1
|
Baduini IR, Castro Vildosola JE, Kavehmoghaddam S, Kiliç F, Nadeem SA, Nizama JJ, Rowand MA, Annapureddy D, Bryan CA, Do LH, Hsiao S, Jonnalagadda SA, Kasturi A, Mandava N, Muppavaram S, Ramirez B, Siner A, Suoto CN, Tamajal N, Scoma ER, Da Costa RT, Solesio ME. Type 2 diabetes mellitus and neurodegenerative disorders: The mitochondrial connection. Pharmacol Res 2024; 209:107439. [PMID: 39357690 DOI: 10.1016/j.phrs.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased in our society in recent decades as the population ages, and this trend is not expected to revert. This is the same for the incidence of the main neurodegenerative disorders, including the two most common ones, which are, Alzheimer's and Parkinson's disease. Currently, no pharmacological therapies have been developed to revert or cure any of these pathologies. Interestingly, in recent years, an increased number of studies have shown a high co-morbidity between T2DM and neurodegeneration, as well as some common molecular pathways that are affected in both types of diseases. For example, while the etiopathology of T2DM and neurodegenerative disorders is highly complex, mitochondrial dysfunction has been broadly described in the early steps of both diseases; accordingly, this dysfunction has emerged as a plausible molecular link between them. In fact, the prominent role played by mitochondria in the mammalian metabolism of glucose places the physiology of the organelle in a central position to regulate many cellular processes that are affected in both T2DM and neurodegenerative disorders. In this collaborative review, we critically describe the relationship between T2DM and neurodegeneration; making a special emphasis on the mitochondrial mechanisms that could link these diseases. A better understanding of the role of mitochondria on the etiopathology of T2DM and neurodegeneration could pave the way for the development of new pharmacological therapies focused on the regulation of the physiology of the organelle. These therapies could, ultimately, contribute to increase healthspan.
Collapse
Affiliation(s)
- Isabella R Baduini
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Jose E Castro Vildosola
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sheida Kavehmoghaddam
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Fatmanur Kiliç
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - S Aiman Nadeem
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Juan J Nizama
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Marietta A Rowand
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Dileep Annapureddy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Chris-Ann Bryan
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Lisa H Do
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Samuel Hsiao
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sai A Jonnalagadda
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Akhila Kasturi
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nikhila Mandava
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sachin Muppavaram
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Bryan Ramirez
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Aleece Siner
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Christina N Suoto
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nasira Tamajal
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Renata T Da Costa
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Maria E Solesio
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
2
|
Bakshi I, Suryana E, Small L, Quek LE, Brandon AE, Turner N, Cooney GJ. Fructose bisphosphatase 2 overexpression increases glucose uptake in skeletal muscle. J Endocrinol 2018; 237:101-111. [PMID: 29507044 DOI: 10.1530/joe-17-0555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Skeletal muscle is a major tissue for glucose metabolism and can store glucose as glycogen, convert glucose to lactate via glycolysis and fully oxidise glucose to CO2 Muscle has a limited capacity for gluconeogenesis but can convert lactate and alanine to glycogen. Gluconeogenesis requires FBP2, a muscle-specific form of fructose bisphosphatase that converts fructose-1,6-bisphosphate (F-1,6-bisP) to fructose-6-phosphate (F-6-P) opposing the activity of the ATP-consuming enzyme phosphofructokinase (PFK). In mammalian muscle, the activity of PFK is normally 100 times higher than FBP2 and therefore energy wasting cycling between PFK and FBP2 is low. In an attempt to increase substrate cycling between F-6-P and F-1,6-bisP and alter glucose metabolism, we overexpressed FBP2 using a muscle-specific adeno-associated virus (AAV-tMCK-FBP2). AAV was injected into the right tibialis muscle of rats, while the control contralateral left tibialis received a saline injection. Rats were fed a chow or 45% fat diet (HFD) for 5 weeks after which, hyperinsulinaemic-euglycaemic clamps were performed. Infection of the right tibialis with AAV-tMCK-FBP2 increased FBP2 activity 10 fold on average in chow and HFD rats (P < 0.0001). Overexpression of FBP2 significantly increased insulin-stimulated glucose uptake in tibialis of chow animals (control 14.3 ± 1.7; FBP2 17.6 ± 1.6 µmol/min/100 g) and HFD animals (control 9.6 ± 1.1; FBP2 11.2 ± 1.1µmol/min/100 g). The results suggest that increasing the capacity for cycling between F-1,6-bisP and F-6-P can increase the metabolism of glucose by introducing a futile cycle in muscle, but this increase is not sufficient to overcome muscle insulin resistance.
Collapse
Affiliation(s)
- Ishita Bakshi
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Lewin Small
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
| | - Lake-Ee Quek
- School of Mathematics and StatisticsUniversity of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
- Sydney Medical SchoolCharles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of PharmacologySchool of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism DivisionGarvan Institute, Sydney, New South Wales, Australia
- Sydney Medical SchoolCharles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Yang J, Oh YT, Wan D, Watanabe RM, Hammock BD, Youn JH. Postprandial effect to decrease soluble epoxide hydrolase activity: roles of insulin and gut microbiota. J Nutr Biochem 2017; 49:8-14. [PMID: 28863368 DOI: 10.1016/j.jnutbio.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 02/08/2023]
Abstract
Epoxides of free fatty acids (FFAs), especially epoxyeicosatrienoic acids (EETs), are lipid mediators with beneficial effects in metabolic and cardiovascular (CV) health. FFA epoxides are quickly metabolized to biologically less active diols by soluble epoxide hydrolase (sEH). Inhibition of sEH, which increases EET levels, improves glucose homeostasis and CV health and is proposed as an effective strategy for the treatment of diabetes and CV diseases. Here, we show evidence that sEH activity is profoundly reduced in postprandial states in rats; plasma levels of 17 sEH products (i.e., FFA diols), detected by targeted oxylipin analysis, all decreased after a meal. In addition, the ratios of sEH product to substrate (sEH P/S ratios), which may reflect sEH activity, decreased ~70% on average 2.5 h after a meal in rats (P<.01). To examine whether this effect was mediated by insulin action, a hyperinsulinemic-euglycemic clamp was performed for 2.5 h, and sEH P/S ratios were assessed before and after the clamp. The clamp resulted in small increases rather than decreases in sEH P/S ratios (P<.05), indicating that insulin cannot account for the postprandial decrease in sEH P/S ratios. Interestingly, in rats treated with antibiotics to deplete gut bacteria, the postprandial effect to decrease sEH P/S ratios was completely abolished, suggesting that a gut bacteria-derived factor(s) may be responsible for the effect. Further studies are warranted to identify such a factor(s) and elucidate the mechanism by which sEH activity (or sEH P/S ratio) is reduced in postprandial states.
Collapse
Affiliation(s)
- Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Young Taek Oh
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Debin Wan
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Richard M Watanabe
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA; Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Jang H Youn
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Molina MN, Ferder L, Manucha W. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance. Curr Hypertens Rep 2015; 18:1. [DOI: 10.1007/s11906-015-0615-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Oh YT, Tran D, Buchanan TA, Selsted ME, Youn JH. θ-Defensin RTD-1 improves insulin action and normalizes plasma glucose and FFA levels in diet-induced obese rats. Am J Physiol Endocrinol Metab 2015; 309:E154-60. [PMID: 25991648 PMCID: PMC4504933 DOI: 10.1152/ajpendo.00131.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/16/2015] [Indexed: 11/22/2022]
Abstract
Inflammation is implicated in metabolic abnormalities in obesity and type 2 diabetes. Because θ-defensins have anti-inflammatory activities, we tested whether RTD-1, a θ-defensin, improves metabolic conditions in diet-induced obesity (DIO). DIO was induced by high-fat feeding in obese-prone CD rats from 4 wk of age. Starting at age 10 wk, the DIO rats were treated with saline or RTD-1 for 4 or 8 wk. DIO rats gained more weight than low-fat-fed controls. RTD-1 treatment did not alter body weight or calorie intake in DIO rats. Plasma glucose, FFA, triglyceride (TG), and insulin levels increased in DIO rats; RTD-1 normalized plasma glucose and FFA levels and showed tendencies to lower plasma insulin and TG levels. Hepatic and skeletal muscle TG contents increased in DIO rats; RTD-1 decreased muscle, but not hepatic, TG content. Insulin sensitivity, estimated using homeostasis model assessment of insulin resistance and the glucose clamp technique, decreased in DIO rats, but this change was markedly reversed by RTD-1. RTD-1 had no significant effects on plasma cytokine/chemokine levels or IL-1β and TNF-α expression in liver or adipose tissues. RTD-1 treatment decreased hepatic expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, suggesting that the effect of RTD-1 on plasma glucose (or insulin action) might be mediated by its effect to decrease hepatic gluconeogenesis. Thus, RTD-1 ameliorated insulin resistance and normalized plasma glucose and FFA levels in DIO rats, supporting the potential of RTD-1 as a novel therapeutic agent for insulin resistance, metabolic syndrome, or type 2 diabetes.
Collapse
Affiliation(s)
- Young Taek Oh
- Departments of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Dat Tran
- Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Thomas A Buchanan
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California; and
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, California; Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jang H Youn
- Departments of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California;
| |
Collapse
|
6
|
Pereira-Lancha LO, Campos-Ferraz PL, Lancha AH. Obesity: considerations about etiology, metabolism, and the use of experimental models. Diabetes Metab Syndr Obes 2012; 5:75-87. [PMID: 22570558 PMCID: PMC3346207 DOI: 10.2147/dmso.s25026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies have been conducted in order to identify the main factors that contribute to the development of obesity. The role of genetics has also been extensively studied. However, the substantial augmentation of obesity prevalence in the last 20 years cannot be justified only by genetic alterations that, theoretically, would have occurred in such a short time. Thus, the difference in obesity prevalence in various population groups is also related to environmental factors, especially diet and the reduction of physical activity. These aspects, interacting or not with genetic factors, could explain the excess of body fat in large proportions worldwide. This article will focus on positive energy balance, high-fat diet, alteration in appetite control hormones, insulin resistance, amino acids metabolism, and the limitation of the experimental models to address this complex issue.
Collapse
Affiliation(s)
| | | | - Antonio H Lancha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Kang I, Kim SW, Youn JH. Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metab 2011; 96:3048-55. [PMID: 21816780 PMCID: PMC3200242 DOI: 10.1210/jc.2011-1104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Nicotinic acid (NA), or niacin, lowers circulating levels of lipids, including triglycerides, very low-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol. The lipid-lowering effects have been attributed to its effect to inhibit lipolysis in adipocytes and thus lower plasma free fatty acid (FFA) level. However, evidence accumulates that the FFA-lowering effect may account for only a fraction of NA effects on plasma lipids, and other mechanisms may be involved. Recent studies have reported NA effects on gene expression in various tissues in vivo and in cultured cells in vitro. EVIDENCE ACQUISITION We reviewed articles reporting NA effects on gene expression, identified by searching PubMed, focusing on potential underlying mechanisms and implications for unexplained NA effects. CONCLUSION The effects of NA on gene expression may be mediated directly via the NA receptor in the affected cells, indirectly via changes in circulating FFA or hormone levels induced by NA, or by activating the transcription factor FOXO1 in insulin-sensitive tissues. NA effects on gene expression provide new insights into previously unexplained NA effects, such as FFA-independent lipid-lowering effects, FFA rebound, and insulin resistance observed in clinics during NA treatment.
Collapse
Affiliation(s)
- Insug Kang
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul 1130-701, Korea
| | | | | |
Collapse
|
8
|
Sweazea KL, Walker BR. High fat feeding impairs endothelin-1 mediated vasoconstriction through increased iNOS-derived nitric oxide. Horm Metab Res 2011; 43:470-6. [PMID: 21448844 PMCID: PMC3376914 DOI: 10.1055/s-0031-1273763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rats fed a high fat diet develop increased adiposity and oxidative stress leading to impaired vasodilation. The purpose of the present study was to examine the effects of high fat-induced increases in adiposity and oxidative stress on vasoconstrictor reactivity of isolated mesenteric arteries. We hypothesized that rats with more adiposity would develop oxidative stress-potentiated increases in iNOS-derived nitric oxide leading to diminished vasoconstriction. Male Sprague-Dawley rats were fed either a control (Chow) or high fat diet for 6 weeks. The roles of oxidative stress and iNOS in the impaired vasoconstrictor responses to endothelin-1 were characterized in small mesenteric arteries. Rats fed the HFD developed significantly more adiposity compared to Chow rats. Plasma levels of nitric oxide and the inflammatory factor tumor necrosis factor α were significantly higher in high fat fed rats compared to Chow rats (nitric oxide: 95.36±19.3 vs. 38.96±6.7 μM; tumor necrosis factor α: 598±111.4 vs. 292±71.8 pg/ml, respectively). Despite exhibiting elevated systolic blood pressure compared to Chow rats (153.5±2.4 vs. 137.5±2.7 mm Hg), endothelin-1 mediated vasoconstriction was impaired in isolated mesenteric arteries from high fat fed rats but was normalized by individual or combined inhibition of nitric oxide synthase, iNOS, or oxidative stress. Therefore, oxidative stress and iNOS are involved in the attenuation of endothelin-1 mediated vasoconstriction observed in isolated mesenteric arteries from high fat fed rats.
Collapse
Affiliation(s)
- K L Sweazea
- College of Nursing and Health Innovation, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | |
Collapse
|
9
|
Oh YT, Oh KS, Choi YM, Jokiaho A, Donovan C, Choi S, Kang I, Youn JH. Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissue. Am J Physiol Endocrinol Metab 2011; 300:E1012-21. [PMID: 21386057 PMCID: PMC3118587 DOI: 10.1152/ajpendo.00650.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nicotinic acid (NA) has been used as a lipid drug for five decades. The lipid-lowering effects of NA are attributed to its ability to suppress lipolysis in adipocytes and lower plasma FFA levels. However, plasma FFA levels often rebound during NA treatment, offsetting some of the lipid-lowering effects of NA and/or causing insulin resistance, but the underlying mechanisms are unclear. The present study was designed to determine whether a prolonged, continuous NA infusion in rats produces a FFA rebound and/or insulin resistance. NA infusion rapidly lowered plasma FFA levels (>60%, P < 0.01), and this effect was maintained for ≥5 h. However, when this infusion was extended to 24 h, plasma FFA levels rebounded to the levels of saline-infused control rats. This was not due to a downregulation of NA action, because when the NA infusion was stopped, plasma FFA levels rapidly increased more than twofold (P < 0.01), indicating that basal lipolysis was increased. Microarray analysis revealed many changes in gene expression in adipose tissue, which would contribute to the increase in basal lipolysis. In particular, phosphodiesterase-3B gene expression decreased significantly, which would increase cAMP levels and thus lipolysis. Hyperinsulinemic glucose clamps showed that insulin's action on glucose metabolism was improved during 24-h NA infusion but became impaired with increased plasma FFA levels after cessation of NA infusion. In conclusion, a 24-h continuous NA infusion in rats resulted in an FFA rebound, which appeared to be due to altered gene expression and increased basal lipolysis in adipose tissue. In addition, our data support a previous suggestion that insulin resistance develops as a result of FFA rebound during NA treatment. Thus, the present study provides an animal model and potential molecular mechanisms of FFA rebound and insulin resistance, observed in clinical studies with chronic NA treatment.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Choi S, Yoon H, Oh KS, Oh YT, Kim YI, Kang I, Youn JH. Widespread effects of nicotinic acid on gene expression in insulin-sensitive tissues: implications for unwanted effects of nicotinic acid treatment. Metabolism 2011; 60:134-44. [PMID: 20303128 PMCID: PMC2912158 DOI: 10.1016/j.metabol.2010.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 11/26/2022]
Abstract
Nicotinic acid (NA; or niacin) has been used as a hypolipidemic agent for more than 4 decades. However, the mechanisms underlying the effects of NA treatment (wanted and unwanted) are still poorly understood. In the present study, we discovered that NA infusion in rats resulted in dephosphorylation (ie, activation) of the forkhead transcription factor FOXO1 in insulin-sensitive tissues such as skeletal and cardiac muscles, liver, and adipose tissue. These NA effects were opposite to the effects of insulin to increase FOXO1 phosphorylation. To test whether NA alters gene expression in these tissues, rats were infused for 7 hours with NA (30 μmol/h) and/or insulin (5 mU/[kg min]); and gene expression was evaluated using a microarray analysis. Nicotinic acid had widespread effects on gene expression in all of the tissues studied, and the number of genes affected by NA greatly exceeded that of genes affected by insulin. A systematic (or strategic) analysis of the microarray data revealed that there were numerous genes whose expression was regulated inversely by insulin and NA in correlation with FOXO1 phosphorylation, representing potential FOXO1 target genes. We also identified a group of genes whose expression was altered by NA exclusively in adipose tissue, presumably because of stimulation of the NA receptor in this tissue. Finally, there were genes whose expression was altered by both NA and insulin, likely via lowering plasma free fatty acid levels, including lipoprotein lipase and adenosine triphosphate-binding cassette A1, which play a major role in the regulation of circulating lipids. Thus, our data suggest that NA alters gene expression in insulin-sensitive tissues by various mechanisms. Some of the NA-induced changes in gene expression are discussed as potential mechanisms underlying wanted and unwanted effects of NA treatment.
Collapse
Affiliation(s)
- Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hana Yoon
- Department of Biochemistry and Molecular Biology, Kyung Hee University, School of Medicine, Seoul, Korea
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Ki-Sook Oh
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Young Taek Oh
- Department of Biochemistry and Molecular Biology, Kyung Hee University, School of Medicine, Seoul, Korea
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Young I. Kim
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Jang H. Youn
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
11
|
Chun MR, Lee YJ, Kim KH, Kim YW, Park SY, Lee KM, Kim JY, Park YK. Differential effects of high-carbohydrate and high-fat diet composition on muscle insulin resistance in rats. J Korean Med Sci 2010; 25:1053-9. [PMID: 20592898 PMCID: PMC2890883 DOI: 10.3346/jkms.2010.25.7.1053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/30/2009] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to evaluate whether the composition of carbohydrate or fat diet affects insulin resistance by measuring the muscle glucose transport rate. Both high-sucrose and high-starch diet with or without high-fat decreased insulin-stimulated glucose transport, but there were no significant differences among groups. Calorie intake in both high-sucrose and high-starch diet groups was higher than in chow group. The high-fat high-sucrose diet induced decrease in insulin-stimulated glucose transport was partially improved by supplement with fish oil. Calorie intake in high-fat high-sucrose and fish oil supplemented groups was higher than in chow group. The decreased insulin-stimulated glucose transport was accompanied by the increase in visceral fat mass, plasma triglyceride and insulin levels. These changes were improved by the supplement with fish oil. These results demonstrate that the composition of fat in diet is clearly instrumental in the induction of muscle insulin resistance. However, in high carbohydrate diet, it is likely that the amount of calorie intake may be a more important factor in causing insulin resistance than the composition of carbohydrate. Thus, the compositions of carbohydrate and fat in diet differentially affect on muscle insulin resistance.
Collapse
Affiliation(s)
- Mu-Ryun Chun
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Youn Ju Lee
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Ki-Hoon Kim
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Yong-Woon Kim
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - So-Young Park
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Keun-Mi Lee
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Jong-Yeon Kim
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| | - Yoon-Ki Park
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
12
|
Youn JH, McDonough AA. Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 2009; 71:381-401. [PMID: 18759636 DOI: 10.1146/annurev.physiol.010908.163241] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K(+)], there is evidence for a feedforward mechanism: Dietary K(+) intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K(+) excretion. This pathway may explain renal and extrarenal responses to altered K(+) intake that occur independently of changes in ECF [K(+)]. Mechanisms for conserving ECF K(+) during fasting or K(+) deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K(+) channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K(+) uptake. How these mechanisms are triggered by K(+) deprivation remains unclear. Cellular AMP kinase-dependent protein kinase activity provokes the acute transfer of K(+) from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K(+) diet for the cardiovascular system.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9142, USA.
| | | |
Collapse
|
13
|
Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IJ, Pessin JE. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem 2009; 284:4679-88. [PMID: 19064993 PMCID: PMC2640962 DOI: 10.1074/jbc.m807408200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Indexed: 01/19/2023] Open
Abstract
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Collapse
Affiliation(s)
- Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Gaster M. Fibre Type Dependent Expression of Glucose Transporters in Human Skeletal Muscles. APMIS 2008. [DOI: 10.1111/j.1600-0463.2007.apmv115s121.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Abstract
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
16
|
Burén J, Lai YC, Lundgren M, Eriksson JW, Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys 2008; 474:91-101. [PMID: 18328801 DOI: 10.1016/j.abb.2008.02.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/18/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Glucocorticoids initiate whole body insulin resistance and the aim of the present study was to investigate effects of dexamethasone on protein expression and insulin signalling in muscle and fat tissue. Rats were injected with dexamethasone (1mg/kg/day, i.p.) or placebo for 11 days before insulin sensitivity was evaluated in vitro in soleus and epitrochlearis muscles and in isolated epididymal adipocytes. Dexamethasone treatment reduced insulin-stimulated glucose uptake and glycogen synthesis by 30-70% in epitrochlearis and soleus, and insulin-stimulated glucose uptake by approximately 40% in adipocytes. 8-bromo-cAMP-stimulated lipolysis was approximately 2-fold higher in adipocytes from dexamethasone-treated rats and insulin was less effective to inhibit cAMP-stimulated lipolysis. A main finding was that dexamethasone decreased expression of PKB and insulin-stimulated Ser(473) and Thr(308) phosphorylation in both muscles and adipocytes. Expression of GSK-3 was not influenced by dexamethasone treatment in muscles or adipocytes and insulin-stimulated GSK-3beta Ser(9) phosphorylation was reduced in muscles only. A novel finding was that glycogen synthase (GS) Ser(7) phosphorylation was higher in both muscles from dexamethasone-treated rats. GS expression decreased (by 50%) in adipocytes only. Basal and insulin-stimulated GS Ser(641) and GS Ser(645,649,653,657) phosphorylation was elevated in epitrochlearis and soleus muscles and GS fractional activity was reduced correspondingly. In conclusion, dexamethasone treatment (1) decreases PKB expression and insulin-stimulated phosphorylation in both muscles and adipocytes, and (2) increases GS phosphorylation (reduces GS fractional activity) in muscles and decreases GS expression in adipocytes. We suggest PKB and GS as major targets for dexamethasone-induced insulin resistance.
Collapse
Affiliation(s)
- J Burén
- Department of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, Sweden
| | | | | | | | | |
Collapse
|
17
|
Hoy AJ, Bruce CR, Cederberg A, Turner N, James DE, Cooney GJ, Kraegen EW. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. Am J Physiol Endocrinol Metab 2007; 293:E1358-64. [PMID: 17785505 DOI: 10.1152/ajpendo.00133.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.
Collapse
Affiliation(s)
- Andrew J Hoy
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Rodriguez A, Hilvo M, Kytömäki L, Fleming RE, Britton RS, Bacon BR, Parkkila S. Effects of iron loading on muscle: genome-wide mRNA expression profiling in the mouse. BMC Genomics 2007; 8:379. [PMID: 17949489 PMCID: PMC2151772 DOI: 10.1186/1471-2164-8-379] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/19/2007] [Indexed: 01/03/2023] Open
Abstract
Background Hereditary hemochromatosis (HH) encompasses genetic disorders of iron overload characterized by deficient expression or function of the iron-regulatory hormone hepcidin. Mutations in 5 genes have been linked to this disease: HFE, TFR2 (encoding transferrin receptor 2), HAMP (encoding hepcidin), SLC40A1 (encoding ferroportin) and HJV (encoding hemojuvelin). Hepcidin inhibits iron export from cells into plasma. Hemojuvelin, an upstream regulator of hepcidin expression, is expressed in mice mainly in the heart and skeletal muscle. It has been suggested that soluble hemojuvelin shed by the muscle might reach the liver to influence hepcidin expression. Heart muscle is one of the target tissues affected by iron overload, with resultant cardiomyopathy in some HH patients. Therefore, we investigated the effect of iron overload on gene expression in skeletal muscle and heart using Illumina™ arrays containing over 47,000 probes. The most apparent changes in gene expression were confirmed using real-time RT-PCR. Results Genes with up-regulated expression after iron overload in both skeletal and heart muscle included angiopoietin-like 4, pyruvate dehydrogenase kinase 4 and calgranulin A and B. The expression of transferrin receptor, heat shock protein 1B and DnaJ homolog B1 were down-regulated by iron in both muscle types. Two potential hepcidin regulatory genes, hemojuvelin and neogenin, showed no clear change in expression after iron overload. Conclusion Microarray analysis revealed iron-induced changes in the expression of several genes involved in the regulation of glucose and lipid metabolism, transcription and cellular stress responses. These may represent novel connections between iron overload and pathological manifestations of HH such as cardiomyopathy and diabetes.
Collapse
Affiliation(s)
- Alejandra Rodriguez
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bernal CA, Rovira J, Colandré ME, Cussó R, Cadefau JA. Effects of dietary cis and trans unsaturated and saturated fatty acids on the glucose metabolites and enzymes of rats. Br J Nutr 2006; 95:947-54. [PMID: 16611385 DOI: 10.1079/bjn20061756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to examine whether the level of dietary cis fatty acid (cFA), or the isomers (trans or cis) and/or the saturation of the fatty acids at high dietary fat levels altered the intracellular glucose metabolites and certain regulatory enzyme activities in the skeletal muscle and liver of rats. The animals were fed for 30 d on either a recommended control diet (7 % cFA, w/w) or a high-fat diet (20 % fatty acids, w/w). The high-fat diet was enriched with either cFA, trans fatty acid (tFA), a moderate proportion of saturated fatty acid (MSFA), or a high proportion of saturated fatty acid (HSFA). The most striking findings were observed in the gastrocnemius muscle with a HSFA diet. There was a significant increase in glucose-6-phosphate (306 %), glucose-1-phosphate (245 %), fructose-6-phosphate (400 %), fructose-1,6-bisphosphate (86 %), glyceraldehyde-3-phosphate (38 %), pyruvate (341 %), lactate (325 %), citrate (79 %) and the bisphosphorylated sugars as compared with the cFA diet. These changes were paralleled by an increase in muscle triacylglycerol content (49 %) and a decrease in glucose (39 %). In addition, the amount of cFA and the other types of fatty acid (i.e. tFA and MSFA) led to no great differences in glucose metabolism as compared with the respective control group. These data support the hypothesis that glucose changes induced by a HSFA diet are a multifaceted abnormality. Glucose and lactate transport and intracellular glucose metabolism could be the key biochemical defects involved in this detrimental effect on glucose metabolism.
Collapse
Affiliation(s)
- Claudio A Bernal
- Cátedra Bromatología y Nutricíon, Universidad Nacional del Litoral, Argentina.
| | | | | | | | | |
Collapse
|
20
|
Just M, Faergeman NJ, Knudsen J, Beck-Nielsen H, Gaster M. Long-chain Acyl-CoA is not primarily increased in myotubes established from type 2 diabetic subjects. Biochim Biophys Acta Mol Basis Dis 2006; 1762:666-72. [PMID: 16815692 DOI: 10.1016/j.bbadis.2006.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 05/01/2006] [Accepted: 05/17/2006] [Indexed: 11/22/2022]
Abstract
Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean controls express differences in long-chain acyl-CoA esters (LCACoA) precultured under physiological conditions and during chronic exposure to palmitate (PA) and oleic acids (OA) with/without acute insulin stimulation. No significant differences were found between diabetic and control myotubes, neither in the total amount nor among individual LCA-CoA species during basal and acute insulin stimulation. LCA-CoA accumulated during exposure to palmitic acid but not during exposure to oleic acid. During PA and OA exposure, only palmitoyl-CoA, oleoyl-CoA and total LCA-CoA change. PA exposure increased the palmitoyl-CoA, whereas oleoyl-CoA was reduced and vice versa during OA exposure. No differences were found in the LCA-CoA level between T2D and control subjects, neither in the total amount nor in the individual specific LCA-CoA species during fatty acid exposure. Chronic (24 h), high PA, but not OA exposure induced insulin resistance at the level of glycogen synthesis in control subjects. These results indicate that (1) no primary defects are responsible for LCA-CoA accumulation in diabetic subjects; (2) LCA-CoA changes in vivo are partly adaptive to changes in the PA level and possibly other saturated fatty acids; and (3) PA induced insulin resistance may be mediated through an increased level of palmitoyl-CoA.
Collapse
Affiliation(s)
- Malene Just
- KMEB, Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | | | | | | | | |
Collapse
|
21
|
Abstract
The first biological action of amylin to be described was the inhibition of insulin-stimulated incorporation of radiolabeled glucose into glycogen in the isolated soleus muscle of the rat. This antagonism of insulin action in muscle was non-competitive, occurring with equal potency and efficacy at all insulin concentrations. Amylin inhibited activation of glycogen synthase, partially accounting for the inhibition of radiolabeled glucose incorporation. However, this did not account for a low rate of labeling at higher amylin concentrations, wherein the radioglycogen accumulation was even less than in incubations where insulin was absent. The principal action of amylin accounting for reduction of insulin-stimulated accumulation of glycogen was activation of glycogen phosphorylase via a cyclic AMP-, protein kinase C-dependent signaling pathway to cause glycogenolysis (glycogen breakdown). At physiological concentrations, amylin activated glycogen phosphorylase at its ED50, but because glycogen phosphorylase is present in such high activity, the resulting flux out of glycogen was estimated to be similar to insulin-mediated flux of glucosyl moieties into glycogen. Thus, in the rat, endogenous amylin secreted in response to meals appeared to mobilize carbon from skeletal muscle. Amylin-induced glycogenolysis resulted in intramuscular accumulation of glucose-6-phosphate and release of lactate from tissue beds that included muscle. When muscle glycogen was pre-labeled with tritium in the three position, amylin could be shown to evoke the release of free glucose. This is made possible by glucosyl moieties cleaved at the branch points in glycogen being released as free glucose, rather than being phosphorylated, as occurs with the bulk of the glycogen glucosyls. Free glucose is free to exit cells via facilitated transport, down a concentration gradient that might exist under such circumstances. When measured by a sensitive technique utilizing efflux of labeled glucose, amylin was reported to not affect muscle glucose transport. In most of the above respects, amylin behaved similarly to catecholamines in skeletal muscle. The pharmacology of amylin's effects on muscle glycogen metabolism was consistent with a classic amylin pharmacology in whole animals and in isolated soleus muscle. In one cell line, the pharmacology was CGRPergic. Amylin, like insulin, stimulated Na+/K+ ATPase activity and enhanced muscle contractility in vitro.
Collapse
Affiliation(s)
- Andrew Young
- Amylin Pharmaceuticals, Inc., San Diego, California, USA
| |
Collapse
|
22
|
Gaster M, Beck-Nielsen H. Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:100-10. [PMID: 16442843 DOI: 10.1016/j.bbalip.2005.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/12/2005] [Accepted: 12/12/2005] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA) concentrations with/without high glucose and/or high insulin concentrations for 4 days. We showed that these myotubes expressed an increased TAG accumulation (P<0.001) without differences between groups. Chronically high insulin, but not high glucose concentrations, increases TAG accumulation by 25% (P<0.001). Inhibition of oxidative phosphorylation by antimycin A and oligomyin was followed by a reduced lipid oxidation (P<0.05) and increased TAG accumulation (P<0.05), but only in the presence of FAs. Both chronic PA and OA exposure reduced the insulin-mediated PA and OA uptake (fold change) (P<0.001), but could not induce insulin resistance at the level of glucose uptake, whereas high insulin concentrations induced insulin resistance (P<0.001). Chronic, high PA, but not OA, induced insulin resistance at the GS level in control subjects (P<0.05). The TAG content correlated negatively with insulin-stimulated FA uptake (P<0.001), but did not correlate with insulin-stimulated glucose uptake for PA or OA (P>0.05). These results indicate that (1) TAG accumulation is not primarily affected in skeletal muscle tissue of obese and T2D; (2) induced inhibition of oxidative phosphorylation is followed by TAG accumulation; (3) increasing FA and insulin availability, and reduced oxidative phosphorylation, and to a lesser extent glucose, are determinants for differences in intramyocellular TAG accumulation; (4) quantitative TAG content may not be the best marker for insulin resistance. Thus, increased TAG content in skeletal muscle of obese and T2D subjects is adaptive.
Collapse
Affiliation(s)
- Michael Gaster
- KMEB, Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| | | |
Collapse
|
23
|
Hirabara SM, Silveira LR, Abdulkader F, Carvalho CRO, Procopio J, Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism. J Cell Physiol 2006; 210:7-15. [PMID: 17013887 DOI: 10.1002/jcp.20811] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.
Collapse
Affiliation(s)
- Sandro M Hirabara
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
24
|
Cho EH, Koh EH, Kim MS, Park JY, Lee KU. Mitochondrial Dysfunction and Insulin Resistance. ACTA ACUST UNITED AC 2006. [DOI: 10.4093/jkda.2006.30.6.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- EH Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - EH Koh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - MS Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - JY Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - KU Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| |
Collapse
|
25
|
Pehleman TL, Peters SJ, Heigenhauser GJF, Spriet LL. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet. J Appl Physiol (1985) 2004; 98:100-7. [PMID: 15310747 DOI: 10.1152/japplphysiol.00686.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.
Collapse
Affiliation(s)
- Tanya L Pehleman
- Dept. of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
26
|
Ghatta S, Ramarao P. Increased contractile responses to 5-Hydroxytryptamine and Angiotensin II in high fat diet fed rat thoracic aorta. Lipids Health Dis 2004; 3:19. [PMID: 15287987 PMCID: PMC509282 DOI: 10.1186/1476-511x-3-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 08/02/2004] [Indexed: 11/23/2022] Open
Abstract
Background Feeding normal rats with high dietary levels of saturated fat leads to pathological conditions, which are quite similar to syndrome X in humans. These conditions such as hypertriglyceridemia, hypercholesterolemia, obesity, and hyperglycemia might induce hypertension through various mechanisms. Metabolic syndrome and the resulting NIDDM represent a major clinical challenge because implementation of treatment strategies is difficult. Vascular abnormalities probably contribute to the etiology of many diabetic complications including nephropathy, neuropathy, retinopathy, and cardiomyopathy. It has been shown that in Streptozotocin induced diabetic animals there is an increase in maximal responses to 5-Hydroxytryptamine and Angiotensin II. The purpose of this study was to evaluate High fat diet fed rats for the development of hypertriglyceridemia, hypercholesterolemia, hyperinsulinemia and hyperglycemia and to assess their vascular responses to 5-Hydroxytryptamine and Angiotensin II. Methods Male Sprague Dawley rats were used for this study and were divided into two equal groups. One of the groups was fed with normal pellet diet and they served as the control group, whereas the other group was on a high fat diet for 4 weeks. Body weight, plasma triglycerides, plasma cholesterol, and plasma glucose were measured every week. Intraperitoneal glucose tolerance test was performed after 4 weeks of feeding. At the end of fourth week of high fat diet feeding, thoracic aortae were removed, and cut into helical strips for vascular reactivity studies. Dose-response curves of 5-Hydroxytryptamine and Angiotensin II were obtained. Results There was no significant difference in pD2, with 5-Hydroxytryptamine and Angiotensin II in both groups but Emax was increased. Conclusions These results suggest that hypertension in high fat diet rats is associated with increased in vitro vascular reactivity to 5-HT and Ang II.
Collapse
Affiliation(s)
- Srinivas Ghatta
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, Phase-X, S.A.S. Nagar 160 062, Punjab, India
| | - Poduri Ramarao
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, Phase-X, S.A.S. Nagar 160 062, Punjab, India
| |
Collapse
|
27
|
Hegarty BD, Furler SM, Ye J, Cooney GJ, Kraegen EW. The role of intramuscular lipid in insulin resistance. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:373-83. [PMID: 12864742 DOI: 10.1046/j.1365-201x.2003.01162.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is interest in how altered lipid metabolism could contribute to muscle insulin resistance. Many animal and human states of insulin resistance have increased muscle triglyceride content, and there are now plausible mechanistic links between muscle lipid accumulation and insulin resistance, which go beyond the classic glucose-fatty acid cycle. We postulate that muscle cytosolic accumulation of the metabolically active long-chain fatty acyl CoAs (LCACoA) is involved, leading to insulin resistance and impaired insulin signalling or impaired enzyme activity (e.g. glycogen synthase or hexokinase) either directly or via chronic translocation/activation of mediators such as a protein kinase C (particularly PKC theta and epsilon ). Ceramides and diacylglycerols (DAGs) have also been implicated in forms of lipid-induced muscle insulin resistance. Dietary lipid-induced muscle insulin resistance in rodents is relatively easily reversed by manipulations that lessen cytosolic lipid accumulation (e.g. diet change, exercise or fasting). PPAR agonists (both gamma and alpha) also lower muscle LCACoA and enhance insulin sensitivity. Activation of AMP-activated protein kinase (AMPK) by AICAR leads to muscle enhancement (especially glycolytic muscle) of insulin sensitivity, but involvement of altered lipid metabolism is less clear cut. In rodents there are similarities in the pattern of muscle lipid accumulation/PKC translocation/altered insulin signalling/insulin resistance inducible by 3-5-h acute free fatty acid elevation, 1-4 days intravenous glucose infusion or several weeks of high-fat feeding. Recent studies extend findings and show relevance to humans. Muscle cytosolic lipids may accumulate either by increased fatty acid flux into muscle, or by reduced fatty acid oxidation. In some circumstances muscle insulin resistance may be an adaptation to optimize use of fatty acids when they are the predominant available energy fuel. The interactions described here are fundamental to optimizing therapy of insulin resistance based on alterations in muscle lipid metabolism.
Collapse
Affiliation(s)
- B D Hegarty
- Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | |
Collapse
|
28
|
Pereira LO, Francischi RPD, Lancha Jr. AH. Obesidade: hábitos nutricionais, sedentarismo e resistência à insulina. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0004-27302003000200003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A obesidade já é considerada uma epidemia mundial independente de condições econômicas e sociais. O risco aumentado de mortalidade e morbidade associado à obesidade tem sido alvo de muitos estudos que tentam elucidar os aspectos da síndrome X como conseqüência da obesidade. Esta síndrome é caracterizada por algumas doenças metabólicas, como resistência à insulina, hipertensão, dislipidemia. Está bem estabelecido que fatores genéticos têm influência neste aumento dos casos de obesidade. No entanto, o aumento significativo nos casos de obesidade nos últimos 20 anos dificilmente poderia ser explicado por mudanças genéticas que tenham ocorrido neste espaço de tempo. Sendo assim, os principais fatores envolvidos no desenvolvimento da obesidade têm sido relacionados com fatores ambientais, como ingestão alimentar inadequada e redução no gasto calórico diário. Na tentativa de desencadear obesidade em animais e permitir o estudo desta doença de maneira mais completa, diversos modelos experimentais de obesidade têm sido desenvolvidos. Ainda que não possam ser considerados exatamente iguais aos modelos de obesidade humana, são de grande valor no estudo dos diversos aspectos que contribuem para este excessivo acúmulo de adiposidade e suas conseqüências.
Collapse
|
29
|
Choi CS, Kim YB, Lee FN, Zabolotny JM, Kahn BB, Youn JH. Lactate induces insulin resistance in skeletal muscle by suppressing glycolysis and impairing insulin signaling. Am J Physiol Endocrinol Metab 2002; 283:E233-40. [PMID: 12110527 DOI: 10.1152/ajpendo.00557.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.
Collapse
Affiliation(s)
- Cheol S Choi
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9142, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cooney GJ, Thompson AL, Furler SM, Ye J, Kraegen EW. Muscle long-chain acyl CoA esters and insulin resistance. Ann N Y Acad Sci 2002; 967:196-207. [PMID: 12079848 DOI: 10.1111/j.1749-6632.2002.tb04276.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A common observation in animal models and in humans is that accumulation of muscle triglyceride is associated with the development of insulin resistance. In animals, this is true of genetic models of obesity and nutritional models of insulin resistance generated by high-fat feeding, infusion of lipid, or infusion of glucose. Although there is a strong link between the accumulation of triglycerides (TG) in muscle and insulin resistance, it is unlikely that TG are directly involved in the generation of muscle insulin resistance. There are now other plausible mechanistic links between muscle lipid metabolites and insulin resistance, in addition to the classic substrate competition proposed by Randle's glucose-fatty acid cycle. The first step in fatty acid metabolism (oxidation or storage) is activation to the long-chain fatty acyl CoA (LCACoA). This review covers the evidence suggesting that cytosolic accumulation of this active form of lipid in muscle can lead to impaired insulin signaling, impaired enzyme activity, and insulin resistance, either directly or by conversion to other lipid intermediates that alter the activity of key kinases and phosphatases. Actions of fatty acids to bind specific nuclear transcription factors provide another mechanism whereby different lipids could influence metabolism.
Collapse
Affiliation(s)
- G J Cooney
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, NSW 2010, Australia.
| | | | | | | | | |
Collapse
|
31
|
Steinberg GR, Dyck DJ, Calles-Escandon J, Tandon NN, Luiken JJFP, Glatz JFC, Bonen A. Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle. J Biol Chem 2002; 277:8854-60. [PMID: 11729182 DOI: 10.1074/jbc.m107683200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Cha MC, Johnson JA, Hsu CY, Boozer CN. High-fat hypocaloric diet modifies carbohydrate utilization of obese rats during weight loss. Am J Physiol Endocrinol Metab 2001; 280:E797-803. [PMID: 11287363 DOI: 10.1152/ajpendo.2001.280.5.e797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of fat content in the hypocaloric diet on whole body glucose oxidation and adipocyte glucose transport were investigated in two animal-feeding experiments. Diet-induced obese rats were food restricted to 75% of their previous energy intakes with either a high (45% by calorie) or a low (12% by calorie) corn oil diet for 9 wk (experiment 1) or 10 days (experiment 2). The losses of body weight (P < 0.05) and adipose depot weight (P < 0.05) were less in the 45% compared with the 12% fat group. During the dynamic phase of weight loss (day 10 of food restriction), plasma glucose and insulin concentrations were higher (P < 0.05) in the 45% than those in the 12% fat group. Whole body carbohydrate oxidation rate in response to an oral load of glucose was increased (P < 0.001) by food restriction in both dietary groups; however, carbohydrate oxidation rates were lower (P < 0.01) in the 45% than in the 12% fat-fed rats during the weight loss period. Adipocyte glucose transport was greater (P < 0.02) in the 45% than in the 12% fat group in an intra-abdominal adipose depot but not in subcutaneous fat. These data suggest that dietary fat content modifies whole body glucose oxidation and intra-abdominal adipocyte glucose uptake during weight loss.
Collapse
Affiliation(s)
- M C Cha
- New York Obesity Research Center, St. Luke's-Roosevelt Hospital, New York 10025, USA
| | | | | | | |
Collapse
|
33
|
Steinberg GR, Dyck DJ. Development of leptin resistance in rat soleus muscle in response to high-fat diets. Am J Physiol Endocrinol Metab 2000; 279:E1374-82. [PMID: 11093926 DOI: 10.1152/ajpendo.2000.279.6.e1374] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct evidence for leptin resistance in peripheral tissues such as skeletal muscle does not exist. Therefore, we investigated the effects of different high-fat diets on lipid metabolism in isolated rat soleus muscle and specifically explored whether leptin's stimulatory effects on muscle lipid metabolism would be reduced after exposure to high-fat diets. Control (Cont, 12% kcal fat) and high-fat [60% kcal safflower oil (n-6) (HF-Saff); 48% kcal safflower oil plus 12% fish oil (n-3)] diets were fed to rats for 4 wk. After the dietary treatments, muscle lipid turnover and oxidation in the presence and absence of leptin was measured using pulse-chase procedures in incubated resting soleus muscle. In the absence of leptin, phospholipid, diacylglycerol, and triacylglycerol (TG) turnover were unaffected by the high-fat diets, but exogenous palmitate oxidation was significantly increased in the HF-Saff group. In Cont rats, leptin increased exogenous palmitate oxidation (21.4 +/- 5.7 vs. 11.9 +/- 1.61 nmol/g, P = 0.019) and TG breakdown (39.8 +/- 5.6 vs. 27.0 +/- 5.2 nmol/g, P = 0.043) and decreased TG esterification (132.5 +/- 14.6 vs. 177.7 +/- 29.6 nmol/g, P = 0.043). However, in both high-fat groups, the stimulatory effect of leptin on muscle lipid oxidation and hydrolysis was eliminated. Partial substitution of fish oil resulted only in the restoration of leptin's inhibition of TG esterification. Thus we hypothesize that, during the development of obesity, skeletal muscle becomes resistant to the effects of leptin, resulting in the accumulation of intramuscular TG. This may be an important initiating step in the development of insulin resistance common in obesity.
Collapse
Affiliation(s)
- G R Steinberg
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
34
|
Halseth AE, Bracy DP, Wasserman DH. Limitations to basal and insulin-stimulated skeletal muscle glucose uptake in the high-fat-fed rat. Am J Physiol Endocrinol Metab 2000; 279:E1064-71. [PMID: 11052961 DOI: 10.1152/ajpendo.2000.279.5.e1064] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats fed a high-fat diet display blunted insulin-stimulated skeletal muscle glucose uptake. It is not clear whether this is due solely to a defect in glucose transport, or if glucose delivery and phosphorylation are also impaired. To determine this, rats were fed standard chow (control rats) or a high-fat diet (HF rats) for 4 wk. Experiments were then performed on conscious rats under basal conditions or during hyperinsulinemic euglycemic clamps. Rats received primed constant infusions of 3-O-methyl-[(3)H]glucose (3-O-MG) and [1-(14)C]mannitol. Total muscle glucose concentration and the steady-state ratio of intracellular to extracellular 3-O-MG concentration [which distributes based on the transsarcolemmal glucose gradient (TSGG)] were used to calculate glucose concentrations at the inner and outer sarcolemmal surfaces ([G](im) and [G](om), respectively) in soleus. Total muscle glucose was also measured in two fast-twitch muscles. Muscle glucose uptake was markedly decreased in HF rats. In control rats, hyperinsulinemia resulted in a decrease in soleus TSGG compared with basal, due to increased [G](im). In HF rats during hyperinsulinemia, [G](im) also exceeded zero. Hyperinsulinemia also decreased muscle glucose in HF rats, implicating impaired glucose delivery. In conclusion, defects in extracellular and intracellular components of muscle glucose uptake are of major functional significance in this model of insulin resistance.
Collapse
Affiliation(s)
- A E Halseth
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
35
|
Thompson AL, Lim-Fraser MY, Kraegen EW, Cooney GJ. Effects of individual fatty acids on glucose uptake and glycogen synthesis in soleus muscle in vitro. Am J Physiol Endocrinol Metab 2000; 279:E577-84. [PMID: 10950825 DOI: 10.1152/ajpendo.2000.279.3.e577] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Soleus muscle strips from Wistar rats were preincubated with palmitate in vitro before the determination of insulin-mediated glucose metabolism in fatty acid-free medium. Palmitate decreased insulin-stimulated glycogen synthesis to 51% of control in a time- (0-6 h) and concentration-dependent (0-2 mM) manner. Basal and insulin-stimulated glucose transport/phosphorylation also decreased with time, but the decrease occurred after the effect on glycogen synthesis. Preincubation with 1 mM palmitate, oleate, linoleate, or linolenate for 4 h impaired glycogen synthesis stimulated with a submaximal physiological insulin concentration (300 microU/ml) to 50-60% of the control response, and this reduction was associated with impaired insulin-stimulated phosphorylation of protein kinase B (PKB). Preincubation with different fatty acids (all 1 mM for 4 h) had varying effects on insulin-stimulated glucose transport/phosphorylation, which was decreased by oleate and linoleate, whereas palmitate and linolenate had little effect. Across groups, the rates of glucose transport/phosphorylation correlated with the intramuscular long-chain acyl-CoA content. The similar effects of individual fatty acids on glycogen synthesis but different effects on insulin-stimulated glucose transport/phosphorylation provide evidence that lipids may interact with these two pathways via different mechanisms.
Collapse
Affiliation(s)
- A L Thompson
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | | | | | | |
Collapse
|
36
|
Getty L, Panteleon AE, Mittelman SD, Dea MK, Bergman RN. Rapid oscillations in omental lipolysis are independent of changing insulin levels in vivo. J Clin Invest 2000; 106:421-30. [PMID: 10930445 PMCID: PMC314322 DOI: 10.1172/jci7815] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal fat metabolism plays an important role in the pathogenesis of obesity-related type 2 diabetes mellitus. This study examined whether free fatty acid levels (FFAs), like insulin levels, oscillate rapidly in plasma. Peripheral and portal blood samples from dogs were assayed for FFA, glycerol, glucose, and insulin. FFA and glycerol showed correlated oscillatory profiles, with about 8 pulses/hour. Omental lipolysis was also pulsatile, with about 10 pulses/hour, and insulin levels oscillated rapidly in plasma with about 7 pulses/hour. We applied an insulin clamp, beta-adrenergic blockade, or both together, to determine the driving force behind the FFA oscillation, and we analyzed our findings by approximate entropy (ApEn) for which lower values suggest regular pulses and higher values suggest disorder. Under basal conditions, ApEn was 0.3 +/- 0.2. With insulin not oscillating, FFA still cycled at about 9 pulses/hour and the ApEn was 0.2 +/- 0.1. In contrast, beta-blockade, either in the presence or absence of an insulin clamp, removed the FFA oscillation in three of nine dogs. In the other six dogs, the oscillatory profile was unchanged, but ApEn was significantly higher than basal values, suggesting that the regularity of the profile was disrupted. These results suggest that the FFA oscillation is driven by the central nervous system, not by insulin.
Collapse
Affiliation(s)
- L Getty
- University of Southern California Keck School of Medicine, Department of Physiology and Biophysics, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
37
|
Kim CH, Youn JH, Park JY, Hong SK, Park KS, Park SW, Suh KI, Lee KU. Effects of high-fat diet and exercise training on intracellular glucose metabolism in rats. Am J Physiol Endocrinol Metab 2000; 278:E977-84. [PMID: 10826998 DOI: 10.1152/ajpendo.2000.278.6.e977] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).
Collapse
Affiliation(s)
- C H Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul 140-743, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim JK, Choi CS, Youn JH. Acute effect of growth hormone to induce peripheral insulin resistance is independent of FFA and insulin levels in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E742-9. [PMID: 10516135 DOI: 10.1152/ajpendo.1999.277.4.e742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether growth hormone (GH) induces peripheral insulin resistance by altering plasma free fatty acid (FFA) or insulin levels, the effects of GH infusion on insulin-stimulated glucose fluxes were studied in conscious rats under two protocols. In study 1, either saline (n = 7) or human recombinant GH (21 microg. kg(-1). h(-1); n = 8) was infused for 300 min, and insulin-stimulated glucose fluxes were estimated during the final 150-min period of hyperinsulinemic euglycemic clamps. In study 2, hyperinsulinemic euglycemic clamps were first conducted for 150 min (to raise plasma insulin and suppress FFA levels), and saline or GH (n = 7 for each) was subsequently infused for the following 300-min clamp period. In study 1, GH infusion in the basal state did not significantly alter plasma FFA or insulin levels. In contrast, GH infusion decreased insulin-stimulated glucose uptake, glycolysis, and glycogen synthesis by 32, 27, and 40%, respectively (P < 0.05). In study 2, GH infusion during hyperinsulinemic euglycemic clamps did not alter plasma FFA or insulin levels (P > 0.05). GH infusion had no effect on insulin-stimulated glucose uptake during the initial 150 min but eventually decreased insulin-stimulated glucose uptake by 37% (P < 0. 05), similar to the results in study 1. These data indicate that GH induces peripheral insulin resistance independent of plasma FFA and insulin levels. The induction of insulin resistance was preceded by suppression of glycogen synthesis, consistent with the hypothesis that metabolic impairment precedes and causes development of peripheral insulin resistance.
Collapse
Affiliation(s)
- J K Kim
- Department of Physiology, University of Southern California School of Medicine, Los Angeles, California 90089-9142, USA
| | | | | |
Collapse
|
39
|
Kim JY, Nolte LA, Hansen PA, Han DH, Kawanaka K, Holloszy JO. Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R665-72. [PMID: 10070126 DOI: 10.1152/ajpregu.1999.276.3.r665] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that, unlike high-fat diets, high-sucrose diets cause insulin resistance in the absence of an increase in visceral fat and that the insulin resistance develops only in male rats. This study was done to 1) determine if isolated muscles of rats fed a high-sucrose diet are resistant to stimulation of glucose transport when studied in vitro and 2) obtain information regarding how the effects of high-sucrose and high-fat diets on muscle insulin resistance differ. We found that, compared with rat chow, semipurified high-sucrose and high-starch diets both caused increased visceral fat accumulation and insulin resistance of skeletal muscle glucose transport. Insulin responsiveness of 2-deoxyglucose (2-DG) transport measured in epitrochlearis and soleus muscles in vitro was decreased approximately 40% (P < 0.01) in both male and female rats fed a high-sucrose compared with a chow diet. The high-sucrose diet also caused resistance of muscle glucose transport to stimulation by contractions. There was a highly significant negative correlation between stimulated muscle 2-DG transport and visceral fat mass. In view of these results, the differences in insulin action in vivo observed by others in rats fed isocaloric high-sucrose and high-starch diets must be due to additional, specific effects of sucrose that do not carry over in muscles studied in vitro. We conclude that, compared with rat chow, semipurified high-sucrose and high-cornstarch diets, like high-fat diets, cause increased visceral fat accumulation and severe resistance of skeletal muscle glucose transport to stimulation by insulin and contractions.
Collapse
Affiliation(s)
- J Y Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wilkes JJ, Bonen A, Bell RC. A modified high-fat diet induces insulin resistance in rat skeletal muscle but not adipocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E679-86. [PMID: 9755088 DOI: 10.1152/ajpendo.1998.275.4.e679] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that variation in dietary fatty acid composition in rats fed a high-fat diet had tissue-specific effects on glucose uptake sufficient to maintain normal glucose tolerance. Rats were fed one of three diets for 3 wk. The isocaloric high-fat-mixed oil (HF-mixed) diet and the high-fat-safflower oil (HF-saff) diet both provided 60% kcal fat, but fat composition differed [HF-mixed = saturated, polyunsaturated (n-3 and n-6), and monounsaturated fatty acids; HF-saff = polyunsaturated fatty acids (mainly n-6)]. The control diet was high carbohydrate (HCHO, 10% kcal fat). Insulin-stimulated 3-O-methylglucose uptake into perfused hindlimb muscles was reduced in rats fed HF-saff and HF-mixed diets compared with those fed HCHO diet (P < 0.02). Basal uptake increased in HF-saff- and HF-mixed-fed rats vs. HCHO-fed rats (P < 0.04). In adipocytes, HF-saff feeding decreased 2-deoxyglucose uptake vs. HF-mixed feeding and HCHO feeding (P < 0.05), but 2-deoxyglucose uptake in HF-mixed-fed rats did not differ from that in HCHO-fed rats (P > 0.05). Glucose tolerance was significantly reduced in HF-saff-fed rats but was unaffected by the HF-mixed diet. Therefore, in skeletal muscle of rats, 1) feeding a diet high in fat induces a reduction in insulin-stimulated glucose uptake but 2) provides an increase in basal glucose uptake. In contrast, 3) in adipocytes, insulin-stimulated glucose transport is reduced only when the high-fat diet is high in n-6 polyunsaturated fatty acids but not when fat comes from these mixed sources. Glucose intolerance becomes evident when insulin resistance is seen in multiple tissues.
Collapse
Affiliation(s)
- J J Wilkes
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
41
|
Park JY, Kim CH, Hong SK, Suh KI, Lee KU. Effects of FFA on insulin-stimulated glucose fluxes and muscle glycogen synthase activity in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E338-44. [PMID: 9688637 DOI: 10.1152/ajpendo.1998.275.2.e338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To examine effects of free fatty acids (FFA) on insulin-stimulated glucose fluxes, euglycemic hyperinsulinemic (86 pmol . kg-1 . min-1) clamps were performed for 5 h in conscious rats with (n = 8) or without (n = 8) lipid-heparin infusion. Glucose infusion rate required to maintain euglycemia was not different between the two groups during the first 2 h of clamps but became significantly lower with lipid-heparin infusion in the 3rd h and thereafter. To investigate changes in intracellular glucose metabolism during lipid-heparin infusion, additional clamps (n = 8 each) were performed for 1, 2, 3, or 5 h with an infusion of [3-3H]glucose. Insulin-stimulated whole body glucose utilization (Rd), glycolysis, and glycogen synthesis were estimated on the basis of tracer concentrations in plasma during the final 40 min of each clamp. Similar to changes in glucose infusion rate, Rd was not different between the two groups in the 1st and 2nd h but was significantly lower with lipid-heparin infusion in the 3rd h and thereafter. Whole body glycolysis was significantly lower with lipid-heparin infusion in all time periods, i.e., 1st, 2nd, 3rd, and 5th h of clamps. In contrast, whole body glycogen synthesis was higher with lipid-heparin infusion in the 1st and 2nd h but lower in the 5th h. Similarly, accumulation of [3H]glycogen radioactivity in muscle glycogen was significantly higher with lipid-heparin during the 1st and 2nd h but lower during the 3rd and 5th h. Glucose 6-phosphate (G-6-P) concentrations in gastrocnemius muscles were significantly higher with lipid-heparin infusion throughout the clamps. Muscle glycogen synthase (GS) activity was not altered with lipid-heparin infusion at 1, 2, and 3 h but was significantly lower at 5 h. Thus increased availability of FFA significantly reduced whole body glycolysis, but compensatory increase in skeletal muscle glycogen synthesis in association with accumulation of G-6-P masked this effect, and Rd was not affected in the early phase (within 2 h) of lipid-heparin infusion. Rd was reduced in the later phase (>2 h) of lipid-heparin infusion, when glycogen synthesis was reduced in association with reduced skeletal muscle GS activity.
Collapse
Affiliation(s)
- J Y Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | |
Collapse
|