higher cutoff needed? Heliyon 2024; 10:e36006. [PMID: 39224250 PMCID: PMC11367115 DOI: 10.1016/j.heliyon.2024.e36006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Aim This study aimed to evaluate the mean post-test probability (PTP) of the Maturity-onset diabetes of the young (MODY) calculator in a multiethnic cohort of patients previously diagnosed with type 1 diabetes (T1DM). Materials and methods The MODY probability calculator proposed by Shields and colleagues (2012) was applied to 117 patients from a T1DM outpatient clinic at a tertiary hospital in Brazil. Additionally, two exons of the HNF1A gene were sequenced in eight patients who hadn't received insulin treatment within six months after the diagnosis. Results 17.1 % of patients achieved PTP >10 %; 11.1 % achieved PTP >25 % (and all patients >30 %), and 7.7 % achieved PTP >40 %. Among the patients who were selected for genetic sequencing, 100 % presented PTP >30 %, with 66.6 % achieving PTP >40 % and 41.6 % achieving PTP >75 %. These cutoffs are as suggested for the Brazilian population, according to previous investigations. No mutation was observed in the sequenced exons. Conclusion Considering that only around 10 % of the evaluated cases achieved PTP >30 %, it is highly probable that the most suitable cutoff to select patients for genetic sequencing in a Brazilian cohort of T1DM is higher than the cutoff used in Caucasian populations.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Igor de Carvalho Depra
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Milena Gurgel Teles Bezerra
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia, Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, 01246-903, Brazil
| | - Marna Eliana Sakalem
- Departament of Anatomy, State University of Londrina – UEL, Londrina, PR, Brazil
| | | | - Paula Barreto da Rocha
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Helena Paim Tilli
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Bianca Mariani Gonçalves
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Ester Mariane Vieira
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Mariana Menezes Lourenço
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Célia Regina Nogueira
- Departament of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
4
|
Naylor RN, Patel KA, Kettunen JLT, Männistö JME, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SAW, Hattersley AT, Tuomi T. Precision treatment of beta-cell monogenic diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:145. [PMID: 39025920 PMCID: PMC11258280 DOI: 10.1038/s43856-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes. METHODS The search of PubMed, MEDLINE, and Embase for individual and group level data for glycemic outcomes using inclusion (English, original articles written after 1992) and exclusion (VUS, multiple diabetes types, absent/aggregated treatment effect measures) criteria. The risk of bias was assessed using NHLBI study-quality assessment tools. Data extracted from Covidence were summarized and presented as descriptive statistics in tables and text. RESULTS There are 146 studies included, with only six being experimental studies. For GCK-related hyperglycemia, the six studies (35 individuals) assessing therapy discontinuation show no HbA1c deterioration. A randomized trial (18 individuals per group) shows that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes. Cohort and case studies support SU's effectiveness in lowering HbA1c. Two cross-over trials (each with 15-16 individuals) suggest glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes is limited. Most reported patients with HNF1B-diabetes (N = 293) and MD (N = 233) are on insulin without treatment studies. Limited data support oral agents after relapse in 6q24-TND and for thiamine improving glycemic control and reducing/eliminating insulin requirement in SLC19A2-diabetes. CONCLUSION There is limited evidence, and with moderate or serious risk of bias, to guide monogenic diabetes treatment. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Kashyap A Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L T Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M E Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris, France
| | - Michel Polak
- Inserm U1016 Institut Cochin, Paris, France
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Siri A W Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew T Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Tiinamaija Tuomi
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland.
- Folkhalsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Malmo, Sweden.
| |
Collapse
|
5
|
Zečević K, Volčanšek Š, Katsiki N, Rizzo M, Milardović TM, Stoian AP, Banach M, Muzurović E. Maturity-onset diabetes of the young (MODY) - in search of ideal diagnostic criteria and precise treatment. Prog Cardiovasc Dis 2024; 85:14-25. [PMID: 38513726 DOI: 10.1016/j.pcad.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a spectrum of clinically heterogenous forms of monogenic diabetes mellitus characterized by autosomal dominant inheritance, onset at a young age, and absence of pancreatic islets autoimmunity. This rare form of hyperglycemia, with clinical features overlapping with type 1 and type 2 diabetes mellitus, has 14 subtypes with differences in prevalence and complications occurrence which tailor therapeutic approach. MODY phenotypes differ based on the gene involved, gene penetrance and expressivity. While MODY 2 rarely leads to diabetic complications and is easily managed with lifestyle interventions alone, more severe subtypes, such as MODY 1, 3, and 6, require an individualized treatment approach to maintain a patient's quality of life and prevention of complications. This review summarizes current evidence on the presentation, diagnosis, and management of MODY, an example of a genetic cause of hyperglycemia that calls for a precision medicine approach.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tanja Miličević Milardović
- Internal Medicine Department, Endocrinology, Diabetology, and Metabolism Division, University Hospital of Split, Split, Croatia; University of Split School of Medicine, Split, Croatia
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro; Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
6
|
Shields BM, Carlsson A, Patel K, Knupp J, Kaur A, Johnston D, Colclough K, Larsson HE, Forsander G, Samuelsson U, Hattersley A, Ludvigsson J. Development of a clinical calculator to aid the identification of MODY in pediatric patients at the time of diabetes diagnosis. Sci Rep 2024; 14:10589. [PMID: 38719926 PMCID: PMC11079008 DOI: 10.1038/s41598-024-60160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is a young-onset, monogenic form of diabetes without needing insulin treatment. Diagnostic testing is expensive. To aid decisions on who to test, we aimed to develop a MODY probability calculator for paediatric cases at the time of diabetes diagnosis, when the existing "MODY calculator" cannot be used. Firth logistic regression models were developed on data from 3541 paediatric patients from the Swedish 'Better Diabetes Diagnosis' (BDD) population study (n = 46 (1.3%) MODY (HNF1A, HNF4A, GCK)). Model performance was compared to using islet autoantibody testing. HbA1c, parent with diabetes, and absence of polyuria were significant independent predictors of MODY. The model showed excellent discrimination (c-statistic = 0.963) and calibrated well (Brier score = 0.01). MODY probability > 1.3% (ie. above background prevalence) had similar performance to being negative for all 3 antibodies (positive predictive value (PPV) = 10% v 11% respectively i.e. ~ 1 in 10 positive test rate). Probability > 1.3% and negative for 3 islet autoantibodies narrowed down to 4% of the cohort, and detected 96% of MODY cases (PPV = 31%). This MODY calculator for paediatric patients at time of diabetes diagnosis will help target genetic testing to those most likely to benefit, to get the right diagnosis.
Collapse
Affiliation(s)
- Beverley M Shields
- The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| | | | - Kashyap Patel
- The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Julieanne Knupp
- The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Akaal Kaur
- Faculty of Medicine, Imperial College London, London, UK
| | - Des Johnston
- Faculty of Medicine, Imperial College London, London, UK
| | - Kevin Colclough
- Exeter Genomics Laboratory, The Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skånes University Hospital, Malmö, Sweden
| | - Gun Forsander
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Paediatrics, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Linköping University, Linköping, Sweden
| | - Andrew Hattersley
- The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Molecular docking, pharmacokinetic prediction and molecular dynamics simulations of tankyrase inhibitor compounds with the protein glucokinase, induced in the development of diabetes. J Biomol Struct Dyn 2024; 42:2846-2858. [PMID: 37199320 DOI: 10.1080/07391102.2023.2214217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
GCK is a protein that plays a crucial role in the sensing and regulation of glucose homeostasis, which associates it with disorders of carbohydrate metabolism and the development of several pathologies, including gestational diabetes. This makes GCK an important therapeutic target that has aroused the interest of researchers to discover GKA that are simultaneously effective in the long term and free of side effects. TNKS is a protein that interacts directly with GCK; recent studies have shown that it inhibits GCK action, which affects glucose detection and insulin secretion. This justifies our choice of TNKS inhibitors as ligands to test their effects on the GCK-TNKS complex. For this purpose, we investigated the interaction of the GCK-TNKS complex with 13 compounds (TNKS inhibitors and their analogues) using the molecular docking approach as a first step, after which the compounds that generated the best affinity scores were evaluated for drug similarity and pharmacokinetic properties. Subsequently, we selected the six compounds that generated high affinity and that were in accordance with the parameters of the drug rules as well as pharmacokinetic properties to ensure a molecular dynamics study. The results allowed us to favor the two compounds (XAV939 and IWR-1), knowing that even the tested compounds (TNKS 22, (2215914) and (46824343)) produced good results that can also be exploited. These results are therefore interesting and encouraging, and they can be exploited experimentally to discover a treatment for diabetes, including gestational diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jihane Khamlich
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Imane Douiyeh
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Asmae Saih
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Samya Moussamih
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Anas Regragui
- Faculty of Medicine and Pharmacy Casablanca (FMPC), Hassan II University, Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco & Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Amal Safi
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
| |
Collapse
|
8
|
Patel SK, Fourlanos S, Greenfield JR. Classification of type 1 diabetes: A pathogenic and treatment-based classification. Diabetes Metab Syndr 2024; 18:102986. [PMID: 38503115 DOI: 10.1016/j.dsx.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
AIM To improve the diagnosis and classification of patients who fail to satisfy current type 1 diabetes diagnostic criteria. METHODS Review of the literature and current diagnostic guidelines. DISCUSSION We propose a novel, clinically useful classification based on islet autoantibody status and non-fasting C-peptide levels. Notably, we discuss the subgroup of latent autoimmune diabetes in the young and propose a new subgroup classification of autoantibody negative type 1 diabetes in remission. CONCLUSION A novel classification system is proposed. Further work is needed to accurately diagnose and manage minority type 1 diabetes subgroups.
Collapse
Affiliation(s)
- Shivani K Patel
- Clinical Diabetes, Appetite and Metabolism Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| | - Spiros Fourlanos
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jerry R Greenfield
- Clinical Diabetes, Appetite and Metabolism Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Menon JC, Singh P, Archana A, Singh P, Mittal M, Kanga U, Mandal K, Seth A, Bhatia V, Dabadghao P, Sudhanshu S, Garg A, Vishwakarma R, Sarangi AN, Verma S, Singh SK, Bhatia E. High Frequency of Recessive WFS1 Mutations Among Indian Children With Islet Antibody-negative Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:e1072-e1082. [PMID: 37931151 DOI: 10.1210/clinem/dgad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND While the frequency of islet antibody-negative (idiopathic) type 1 diabetes mellitus (T1DM) is reported to be increased in Indian children, its aetiology has not been studied. We investigated the role of monogenic diabetes in the causation of islet antibody-negative T1DM. METHODS We conducted a multicenter, prospective, observational study of 169 Indian children (age 1-18 years) with recent-onset T1DM. All were tested for antibodies against GAD65, islet antigen-2, and zinc transporter 8 using validated ELISA. Thirty-four islet antibody-negative children underwent targeted next-generation sequencing for 31 genes implicated in monogenic diabetes using the Illumina platform. All mutations were confirmed by Sanger sequencing. RESULTS Thirty-five (21%) children were negative for all islet antibodies. Twelve patients (7% of entire cohort, 34% of patients with islet antibody-negative T1DM) were detected to have pathogenic or likely pathogenic genetic variants. The most frequently affected locus was WFS1, with 9 patients (5% of entire cohort, 26% of islet antibody-negative). These included 7 children with homozygous and 1 patient each with a compound heterozygous and heterozygous mutation. Children with Wolfram syndrome 1 (WS) presented with severe insulin-requiring diabetes (including 3 patients with ketoacidosis), but other syndromic manifestations were not detected. In 3 patients, heterozygous mutations in HNF4A, ABCC8, and PTF1A loci were detected. CONCLUSION Nearly one-quarter of Indian children with islet antibody-negative T1DM had recessive mutations in the WFS1 gene. These patients did not exhibit other features of WS at the time of diagnosis. Testing for monogenic diabetes, especially WS, should be considered in Indian children with antibody-negative T1DM.
Collapse
Affiliation(s)
- Jayakrishnan C Menon
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Pratibha Singh
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Archana Archana
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Singh
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Medha Mittal
- Department of Paediatrics, Chacha Nehru Bal Chikitsalay, Delhi 110031, India
| | - Uma Kanga
- Department of Immunogenetics and Transplant Immunology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Anju Seth
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Vijayalakshmi Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Siddhnath Sudhanshu
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Atul Garg
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ruchira Vishwakarma
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Aditya Narayan Sarangi
- Department of Genome Analytics, BaseSolve Informatics Pvt Ltd, Ahmedabad, Gujrat 380006, India
| | - Shivendra Verma
- Department of General Medicine, GSVM Medical College, Kanpur, Uttar Pradesh 208002, India
| | - Surya Kumar Singh
- Department of Endocrinology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
10
|
Thomas NJ, Jones AG. The challenges of identifying and studying type 1 diabetes in adults. Diabetologia 2023; 66:2200-2212. [PMID: 37728732 PMCID: PMC10628058 DOI: 10.1007/s00125-023-06004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023]
Abstract
Diagnosing type 1 diabetes in adults is difficult since type 2 diabetes is the predominant diabetes type, particularly with an older age of onset (approximately >30 years). Misclassification of type 1 diabetes in adults is therefore common and will impact both individual patient management and the reported features of clinically classified cohorts. In this article, we discuss the challenges associated with correctly identifying adult-onset type 1 diabetes and the implications of these challenges for clinical practice and research. We discuss how many of the reported differences in the characteristics of autoimmune/type 1 diabetes with increasing age of diagnosis are likely explained by the inadvertent study of mixed populations with and without autoimmune aetiology diabetes. We show that when type 1 diabetes is defined by high-specificity methods, clinical presentation, islet-autoantibody positivity, genetic predisposition and progression of C-peptide loss remain broadly similar and severe at all ages and are unaffected by onset age within adults. Recent clinical guidance recommends routine islet-autoantibody testing when type 1 diabetes is clinically suspected or in the context of rapid progression to insulin therapy after a diagnosis of type 2 diabetes. In this moderate or high prior-probability setting, a positive islet-autoantibody test will usually confirm autoimmune aetiology (type 1 diabetes). We argue that islet-autoantibody testing of those with apparent type 2 diabetes should not be routinely undertaken as, in this low prior-prevalence setting, the positive predictive value of a single-positive islet antibody for autoimmune aetiology diabetes will be modest. When studying diabetes, extremely high-specificity approaches are needed to identify autoimmune diabetes in adults, with the optimal approach depending on the research question. We believe that until these recommendations are widely adopted by researchers, the true phenotype of late-onset type 1 diabetes will remain largely misunderstood.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Department of Clinical and Biological Sciences, University of Exeter, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Angus G Jones
- Department of Clinical and Biological Sciences, University of Exeter, Exeter, UK.
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
11
|
Svalastoga P, Kaci A, Molnes J, Solheim MH, Johansson BB, Krogvold L, Skrivarhaug T, Valen E, Johansson S, Molven A, Sagen JV, Søfteland E, Bjørkhaug L, Tjora E, Aukrust I, Njølstad PR. Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes. Diabetologia 2023; 66:2226-2237. [PMID: 37798422 PMCID: PMC10627920 DOI: 10.1007/s00125-023-06012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023]
Abstract
AIMS/HYPOTHESIS Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Eirik Søfteland
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
12
|
Verhoeff K, Marfil-Garza BA, Czarnecka Z, Cuesta-Gomez N, Jasra IT, Dadheech N, Senior PA, Shapiro AMJ. Stem Cell-Derived Islet Transplantation in Patients With Type 2 Diabetes: Can Diabetes Subtypes Guide Implementation? J Clin Endocrinol Metab 2023; 108:2772-2778. [PMID: 37170783 DOI: 10.1210/clinem/dgad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Historically, only patients with brittle diabetes or severe recurrent hypoglycemia have been considered for islet transplantation (ITx). This population has been selected to optimize the risk-benefit profile, considering risks of long-term immunosuppression and limited organ supply. However, with the advent of stem cell (SC)-derived ITx and the potential for immunosuppression-free ITx, consideration of a broader recipient cohort may soon be justified. Simultaneously, the classical categorization of diabetes is being challenged by growing evidence in support of a clustering of disease subtypes that can be better categorized by the All New Diabetics in Scania (ANDIS) classification system. Using the ANDIS classification, 5 subtypes of diabetes have been described, each with unique causes and consequences. We evaluate consideration for ITx in the context of this broader patient population and the new classification of diabetes subtypes. In this review, we evaluate considerations for ITx based on novel diabetes subtypes, including their limitations, and we elaborate on unique transplant features that should now be considered to enable ITx in these "unconventional" patient cohorts. Based on evidence from those receiving whole pancreas transplant and our more than 20-year experience with ITx, we offer recommendations and potential research avenues to justify implementation of SC-derived ITx in broader populations of patients with all types of diabetes.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Braulio A Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Department of Medicine Division of Endocrinology, University of Alberta, and CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | - Zofia Czarnecka
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Ila Tewari Jasra
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nidheesh Dadheech
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter A Senior
- Clinical Islet Transplant Programme, Department of Medicine Division of Endocrinology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - A M James Shapiro
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
13
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023; 46:e151-e199. [PMID: 37471273 PMCID: PMC10516260 DOI: 10.2337/dci23-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, IL
| | - David E. Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA
| | - Andrea R. Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E. Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - David M. Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA
| | - M. Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Naylor RN, Patel KA, Kettunen JL, Männistö JM, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SA, Hattersley AT, Tuomi T. Systematic Review of Treatment of Beta-Cell Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289807. [PMID: 37214872 PMCID: PMC10197799 DOI: 10.1101/2023.05.12.23289807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for precision medicine. We reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-HNF4A- and HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes. Methods Systematic reviews with data from PubMed, MEDLINE and Embase were performed for the different subtypes. Individual and group level data was extracted for glycemic outcomes in individuals with genetically confirmed monogenic diabetes. Results 147 studies met inclusion criteria with only six experimental studies and the rest being single case reports or cohort studies. Most studies had moderate or serious risk of bias.For GCK-related hyperglycemia, six studies (N=35) showed no deterioration in HbA1c on discontinuing glucose lowering therapy. A randomized trial (n=18 per group) showed that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes, and cohort and case studies supported SU effectiveness in lowering HbA1c. Two crossover trials (n=15 and n=16) suggested glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes was limited. While some patients with HNF1B-diabetes (n=301) and MD (n=250) were treated with oral agents, most were on insulin. There was some support for the use of oral agents after relapse in 6q24-TND, and for thiamine improving glycemic control and reducing insulin requirement in SLC19A2-diabetes (less than half achieved insulin-independency). Conclusion There is limited evidence to guide the treatment in monogenic diabetes with most studies being non-randomized and small. The data supports: no treatment in GCK-related hyperglycemia; SU for HNF1A-diabetes. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N. Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kashyap A. Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L.T. Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland; Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M.E. Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland; Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus university hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris France; Inserm U1016 Institut Cochin Paris France
| | - Michel Polak
- Department of pediatric endocrinology gynecology and diabetology, Hôpital Universitaire Necker Enfants Malades, IMAGINE institute, INSERM U1016, Paris, France; Université Paris Cité, Paris, France
| | - ADA/EASD PMDI
- American Diabetes Association/European Association for the Study of Diabetes Precision Medicine Initiative
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen
| | - Siri A.W. Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrew T. Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | | |
Collapse
|
15
|
Abstract
Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Paediatric Diabetes & Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical and Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
16
|
Hattersley AT. Laboratory Guidelines Are Needed for Diagnostic Genetic Testing for Monogenic Diabetes. Clin Chem 2023:hvad093. [PMID: 37473454 DOI: 10.1093/clinchem/hvad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Andrew T Hattersley
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2023:hvad080. [PMID: 37473453 DOI: 10.1093/clinchem/hvad080] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, ILUnited States
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA, United States
| | - Andrea R Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, United States
| | - David M Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
19
|
Pruhova S, Dusatkova P. Monogenic diabetes mellitus hidden in autoantibody-negative diabetes mellitus. Nat Rev Endocrinol 2023; 19:132-133. [PMID: 36599947 DOI: 10.1038/s41574-022-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
- Department of Paediatrics, University Hospital Motol, Prague, Czech Republic.
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
Harsunen M, Kettunen JLT, Härkönen T, Dwivedi O, Lehtovirta M, Vähäsalo P, Veijola R, Ilonen J, Miettinen PJ, Knip M, Tuomi T. Identification of monogenic variants in more than ten per cent of children without type 1 diabetes-related autoantibodies at diagnosis in the Finnish Pediatric Diabetes Register. Diabetologia 2023; 66:438-449. [PMID: 36418577 PMCID: PMC9892083 DOI: 10.1007/s00125-022-05834-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Monogenic forms of diabetes (MODY, neonatal diabetes mellitus and syndromic forms) are rare, and affected individuals may be misclassified and treated suboptimally. The prevalence of type 1 diabetes is high in Finnish children but systematic screening for monogenic diabetes has not been conducted. We assessed the prevalence and clinical manifestations of monogenic diabetes in children initially registered with type 1 diabetes in the Finnish Pediatric Diabetes Register (FPDR) but who had no type 1 diabetes-related autoantibodies (AABs) or had only low-titre islet cell autoantibodies (ICAs) at diagnosis. METHODS The FPDR, covering approximately 90% of newly diagnosed diabetic individuals aged ≤15 years in Finland starting from 2002, includes data on diabetes-associated HLA genotypes and AAB data (ICA, and autoantibodies against insulin, GAD, islet antigen 2 and zinc transporter 8) at diagnosis. A next generation sequencing gene panel including 42 genes was used to identify monogenic diabetes. We interpreted the variants in HNF1A by using the gene-specific standardised criteria and reported pathogenic and likely pathogenic findings only. For other genes, we also reported variants of unknown significance if an individual's phenotype suggested monogenic diabetes. RESULTS Out of 6482 participants, we sequenced DNA for 152 (2.3%) testing negative for all AABs and 49 (0.8%) positive only for low-titre ICAs (ICAlow). A monogenic form of diabetes was revealed in 19 (12.5%) of the AAB-negative patients (14 [9.2%] had pathogenic or likely pathogenic variants) and two (4.1%) of the ICAlow group. None had ketoacidosis at diagnosis or carried HLA genotypes conferring high risk for type 1 diabetes. The affected genes were GCK, HNF1A, HNF4A, HNF1B, INS, KCNJ11, RFX6, LMNA and WFS1. A switch from insulin to oral medication was successful in four of five patients with variants in HNF1A, HNF4A or KCNJ11. CONCLUSIONS/INTERPRETATION More than 10% of AAB-negative children with newly diagnosed diabetes had a genetic finding associated with monogenic diabetes. Because the genetic diagnosis can lead to major changes in treatment, we recommend referring all AAB-negative paediatric patients with diabetes for genetic testing. Low-titre ICAs in the absence of other AABs does not always indicate a diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Minna Harsunen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
| | - Jarno L T Kettunen
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland.
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Om Dwivedi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Lehtovirta
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Chen Y, Zhao J, Li X, Xie Z, Huang G, Yan X, Zhou H, Zheng L, Xu T, Zhou K, Zhou Z. Prevalence of maturity-onset diabetes of the young in phenotypic type 2 diabetes in young adults: a nationwide, multi-center, cross-sectional survey in China. Chin Med J (Engl) 2023; 136:56-64. [PMID: 36723869 PMCID: PMC10106210 DOI: 10.1097/cm9.0000000000002321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic diabetes. The aim of this study was to assess the prevalence of MODY in phenotypic type 2 diabetes (T2DM) among Chinese young adults. METHODS From April 2015 to October 2017, this cross-sectional study involved 2429 consecutive patients from 46 hospitals in China, newly diagnosed between 15 years and 45 years, with T2DM phenotype and negative for standardized glutamic acid decarboxylase antibody at the core laboratory. Sequencing using a custom monogenic diabetes gene panel was performed, and variants of 14 MODY genes were interpreted as per current guidelines. RESULTS The survey determined 18 patients having genetic variants causing MODY (6 HNF1A , 5 GCK , 3 HNF4A , 2 INS , 1 PDX1 , and 1 PAX4 ). The prevalence of MODY was 0.74% (95% confidence interval [CI]: 0.40-1.08%). The clinical characteristics of MODY patients were not specific, 72.2% (13/18) of them were diagnosed after 35 years, 47.1% (8/17) had metabolic syndrome, and only 38.9% (7/18) had a family history of diabetes. No significant difference in manifestations except for hemoglobin A1c levels was found between MODY and non-MODY patients. CONCLUSION The prevalence of MODY in young adults with phenotypic T2DM was 0.74%, among which HNF1A -, GCK -, and HNF4A -MODY were the most common subtypes. Clinical features played a limited role in the recognition of MODY.
Collapse
Affiliation(s)
- Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zhao
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Kaixin Zhou
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
22
|
Cao B, Liu M, Zhang Y, Chen J, Li X, Su C, Yang W, Liu M, Wu D, Li W, Liang X, Wang Q, Wei H, Gong C. An effective preselection criterion for MODY with an increasingly positive genetic testing rate by NGS: results from two cohorts of Chinese children. Am J Physiol Endocrinol Metab 2022; 323:E529-E534. [PMID: 36383636 DOI: 10.1152/ajpendo.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to determine the frequency of maturity-onset diabetes of the young (MODY) in two selected cohorts of Chinese children with diabetes and clinically suspected MODY, using next-generation sequencing (NGS). Ninety-three children who met the comprehensive criteria of suspected MODY were enrolled in two cohorts. A custom NGS panel or a whole exon group was used for sequencing. We identified 55/93 (59.1%) children with pathogenic and likely pathogenic MODY variants. Forty-two (76.3%) were confirmed to have the GCK (MODY2) mutation. Additionally, five had the HNF1A (MODY3), two the HNF1B (MODY5), one the 17q12 microdeletion (MODY5), two the HNF4A (MODY1), two the ABCC8 (MODY12), and one the PDX1 mutation (MODY4). Of these, 13 novel variants were detected in different genes. By comparing the gene-positive with gene-negative children, we found that discriminatory factors for MODY at diagnosis included lower HbA1c [7.4% vs. 10.2% (53 vs. 86 mmol/mol); P = 0.002], lower body mass index z score (0.2 vs. 1.0; P = 0.01), lower onset age (8.1 vs. 11.2 years; P = 0.001), and lower C-peptide (1.4 vs. 2.5 ng/mL; P = 0.02). In conclusion, the criteria used in this study for screening MODY are effective, and MODY2 is the most common subtype (76%), followed by MODY3 and MODY5. Some rare MODY subtypes have been reported in Chinese children.NEW & NOTEWORTHY We proved the clinical suspicion of maturity-onset diabetes of the young (MODY) according to the comprehensive criterion for next-generation sequencing testing, which helps to identify both common and rare MODYs, leading to accurate diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yingxian Zhang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jiajia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoqiao Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Yang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Min Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjing Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuejun Liang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiao Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haiyan Wei
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
23
|
Hedlund E, Ludvigsson J, Elding Larsson H, Forsander G, Ivarsson S, Marcus C, Samuelsson U, Persson M, Carlsson A. Month of birth and the risk of developing type 1 diabetes among children in the Swedish national Better Diabetes Diagnosis Study. Acta Paediatr 2022; 111:2378-2383. [PMID: 35615774 PMCID: PMC9795915 DOI: 10.1111/apa.16426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
AIM Previous studies have reported an association between month of birth and incidence of type 1 diabetes. Using population-based data, including almost all newly diagnosed children with type 1 diabetes in Sweden, we tested whether month of birth influences the risk of type 1 diabetes. METHODS For 8761 children diagnosed with type 1 diabetes between May 2005 and December 2016 in the Better Diabetes Diagnosis study, month of birth, sex and age were compared. Human leucocyte antigen (HLA) genotype and autoantibodies at diagnosis were analysed for a subset of the cohort (n = 3647). Comparisons with the general population used data from Statistics Sweden. RESULTS We found no association between month of birth or season and the incidence of type 1 diabetes in the cohort as a whole. However, boys diagnosed before 5 years were more often born in May (p = 0.004). We found no correlation between month of birth and HLA or antibodies. CONCLUSION In this large nationwide study, the impact of month of birth on type 1 diabetes diagnosis was weak, except for boys diagnosed before 5 years of age, who were more likely born in May. This may suggest different triggers for different subgroups of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Emma Hedlund
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of PaediatricsKristianstad Central HospitalKristianstadSweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden,Skåne University HospitalMalmöSweden
| | - Gun Forsander
- The Queen Silvia Children's HospitalSahlgrenska University HospitalGothenburgSweden,Institute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Sten Ivarsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Martina Persson
- Department of Medicine, Clinical EpidemiologyKarolinska InstituteStockholmSweden,Department of Clinical Science and EducationKarolinska Institute, SödersjukhusetStockholmSweden
| | - Annelie Carlsson
- Department of Clinical Sciences LundLund UniversityLundSweden,Skåne University HospitalMalmöSweden
| |
Collapse
|
24
|
Williams CL, Aitken RJ, Wilson IV, Mortimer GLM, Long AE, Williams AJK, Gillespie KM. The measurement of autoantibodies to insulin informs diagnosis of diabetes in a childhood population negative for other autoantibodies. Diabet Med 2022; 39:e14979. [PMID: 36251483 PMCID: PMC9827938 DOI: 10.1111/dme.14979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 02/06/2023]
Abstract
AIMS Some childhood type 1 diabetes cases are islet autoantibody negative at diagnosis. Potential explanations include misdiagnosis of genetic forms of diabetes or insufficient islet autoantibody testing. Many NHS laboratories offer combinations of three autoantibody markers. We sought to determine the benefit of testing for additional islet autoantibodies, including insulin (IAA) and tetraspanin 7 (TSPAN7A). METHODS Radiobinding assays (RBAs) were used to test for four islet autoantibodies in children with newly diagnosed type 1 diabetes (n = 486; 54.1% male; median age 10.4 years [range 0.7-18.0]; median duration 1 day [range -183 to 14]). Islet autoantibody negative children were tested for TSPAN7A using a luminescence-based test. Where available, islet cell antibody (ICA) and human leucocyte antigen (HLA) data were considered. RESULTS Using three autoantibody markers, 21/486 (4.3%) children were autoantibody negative. Testing for IAA classified a further 9/21 (42.9%) children as autoantibody positive. Of the remaining 12 (2.5%) autoantibody negative children, all were TPAN7A negative, seven were ICA negative and one was positive for the protective variant DQB1*0602. One was subsequently diagnosed with Maturity Onset of Diabetes in the Young, but follow-up was not available in all cases. CONCLUSIONS Using highly sensitive assays, testing for three autoantibodies fails to detect islet autoimmunity in approximately 1/20 children diagnosed with type 1 diabetes. Testing for IAA in children <5 years and GADA in those >10 years was the most effective strategy for detecting islet autoimmunity. The ability to test for all islet autoantibodies should inform clinical decisions and make screening for monogenic diabetes more cost-effective.
Collapse
Affiliation(s)
- Claire L. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Rachel J. Aitken
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Isabel V. Wilson
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Georgina L. M. Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | | | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| |
Collapse
|
25
|
Eason RJ, Thomas NJ, Hill AV, Knight BA, Carr A, Hattersley AT, McDonald TJ, Shields BM, Jones AG. Routine Islet Autoantibody Testing in Clinically Diagnosed Adult-Onset Type 1 Diabetes Can Help Identify Misclassification and the Possibility of Successful Insulin Cessation. Diabetes Care 2022; 45:2844-2851. [PMID: 36205650 DOI: 10.2337/dc22-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Recent joint American Diabetes Association and European Association for the Study of Diabetes guidelines recommend routine islet autoantibody testing in all adults newly diagnosed with type 1 diabetes. We aimed to assess the impact of routine islet autoantibody testing in this population. RESEARCH DESIGN AND METHODS We prospectively assessed the relationship between islet autoantibody status (GADA, IA-2A, and ZNT8A), clinical and genetic characteristics, and progression (annual change in urine C-peptide-to-creatinine ratio [UCPCR]) in 722 adults (≥18 years old at diagnosis) with clinically diagnosed type 1 diabetes and diabetes duration <12 months. We also evaluated changes in treatment and glycemia over 2 years after informing participants and their clinicians of autoantibody results. RESULTS Of 722 participants diagnosed with type 1 diabetes, 24.8% (179) were autoantibody negative. This group had genetic and C-peptide characteristics suggestive of a high prevalence of nonautoimmune diabetes: lower mean type 1 diabetes genetic risk score (islet autoantibody negative vs. positive: 10.85 vs. 13.09 [P < 0.001] [type 2 diabetes 10.12]) and lower annual change in C-peptide (UCPCR), -24% vs. -43% (P < 0.001).After median 24 months of follow-up, treatment change occurred in 36.6% (60 of 164) of autoantibody-negative participants: 22.6% (37 of 164) discontinued insulin, with HbA1c similar to that of participants continuing insulin (57.5 vs. 60.8 mmol/mol [7.4 vs. 7.7%], P = 0.4), and 14.0% (23 of 164) added adjuvant agents to insulin. CONCLUSIONS In adult-onset clinically diagnosed type 1 diabetes, negative islet autoantibodies should prompt careful consideration of other diabetes subtypes. When routinely measured, negative antibodies are associated with successful insulin cessation. These findings support recent recommendations for routine islet autoantibody assessment in adult-onset type 1 diabetes.
Collapse
Affiliation(s)
- Russell J Eason
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Nicholas J Thomas
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Anita V Hill
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Bridget A Knight
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Alice Carr
- University of Exeter College of Medicine & Health, Exeter, U.K
| | - Andrew T Hattersley
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Timothy J McDonald
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | | | - Angus G Jones
- University of Exeter College of Medicine & Health, Exeter, U.K.,Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | | | | |
Collapse
|
26
|
Sechko EA, Romanenkova EM, Eremina IA, Zilberman LI, Nikankina LV, Zuraeva ZT, Bezlepkina OB, Peterkova VA, Laptev DN. The role of specific pancreatic antibodies in the differential diagnosis of complete clinical and laboratory remission of type 1 diabetes mellitus and MODY in children. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND: T1D is characterized by autoimmune destruction of pancreatic β-cells, which develops due to genetic and environmental risk factors. Shortly after initiating the treatment with insulin, 80% of children with T1D may require smaller doses of insulin and develop clinical and laboratory remission of the disease so called «honeymoon». The issue of whether there is a need of differential diagnosis between autoimmune DM and non-immune forms of DM raises in cases of preclinical diagnosis of T1D and laboratory remission for more than 6 months.AIM: To study the clinical, immunological, genetic characteristics of T1D remission phase and MODY in children, to determine the diagnostic criteria for T1D and MODY in children.MATERIALS AND METHODS: A single-centre, cross sectional noncontrolled comparative study of two independent cohorts. Data of 150 children examined in the Endocrinology Research Center (January 2016–June 2021). First cohort included patients with complete clinical and laboratory remission of T1D (n=36), second cohort included patients with MODY, confirmed by genetic study (n=114).RESULTS: The median age of diabetes manifestation was significantly higher in patients with T1D — 11.25 years [8.33; 13.78] than in patients with MODY — 7.5 years [4.6; 12.2] (p=0.004). In patients with T1D remission the level of glycated hemoglobin was 6.0% [5.6; 6.4], in group with MODY — 6.5% [6.2; 6.7] (p<0.001). Patients with monogenic diabetes had impaired fasting glucose — 6.27 mmol/l [5.38; 6.72], while patients with remission phase had normoglycemia — 5.12 mmol/l [4.17; 5.87]. The oral glucose tolerance test was perform to all patients, two-hour glucose level did not significantly differ in two groups (p=0.08). A strong family history of diabetes in patients with MODY registered more often (93% vs. 66.7%). A positive autoantibody titer detected more often in patients with remission of T1D (77.8%) than in patients with MODY (11.4%). In addition, no more than 1 type of autoantibodies was detected in patients with MODY.CONCLUSION: Antibodies ZnT8 and IA2 showed the greatest significance for the differential diagnosis of T1D and MODY in cases with long absents of insulin requirement in children with diabetes mellitus. Genetic test is recommended in seronegative cases. If only one type of AT is detected, specialist should decide on the need to do diagnostic genetic test based on a comprehensive analysis of the patient’s clinic characteristics, including family history, manifestation and blood glucose levels.
Collapse
|
27
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Colclough K, Patel K. How do I diagnose Maturity Onset Diabetes of the Young in my patients? Clin Endocrinol (Oxf) 2022; 97:436-447. [PMID: 35445424 PMCID: PMC9544561 DOI: 10.1111/cen.14744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes diagnosed in young individuals that lack the typical features of type 1 and type 2 diabetes. The genetic subtype of MODY determines the most effective treatment and this is the driver for MODY genetic testing in diabetes populations. Despite the obvious clinical and health economic benefits, MODY is significantly underdiagnosed with the majority of patients being inappropriately managed as having type 1 or type 2 diabetes. Low detection rates result from the difficulty in identifying patients with a likely diagnosis of MODY from the high background population of young onset type 1 and type 2 diabetes, compounded by the lack of MODY awareness and education in diabetes care physicians. MODY diagnosis can be improved through (1) access to education and training, (2) the use of sensitive and specific selection criteria based on accurate prediction models and biomarkers to identify patients for testing, (3) the development and mainstream implementation of simple criteria-based selection pathways applicable across a range of healthcare settings and ethnicities to select the most appropriate patients for genetic testing and (4) the correct use of next generation sequencing technology to provide accurate and comprehensive testing of all known MODY and monogenic diabetes genes. The creation and public sharing of educational materials, clinical and scientific best practice guidelines and genetic variants will help identify the missing patients so they can benefit from the more effective clinical care that a genetic diagnosis brings.
Collapse
Affiliation(s)
- Kevin Colclough
- Exeter Genomics LaboratoryRoyal Devon & Exeter NHS Foundation TrustExeterUK
| | - Kashyap Patel
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
29
|
Limbert C, Lanzinger S, deBeaufort C, Iotova V, Pelicand J, Prieto M, Schiaffini R, Šumnik Z, Pacaud D. Diabetes-related antibody-testing is a valuable screening tool for identifying monogenic diabetes - A survey from the worldwide SWEET registry. Diabetes Res Clin Pract 2022; 192:110110. [PMID: 36183869 DOI: 10.1016/j.diabres.2022.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate access to screening tools for monogenic diabetes in paediatric diabetes centres across the world and its impact on diagnosis and clinical outcomes of children and youth with genetic forms of diabetes. METHODS 79 centres from the SWEET diabetes registry including 53,207 children with diabetes participated in a survey on accessibility and use of diabetes related antibodies, c-peptide and genetic testing. RESULTS 73, 63 and 62 participating centres had access to c-peptide, antibody and genetic testing, respectively. Access to antibody testing was associated with higher proportion of patients with rare forms of diabetes identified with monogenic diabetes (54 % versus 17 %, p = 0.01), lower average whole clinic HbA1c (7.7[Q1,Q2: 7.3-8.0]%/61[56-64]mmol/mol versus 9.2[8.6-10.0]%/77[70-86]mmol/mol, p < 0.001) and younger age at onset (8.3 [7.3-8.8] versus 9.7 [8.6-12.7] years p < 0.001). Additional access to c-peptide or genetic testing was not related to differences in age at onset or HbA1c outcome. CONCLUSIONS Clinical suspicion and antibody testing are related to identification of different types of diabetes. Implementing access to comprehensive antibody screening may provide important information for selecting individuals for further genetic evaluation. In addition, worse overall clinical outcomes in centers with limited diagnostic capabilities indicate they may also need support for individualized diabetes management. TRIAL REGISTRATION NCT04427189.
Collapse
Affiliation(s)
- Catarina Limbert
- Hospital Dona Estefânia, Unit of Paediatric Endocrinology and Diabetes, Lisbon, Portugal; Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany; German Centre for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Carine deBeaufort
- Department of Paediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
| | - Violeta Iotova
- Department of Paediatrics, Medical University of Varna, Varna, Bulgaria
| | - Julie Pelicand
- San Camilo Hospital-Medicine School, Universidad de Valparaíso, San Felipe, Chile
| | - Mariana Prieto
- Servicio de Nutrición, Hospital de Pediatría SAMIC J. P. Garrahan, 1245 Buenos Aieres, Argentina
| | | | - Zdeněk Šumnik
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Danièle Pacaud
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Zuckerman Levin N, Cohen M, Phillip M, Tenenbaum A, Koren I, Tenenbaum-Rakover Y, Admoni O, Hershkovitz E, Haim A, Mazor Aronovitch K, Zangen D, Strich D, Brener A, Yeshayahu Y, Schon Y, Rachmiel M, Ben-Ari T, Levy-Khademi F, Tibi R, Weiss R, Lebenthal Y, Pinhas-Hamiel O, Shehadeh N. Youth-onset type 2 diabetes in Israel: A national cohort. Pediatr Diabetes 2022; 23:649-659. [PMID: 35521999 DOI: 10.1111/pedi.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Prevalence of youth-onset type 2 diabetes (T2D) has increased worldwide, paralleling the rise in pediatric obesity. Occurrence and clinical manifestations vary regionally and demographically. OBJECTIVES We assessed the incidence, and clinical and demographic manifestations of youth-onset T2D in Israel. METHODS In a national observational study, demographic, clinical, and laboratory data were collected from the medical records of children and adolescents, aged 10-18 years, diagnosed with T2D between the years 2008 and 2019. RESULTS The incidence of youth-onset T2D in Israel increased significantly from 0.63/100,000 in 2008 to 3.41/100,000 in 2019. The study cohort comprised 379 individuals (228 girls [59.7%], 221 Jews [58.3%], mean age 14.7 ± 1.9 years); 73.1% had a positive family history of T2D. Mean body mass index (BMI) z-score was 1.96 ± 0.7, higher in Jews than Arabs. High systolic (≥ 130 mmHg) and diastolic blood pressure (≥ 85 mmHg) were observed in 33.7% and 7.8% of patients, respectively; mean glycosylated hemoglobin (A1c) level at diagnosis was 8.8 ± 2.5%. Dyslipidemia, with high triglyceride (>150 mg/dl) and low HDL-c (<40 mg/dl) levels, was found in 45.6% and 56.5%, respectively. Microalbuminuria and retinopathy were documented at diagnosis, 15.2% and 1.9%, respectively) and increased (36.7% and 4.6%, respectively) at follow-up of 2.9 ± 2.1 years. Criteria of metabolic syndrome were met by 224 (62.2%) patients, and fatty liver documented in 65%, mainly Jews. Psychosocial comorbidity was found in 31%. Treatment with metformin (45.6%), insulin (20.6%), and lifestyle modification (18%) improved glycemic control. CONCLUSION Youth-onset T2D in Israel has increased significantly and presents a unique profile.
Collapse
Affiliation(s)
- Nehama Zuckerman Levin
- Pediatric Diabetes Clinic, Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meidan Cohen
- Pediatric Diabetes Clinic, Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Tenenbaum
- The Jesse Z and Sara Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilana Koren
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Endocrine and Diabetes Unit, Carmel Medical Center, Haifa, Israel
| | - Yardena Tenenbaum-Rakover
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Osnat Admoni
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Eli Hershkovitz
- Pediatric Endocrinology and Diabetes Unit, Soroka Medical Center, Beer Sheva, Israel.,The Faculty of Health Sciences, Goldman School of Medicine, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Haim
- Pediatric Endocrinology and Diabetes Unit, Soroka Medical Center, Beer Sheva, Israel.,The Faculty of Health Sciences, Goldman School of Medicine, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kineret Mazor Aronovitch
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,National Juvenile Diabetes Center, Maccabi Health Care Services, Ra'anana, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Strich
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Pediatric Specialist Clinic, Clalit Health Services, Jerusalem, Israel.,Pediatric Endocrinology and Diabetes Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Avivit Brener
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yonatan Yeshayahu
- The Faculty of Health Sciences, Goldman School of Medicine, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Pediatric Endocrine Unit, Department of Pediatrics, Assuta Ashdod Medical Center, Ashdod, Israel
| | - Yossi Schon
- Pediatric Endocrinology Institute, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Marianna Rachmiel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrinology Institute, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Tal Ben-Ari
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrinology and Diabetes Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Floris Levy-Khademi
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Pediatric Endocrinology and Diabetes Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rami Tibi
- Pediatric Diabetes Clinic, Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ram Weiss
- Pediatric Diabetes Clinic, Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Lebenthal
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orit Pinhas-Hamiel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,National Juvenile Diabetes Center, Maccabi Health Care Services, Ra'anana, Israel
| | - Naim Shehadeh
- Pediatric Diabetes Clinic, Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
32
|
Tatovic D, Jones AG, Evans C, Long AE, Gillespie K, Besser REJ, Leslie RD, Dayan CM. Diagnosing Type 1 diabetes in adults: Guidance from the UK T1D Immunotherapy consortium. Diabet Med 2022; 39:e14862. [PMID: 35488476 PMCID: PMC9320853 DOI: 10.1111/dme.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
|
33
|
Colclough K, van Heugten R, Patel K. An update on the diagnosis and management of monogenic diabetes. PRACTICAL DIABETES 2022. [DOI: 10.1002/pdi.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust Exeter UK
| | - Rachel van Heugten
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust Exeter UK
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science University of Exeter Medical School Exeter UK
| |
Collapse
|
34
|
O'Donovan EM, Sanchez-Lechuga B, Prehn E, Byrne MM. The coexistence of autoimmune diabetes and maturity-onset diabetes of the young (MODY): a case series. Endocrinol Diabetes Metab Case Rep 2022; 2022:21-0212. [PMID: 35894830 PMCID: PMC9346313 DOI: 10.1530/edm-21-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Summary The coexistence of autoimmune diabetes and maturity-onset diabetes (MODY) is rare. The absence of pancreatic autoantibodies is a key factor prompting MODY genetic testing. In this study, we report three cases of young-onset diabetes with progressive beta-cell dysfunction, strongly positive glutamic acid decarboxylase (GAD) antibodies, and genetic confirmation of pathogenic gene variants of HNF-1A, HNF-4A, and ABCC8-MODY. The first case is a woman diagnosed with HNF-1A-MODY diabetes more than 30 years after her diagnosis of adult-onset diabetes at 25 years. She required insulin after her fourth pregnancy. She became ketotic on oral hypoglycaemic agents (OHAs) and subsequently, her GAD antibodies tested positive. The second case is a woman diagnosed with diabetes at 17 years who was subsequently diagnosed with HNF-4A-MODY after many hypoglycaemic episodes on low-dose insulin. GAD antibodies were strongly positive. The last case is a man diagnosed with diabetes at 26 years who was well controlled on OHAs and required insulin years later due to sudden deterioration in glycaemic control. His ABCC8-MODY was diagnosed upon realisation of strong family history and his GAD antibodies tested positive. All subjects are now treated with insulin. Less than 1% of subjects with MODY have positive autoantibodies. These cases highlight individuals who may have two different types of diabetes simultaneously or consecutively. Deterioration of glycaemic control in subjects with MODY diabetes should highlight the need to look for the emergence of autoantibodies. At each clinic visit, one should update the family history as MODY was diagnosed in each case after the development of diabetes in their offspring. Learning points These cases highlight the rare coexistence of autoimmune diabetes and MODY. Deterioration of glycaemic control in subjects with MODY diabetes should highlight the emergence of autoantibodies. One should revise and update the family history as the diagnosis of MODY was made after the development of diabetes in offspring. Understanding the spectrum of diabetes allows for precision medicine.
Collapse
Affiliation(s)
- Eimear Mary O'Donovan
- 1Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Emma Prehn
- 1Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Maria Michelle Byrne
- 1Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Rao PV, Bean E, Nair-Schaef D, Chen S, Kazmierczak SC, Roberts CT, Nagalla SR. Rapid Point-of-Care Test for Determination of C-Peptide Levels. J Diabetes Sci Technol 2022; 16:976-981. [PMID: 33729032 PMCID: PMC9264426 DOI: 10.1177/1932296821995557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
C-peptide is co-secreted with insulin and is not subject to hepatic clearance and thus reflects functional β-cell mass. Assessment of C-peptide levels can identify individuals at risk for or with type 1 diabetes with residual β-cell function in whom β cell-sparing interventions can be evaluated, and can aid in distinguishing type 2 diabetes from Latent Autoimmune Diabetes in Adults and late-onset type 1 diabetes. To facilitate C-peptide testing, we describe a quantitative point-of-care C-peptide test. C-peptide levels as low as 0.2 ng/ml were measurable in a fingerstick sample, and the test was accurate over a range of 0.17 to 12.0 ng/ml. This test exhibited a correlation of r = 0.98 with a high-sensitivity commercial ELISA assay and a correlation of r = 0.90 between matched serum and fingerstick samples.
Collapse
Affiliation(s)
| | - Eric Bean
- Diabetomics, Inc., Hillsboro, OR,
USA
| | | | - Siting Chen
- School of Public Health, Oregon Health
& Science University, Portland, OR, USA
| | | | | | - Srinivasa R. Nagalla
- Diabetomics, Inc., Hillsboro, OR,
USA
- Srinivasa R. Nagalla, MD, Diabetomics, Inc.,
2345 NE Overlook Dr., Hillsboro, OR 97006, USA.
| |
Collapse
|
36
|
Menon S, Refaey A, Guffey D, Balasubramanyam A, Redondo MJ, Tosur M. Optimizing maturity-onset diabetes of the young detection in a pediatric diabetes population. Pediatr Diabetes 2022; 23:447-456. [PMID: 35218126 DOI: 10.1111/pedi.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is often misdiagnosed as type 1/type 2 diabetes. We aimed to define patient characteristics to guide the decision to test for MODY in youth with diabetes. RESEARCH DESIGN AND METHODS Of 4750 patients enrolled in the Diabetes Registry at Texas Children's Hospital between July 2016 and July 2019, we selected ("Study Cohort", n = 350) those with: (1) diabetes diagnosis <25 years, (2) family history of diabetes in three consecutive generations, and (3) absent islet autoantibodies except for GAD65. We retrospectively studied their clinical and biochemical characteristics and available MODY testing results. Cluster analysis was then performed to identify the cluster with highest rate of MODY diagnosis. RESULTS Patients in the Study Cohort were 3.5 times more likely to have been diagnosed with MODY than in the overall Diabetes Registry (4.6% vs. 1.3%, p < 0.001). The cluster (n = 16) with the highest rate of clinician-diagnosed MODY (25%, n = 4/16) had the lowest age (10.9 ± 2.5 year), BMI-z score (0.5 ± 0.9), C-peptide level (1.5 ± 1.2 ng/ml) and acanthosis nigricans frequency (12.5%) at diabetes diagnosis (all p < 0.05). In this cluster, three out of five patients who underwent MODY genetic testing had a pathogenic variant. CONCLUSIONS Using a stepwise approach, we identified that younger age, lower BMI, lower C-peptide, and absence of acanthosis nigricans increase likelihood of MODY in racially/ethnically diverse children with diabetes who have a multigenerational family history of diabetes and negative islet autoantibodies, and can be used by clinicians to select patients for MODY testing.
Collapse
Affiliation(s)
- Sruthi Menon
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | | | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
37
|
Cheng Y, Zhong DP, Ren L, Yang H, Tian CF. Unusual manifestations of young woman with MODY5 based on 17q12 recurrent deletion syndrome. BMC Endocr Disord 2022; 22:77. [PMID: 35346144 PMCID: PMC8962578 DOI: 10.1186/s12902-022-00989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young type 5 (MODY5) is a rare subtype of MODYs. It is caused by mutations of the hepatocyte nuclear factor 1 homeobox b gene (HNF1B). 17q12 recurrent deletion syndrome usually results in MODY5 because of the deletion of HNF1B. These patients often have other clinical manifestations besides diabetes. Refractory hypomagnesemia was a clue for further examination in this patient. But she lacked structural abnormalities of the genitourinary system and neurodevelopmental disorders that are common manifestations in patients with 17q12 recurrent deletion syndrome. Some atypical patients deserved attention. CASE PRESENTATION A 21-year-old young woman was admitted to our hospital for severe malnutrition and gastrointestinal symptoms. At age 20, she was diagnosed with type 2 diabetes mellitus (T2DM) and was administered oral antidiabetic drugs. Soon afterward, the patient discontinued the medication on her own accord and then went to the hospital again due to diabetic ketoacidosis. After insulin treatment, diabetic ketoacidosis was cured and blood glucose was controlled satisfactorily. But intractable nausea, vomiting, and persistent weight loss were stubborn. Further examination revealed that the patient had hypokalemia and hard rectification hypomagnesemia. Genetic testing revealed about 1.85 Mb heterozygous fragment deletion on chromosome 17 and deletion of exons 1-9 of HNF1B heterozygosity missing was approved. Finally, the patient was diagnosed MODY5. DISCUSSION AND CONCLUSIONS The 17q12 recurrent deletion syndrome is characterized by MODY5, structural or functional abnormalities of the kidney and urinary tract, and neurodevelopmental or neuropsychiatric disorders. This patient did not have any structural abnormalities of the genitourinary system and neuropsychiatric disorders, which is rare. She had experienced a period of misdiagnosis before being diagnosed with 17q12 recurrent deletion syndrome, and hypomagnesemia was an important clue for her diagnosis. Therefore, diabetic physicians should be alert to a special type of diabetes if patients have unexplained signs and symptoms. The absence of well-known features of HNF1B disease does not exclude MODY5.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China.
| | - Da-Peng Zhong
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Li Ren
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Hang Yang
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Chen-Fu Tian
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| |
Collapse
|
38
|
Pang L, Colclough KC, Shepherd MH, McLean J, Pearson ER, Ellard S, Hattersley AT, Shields BM. Improvements in Awareness and Testing Have Led to a Threefold Increase Over 10 Years in the Identification of Monogenic Diabetes in the U.K. Diabetes Care 2022; 45:642-649. [PMID: 35061023 PMCID: PMC7612472 DOI: 10.2337/dc21-2056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is a rare monogenic form of diabetes. In 2009, >80% of U.K. cases were estimated to be misdiagnosed. Since then, there have been a number of initiatives to improve the awareness and detection of MODY, including education initiatives (Genetic Diabetes Nurse [GDN] project), the MODY probability calculator, and targeted next-generation sequencing (tNGS). We examined how the estimated prevalence of MODY and other forms of monogenic diabetes diagnosed outside the neonatal period has changed over time and how the initiatives have impacted case finding. RESEARCH DESIGN AND METHODS U.K. referrals for genetic testing for monogenic diabetes diagnosed >1 year of age from 1 January 1996 to 31 December 2019 were examined. Positive test rates were compared for referrals reporting GDN involvement/MODY calculator use with those that did not. RESULTS A diagnosis of monogenic diabetes was confirmed in 3,860 individuals, more than threefold higher than 2009 (1 January 1996 to 28 February 2009, n = 1,177). Median age at diagnosis in probands was 21 years. GDN involvement was reported in 21% of referrals; these referrals had a higher positive test rate than those without GDN involvement (32% vs. 23%, P < 0.001). MODY calculator usage was indicated in 74% of eligible referrals since 2014; these referrals had a higher positive test rate than those not using the calculator (33% vs. 25%, P = 0.001). Four hundred ten (10.6%) cases were identified through tNGS. Monogenic diabetes prevalence was estimated to be 248 cases/million (double that estimated in 2009 because of increased case finding). CONCLUSIONS Since 2009, referral rates and case diagnosis have increased threefold. This is likely to be the consequence of tNGS, GDN education, and use of the MODY calculator.
Collapse
Affiliation(s)
- Lewis Pang
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Kevin C Colclough
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| | - Joanne McLean
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Ewan R Pearson
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Sian Ellard
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
39
|
de Jesus Cortez F, Lind A, Ramelius A, Bennet R, Robinson PV, Seftel D, Gebhart D, Tandel D, Maziarz M, Agardh D, Larsson HE, Lundgren M, Lernmark Å, Tsai CT. Multiplex agglutination-PCR (ADAP) autoantibody assays compared to radiobinding autoantibodies in type 1 diabetes and celiac disease. J Immunol Methods 2022; 506:113265. [DOI: 10.1016/j.jim.2022.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
40
|
Ershova AI, Ivanova AA, Kiseleva AV, Sotnikova EA, Meshkov AN, Drapkina OM. From biobanking to personalized prevention of obesity, diabetes and metabolic syndrome. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The growing prevalence of metabolic disorders creates an increasing demand for novel approaches to their prevention and therapy. Novel genetic diagnostic technologies are developed every year, which makes it possible to identify people who are at the highest genetic risk of diabetes, non-alcoholic fatty liver disease, and metabolic syndrome. Early intervention strategies can be used to prevent metabolic disorders in this group of people. Genetic risk scores (GRSs) are a powerful tool to identify people with a high genetic risk. Millions of genetic variants are analyzed in genome-wide association studies in order to combine them into GRSs. It has become possible to store and process such huge amounts of data with the help of biobanks, where biological samples are stored according to international standards. Genetic studies include more and more people every year that increases the predictive power of GRSs. It has already been demonstrated that the use of GRSs makes future preventive measures more effective. In the near future, GRSs are likely to become part of clinical guidelines so that they can be widely used to identify people at high risk for metabolic syndrome and its components.
Collapse
Affiliation(s)
- A. I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. A. Ivanova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. A. Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine; Pirogov Russian National Research Medical University
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
41
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
42
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021; 64:2609-2652. [PMID: 34590174 PMCID: PMC8481000 DOI: 10.1007/s00125-021-05568-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycaemia, behavioural considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that healthcare professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors. Graphical abstract.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Profil Institute for Metabolic Research, Neuss, Germany
| | - Amy Hess-Fischl
- Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - Irl B Hirsch
- UW Medicine Diabetes Institute, Seattle, WA, USA
| | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Anne L Peters
- Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
43
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
44
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021; 44:2589-2625. [PMID: 34593612 DOI: 10.2337/dci21-0043] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycemia, behavioral considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management, and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that health care professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K. .,Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands.,Profil Institute for Metabolic Research, Neuss, Germany
| | | | | | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | |
Collapse
|
45
|
Abdel-Karim T, Haris B, Afyouni H, Mohammed S, Khalifa A, Al-Maadheed M, Zyoud M, Elawwa A, Al-Khalaf F, Petrovski G, Hussain K. The Epidemiology and Genetic Analysis of Children With Idiopathic Type 1 Diabetes in the State of Qatar. J Endocr Soc 2021; 5:bvab131. [PMID: 34458657 PMCID: PMC8389171 DOI: 10.1210/jendso/bvab131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/02/2022] Open
Abstract
Context Idiopathic type 1 diabetes is characterized by the absence of autoantibodies and the underlying mechanisms are not clear. Objective We aimed to study the epidemiology, describe the clinical characteristics, and report results of genetic studies in pediatric patients with idiopathic type 1 diabetes. Methods This was a prospective study of type 1 diabetes patients attending Sidra Medicine from 2018 to 2020. Autoantibodies (GAD65, IAA, IA-2A, and ZnT8) were measured and genetic testing was undertaken in patients negative for autoantibodies to rule out monogenic diabetes. Demographic and clinical data of patients with idiopathic type 1 diabetes were compared with patients with autoimmune type 1 diabetes. Results Of 1157 patients with type 1 diabetes, 63 were antibody-negative. Upon genome sequencing, 4 had maturity onset diabetes of the young (MODY), 2 had Wolfram syndrome, 1 had H syndrome, and 3 had variants of uncertain significance in MODY genes; 53 patients had idiopathic type 1 diabetes. The most common age of diagnosis was 10 to 14 years. C-peptide level was low but detectable in 30 patients (56.6%) and normal in 23 patients (43.4%) The average body mass index was in the normal range and 33% of the patients had a history of diabetic ketoacidosis (DKA). Conclusion Four percent of the children had idiopathic type 1 diabetes. There were statistically significant differences in the C-peptide level and insulin requirement between the 2 groups. DKA was less common in the idiopathic group. Mutations in MODY genes suggest the importance of autoantibody testing and genetic screening for known causes of monogenic diabetes in idiopathic type 1 diabetes. The mechanism of idiopathic type 1 diabetes is unknown but could be due to defects in antibody production or due to autoantibodies that are not yet detectable or discovered.
Collapse
Affiliation(s)
- Tasneem Abdel-Karim
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Houda Afyouni
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Shayma Mohammed
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Amel Khalifa
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Maryam Al-Maadheed
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Mahmoud Zyoud
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Ahmed Elawwa
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Fawziya Al-Khalaf
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Goran Petrovski
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| |
Collapse
|
46
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
47
|
Passanisi S, Salzano G, Bombaci B, Lombardo F. Clinical and genetic features of maturity-onset diabetes of the young in pediatric patients: a 12-year monocentric experience. Diabetol Metab Syndr 2021; 13:96. [PMID: 34496959 PMCID: PMC8424812 DOI: 10.1186/s13098-021-00716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A retrospective observational study was conducted to assess the prevalence of maturity onset diabetes of the young (MODY) in a large paediatric population of Southern Italy newly diagnosed with diabetes. Clinical and genetic features of the identified MODY patients were also described. METHODS Genetic testing was performed in children and adolescents newly diagnosed with diabetes who presented autoantibody negativity and fasting C-peptide levels ≥ 0.8 ng/mL. Patients with a low insulin daily dose and optimal glycaemic control after two years from diabetes onset were also investigated for monogenic diabetes, regardless of their autoimmunity status and/or C-peptide levels. RESULTS A prevalence of 6.5% of MODY was found. In particular, glucokinase-MODY was the most common type of MODY. The mean age at diagnosis was 9.1 years. Clinical presentation and biochemical data were heterogeneous also among patients belonging to the same MODY group. CONCLUSIONS We found a relatively high prevalence of MODY among paediatric patients with a new diagnosis of diabetes in comparison to literature data. Our findings highlight that a more detailed clinical evaluation along with easier and less expensive approachability to genetic testing may allow diagnosing an increasing number of MODY cases. A correct, prompt diagnosis is crucial to choose the most appropriate treatment and offer adequate genetic counselling.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy.
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| |
Collapse
|
48
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
49
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
50
|
Gamu D, Gibson WT. Searching for Monogenic Diabetes in a High-risk Autoimmune Diabetes Cohort: Needles in a Paperclip Stack. J Clin Endocrinol Metab 2021; 106:e3266-e3268. [PMID: 33860317 PMCID: PMC8277215 DOI: 10.1210/clinem/dgab244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Gamu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - William T Gibson
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Correspondence: William T. Gibson, MD, PhD (Cantab), FRCPC, FCCMG, Department of Medical Genetics, University of British Columbia; BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. E-mail:
| |
Collapse
|