1
|
Tricò D, Rebelos E, Astiarraga B, Baldi S, Scozzaro T, Sacchetta L, Chiriacò M, Mari A, Ferrannini E, Muscelli E, Natali A. Effects of Hypertriglyceridemia With or Without NEFA Elevation on β-cell Function and Insulin Clearance and Sensitivity. J Clin Endocrinol Metab 2025; 110:e667-e674. [PMID: 38635405 PMCID: PMC11918624 DOI: 10.1210/clinem/dgae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT Hypertriglyceridemia is a risk factor for developing type 2 diabetes (T2D) and might contribute to its pathogenesis either directly or through elevation of nonesterified fatty acids (NEFAs). OBJECTIVE This study aimed at comparing the glucometabolic effects of acute hypertriglyceridemia alone or combined with NEFA elevation in subjects without diabetes. METHODS Twenty-two healthy lean volunteers underwent 5-hour intravenous infusions of either saline or Intralipid, without (n = 12) or with heparin (I + H; n = 10) to activate the release of NEFAs. Oral glucose tolerance tests (OGTTs) were performed during the last 3 hours of infusion. Insulin sensitivity, insulin secretion rate (ISR), model-derived β-cell function, and insulin clearance were measured after 2 hours of lipid infusion and during the OGTTs. RESULTS In fasting conditions, both lipid infusions increased plasma insulin and ISR and reduced insulin clearance without affecting plasma glucose and insulin sensitivity. These effects on insulin and ISR were more pronounced for I + H than Intralipid alone. During the OGTT, the lipid infusions markedly impaired glucose tolerance, increased plasma insulin and ISR, and decreased insulin sensitivity and clearance, without significant group differences. Intralipid alone inhibited glucose-stimulated insulin secretion (ie, β-cell glucose sensitivity) and increased β-cell potentiation, whereas I + H had neutral effects on these β-cell functions. CONCLUSION In healthy nonobese subjects, mild acute hypertriglyceridemia directly reduces glucose tolerance and insulin sensitivity and clearance, and has selective and opposite effects on β-cell function that are neutralized by NEFAs. These findings provide new insight into plausible biological signals that generate and sustain insulin resistance and chronic hyperinsulinemia in the development of T2D.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Brenno Astiarraga
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Tiziana Scozzaro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Luca Sacchetta
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, 35127 Padua, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elza Muscelli
- Department of Internal Medicine, University of Campinas, 13083-887 Campinas, Brazil
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
3
|
Hollands T. The Chronically Inflamed (Obese) Horse: Understanding Adipose Biology. EVIDENCE BASED EQUINE NUTRITION 2023:355-395. [DOI: 10.1079/9781789245134.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Abstract
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| |
Collapse
|
5
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Tricò D, Galderisi A, Van Name MA, Caprio S, Samuels S, Li Z, Galuppo BT, Savoye M, Mari A, Feldstein AE, Santoro N. A low n-6 to n-3 polyunsaturated fatty acid ratio diet improves hyperinsulinaemia by restoring insulin clearance in obese youth. Diabetes Obes Metab 2022; 24:1267-1276. [PMID: 35297549 PMCID: PMC9177628 DOI: 10.1111/dom.14695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
AIM To examine the determinants and metabolic impact of the reduction in fasting and postload insulin levels after a low n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio diet in obese youth. MATERIALS AND METHODS Insulin secretion and clearance were assessed by measuring and modelling plasma insulin and C-peptide in 17 obese youth who underwent a nine-point, 180-minute oral glucose tolerance test (OGTT) before and after a 12-week, eucaloric low n-6:n-3 polyunsaturated fatty acid (PUFA) ratio diet. Hepatic fat content was assessed by repeated abdominal magnetic resonance imaging. RESULTS Insulin clearance at fasting and during the OGTT was significantly increased after the diet, while body weight, glucose levels, absolute and glucose-dependent insulin secretion, and model-derived variables of β-cell function were not affected. Dietary-induced changes in insulin clearance positively correlated with changes in whole-body insulin sensitivity and β-cell glucose sensitivity, but not with changes in hepatic fat. Subjects with greater increases in insulin clearance showed a worse metabolic profile at enrolment, characterized by impaired insulin clearance, β-cell glucose sensitivity, and glucose tolerance, and benefitted the most from the diet, achieving greater improvements in glucose-stimulated hyperinsulinaemia, insulin resistance, and β-cell function. CONCLUSIONS We showed that a 12-week low n-6:n-3 PUFA ratio diet improves hyperinsulinaemia by increasing fasting and postload insulin clearance in obese youth, independently of weight loss, glucose concentrations, and insulin secretion.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of PisaPisa
| | | | - Michelle A. Van Name
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Sonia Caprio
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Stephanie Samuels
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Zhongyao Li
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Brittany T. Galuppo
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Mary Savoye
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Andrea Mari
- Institute of Neuroscience, National Research CouncilPaduaItaly
| | - Ariel E. Feldstein
- Department of PediatricsUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Nicola Santoro
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
- Department of Medicine and Health Sciences, “V.Tiberio” University of MoliseCampobassoItaly
| |
Collapse
|
7
|
Nahle A, Joseph YD, Pereira S, Mori Y, Poon F, Ghadieh HE, Ivovic A, Desai T, Ghanem SS, Asalla S, Muturi HT, Jentz EM, Joseph JW, Najjar SM, Giacca A. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. Int J Mol Sci 2021; 22:ijms222413224. [PMID: 34948019 PMCID: PMC8709165 DOI: 10.3390/ijms222413224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NAD-dependent deacetylase SIRT1 improves β cell function. Accordingly, nicotinamide mononucleotide (NMN), the product of the rate-limiting step in NAD synthesis, prevents β cell dysfunction and glucose intolerance in mice fed a high-fat diet. The current study was performed to assess the effects of NMN on β cell dysfunction and glucose intolerance that are caused specifically by increased circulating free fatty acids (FFAs). NMN was intravenously infused, with or without oleate, in C57BL/6J mice over a 48-h-period to elevate intracellular NAD levels and consequently increase SIRT1 activity. Administration of NMN in the context of elevated plasma FFA levels considerably improved glucose tolerance. This was due not only to partial protection from FFA-induced β cell dysfunction but also, unexpectedly, to a significant decrease in insulin clearance. However, in conditions of normal FFA levels, NMN impaired glucose tolerance due to decreased β cell function. The presence of this dual action of NMN suggests caution in its proposed therapeutic use in humans.
Collapse
Affiliation(s)
- Ashraf Nahle
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yemisi Deborah Joseph
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo 142-0064, Japan
| | - Frankie Poon
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Aleksandar Ivovic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Tejas Desai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Emelien M. Jentz
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Jamie W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
8
|
Nour OA, Ghoniem HA, Nader MA, Suddek GM. Impact of protocatechuic acid on high fat diet-induced metabolic syndrome sequelae in rats. Eur J Pharmacol 2021; 907:174257. [PMID: 34129881 DOI: 10.1016/j.ejphar.2021.174257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
The study aimed to assess the possible protective impact of protocatechuic acid (PCA) on high fat diet (HFD)-induced metabolic syndrome (Mets) sequelae in rats. Forty-two male Sprague-Dawley (SD) rats were randomly grouped as follows: CTR group; PCA group; HFD group; HFD-PCA group and HFD-MET group. Rats were fed on standard diet or HFD for 14 weeks. HFD-fed rats exhibited significant decreases in food intake and adiponectin (ADP) level; yet, body weight and anthropometrical parameters were significantly increased. Moreover, insulin sensitivity was impaired as indicated by significant elevation in glucose AUC during oral glucose tolerance test (OGTT), fasting serum glucose, fasting serum insulin and homeostasis model assessment of insulin resistance (HOMA-IR) index. Furthermore, chronic HFD feeding elicited significant increases in serum lipid profile and free fatty acids (FFAs) with concomitant hepatic steatosis. Additionally, serum C-reactive protein (CRP), interleukin 1b (Il-1b) and monocyte chemoattractant protein 1(MCP-1) levels were increased. Also, HFD-fed rats exhibited an increase in MDA level, while superoxide dismutase (SOD) and glutathione (GSH) activities were decreased. Moreover, the insulin-signaling pathway was markedly impaired in soleus muscles as indicated by a decrease in insulin-induced AKT phosphorylation. Histopathologically, adipose tissues showed significant increase in adipocyte size. Also, flow cytometry analysis of adipose tissue confirmed a significant increase in the percentage of number of CD68+ cells. PCA administration succeeded to attenuate HFD-induced obesity, insulin resistance, oxidative stress and inflammation. In conclusion, PCA administration could protect against HFD-induced Mets, possibly via its hypoglycemic, insulin-sensitizing, anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Hamdy A Ghoniem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Lamprinou A, Willmann C, Machann J, Schick F, Eckstein SS, Dalla Man C, Visentin R, Birkenfeld AL, Peter A, Stefan N, Häring HU, Fritsche A, Heni M, Wagner R. Determinants of hepatic insulin clearance - Results from a Mendelian Randomization study. Metabolism 2021; 119:154776. [PMID: 33862045 DOI: 10.1016/j.metabol.2021.154776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
AIMS/HYPOTHESIS Besides insulin resistance, type 2 diabetes associates with decreased hepatic insulin clearance (HIC). We now tested for causal relationship of HIC to liver fat accumulation or features of the metabolic syndrome. METHODS HIC was derived from oral glucose tolerance tests with the "Oral C-peptide and Insulin Minimal Models" (n = 3311). Liver fat was quantified by magnetic resonance spectroscopy (n = 1211). Mendelian Randomization was performed using established single nucleotide polymorphisms (SNPs; 115 for liver fat, 155 alanine-aminotransferase, 37 insulin sensitivity, 37 insulin secretion, 72 fasting insulin, 5285 BMI, 163 visceral fat, 270 waist circumference, 442 triglycerides, 620 HDL-Cholesterol, 193 C-reactive protein, 53 lipodystrophy-like phenotypes). RESULTS HIC associated inversely with liver fat (p < 0.003) and insulin sensitivity (p < 0.0001). Both liver fat and HIC were independently associated with insulin sensitivity (p < 0.0001). Neither liver fat nor alanine-aminotransferase were causally linked to HIC, as indicated by Mendelian Randomization (Nliver fat = 1054, NHIC = 2254; Nalanineaminotranferase = 1985, NHIC = 2251). BMI-related SNPs were causally associated with HIC (NBMI = 2772, NHIC = 2259, p < 0.001) but not waist circumference-SNPs (NSNPs-waist circumference = 2751, NHIC = 2280). Genetically determined insulin sensitivity was not causally related to HIC (Ninsulin sensitivity = 2752, NHIC = 2286). C-reactive protein and HDL were causally associated with HIC, with higher C-reactive protein and lower HDL leading to higher HIC (NC-reactive protein = 2660, NHIC = 2240; NHDL = 2694, NHIC = 2275). CONCLUSIONS This Mendelian Randomization analysis does not support a causal link between hepatic steatosis and HIC. Other components of the metabolic syndrome seem to compensate peripheral hyperinsulinemia by increasing hepatic insulin extraction.
Collapse
Affiliation(s)
- Apostolia Lamprinou
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Caroline Willmann
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabine S Eckstein
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
10
|
Gastaldelli A, Abdul Ghani M, DeFronzo RA. Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance. Diabetes 2021; 70:377-385. [PMID: 33077684 PMCID: PMC7881859 DOI: 10.2337/db19-1152] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
With the development of insulin resistance (IR), there is a compensatory increase in the plasma insulin response to offset the defect in insulin action to maintain normal glucose tolerance. The insulin response is the result of two factors: insulin secretion and metabolic clearance rate of insulin (MCRI). Subjects (104 with normal glucose tolerance [NGT], 57 with impaired glucose tolerance [IGT], and 207 with type 2 diabetes mellitus [T2DM]), divided in nonobese and obese groups, received a euglycemic insulin-clamp (40 mU/m2 ⋅ min) and an oral glucose tolerance test (OGTT) (75 g) on separate days. MCRI was calculated during the insulin-clamp performed with [3-3H]glucose and the OGTT and related to IR: peripheral (glucose uptake during the insulin clamp), hepatic (basal endogenous glucose production × fasting plasma insulin [FPI]), and adipocyte (fasting free fatty acid × FPI). MCRI during the insulin clamp was reduced in obese versus nonobese NGT (0.60 ± 0.03 vs. 0.73 ± 0.02 L/min ⋅ m2, P < 0.001), in nonobese IGT (0.62 ± 0.02, P < 0.004), and in nonobese T2DM (0.68 ± 0.02, P < 0.03). The MCRI during the insulin clamp was strongly and inversely correlated with IR (r = -0.52, P < 0.0001). During the OGTT, the MCRI was suppressed within 15-30 min in NGT and IGT subjects and remained suppressed. In contrast, suppression was minimal in T2DM. In conclusion, the development of IR in obese subjects is associated with a decline in MCRI that represents a compensatory response to maintain normal glucose tolerance but is impaired in individuals with T2DM.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
- University of Texas Health Science Center, San Antonio, TX
| | | | | |
Collapse
|
11
|
Stefanovski D, Punjabi NM, Boston RC, Watanabe RM. Insulin Action, Glucose Homeostasis and Free Fatty Acid Metabolism: Insights From a Novel Model. Front Endocrinol (Lausanne) 2021; 12:625701. [PMID: 33815283 PMCID: PMC8010655 DOI: 10.3389/fendo.2021.625701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 12/05/2022] Open
Abstract
Glucose and free fatty acids (FFA) are essential nutrients that are both partly regulated by insulin. Impaired insulin secretion and insulin resistance are hallmarks of aberrant glucose disposal, and type 2 diabetes (T2DM). In the current study, a novel model of FFA kinetics is proposed to estimate the role insulin action on FFA lipolysis and oxidation allowing estimation of adipose tissue insulin sensitivity (SIFFA ). Twenty-five normal volunteers were recruited for the current study. To participate, volunteers had to be less than 40 years of age and have a body mass index (BMI) < 30 kg/m2, and be free of medical comorbidity. The proposed model of FFA kinetics was used to analyze the data derived from the insulin-modified FSIGT. Mean fractional standard deviations of the parameter estimates were all less than 20%. Standardized residuals of the fit of the model to the FFA temporal data were randomly distributed, with only one estimated point lying outside the 2-standard deviation range, suggesting an acceptable fit of the model to the FFA data. The current study describes a novel one-compartment non-linear model of FFA kinetics during an FSIGT that provides an FFA metabolism insulin sensitivity parameter (SIFFA ). Furthermore, the models suggest a new role of glucose as the modulator of FFA disposal. Estimates of SIFFA confirmed previous findings that FFA metabolism is more sensitive to changes in insulin than glucose metabolism. Novel derived indices of insulin sensitivity of FFA (SIFFA ) were correlated with minimal model indices. These associations suggest a cooperative rather than competitive interplay between the two primary nutrients (glucose and FFA) and allude to the FFA acting as the buffer, such that glucose homeostasis is maintained.
Collapse
Affiliation(s)
- Darko Stefanovski
- School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, PA, United States
- *Correspondence: Darko Stefanovski,
| | - Naresh M. Punjabi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raymond C. Boston
- School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, PA, United States
| | - Richard M. Watanabe
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
12
|
Merovci A, Tripathy D, Chen X, Valdez I, Abdul-Ghani M, Solis-Herrera C, Gastaldelli A, DeFronzo RA. Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects. Diabetes 2021; 70:204-213. [PMID: 33033064 PMCID: PMC7881846 DOI: 10.2337/db20-0039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH-) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0-10 min) increased by 70%, while second-phase insulin secretion during the first (10-80 min) and second (90-160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs β-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.
Collapse
Affiliation(s)
- Aurora Merovci
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| | - Xi Chen
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ivan Valdez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Carolina Solis-Herrera
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| |
Collapse
|
13
|
Keyhani-Nejad F, Barbosa Yanez RL, Kemper M, Schueler R, Pivovarova-Ramich O, Rudovich N, Pfeiffer AFH. Endogenously released GIP reduces and GLP-1 increases hepatic insulin extraction. Peptides 2020; 125:170231. [PMID: 31870938 DOI: 10.1016/j.peptides.2019.170231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023]
Abstract
GIP was proposed to play a key role in the development of non- alcoholic fatty liver disease (NAFLD) in response to sugar intake. Isomaltulose, is a 1,6-linked glucose-fructose dimer which improves glucose homeostasis and prevents NAFLD compared to 1,2-linked sucrose by reducing glucose-dependent insulinotropic peptide (GIP) in mice. We compared effects of sucrose vs. isomaltulose on GIP and glucagon-like peptide-1 (GLP-1) secretion, hepatic insulin clearance (HIC) and insulin sensitivity in normal (NGT), impaired glucose tolerant (IGT) and Type 2 diabetes mellitus (T2DM) participants. A randomized crossover study was performed in 15 NGT, 10 IGT and 10 T2DM subjects. In comparison to sucrose, peak glucose concentrations were reduced by 2.3, 2.1 and 2.5 mmol/l (all p < 0.05) and insulin levels were 88% (p < 0.01, NGT), 32% (p < 0.05, IGT) and 55% (T2DM) lower after the isomaltulose load. Postprandial GIPiAUC concentrations were decreased (56%, p < 0.01 in NGT; 42%, p < 0.05 in IGT and 40%,p < 0.001 in T2DM) whereas GLP-1iAUC was 77%, 85% and 85% higher compared to sucrose (p < 0.01), respectively. This resulted in ∼35 - 50% improved insulin sensitivity and reduced insulinogenic index after isomaltulose, which correlated closely with improved HIC, respectively (r = 0.62, r=-0.70; p < 0.001). HIC was inversely related to GIP (r=-0.44, p < 0.001) and positively related to GLP-1 levels (r = 0.40, p = 0.001). CONCLUSION: Endogenously released GIP correlated with reduced, and GLP-1 with increased hepatic insulin extraction. Increased peripheral insulin levels may contribute to insulin resistance and obesity. We propose that the unfavorable effects of high glycemic index Western diets are related to increased GIP-release and reduced HIC.
Collapse
Affiliation(s)
- Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany
| | - Renate Luisa Barbosa Yanez
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany
| | - Rita Schueler
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany; Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, 8180, Bülach, Switzerland
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany.
| |
Collapse
|
14
|
Hodson L, Karpe F. Hyperinsulinaemia: does it tip the balance toward intrahepatic fat accumulation? Endocr Connect 2019; 8:R157-R168. [PMID: 31581129 PMCID: PMC6826170 DOI: 10.1530/ec-19-0350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
In health, the liver is metabolically flexible over the course of the day, as it undertakes a multitude of physiological processes including the regulation of intrahepatic and systemic glucose and lipid levels. The liver is the first organ to receive insulin and through a cascade of complex metabolic processes, insulin not only plays a key role in the intrahepatic regulation of glucose and lipid metabolism, but also in the regulation of systemic glucose and lipid concentrations. Thus, when intrahepatic insulin signalling becomes aberrant then this may lead to perturbations in intrahepatic metabolic processes that have the potential to impact on metabolic health. For example, obesity is associated with intrahepatic fat accumulation (known as nonalcoholic liver disease (NAFLD)) and hyperinsulinaemia, the latter as a result of insulin hypersecretion or impaired hepatic insulin extraction. Although insulin signalling directly alters intra- and extrahepatic metabolism, the regulation of hepatic glucose and fatty acid metabolism is also indirectly driven by substrate availability. Here we discuss the direct and indirect effects of insulin on intrahepatic processes such as the synthesis of fatty acids and peripherally regulating the flux of fatty acids to the liver; processes that may play a role in the development of insulin resistance and/or intrahepatocellular triacylglycerol (IHTAG) accumulation in humans.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford University Hospital Trusts, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford University Hospital Trusts, Oxford, UK
| |
Collapse
|
15
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
16
|
Sugimoto D, Tamura Y, Takeno K, Kaga H, Someya Y, Kakehi S, Funayama T, Furukawa Y, Suzuki R, Kadowaki S, Nishitani-Yokoyama M, Shimada K, Daida H, Aoki S, Kanazawa A, Kawamori R, Watada H. Clinical Features of Nonobese, Apparently Healthy, Japanese Men With Reduced Adipose Tissue Insulin Sensitivity. J Clin Endocrinol Metab 2019; 104:2325-2333. [PMID: 30689902 DOI: 10.1210/jc.2018-02190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Adipose tissue insulin resistance has been observed in obese subjects and is considered an early metabolic defect that precedes insulin resistance in muscle and liver. Although Asians can readily develop metabolic disease without obesity, the clinical features of nonobese, apparently healthy, Asians with reduced adipose tissue insulin sensitivity (ATIS) have not been elucidated. OBJECTIVE To investigate the clinical parameters associated with reduced ATIS in nonobese, apparently healthy (body mass index <25 kg/m2), Japanese men. METHODS We studied 52 nonobese Japanese men without cardiometabolic risk factors. Using a two-step hyperinsulinemic euglycemic clamp with a glucose tracer, we evaluated the insulin sensitivity in muscle, liver, and adipose tissue. ATIS was calculated as the percentage of free fatty acid (FFA) suppression/insulin concentration during the first step of the glucose clamp. RESULTS Using the median ATIS value, the subjects were divided into low- and high-FFA suppression groups. The low-FFA suppression group had moderate fat accumulation in the abdominal subcutaneous adipose tissue and liver. Compared with the high-FFA group, they also had a lower fitness level, decreased insulin clearance, impaired insulin sensitivity in muscle, moderately elevated triglycerides, and lowered high-density lipoprotein cholesterol levels. All these factors correlated significantly with ATIS. Hepatic insulin sensitivity was comparable between the two groups. CONCLUSIONS In nonobese, apparently healthy, Japanese men, reduced ATIS was associated with moderate fat accumulation in subcutaneous fat and liver, lower insulin clearance, muscle insulin resistance, and moderate lipedema. These data suggest that reduced ATIS can occur early in the development of the metabolic syndrome, even in nonobese, apparently healthy, men.
Collapse
Affiliation(s)
- Daisuke Sugimoto
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kageumi Takeno
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Furukawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Kazunori Shimada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Utzschneider KM, Kahn SE, Polidori DC. Hepatic Insulin Extraction in NAFLD Is Related to Insulin Resistance Rather Than Liver Fat Content. J Clin Endocrinol Metab 2019; 104:1855-1865. [PMID: 30566676 PMCID: PMC6456889 DOI: 10.1210/jc.2018-01808] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Total insulin clearance is decreased in nonalcoholic fatty liver disease (NAFLD), but the relationship between liver fat and hepatic insulin extraction (HIE) is unknown. OBJECTIVE This cross-sectional study addresses the hypothesis that HIE is reduced in NAFLD and investigates metabolic and/or anthropometric characteristics most closely associated with insulin clearance. PARTICIPANTS Nondiabetic subjects with NAFLD (n = 13) and age- and body mass index (BMI)-matched controls with normal liver enzymes (n = 15) underwent abdominal CT, dual-energy X-ray absorptiometry, oral glucose tolerance test (OGTT), and labeled two-step hyperinsulinemic-euglycemic clamps. OUTCOME MEASUREMENTS Liver fat was estimated by the CT liver/spleen ratio. Hepatic and extrahepatic insulin clearances were modeled using clamp and OGTT data. RESULTS Extrahepatic insulin clearance and HIE were not different between NAFLD and controls and did not correlate with liver fat. HIE was positively correlated with insulin sensitivity [rate of glucose disposal (Rd; low r = +0.7, P < 0.001; high r = +0.6, P = 0.001), adiponectin (r = +0.55, P = 0.004), and insulin-mediated suppression of clamp nonesterified free fatty acid (NEFA; r = +0.67, P < 0.001)] but was not associated with fasting NEFA, insulin-mediated suppression of glucose production, or measures of adiposity. Extrahepatic insulin clearance was positively associated with percent body fat (r = +0.44, P = 0.02) and subcutaneous fat (r = +0.42, P = 0.03) but not BMI, intra-abdominal fat, liver fat, Rd, adiponectin, or NEFA. CONCLUSIONS HIE is not directly associated with hepatic steatosis but is associated with muscle and adipose tissue insulin resistance. The data suggest differential regulation of insulin clearance with extrahepatic insulin clearance being associated with body fat and not insulin sensitivity.
Collapse
Affiliation(s)
- Kristina M Utzschneider
- Division of Endocrinology, Hospital Specialty Medicine, VA Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
- Correspondence and Reprint Requests: Kristina M. Utzschneider, MD, VA Puget Sound Health Care System, 1660 S. Columbian Way (151), Seattle, Washington 98108. E-mail:
| | - Steven E Kahn
- Division of Endocrinology, Hospital Specialty Medicine, VA Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
18
|
Abstract
Although metabolic abnormalities commonly occur in non-obese Asians, their pathogenesis is not fully understood. Proton magnetic resonance spectroscopy has been used to analyze intracellular lipids in humans, and results suggest that ectopic fat accumulation in muscle and liver may induce insulin resistance in each tissue independently of obesity. Thus, measurement of ectopic fat currently plays an important role in the study of insulin resistance in non-obese Asians. In addition, studies using 2-step hyperinsulinemic euglycemic clamp with a glucose tracer may clarify how tissue-specific insulin resistance in muscle, liver, and adipose tissue contributes to the development of metabolic disease in non-obese Japanese. Although numerous studies have elucidated the pathophysiology of insulin resistance in obese subjects, research on "metabolic gradation," defined as the gradual transition from an insulin-sensitive to an insulin-resistant state, is less common, especially in terms of early metabolic changes. This review addresses a simple question: when and how is insulin resistance induced in non-obese East Asians? Several studies revealed that impaired insulin clearance and hyperinsulinemia not only compensated for insulin resistance, but also secondarily facilitated insulin resistance and weight gain. In this regard, we recently found that impaired insulin clearance and hyperinsulinemia could occur in apparently healthy subjects without significant insulin resistance, suggesting that this change may be an initial trigger that drives subsequent insulin resistance and weight gain. Further research is required to clarify the pathogenesis of metabolic gradation in non-obese Asians.
Collapse
Affiliation(s)
- Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| |
Collapse
|
19
|
Bojsen-Møller KN, Lundsgaard AM, Madsbad S, Kiens B, Holst JJ. Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations-Role of Carbohydrate and Energy Availability. Diabetes 2018; 67:2129-2136. [PMID: 30348819 DOI: 10.2337/db18-0539] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022]
Abstract
Hyperinsulinemia is the hallmark of insulin resistance in obesity, and the relative importance of insulin clearance, insulin resistance, and insulin hypersecretion has been widely debated. On the basis of recent experimental evidence, we summarize existing evidence to suggest hepatic insulin clearance as a major and immediate regulator of systemic insulin concentrations responding within days to altered dietary energy and, in particular, carbohydrate intake. Hepatic insulin clearance seems to be closely associated with opposite alterations in hepatic lipid content and glucose production, providing a potential mechanistic link to hepatic insulin sensitivity. The molecular regulation of insulin clearance in the liver is likely to involve changes in insulin binding and receptor internalization in response to the dietary alterations, the molecular mechanisms of which await further research.
Collapse
Affiliation(s)
- Kirstine N Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Tricò D, Trifirò S, Mengozzi A, Morgantini C, Baldi S, Mari A, Natali A. Reducing Cholesterol and Fat Intake Improves Glucose Tolerance by Enhancing β Cell Function in Nondiabetic Subjects. J Clin Endocrinol Metab 2018; 103:622-631. [PMID: 29095990 DOI: 10.1210/jc.2017-02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT A diet low in cholesterol and fat is commonly recommended to prevent metabolic and cardiovascular diseases; however, its effect on glucose tolerance is largely unknown. OBJECTIVE We examined whether and by which mechanisms a chronic reduction of cholesterol and fat intake affects glucose tolerance in nondiabetic individuals, independently of weight changes. DESIGN AND PARTICIPANTS In this crossover, randomized clinical trial, 30 healthy subjects, including 15 with family history of type 2 diabetes (T2D) (T2D offspring), underwent a 75-g oral glucose tolerance test (OGTT) after two 14-day isocaloric high-cholesterol, high-fat (HChF) or low-cholesterol, and low-fat (LChF) diets. MAIN OUTCOME MEASURES We evaluated changes in glucose tolerance, β cell function, insulin clearance, and insulin sensitivity by modeling plasma glucose, insulin, and C-peptide levels during the OGTT. RESULTS The shift from the HChF to the LChF diet was neutral on body weight but increased glucose tolerance (mean glucose -5%, P = 0.01) and three components of β cell function: glucose sensitivity (+17%, P = 0.01), insulin secretion at fasting glucose (+20%, P = 0.02), and potentiation (+19%, P = 0.03). The LChF diet improved insulin sensitivity (+7%, P = 0.048) only in T2D offspring, who tended to be more susceptible to the positive effect of the diet on glucose tolerance. CONCLUSIONS A chronic and isocaloric decrease in dietary cholesterol and fat intake improves glucose tolerance by diffusely ameliorating β cell function in nondiabetic subjects. Individuals genetically predisposed to develop T2D tend to be more susceptible to the positive effect of this dietary intervention on glucose tolerance and insulin sensitivity.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Silvia Trifirò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Morgantini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Previti E, Salinari S, Bertuzzi A, Capristo E, Bornstein S, Mingrone G. Glycemic control after metabolic surgery: a Granger causality and graph analysis. Am J Physiol Endocrinol Metab 2017; 313:E622-E630. [PMID: 28698280 DOI: 10.1152/ajpendo.00042.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to examine the contribution of nonesterified fatty acids (NEFA) and incretin to insulin resistance and diabetes amelioration after malabsorptive metabolic surgery that induces steatorrhea. In fact, NEFA infusion reduces glucose-stimulated insulin secretion, and high-fat diets predict diabetes development. Six healthy controls, 11 obese subjects, and 10 type 2 diabetic (T2D) subjects were studied before and 1 mo after biliopancreatic diversion (BPD). Twenty-four-hour plasma glucose, NEFA, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) time courses were obtained and analyzed by Granger causality and graph analyses. Insulin sensitivity and secretion were computed by the oral glucose minimal model. Before metabolic surgery, NEFA levels had the strongest influence on the other variables in both obese and T2D subjects. After surgery, GLP-1 and C-peptide levels controlled the system in obese and T2D subjects. Twenty-four-hour GIP levels were markedly reduced after BPD. Finally, not only did GLP-1 levels play a central role, but also insulin and C-peptide levels had a comparable relevance in the network of healthy controls. After BPD, insulin sensitivity was completely normalized in both obese and T2D individuals. Increased 24-h GLP-1 circulating levels positively influenced glucose homeostasis in both obese and T2D subjects who underwent a malabsorptive bariatric operation. In the latter, the reduction of plasma GIP levels also contributed to the improvement of glucose metabolism. It is possible that the combination of a pharmaceutical treatment reducing GIP and increasing GLP-1 plasma levels will contribute to better glycemic control in T2D. The application of Granger causality and graph analyses sheds new light on the pathophysiology of metabolic surgery.
Collapse
Affiliation(s)
- Elena Previti
- Department of Computer, Control, and Management Engineering "Antonio Ruberti," Sapienza University of Rome, Rome, Italy
| | - Serenella Salinari
- Department of Computer, Control, and Management Engineering "Antonio Ruberti," Sapienza University of Rome, Rome, Italy
| | - Alessandro Bertuzzi
- Institute for System Analysis and Computer Science "Antonio Ruberti," Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Esmeralda Capristo
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Stephan Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany; and
- Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy;
- Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Kaga H, Tamura Y, Takeno K, Kakehi S, Funayama T, Furukawa Y, Nishitani-Yokoyama M, Shimada K, Daida H, Aoki S, Giacca A, Kanazawa A, Kawamori R, Watada H. Correlates of insulin clearance in apparently healthy non-obese Japanese men. Sci Rep 2017; 7:1462. [PMID: 28469173 PMCID: PMC5431197 DOI: 10.1038/s41598-017-01469-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 01/13/2023] Open
Abstract
Hyperinsulinemia observed in obese subject is caused at least in part by low metabolic clearance rate of insulin (MCRI). However, the determinants of MCRI in non-obese subjects are not fully understood. To investigate the correlates of MCRI in healthy non-obese men (BMI <25 kg/m2), we studied 49 non-obese Japanese men free of cardiometabolic risk factors. Using a 2-step hyperinsulinemic euglycemic clamp, we evaluated MCRI and insulin sensitivity. We also calculated the rate of glucose disappearance (Rd) during the clamp and muscle insulin sensitivity was defined as Rd/steady state serum insulin (SSSI) at the second step. Based on the median value of MCRI, the subjects were divided into the low- and high-MCRI groups. Subjects of the low-MCRI group had significant impairment of muscle insulin sensitivity, although Rd levels were comparable between the two groups, probably due to elevated SSSI in the low-MCRI group. Subjects of the low-MCRI group had higher total body fat content and lower VO2peak and showed no deterioration of cardiometabolic risk factors. Our results suggest that low MCRI may be early change to maintain glucose uptake and metabolic status in the face of slight impairment of muscle insulin sensitivity caused by increased adiposity and lower fitness level.
Collapse
Affiliation(s)
- Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kageumi Takeno
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Furukawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Kazunori Shimada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Ferrannini E, Iervasi G, Cobb J, Ndreu R, Nannipieri M. Insulin resistance and normal thyroid hormone levels: prospective study and metabolomic analysis. Am J Physiol Endocrinol Metab 2017; 312:E429-E436. [PMID: 28246105 DOI: 10.1152/ajpendo.00464.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
While hyperthyroidism and hypothyroidism cause dysglycemia, the relationship between thyroid hormone levels within the normal range and insulin resistance (IR) is unclear. In 940 participants with strictly normal serum concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH) followed up for 3 yr, we measured insulin sensitivity (by the insulin clamp technique) and 35 circulating metabolites. At baseline, across quartiles of increasing fT3 levels (or fT3/fT4 ratio) most features of IR emerged [i.e., male sex, greater body mass index (BMI), waist circumference, heart rate, blood pressure, fatty liver index, free fatty acids, and triglycerides; reduced insulin-mediated glucose disposal; and β-cell glucose sensitivity). In multiadjusted analyses, fT3 was reciprocally related to insulin sensitivity and, in a subset of 303 subjects, directly related to endogenous glucose production. In multiple regression models adjusting for sex, age, BMI, and baseline value of insulin sensitivity, higher baseline fT3 levels were significant predictors of decreases in insulin sensitivity. Moreover, baseline fT3 predicted follow-up increases in glycemia independently of sex, age, BMI, insulin sensitivity, β-cell glucose sensitivity, and baseline glycemia. Serum tyrosine levels were higher with IR and were directly associated with fT3; higher α-hydroxybutyrate levels signaled enhanced oxidative stress, thereby impairing tyrosine degradation. In 25 patients with morbid obesity, surgery-induced weight loss improved IR and consensually lowered fT3 levels. High-normal fT3 levels are associated with IR both cross-sectionally and longitudinally, and predict deterioration of glucose tolerance. This association is supported by a metabolite pattern that points at increased oxidative stress as part of the IR syndrome.
Collapse
Affiliation(s)
| | | | - Jeff Cobb
- Metabolon, Incorporated, Durham, North Carolina; and
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, Pisa, Italy
| | - Monica Nannipieri
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Hernández EÁ, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest 2017; 127:695-708. [PMID: 28112681 DOI: 10.1172/jci89444] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice. METHODS Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses. RESULTS PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK). CONCLUSION Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.REGISTRATION. ClinicalTrials.gov NCT01736202. FUNDING Germany: Ministry of Innovation, Science, and Research North Rhine-Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER - European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.
Collapse
|
25
|
Conde SV, Ribeiro MJ, Melo BF, Guarino MP, Sacramento JF. Insulin resistance: a new consequence of altered carotid body chemoreflex? J Physiol 2017; 595:31-41. [PMID: 27027507 PMCID: PMC5199745 DOI: 10.1113/jp271684] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/11/2016] [Indexed: 01/22/2023] Open
Abstract
Metabolic diseases affect millions of individuals across the world and represent a group of chronic diseases of very high prevalence and relatively low therapeutic success, making them suitable candidates for pathophysiological studies. The sympathetic nervous system (SNS) contributes to the regulation of energy balance and energy expenditure both in physiological and pathological states. For instance, drugs that stimulate sympathetic activity decrease food intake, increase resting metabolic rate and increase the thermogenic response to food, while pharmacological blockade of the SNS has opposite effects. Likewise, dysmetabolic features such as insulin resistance, dyslipidaemia and obesity are characterized by a basal overactivation of the SNS. Recently, a new line of research linking the SNS to metabolic diseases has emerged with the report that the carotid bodies (CBs) are involved in the development of insulin resistance. The CBs are arterial chemoreceptors that classically sense changes in arterial blood O2 , CO2 and pH levels and whose activity is known to be increased in rodent models of insulin resistance. We have shown that selective bilateral resection of the nerve of the CB, the carotid sinus nerve (CSN), totally prevents diet-induced insulin resistance, hyperglycaemia, dyslipidaemia, hypertension and sympathoadrenal overactivity. These results imply that the beneficial effects of CSN resection on insulin action and glucoregulation are modulated by target-related efferent sympathetic nerves through a reflex that is initiated in the CBs. It also highlights modulation of CB activity as a putative future therapeutic intervention for metabolic diseases.
Collapse
Affiliation(s)
- Silvia V. Conde
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Maria J. Ribeiro
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Bernardete F. Melo
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Maria P. Guarino
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
- UIS‐Unidade de Investigação em Saúde – Escola Superior de Saúde de Leiria – Instituto Politécnico de LeiriaLeiriaPortugal
| | - Joana F. Sacramento
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| |
Collapse
|
26
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
27
|
Ramakrishnan SK, Russo L, Ghanem SS, Patel PR, Oyarce AM, Heinrich G, Najjar SM. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity. J Biol Chem 2016; 291:23915-23924. [PMID: 27662905 DOI: 10.1074/jbc.m116.745778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/22/2016] [Indexed: 01/18/2023] Open
Abstract
High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα-/- null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα-/- mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Simona S Ghanem
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Ana Maria Oyarce
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614.,the Department of Pharmacology and Experimental Therapeutics College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, and
| | - Garrett Heinrich
- the Department of Pharmacology and Experimental Therapeutics College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, and
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614, .,the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
28
|
Burdick Sanchez NC, Carroll JA, Broadway PR, Hughes HD, Roberts SL, Richeson JT, Schmidt TB, Vann RC. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers. Domest Anim Endocrinol 2016; 56:85-95. [PMID: 27137848 DOI: 10.1016/j.domaniend.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023]
Abstract
Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum insulin and a greater (P < 0.01) serum insulin: serum glucose as compared with calm steers. These data demonstrate that differences exist in the manner in which temperamental steers respond to glucose and insulin, potentially a result of elevated serum NEFA concentrations, which may result in changes in utilization and redistribution of energy in temperamental vs calm cattle.
Collapse
Affiliation(s)
| | - J A Carroll
- Livestock Issues Research Unit, ARS-USDA, Lubbock, TX, 79403, USA.
| | - P R Broadway
- Livestock Issues Research Unit, ARS-USDA, Lubbock, TX, 79403, USA
| | - H D Hughes
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - S L Roberts
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - J T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - T B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - R C Vann
- MAFES-Brown Loam, Mississippi State University, Raymond, MS, 39154, USA
| |
Collapse
|
29
|
Piccinini F, Dalla Man C, Vella A, Cobelli C. A Model for the Estimation of Hepatic Insulin Extraction After a Meal. IEEE Trans Biomed Eng 2015; 63:1925-1932. [PMID: 26660513 DOI: 10.1109/tbme.2015.2505507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GOAL Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. METHODS Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. RESULTS The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HEb and HEtot, respectively), and provides an index of HE sensitivity to glucose ( SGHE ). CONCLUSION A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. SIGNIFICANCE The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.
Collapse
|
30
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
31
|
Farmer TD, Jenkins EC, O'Brien TP, McCoy GA, Havlik AE, Nass ER, Nicholson WE, Printz RL, Shiota M. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am J Physiol Endocrinol Metab 2015; 308:E206-22. [PMID: 25516552 PMCID: PMC4312835 DOI: 10.1152/ajpendo.00406.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg(-1)·min(-1) under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg(-1)·min(-1) without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux.
Collapse
Affiliation(s)
- Tiffany D Farmer
- Diabetes Research Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erin C Jenkins
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Gregory A McCoy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Allison E Havlik
- Diabetes Research Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erik R Nass
- Diabetes Research Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wendell E Nicholson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard L Printz
- Diabetes Research Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Masakazu Shiota
- Diabetes Research Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|
32
|
Xin G, Yang G, Hui L. Study to assess whether waist circumference and changes in serum glucose and lipid profile are independent variables for the CETP gene. Diabetes Res Clin Pract 2014; 106:95-100. [PMID: 25115339 DOI: 10.1016/j.diabres.2014.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/02/2014] [Accepted: 07/20/2014] [Indexed: 11/22/2022]
Abstract
AIMS To observe the relationship among genes, obesity and the changes in serum glucose and lipid profile to assess whether obesity-related disease results from genes and/or obesity. METHODS Correlations among serum glucose, lipids, waist circumference (WC), and Taq1B, I405V, and D442G polymorphisms of the cholesteryl ester transfer protein (CETP) gene were assessed. Logistic regression analysis was used to screen independent variables among obesity-related anthropometric indexes and serum biochemical indicators for genes. RESULTS The waist circumference density index (WCDI) may be attributed to changes in serum biochemical indicators and among WCDI, BMI and serum biochemical indicators, however, only WCDI was an independent variable for the G allele. Differences were observed in anthropometric indexes and serum biochemical indicators between subjects with the G allele and those without (p<0.05). CONCLUSION Abdominal obesity and changes in serum glucose and lipid profile are affected by a group of genes, including CETP. Correlation of the CETP gene with waist circumference may be independent compared with serum glucose and lipid profile.
Collapse
Affiliation(s)
- Ge Xin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Gao Yang
- Dalian Tuberculosis Hospital, China
| | - Liu Hui
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
33
|
Reduced insulin clearance and lower insulin-degrading enzyme expression in the liver might contribute to the thrifty phenotype of protein-restricted mice. Br J Nutr 2014; 112:900-7. [PMID: 25036874 DOI: 10.1017/s0007114514001238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Collapse
|
34
|
Pereira S, Park E, Mori Y, Haber CA, Han P, Uchida T, Stavar L, Oprescu AI, Koulajian K, Ivovic A, Yu Z, Li D, Bowman TA, Dewald J, El-Benna J, Brindley DN, Gutierrez-Juarez R, Lam TKT, Najjar SM, McKay RA, Bhanot S, Fantus IG, Giacca A. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. Am J Physiol Endocrinol Metab 2014; 307:E34-46. [PMID: 24824652 PMCID: PMC4080148 DOI: 10.1152/ajpendo.00436.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Edward Park
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yusaku Mori
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - C Andrew Haber
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Han
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Toyoyoshi Uchida
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laura Stavar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Andrei I Oprescu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Ivovic
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Deling Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio; and
| | - Jay Dewald
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Jamel El-Benna
- Inserm, U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France; Laboratoire d'Excellence Inflamex, Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France
| | - David N Brindley
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Gutierrez-Juarez
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio; and
| | | | | | - I George Fantus
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
35
|
Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Perticone F, Sesti G. Differences in insulin clearance between metabolically healthy and unhealthy obese subjects. Acta Diabetol 2014; 51:257-61. [PMID: 23989864 DOI: 10.1007/s00592-013-0511-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Metabolically healthy obese (MHO) are relatively insulin sensitive and have a favorable cardio-metabolic risk profile compared with metabolically abnormal obese (MAO). To evaluate whether MAO individuals have a decreased insulin clearance compared with MHO individuals, 49 MHO, 147 MAO, and 172 non-obese individuals were analyzed in this cross-sectional study. Insulin clearance and insulin sensitivity were assessed through euglycemic hyperinsulinemic clamp. MHO subjects exhibited significant lower triglycerides, total cholesterol, 2-h post-challenge glucose, fasting and 2-h post-challenge insulin, steady-state plasma insulin, alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyltransferase as compared with MAO individuals. Disposition index was higher in MHO subjects as compared with MAO individuals after adjusting for gender and age (P = 0.04). Insulin clearance was significantly lower in MAO individuals as compared with MHO and non-obese individuals. The difference between the two obese subgroups remained significant after adjusting for gender, age, waist circumference, fat mass, and insulin-stimulated glucose disposal (P = 0.03). The hepatic insulin extraction (C-peptide/insulin) in the fasting state was significantly higher in MHO subjects as compared with MAO individuals (P < 0.0001). In univariate analysis adjusted for gender and age, insulin clearance was correlated with hepatic insulin extraction (P = 0.01). In conclusion, insulin clearance differs among obese subjects with different metabolic phenotypes. Impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia observed in MAO individuals.
Collapse
Affiliation(s)
- Maria A Marini
- Department of Systems Medicine, University of Rome-Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Moreno MF, de Souza GIDMH, Hachul ACL, Dos Santos B, Okuda MH, Neto NIP, Boldarine VT, Esposito E, Ribeiro EB, do Nascimento CMDPO, Ganen ADP, Oyama LM. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet. Nutr Metab (Lond) 2014; 11:15. [PMID: 24673809 PMCID: PMC3996175 DOI: 10.1186/1743-7075-11-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. The aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet. Methods Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 mg protein/kg of body weight) or tap water for four weeks [groups: normolipidic diet plus water (C); normolipidic diet and coacervate (CC); high-fat diet and water (H); and high-fat diet and coacervate (HC)]. Results The high-fat diet promoted inflammation, possibly by decreased adiponectin/sum of adipose tissues ratio and increased phosphorylation of NF-κB p50. In HC we observed a positive correlation between IL-10 and TNF-α in mesenteric adipose tissue, retroperitoneal adipose tissue and liver tissue. We also observed a positive correlation between lipopolisaccharide with IL-10 in the liver tissue. Conclusions High-fat diet treatment promoted metabolic alterations and inflammation, and chitosan coacervate whey protein modulated inflammatory milieu.
Collapse
Affiliation(s)
- Mayara Franzoi Moreno
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Claudia Losinskas Hachul
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruno Dos Santos
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos Hiromu Okuda
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nelson Inácio Pinto Neto
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elisa Esposito
- Instituto de Ciências e Tecnologia da Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Aline de Piano Ganen
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Finucane FM, Sharp SJ, Hatunic M, Sleigh A, De Lucia Rolfe E, Aihie Sayer A, Cooper C, Griffin SJ, Wareham NJ. Liver fat accumulation is associated with reduced hepatic insulin extraction and beta cell dysfunction in healthy older individuals. Diabetol Metab Syndr 2014; 6:43. [PMID: 24669786 PMCID: PMC3974597 DOI: 10.1186/1758-5996-6-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 03/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There is a well-established association between type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) secondary to excess accumulation of intrahepatic lipid (IHL), but the mechanistic basis for this association is unclear. Emerging evidence suggests that in addition to being associated with insulin resistance, NAFLD may be associated with relative beta-cell dysfunction. We sought to determine the influence of liver fat on hepatic insulin extraction and indices of beta-cell function in a cohort of apparently healthy older white adults. METHODS We performed a cross-sectional analysis of 70 healthy participants in the Hertfordshire Physical Activity Trial (39 males, age 71.3 ± 2.4 years) who underwent oral glucose tolerance testing with glucose, insulin and C-Peptide levels measured every 30 minutes over two hours. The areas under the concentration curve for glucose, insulin and C-Peptide were used to quantify hepatic insulin extraction (HIE), the insulinogenic index (IGI), the C-Peptide increment (CGI), the Disposition Index (DI) and Adaptation Index (AI). Visceral fat was quantified with magnetic resonance (MR) imaging and IHL with MR spectroscopy. Insulin sensitivity was measured with the Oral Glucose Insulin Sensitivity (OGIS) model. RESULTS 29 of 70 participants (41%) exceeded our arbitrary threshold for NAFLD, i.e. IHL >5.5%. Compared to those with normal IHL, those with NAFLD had higher weight, BMI, waist and MR visceral fat, with lower insulin sensitivity and hepatic insulin extraction. Alcohol consumption, age, HbA1c and alanine aminotransferase (ALT) levels were similar in both groups. Insulin and C-Peptide excursions after oral glucose loading were higher in the NAFLD group, but the CGI and AI were significantly lower, indicating a relative defect in beta-cell function that is only apparent when C-Peptide is measured and when dynamic changes in glucose levels and also insulin sensitivity are taken into account. There was no difference in IGI or DI between the groups. CONCLUSIONS Although increased IHL was associated with greater insulin secretion, modelled parameters suggested relative beta-cell dysfunction with NAFLD in apparently healthy older adults, which may be obscured by reduced hepatic insulin extraction. Further studies quantifying pancreatic fat content directly and its influence on beta cell function are warranted. TRIAL REGISTRATION ISRCTN60986572.
Collapse
Affiliation(s)
- Francis M Finucane
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Box 285, Hills Road, Cambridge CB20QQ, UK
- Galway Diabetes Research Centre, HRB Clinical Research Facility, School of Medicine, NUI Galway, Galway, Ireland
| | - Stephen J Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Box 285, Hills Road, Cambridge CB20QQ, UK
| | - Mensud Hatunic
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge CB20QQ, UK
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB20QQ, UK
| | - Ema De Lucia Rolfe
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Box 285, Hills Road, Cambridge CB20QQ, UK
| | - Avan Aihie Sayer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO166YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO166YD, UK
| | - Simon J Griffin
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Box 285, Hills Road, Cambridge CB20QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Box 285, Hills Road, Cambridge CB20QQ, UK
| |
Collapse
|
38
|
Junqueira Vasques AC, Pareja JC, de Oliveira MDS, Satake Novaes F, Miranda de Oliveira Lima M, Chaim ÉA, Piccinini F, Dalla Man C, Cobelli C, Geloneze B. β-Cell function improvements in grade I/II obese subjects with type 2 diabetes 1 month after biliopancreatic diversion: results from modeling analyses of oral glucose tolerance tests and hyperglycemic clamp studies. Diabetes Care 2013; 36:4117-24. [PMID: 24135388 PMCID: PMC3836124 DOI: 10.2337/dc13-0530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effect of biliopancreatic diversion (BPD) surgery on β-cell function in grade I and II obese patients with type 2 diabetes using oral and intravenous glucose loads. RESEARCH DESIGN AND METHODS Sixty-eight women were divided into the following three groups: 19 lean-control (23.0 ± 2.2 kg/m(2)) and 18 obese-control (35.0 ± 4.8 kg/m(2)) subjects with normal glucose tolerance, and 31 obese patients with type 2 diabetes (36.3 ± 3.7 kg/m(2)). Of the 31 diabetic women, 64% underwent BPD (n = 20, BMI: 36.5 ± 3.7 kg/m(2)) and were reassessed 1 month after surgery. Oral glucose tolerance tests and hyperglycemic clamps were performed. Mathematical modeling was used to analyze basal and stimulated β-cell function, insulin sensitivity (IS), hepatic extraction (HE) of insulin, and delay time of β-cell response to a specific plasma glucose concentration. RESULTS After BPD, restoration of the basal disposition index (P < 0.001) and improvement of the stimulated disposition indices in oral and intravenous glucose stimulation of the β-cell were observed (P < 0.05). In both dynamic tests, there were no changes in the delay time of β-cell response. IS for oral glucose stimulation (IS(oral)) and intravenous clamp glucose stimulation (IS(clamp)) was completely normalized (P < 0.001). IS(oral) and IS(clamp) increased approximately 5.0-fold and 3.5-fold, respectively (P < 0.01). The HE of insulin increased in the basal (P < 0.05) and stimulated states (P < 0.01). CONCLUSIONS β-Cell function, IS, and HE of insulin improved after BPD, which improved glycemic control.
Collapse
|
39
|
Brandimarti P, Costa-Júnior JM, Ferreira SM, Protzek AO, Santos GJ, Carneiro EM, Boschero AC, Rezende LF. Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. J Endocrinol 2013; 219:173-82. [PMID: 23959080 DOI: 10.1530/joe-13-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin clearance plays a major role in glucose homeostasis and insulin sensitivity in physiological and/or pathological conditions, such as obesity-induced type 2 diabetes as well as diet-induced obesity. The aim of the present work was to evaluate cafeteria diet-induced obesity-induced changes in insulin clearance and to explain the mechanisms underlying these possible changes. Female Swiss mice were fed either a standard chow diet (CTL) or a cafeteria diet (CAF) for 8 weeks, after which we performed glucose tolerance tests, insulin tolerance tests, insulin dynamics, and insulin clearance tests. We then isolated pancreatic islets for ex vivo glucose-stimulated insulin secretion as well as liver, gastrocnemius, visceral adipose tissue, and hypothalamus for subsequent protein analysis by western blot and determination of mRNA levels by real-time RT-PCR. The cafeteria diet induced insulin resistance, glucose intolerance, and increased insulin secretion and total insulin content. More importantly, mice that were fed a cafeteria diet demonstrated reduced insulin clearance and decay rate as well as reduced insulin-degrading enzyme (IDE) protein and mRNA levels in liver and skeletal muscle compared with the control animals. Furthermore, the cafeteria diet reduced IDE expression and alternative splicing in the liver and skeletal muscle of mice. In conclusion, a cafeteria diet impairs glucose homeostasis by reducing insulin sensitivity, but it also reduces insulin clearance by reducing IDE expression and alternative splicing in mouse liver; however, whether this mechanism contributes to the glucose intolerance or helps to ameliorate it remains unclear.
Collapse
Affiliation(s)
- P Brandimarti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), PO Box 6109, Campinas, SP, CEP 13083-865, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Asrih M, Jornayvaz FR. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 2013; 218:R25-36. [PMID: 23833274 DOI: 10.1530/joe-13-0201] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major health problem in developed countries. It has affected more than 30% of the general population and is commonly associated with insulin resistance, which is a major risk factor for the development of type 2 diabetes and a central feature of the metabolic syndrome. Furthermore, accumulating evidences reveal that NAFLD as well as insulin resistance is strongly related to inflammation. Cytokines and adipokines play a pivotal role in inflammatory processes. In addition, these inflammatory mediators regulate various functions including metabolic energy balance, inflammation, and immune response. However, their role in modulating ectopic lipids involved in the development of insulin resistance, such as diacylglycerols and ceramides, remains unknown. The aim of this review is first to describe the pathophysiology of insulin resistance in NAFLD. In particular, we discuss the role of ectopic lipid accumulation in the liver. Secondly, we also summarize recent findings emphasizing the role of main inflammatory markers in both NAFLD and insulin resistance and their potential role in modulating hepatic fat content in NAFLD and associated hepatic insulin resistance.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | | |
Collapse
|
41
|
Yamada K, Suda T, Komoro YS, Kanefuji T, Kubota T, Murayama T, Nakayama H, Aoyagi Y. Low fat intake is associated with pathological manifestations and poor recovery in patients with hepatocellular carcinoma. Nutr J 2013; 12:79. [PMID: 23758691 PMCID: PMC3691615 DOI: 10.1186/1475-2891-12-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/04/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study aimed to clarify whether dietary deviation is associated with pathological manifestations in hepatocellular carcinoma (HCC) patients. METHODS Dietary intake was estimated in 35 HCC cases before and after hospitalization by referencing digital camera images of each meal. Pathological conditions were evaluated in nitrogen balance, non-protein respiratory quotient (npRQ), neuropsychiatric testing and recovery speed from HCC treatment. RESULTS On admission, nitrogen balance and npRQ were negative and less than 0.85, respectively. Five patients were judged to have suffered from minimal hepatic encephalopathy that tended to be associated with a lowered value of npRQ (p = 0.082). The energy from fat intake showed a tendency of positive correlation with npRQ (p = 0.11), and the patients with minimal hepatic encephalopathy took significantly fewer energy from fat (p = 0.024). The energy difference from fat between diets at home versus those in the hospital showed a significant positive correlation with npRQ change after admission (p = 0.014). The recovery speed from invasive treatments for HCC showed a significant negative correlation with npRQ alteration after admission (p = 0.0002, r = -0.73). CONCLUSIONS These results suggest the lower fat intake leads to deterioration of energy state in HCC patients, which associates with poor recovery from invasive treatments and various pathological manifestations.
Collapse
Affiliation(s)
- Kazuki Yamada
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Yuko S Komoro
- Nutrition Control Center, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Tsutomu Kanefuji
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Tomoyuki Kubota
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Toshiko Murayama
- Nutrition Control Center, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Hideaki Nakayama
- Division of Pneumology, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| |
Collapse
|
42
|
Lee CC, Lorenzo C, Haffner SM, Wagenknecht LE, Goodarzi MO, Stefanovski D, Norris JM, Rewers MJ, Hanley AJ. Components of metabolic syndrome and 5-year change in insulin clearance - the Insulin Resistance Atherosclerosis Study. Diabetes Obes Metab 2013; 15:441-7. [PMID: 23216702 PMCID: PMC3810428 DOI: 10.1111/dom.12049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
AIMS Cross-sectional evidence indicates that abdominal adiposity, hypertension, dyslipidaemia and glycaemia are associated with reduced metabolic clearance rate of insulin (MCRI). Little is known about the progression of MCRI and whether components of metabolic syndrome are associated with the change in MCRI. In this study, we examined the association between components of metabolic syndrome and the 5-year change of MCRI. METHODS At baseline and 5-year follow-up, we measured fasting plasma triglycerides (TG), high-density lipoprotein (HDL) cholesterol, blood pressure (BP), waist circumference (WC) and fasting blood glucose (FBG) in 784 non-diabetic participants in the Insulin Resistance Atherosclerosis Study. MCRI, insulin sensitivity (SI ) and acute insulin response (AIR) were determined from frequently sampled intravenous glucose tolerance tests. RESULTS We observed a 29% decline of MCRI at follow-up. TG, systolic BP and WC at baseline were inversely associated with a decline of MCRI regression models adjusted for age, sex, ethnicity, smoking, alcohol consumption, energy expenditure, family history of diabetes, BMI, SI and AIR [β = -0.057 (95% confidence interval, CI: -0.11, -0.0084) for TG, β = -0.0019 (95% CI: -0.0035, -0.00023) for systolic BP and β = -0.0084 (95% CI: -0.013, -0.0039) for WC; all p < 0.05]. Higher HDL cholesterol at baseline was associated with an increase in MCRI [multivariable-adjusted β = 0.0029 (95% CI: 0.0010, 0.0048), p = 0.002]. FBG at baseline was not associated with MCRI at follow-up [multivariable-adjusted β = 0.0014 (95% CI: -0.0026, 0.0029)]. CONCLUSIONS MCRI declined progressively over 5 years in a non-diabetic cohort. Components of metabolic syndrome at baseline were associated with a significant change in MCRI.
Collapse
Affiliation(s)
- C. Christine Lee
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Lorenzo
- Division of Clinical Epidemiology, University of Texas Health Science Centre, San Antonio, TX, USA
| | - Steven M. Haffner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darko Stefanovski
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anthony J. Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Lee CC, Haffner SM, Wagenknecht LE, Lorenzo C, Norris JM, Bergman RN, Stefanovski D, Anderson AM, Rotter JI, Goodarzi MO, Hanley AJ. Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. Diabetes Care 2013; 36:901-7. [PMID: 23223351 PMCID: PMC3609510 DOI: 10.2337/dc12-1316] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to identify factors that are independently associated with the metabolic clearance rate of insulin (MCRI) and to examine the association of MCRI with incident type 2 diabetes in nondiabetic Hispanics and African Americans. RESEARCH DESIGN AND METHODS We investigated 1,116 participants in the Insulin Resistance Atherosclerosis Study (IRAS) Family Study with baseline examinations from 2000 to 2002 and follow-up examinations from 2005 to 2006. Insulin sensitivity (S(I)), acute insulin response (AIR), and MCRI were determined at baseline from frequently sampled intravenous glucose tolerance tests. MCRI was calculated as the ratio of the insulin dose over the incremental area under the curve of insulin. Incident diabetes was defined as fasting glucose ≥126 mg/dL or antidiabetic medication use by self-report. RESULTS We observed that S(I) and HDL cholesterol were independent positive correlates of MCRI, whereas fasting insulin, fasting glucose, subcutaneous adipose tissue, visceral adipose tissue, and AIR were independent negative correlates (all P < 0.05) at baseline. After 5 years of follow-up, 71 (6.4%) participants developed type 2 diabetes. Lower MCRI was associated with a higher risk of incident diabetes after adjusting for demographics, lifestyle factors, HDL cholesterol, indexes of obesity and adiposity, and insulin secretion (odds ratio 2.01 [95% CI 1.30-3.10], P = 0.0064, per one-SD decrease in loge-transformed MCRI). CONCLUSIONS Our data showed that lower MCRI predicts the incidence of type 2 diabetes.
Collapse
Affiliation(s)
- C Christine Lee
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Dâmaso AR, de Piano A. Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm 2013; 2013:137579. [PMID: 23509418 PMCID: PMC3572653 DOI: 10.1155/2013/137579] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023] Open
Abstract
The ingestion of excessive amounts of saturated fatty acids (SFAs) and transfatty acids (TFAs) is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.
Collapse
Affiliation(s)
- Débora Estadella
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Claudia M. da Penha Oller do Nascimento
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Lila M. Oyama
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Eliane B. Ribeiro
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Ana R. Dâmaso
- Departamento de Biociências, UNIFESP, Campus Baixada Santista, 11060-001 Santos, SP, Brazil
| | - Aline de Piano
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| |
Collapse
|
45
|
Rezende LF, Santos GJ, Santos-Silva JC, Carneiro EM, Boschero AC. Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 2012; 55:1495-504. [PMID: 22349107 DOI: 10.1007/s00125-012-2493-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/19/2012] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Ciliary neurotrophic factor (CNTF) improves metabolic variables of obese animals with characteristics of type 2 diabetes, mainly by reducing insulin resistance. We evaluated whether CNTF was able to improve other metabolic variables in mouse models of type 2 diabetes, such as beta cell mass and insulin clearance, and whether CNTF has any effect on non-obese mice with characteristics of type 2 diabetes. METHODS Neonatal mice were treated with 0.1 mg/kg CNTF or citrate buffer via intraperitoneal injections, before injection of 250 mg/kg alloxan. HEPG2 cells were cultured for 3 days in the presence of citrate buffer, 1 nmol/l CNTF or 50 mmol/l alloxan or a combination of CNTF and alloxan. Twenty-one days after treatment, we determined body weight, epididymal fat weight, blood glucose, plasma insulin, NEFA, glucose tolerance, insulin resistance, insulin clearance and beta cell mass. Finally, we assessed insulin receptor and protein kinase B phosphorylation in peripheral organs, as well as insulin-degrading enzyme (IDE) protein production and alternative splicing in the liver and HEPG2 cells. RESULTS CNTF improved insulin sensitivity and beta cell mass, while reducing glucose-stimulated insulin secretion and insulin clearance in Swiss mice, improving glucose handling in a non-obese type 2 diabetes model. This effect was associated with lower IDE production and activity in liver cells. All these effects were observed even at 21 days after CNTF treatment. CONCLUSIONS/INTERPRETATION CNTF protection against type 2 diabetes is partially independent of the anti-obesity actions of CNTF, requiring a reduction in insulin clearance and increased beta cell mass, besides increased insulin sensitivity. Furthermore, knowledge of the long-term effects of CNTF expands its pharmacological relevance.
Collapse
Affiliation(s)
- L F Rezende
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, PO Box 6109, Campinas, SP CEP 13083-865, Brazil.
| | | | | | | | | |
Collapse
|
46
|
Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142:711-725.e6. [PMID: 22326434 DOI: 10.1053/j.gastro.2012.02.003] [Citation(s) in RCA: 649] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
As obesity reaches epidemic proportions, nonalcoholic fatty liver disease (NAFLD) is becoming a frequent cause of patient referral to gastroenterologists. There is a close link between dysfunctional adipose tissue in NAFLD and common conditions such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. This review focuses on the pathophysiology of interactions between adipose tissue and target organs in obesity and the resulting clinical implications for the management of nonalcoholic steatohepatitis. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, caused by the accumulation of triglyceride-derived toxic metabolites in ectopic tissues (liver, muscle, pancreatic beta cells) and subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. The cross talk between dysfunctional adipocytes and the liver involves multiple cell populations, including macrophages and other immune cells, that in concert promote the development of lipotoxic liver disease, a term that more accurately describes the pathophysiology of nonalcoholic steatohepatitis. At the clinical level, adipose tissue insulin resistance contributes to type 2 diabetes mellitus and cardiovascular disease. Treatments that rescue the liver from lipotoxicity by restoring adipose tissue insulin sensitivity (eg, significant weight loss, exercise, thiazolidinediones) or preventing activation of inflammatory pathways and oxidative stress (ie, vitamin E, thiazolidinediones) hold promise in the treatment of NAFLD, although their long-term safety and efficacy remain to be established. Better understanding of pathways that link dysregulated adipose tissue, metabolic dysfunction, and liver lipotoxicity will result in improvements in the clinical management of these challenging patients.
Collapse
Affiliation(s)
- Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610-0226, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, U.K.
| | | | | |
Collapse
|
48
|
Wu N, Lu Y, He B, Zhang Y, Lin J, Zhao S, Zhang W, Li Y, Han P. Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract 2010; 90:288-96. [PMID: 20855122 DOI: 10.1016/j.diabres.2010.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/09/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
We infused the 48 h intralipid plus heparin (IH) to normal rats to elevate plasma free fatty acids (FFAs). Co-infusion of taurine was designed for the purpose of studying the effects of taurine on insulin sensitivity, oxidative stress, c-Jun NH-terminal kinase (JNK)1 activity and insulin signaling in livers of prolonged IH-infused rats. Cannulated rats were infused for 48 h intravenously with either saline or IH, with or without taurine. Hyperinsulinemic-euglycemic clamps with [6-3H] glucose infusion were performed to assess hepatic insulin sensitivity. IH infusion increased plasma 8-isoprostaglandin and hepatic malondialdehyde (MDA). IH also increased JNK1 activity and insulin receptor substrate 1/2 (IRS-1/2) serine phosphorylation, reduced insulin-stimulated IRS-1/2 tyrosine phosphorylation and Akt serine 473 phosphorylation, and induced hepatic insulin resistance. Taurine co-infusion with IH prevented the rise in 8-isoprostaglandin and MDA, inhibited the activation of JNK1, and improved insulin signaling and insulin resistance in liver. The present study has demonstrated that taurine, as an antioxidant, prevented hepatic oxidative stress and ameliorated hepatic insulin resistance. And this effect may be associated with the inhibition of JNK1 activation and the improvement of insulin signaling. This study suggests the therapeutic value of taurine in protecting from hepatic insulin resistance caused by elevated FFAs.
Collapse
Affiliation(s)
- Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vranic M. Odyssey between Scylla and Charybdis through storms of carbohydrate metabolism and diabetes: a career retrospective. Am J Physiol Endocrinol Metab 2010; 299:E849-67. [PMID: 20823450 DOI: 10.1152/ajpendo.00344.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This research perspective allows me to summarize some of my work completed over 50 years, and it is organized in seven sections. 1) The treatment of diabetes concentrates on the liver and/or the periphery. We quantified hormonal and metabolic interactions involved in physiology and the pathogenesis of diabetes by developing tracer methods to separate the effects of diabetes on both. We collaborated in the first tracer clinical studies on insulin resistance, hypertriglyceridemia, and the Cori cycle. 2) Diabetes reflects insulin deficiency and glucagon abundance. Extrapancreatic glucagon changed the prevailing dogma and permitted precise exploration of the roles of insulin and glucagon in physiology and diabetes. 3) We established the critical role of glucagon-insulin interaction and the control of glucose metabolism during moderate exercise and of catecholamines during strenuous exercise. Deficiencies of the release and effects of these hormones were quantified in diabetes. We also revealed how acute and chronic hyperglycemia affects the expression of GLUT2 gene and protein in diabetes. 4) We outlined molecular and physiological mechanisms whereby exercise training and repetitive neurogenic stress can prevent diabetes in ZDF rats. 5) We and others established that the indirect effect of insulin plays an important role in the regulation of glucose production in dogs. We confirmed this effect in humans and demonstrated that in type 2 diabetes it is mainly the indirect effect. 6) We indicated that the muscle and the liver protected against glucose changes. 7) We described molecular mechanisms responsible for increased HPA axis in diabetes and for the diminished responses of HPA axis, catecholamines, and glucagon to hypoglycemia. We proposed a new approach to decrease the threat of hypoglycemia.
Collapse
Affiliation(s)
- Mladen Vranic
- Dept. of Physiology, Univ. of Toronto, Toronto, ON. Canada M5S 1A8.
| |
Collapse
|
50
|
Ribbing J, Hamrén B, Svensson MK, Karlsson MO. A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes. J Clin Pharmacol 2010; 50:861-72. [PMID: 20484615 DOI: 10.1177/0091270009349711] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive, metabolic disorder characterized by reduced insulin sensitivity and loss of beta-cell mass (BCM), resulting in hyperglycemia. Population pharmacokinetic-pharmacodynamic (PKPD) modeling is a valuable method to gain insight into disease and drug action. A semi-mechanistic PKPD model incorporating fasting plasma glucose (FPG), fasting insulin, insulin sensitivity, and BCM in patients at various disease stages was developed. Data from 3 clinical trials (phase II/III) with a peroxisome proliferator-activated receptor agonist, tesaglitazar, were used to develop the model. In this, a modeling framework proposed by Topp et al was expanded to incorporate the effects of treatment and impact of disease, as well as variability between subjects. The model accurately described FPG and fasting insulin data over time. The model included a strong relation between insulin clearance and insulin sensitivity, predicted 40% to 60% lower BCM in T2DM patients, and realistic improvements of BCM and insulin sensitivity with treatment. The treatment response on insulin sensitivity occurs within the first weeks, whereas the positive effects on BCM arise over several months. The semi-mechanistic PKPD model well described the heterogeneous populations, ranging from nondiabetic, insulin-resistant subjects to long-term treated T2DM patients. This model also allows incorporation of clinical-experimental studies and actual observations of BCM.
Collapse
Affiliation(s)
- Jakob Ribbing
- Pharmacometrics, Clinical Pharmacology, Sandwich Laboratories, IPC 096, Pfizer Ltd, Sandwich, Kent, CT13 9NJ, United Kingdom.
| | | | | | | |
Collapse
|