1
|
Cui N, Perez YL, Hume AJ, Nunley BE, Kong K, Mills MG, Xie H, Greninger AL. A high-throughput, polymerase-targeted RT-PCR for broad detection of mammalian filoviruses. Microbiol Spectr 2024; 12:e0101024. [PMID: 39046245 PMCID: PMC11370238 DOI: 10.1128/spectrum.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Filoviruses are some of the most lethal viruses in the modern world, and increasing numbers of filovirus species and genera have been discovered in recent years. Despite the potential severity of filovirus outbreaks in the human population, comparably few sensitive pan-filovirus RT-PCR assays have been described that might facilitate early detection and prevention. Here, we present a new pan-filovirus RT-PCR assay targeting the L polymerase gene for detection of all known mammalian filoviruses. We demonstrate the detection of 10 synthetic filovirus RNA templates with analytical sensitivity ranging from 178 to 3,354 copies/mL, without cross-reactivity on 10 non-filoviral human viral species. We verified assay performance on 10 inactivated filovirus isolates, yielding initial sensitivities of 0.012-44.17 TCID50/mL. We coupled this broadly reactive RT-PCR with a deep sequencing workflow that is amenable to high-throughput pooling to maximize detection and discovery potential. In summary, this pan-filovirus RT-PCR assay targets the most conserved filovirus gene, offers the widest breadth of coverage to date, and may help in the detection and discovery of novel filoviruses.IMPORTANCEFiloviruses remain some of the most mysterious viruses known to the world, with extremely high lethality rates and significant pandemic potential. Yet comparably few filovirus species and genera have been discovered to date and questions surround the definitive host species for zoonotic infections. Here, we describe a novel broadly reactive RT-PCR assay targeting the conserved L polymerase gene for high-throughput screening for filoviruses in a variety of clinical and environmental specimens. We demonstrate the assay can detect all known mammalian filoviruses and determine the sensitivity and specificity of the assay on synthetic RNA sequences, inactivated filovirus isolates, and non-filoviral species.
Collapse
Affiliation(s)
- Na Cui
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yael L. Perez
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam J. Hume
- Department of Microbiology/National Emerging Infectious Diseases Laboratories, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - B. Ethan Nunley
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin Kong
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Margaret G. Mills
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Taylor DJ, Barnhart MH. Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts. PLoS Pathog 2024; 20:e1011864. [PMID: 39226335 PMCID: PMC11398700 DOI: 10.1371/journal.ppat.1011864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/13/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Although several filoviruses are dangerous human pathogens, there is conflicting evidence regarding their origins and interactions with animal hosts. Here we attempt to improve this understanding using the paleoviral record over a geological time scale, protein structure predictions, tests for evolutionary maintenance, and phylogenetic methods that alleviate sources of bias and error. We found evidence for long branch attraction bias in the L gene tree for filoviruses, and that using codon-specific models and protein structural comparisons of paleoviruses ameliorated conflict and bias. We found evidence for four ancient filoviral groups, each with extant viruses and paleoviruses with open reading frames. Furthermore, we found evidence of repeated transfers of filovirus-like elements to mouse-like rodents. A filovirus-like nucleoprotein ortholog with an open reading frame was detected in three subfamilies of spalacid rodents (present since the Miocene). We provide evidence that purifying selection is acting to maintain amino acids, protein structure and open reading frames in these elements. Our finding of extant viruses nested within phylogenetic clades of paleoviruses informs virus discovery methods and reveals the existence of Lazarus taxa among RNA viruses. Our results resolve a deep conflict in the evolutionary framework for filoviruses and reveal that genomic transfers to vertebrate hosts with potentially functional co-options have been more widespread than previously appreciated.
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Max H Barnhart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
3
|
Düx A, Lwitiho SE, Ayouba A, Röthemeier C, Merkel K, Weiss S, Thaurignac G, Lander A, Kouadio L, Nowak K, Corman V, Drosten C, Couacy-Hymann E, Krüger DH, Kurth A, Calvignac-Spencer S, Peeters M, Ntinginya NE, Leendertz FH, Mangu C. Detection of Bombali Virus in a Mops condylurus Bat in Kyela, Tanzania. Viruses 2024; 16:1227. [PMID: 39205201 PMCID: PMC11358901 DOI: 10.3390/v16081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Bombali virus (BOMV) is a novel Orthoebolavirus that has been detected in free-tailed bats in Sierra Leone, Guinea, Kenya, and Mozambique. We screened our collection of 349 free-tailed bat lungs collected in Côte d'Ivoire and Tanzania for BOMV RNA and tested 228 bat blood samples for BOMV antibodies. We did not detect BOMV-specific antibodies but found BOMV RNA in a Mops condylurus bat from Tanzania, marking the first detection of an ebolavirus in this country. Our findings further expand the geographic range of BOMV and support M. condylurus' role as a natural BOMV host.
Collapse
Affiliation(s)
- Ariane Düx
- Helmholtz Institute for One Health, Helmholtz Center for Infection Research, 17489 Greifswald, Germany; (K.N.); (S.C.-S.); (F.H.L.)
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
| | - Sudi E. Lwitiho
- NIMR-Mbeya Medical Research Center, Mbeya P.O. Box 2410, Tanzania; (S.E.L.); (N.E.N.); (C.M.)
| | - Ahidjo Ayouba
- TransVIHMI, Montpellier University/IRD/INSERM, 34394 Montpellier, France; (A.A.); (G.T.); (M.P.)
| | - Caroline Röthemeier
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
- Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Kevin Merkel
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
- Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sabrina Weiss
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
- Institute of Virology, Charité—University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, 10117 Berlin, Germany; (V.C.); (C.D.); (D.H.K.)
| | - Guillaume Thaurignac
- TransVIHMI, Montpellier University/IRD/INSERM, 34394 Montpellier, France; (A.A.); (G.T.); (M.P.)
| | - Angelika Lander
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
| | - Leonce Kouadio
- Une Santé Pour Tous, Bingerville, Côte d’Ivoire; (L.K.); (E.C.-H.)
- Departement de Biologie Animale, Faculté des Sciences Biologiques, Université Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
| | - Kathrin Nowak
- Helmholtz Institute for One Health, Helmholtz Center for Infection Research, 17489 Greifswald, Germany; (K.N.); (S.C.-S.); (F.H.L.)
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
| | - Victor Corman
- Institute of Virology, Charité—University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, 10117 Berlin, Germany; (V.C.); (C.D.); (D.H.K.)
| | - Christian Drosten
- Institute of Virology, Charité—University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, 10117 Berlin, Germany; (V.C.); (C.D.); (D.H.K.)
| | | | - Detlev H. Krüger
- Institute of Virology, Charité—University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, 10117 Berlin, Germany; (V.C.); (C.D.); (D.H.K.)
| | - Andreas Kurth
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
| | - Sébastien Calvignac-Spencer
- Helmholtz Institute for One Health, Helmholtz Center for Infection Research, 17489 Greifswald, Germany; (K.N.); (S.C.-S.); (F.H.L.)
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Martine Peeters
- TransVIHMI, Montpellier University/IRD/INSERM, 34394 Montpellier, France; (A.A.); (G.T.); (M.P.)
| | - Nyanda E. Ntinginya
- NIMR-Mbeya Medical Research Center, Mbeya P.O. Box 2410, Tanzania; (S.E.L.); (N.E.N.); (C.M.)
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Helmholtz Center for Infection Research, 17489 Greifswald, Germany; (K.N.); (S.C.-S.); (F.H.L.)
- Robert Koch Institute, 13353 Berlin, Germany; (C.R.); (K.M.); (S.W.); (A.L.); (A.K.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Chacha Mangu
- NIMR-Mbeya Medical Research Center, Mbeya P.O. Box 2410, Tanzania; (S.E.L.); (N.E.N.); (C.M.)
| |
Collapse
|
4
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
5
|
He B, Hu T, Yan X, Pa Y, Liu Y, Liu Y, Li N, Yu J, Zhang H, Liu Y, Chai J, Sun Y, Mi S, Liu Y, Yi L, Tu Z, Wang Y, Sun S, Feng Y, Zhang W, Zhao H, Duan B, Gong W, Zhang F, Tu C. Isolation, characterization, and circulation sphere of a filovirus in fruit bats. Proc Natl Acad Sci U S A 2024; 121:e2313789121. [PMID: 38335257 PMCID: PMC10873641 DOI: 10.1073/pnas.2313789121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.
Collapse
Affiliation(s)
- Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yanhui Pa
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Jing Yu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province671000, China
| | - Yonghua Liu
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Jun Chai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province650201, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yiyin Wang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Wendong Zhang
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Huanyun Zhao
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Bofang Duan
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Wenjie Gong
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province225009, China
| |
Collapse
|
6
|
Peeters M, Champagne M, Ndong Bass I, Goumou S, Ndimbo Kumugo SP, Lacroix A, Esteban A, Meta Djomsi D, Soumah AK, Mbala Kingebeni P, Mba Djonzo FA, Lempu G, Thaurignac G, Mpoudi Ngole E, Kouanfack C, Mukadi Bamuleka D, Likofata J, Muyembe Tamfum JJ, De Nys H, Capelle J, Toure A, Delaporte E, Keita AK, Ahuka Mundeke S, Ayouba A. Extensive Survey and Analysis of Factors Associated with Presence of Antibodies to Orthoebolaviruses in Bats from West and Central Africa. Viruses 2023; 15:1927. [PMID: 37766333 PMCID: PMC10536003 DOI: 10.3390/v15091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1-27.5% versus 1.3-4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p < 0.001). Moreover, seroprevalence was highest in subadults (45.4%) when compared to mature adults (19.2%), (p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined.
Collapse
Affiliation(s)
- Martine Peeters
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Maëliss Champagne
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Innocent Ndong Bass
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Souana Goumou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Simon-Pierre Ndimbo Kumugo
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Audrey Lacroix
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Amandine Esteban
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Dowbiss Meta Djomsi
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Placide Mbala Kingebeni
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Flaubert Auguste Mba Djonzo
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Guy Lempu
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Guillaume Thaurignac
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Charles Kouanfack
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Daniel Mukadi Bamuleka
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Jean-Jacques Muyembe Tamfum
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Helene De Nys
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
- Astre, CIRAD, 6 Lanark Road, Harare, Zimbabwe
| | - Julien Capelle
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Steve Ahuka Mundeke
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| |
Collapse
|
7
|
Jones BD, Kaufman EJ, Peel AJ. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023; 15:1860. [PMID: 37766267 PMCID: PMC10535902 DOI: 10.3390/v15091860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Collapse
Affiliation(s)
- Brent D. Jones
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | | | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
8
|
Makenov MT, Le LAT, Stukolova OA, Radyuk EV, Morozkin ES, Bui NTT, Zhurenkova OB, Dao MN, Nguyen CV, Luong MT, Nguyen DT, Fedorova MV, Valdokhina AV, Bulanenko VP, Akimkin VG, Karan LS. Detection of Filoviruses in Bats in Vietnam. Viruses 2023; 15:1785. [PMID: 37766193 PMCID: PMC10534609 DOI: 10.3390/v15091785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
A new filovirus named Měnglà virus was found in bats in southern China in 2015. This species has been assigned to the new genus Dianlovirus and has only been detected in China. In this article, we report the detection of filoviruses in bats captured in Vietnam. We studied 248 bats of 15 species caught in the provinces of Lai Chau and Son La in northern Vietnam and in the province of Dong Thap in the southern part of the country. Filovirus RNA was found in four Rousettus leschenaultii and one Rousettus amplexicaudatus from Lai Chau Province. Phylogenetic analysis of the polymerase gene fragment showed that three positive samples belong to Dianlovirus, and two samples form a separate clade closer to Orthomarburgvirus. An enzyme-linked immunosorbent assay showed that 9% of Rousettus, 13% of Eonycteris, and 10% of Cynopterus bats had antibodies to the glycoprotein of marburgviruses.
Collapse
Affiliation(s)
- Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Lan Anh T. Le
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Olga A. Stukolova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Ekaterina V. Radyuk
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Evgeny S. Morozkin
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Nga T. T. Bui
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Olga B. Zhurenkova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Manh N. Dao
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Chau V. Nguyen
- National Institute of Malariology, Parasitology and Entomology, Hanoi 110000, Vietnam;
| | - Mo T. Luong
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Ho Chi Minh City 740500, Vietnam; (M.T.L.); (D.T.N.)
| | - Dung T. Nguyen
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Ho Chi Minh City 740500, Vietnam; (M.T.L.); (D.T.N.)
| | - Marina V. Fedorova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Anna V. Valdokhina
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Victoria P. Bulanenko
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Vasiliy G. Akimkin
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Lyudmila S. Karan
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| |
Collapse
|
9
|
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan- Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023; 15:v15040987. [PMID: 37112966 PMCID: PMC10145118 DOI: 10.3390/v15040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Antoinette Grobbelaar
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naazneen Moolla
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| |
Collapse
|
10
|
Huang Y, Zhang S, Tao Y, Yang J, Lu S, Jin D, Pu J, Luo W, Zheng H, Liu L, Jiang JF, Xu J. Morphological and genomic characteristics of two novel actinomycetes, Ornithinimicrobium sufpigmenti sp. nov. and Ornithinimicrobium faecis sp. nov. isolated from bat faeces ( Rousettus leschenaultia and Taphozous perforates). Front Cell Infect Microbiol 2023; 13:1093407. [PMID: 36864884 PMCID: PMC9973731 DOI: 10.3389/fcimb.2023.1093407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Four Gram-staining-positive, aerobic, non-motile, circle-shaped bacteria were isolated from the faeces of bats (Rousettus leschenaultia and Taphozous perforates) collected from Guangxi autonomous region (E106°49'20″, N22°20'54″) and Yunnan province (E102°04'39″, N25°09'10″) of South China. Strains HY006T and HY008 shared highly 16S rRNA gene sequence similarity to those of Ornithinimicrobium pratense W204T (99.3%) and O. flavum CPCC 203535T (97.3%), while the strains HY1745 and HY1793T were closest to the type strains O. ciconiae H23M54T (98.7%), O. cavernae CFH 30183T (98.3%), and O. murale 01-Gi-040T (98.1%). Furthermore, when compared to the other members of the genus Ornithinimicrobium, the digital DNA-DNA hybridization and average nucleotide identity values of the four novel strains were within the ranges of 19.6-33.7% and 70.6-87.4%, respectively, both of which were below the respective recommended cutoff values of 70.0% and 95-96%. Significantly, strain HY006T was resistant to chloramphenicol and linezolid whereas strain HY1793T was resistant to erythromycin, clindamycin (intermediately), and levofloxacin (intermediately). The main cellular fatty acids (>20.0%) of our isolates were iso-C15:0 and iso-C16:0. Strains HY006T and HY1793T contained ornithine as the diagnostic diamino acid, also along with the alanine, glycine and glutamic acid in their cell wall. Based on phylogenetic, chemotaxonomic and phenotypic analyses, these four strains could be classified as two novel species of the genus Ornithinimicrobium, for which the names Ornithinimicrobium sufpigmenti sp. nov. and Ornithinimicrobium faecis sp. nov. are proposed. The type strains are HY006T (=CGMCC 1.16565T =JCM 33397T) and HY1793T (=CGMCC 1.19143T =JCM 34881T), respectively.
Collapse
Affiliation(s)
- Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanmeihui Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-fu Jiang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China,*Correspondence: Jianguo Xu, ; Jia-fu Jiang,
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China,Research Institute of Public Health, Nankai University, Tianjin, China,*Correspondence: Jianguo Xu, ; Jia-fu Jiang,
| |
Collapse
|
11
|
Huang Y, Sun Y, Huang Q, Lv X, Pu J, Zhu W, Lu S, Jin D, Liu L, Shi Z, Yang J, Xu J. The Threat of Potentially Pathogenic Bacteria in the Feces of Bats. Microbiol Spectr 2022; 10:e0180222. [PMID: 36287057 PMCID: PMC9769573 DOI: 10.1128/spectrum.01802-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
Bats have attracted global attention because of their zoonotic association with severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous and ongoing studies have predominantly focused on bat-borne viruses; however, the prevalence or abundance of bat-borne pathogenic bacteria and their potential public health significance have largely been neglected. For the first time, this study used both metataxonomics (16S rRNA marker gene sequencing) and culturomics (traditional culture methods) to systematically evaluate the potential public health significance of bat fecal pathogenic bacteria. To this end, fecal samples were obtained from five bat species across different locations in China, and their microbiota composition was analyzed. The results revealed that the bat microbiome was most commonly dominated by Proteobacteria, while the strictly anaerobic phylum Bacteroidetes occupied 35.3% of the relative abundance in Rousettus spp. and 36.3% in Hipposideros spp., but less than 2.7% in the other three bat species (Taphozous spp., Rhinolophus spp., and Myotis spp.). We detected 480 species-level phylotypes (SLPs) with PacBio sequencing, including 89 known species, 330 potentially new species, and 61 potentially higher taxa. In addition, a total of 325 species were identified by culturomics, and these were classified into 242 named species and 83 potentially novel species. Of note, 32 of the 89 (36.0%) known species revealed by PacBio sequencing were found to be pathogenic bacteria, and 69 of the 242 (28.5%) known species isolated by culturomics were harmful to people, animals, or plants. Additionally, nearly 40 potential novel species which may be potential bacterial pathogens were identified. IMPORTANCE Bats are one of the most diverse and widely distributed groups of mammals living in close proximity to humans. In recent years, bat-borne viruses and the viral zoonotic diseases associated with bats have been studied in great detail. However, the prevalence and abundance of pathogenic bacteria in bats have been largely ignored. This study used high-throughput sequencing techniques (metataxonomics) in combination with traditional culture methods (culturomics) to analyze the bacterial flora in bat feces from different species of bats in China, revealing that bats are natural hosts of pathogenic bacteria and carry many unknown bacteria. The results of this study can be used as guidance for future investigations of bacterial pathogens in bats.
Collapse
Affiliation(s)
- Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yamin Sun
- Research Institute of Public Health, Nankai University, Tianjin, People’s Republic of China
- Research Center for Functional Genomics and Biochip, Tianjin, People’s Republic of China
| | - Qianni Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Institute of Public Health, Nankai University, Tianjin, People’s Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Peking University School of Public Health, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Schmid DW, Fackelmann G, Wasimuddin, Rakotondranary J, Ratovonamana YR, Montero BK, Ganzhorn JU, Sommer S. A framework for testing the impact of co-infections on host gut microbiomes. Anim Microbiome 2022; 4:48. [PMID: 35945629 PMCID: PMC9361228 DOI: 10.1186/s42523-022-00198-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parasitic infections disturb gut microbial communities beyond their natural range of variation, possibly leading to dysbiosis. Yet it remains underappreciated that most infections are accompanied by one or more co-infections and their collective impact is largely unexplored. Here we developed a framework illustrating changes to the host gut microbiome following single infections, and build on it by describing the neutral, synergistic or antagonistic impacts on microbial α- and ß-diversity expected from co-infections. We tested the framework on microbiome data from a non-human primate population co-infected with helminths and Adenovirus, and matched patterns reported in published studies to the introduced framework. In this case study, α-diversity of co-infected Malagasy mouse lemurs (Microcebus griseorufus) did not differ in comparison with that of singly infected or uninfected individuals, even though community composition captured with ß-diversity metrices changed significantly. Explicitly, we record stochastic changes in dispersion, a sign of dysbiosis, following the Anna-Karenina principle rather than deterministic shifts in the microbial gut community. From the literature review and our case study, neutral and synergistic impacts emerged as common outcomes from co-infections, wherein both shifts and dispersion of microbial communities following co-infections were often more severe than after a single infection alone, but microbial α-diversity was not universally altered. Important functions of the microbiome may also suffer from such heavily altered, though no less species-rich microbial community. Lastly, we pose the hypothesis that the reshuffling of host-associated microbial communities due to the impact of various, often coinciding parasitic infections may become a source of novel or zoonotic diseases.
Collapse
|
13
|
Becker DJ, Albery GF, Sjodin AR, Poisot T, Bergner LM, Chen B, Cohen LE, Dallas TA, Eskew EA, Fagre AC, Farrell MJ, Guth S, Han BA, Simmons NB, Stock M, Teeling EC, Carlson CJ. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. THE LANCET. MICROBE 2022; 3:e625-e637. [PMID: 35036970 PMCID: PMC8747432 DOI: 10.1016/s2666-5247(21)00245-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host-virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Timothée Poisot
- Université de Montréal, Département de Sciences Biologiques, Montréal, QC, Canada
| | - Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Medical Research Centre, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Bat Health Foundation, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah Guth
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Michiel Stock
- Research Unit Knowledge-based Systems, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | - Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
14
|
Ramanantsalama RV, Goodman SM, Dietrich M, Lebarbenchon C. Interaction between Old World fruit bats and humans: From large scale ecosystem services to zoonotic diseases. Acta Trop 2022; 231:106462. [PMID: 35421381 DOI: 10.1016/j.actatropica.2022.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
The Old World tropical and subtropical frugivorous bat genus Rousettus (Pteropodidae) contains species with broad distributions, as well as those occurring in restricted geographical areas, particularly islands. Herein we review the role of Rousettus as a keystone species from a global "One Health" approach and related to ecosystem functioning, zoonotic disease and public health. Rousettus are efficient at dispersing seeds and pollinating flowers; their role in forest regeneration is related to their ability to fly considerable distances during nightly foraging bouts and their relatively small body size, which allows them to access fruits in forested areas with closed vegetation. Rousettus are also reservoirs for various groups of pathogens (viruses, bacteria, fungi, protozoa), which, by definition, are infectious agents causing disease. The study of day roosts of different species of Rousettus and the successful establishment of captive breeding colonies have provided important details related to the infection dynamics of their associated pathogens. Large-scale conversion of forested areas into agricultural landscapes has increased contact between humans and Rousettus, therefore augmenting the chances of infectious agent spillover. Many crucial scientific details are still lacking related to members of this genus, which have direct bearing on the prevention of emerging disease outbreaks, as well as the conservation of these bats. The public should be better informed on the capacity of fruit bats as keystone species for large scale forest regeneration and in spreading pathogens. Precise details on the transmission of zoonotic diseases of public health importance associated with Rousettus should be given high priority.
Collapse
|
15
|
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. Climate change increases cross-species viral transmission risk. Nature 2022; 607:555-562. [PMID: 35483403 DOI: 10.1101/2020.01.24.918755] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2022] [Indexed: 05/28/2023]
Abstract
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA.
- Center for Global Health Science & Security, Georgetown University, Washington, DC, USA.
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.
- EcoHealth Alliance, New York, NY, USA.
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Casey M Zipfel
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Evan A Eskew
- EcoHealth Alliance, New York, NY, USA
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | | | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
16
|
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. Climate change increases cross-species viral transmission risk. Nature 2022; 607:555-562. [PMID: 35483403 DOI: 10.1038/s41586-022-04788-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA. .,Center for Global Health Science & Security, Georgetown University, Washington, DC, USA.
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA. .,EcoHealth Alliance, New York, NY, USA.
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Casey M Zipfel
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Evan A Eskew
- EcoHealth Alliance, New York, NY, USA.,Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | | | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
17
|
Kemenesi G, Tóth GE, Mayora-Neto M, Scott S, Temperton N, Wright E, Mühlberger E, Hume AJ, Suder EL, Zana B, Boldogh SA, Görföl T, Estók P, Szentiványi T, Lanszki Z, Somogyi BA, Nagy Á, Pereszlényi CI, Dudás G, Földes F, Kurucz K, Madai M, Zeghbib S, Maes P, Vanmechelen B, Jakab F. Isolation of infectious Lloviu virus from Schreiber's bats in Hungary. Nat Commun 2022; 13:1706. [PMID: 35361761 PMCID: PMC8971391 DOI: 10.1038/s41467-022-29298-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some filoviruses can be transmitted to humans by zoonotic spillover events from their natural host and filovirus outbreaks have occured with increasing frequency in the last years. The filovirus Lloviu virus (LLOV), was identified in 2002 in Schreiber's bats (Miniopterus schreibersii) in Spain and was subsequently detected in bats in Hungary. Here we isolate infectious LLOV from the blood of a live sampled Schreiber's bat in Hungary. The isolate is subsequently sequenced and cultured in the Miniopterus sp. kidney cell line SuBK12-08. It is furthermore able to infect monkey and human cells, suggesting that LLOV might have spillover potential. A multi-year surveillance of LLOV in bats in Hungary detects LLOV RNA in both deceased and live animals as well as in coupled ectoparasites from the families Nycteribiidae and Ixodidae. This correlates with LLOV seropositivity in sampled Schreiber's bats. Our data support the role of bats, specifically Miniopterus schreibersii as hosts for LLOV in Europe. We suggest that bat-associated parasites might play a role in the natural ecology of filoviruses in temperate climate regions compared to filoviruses in the tropics.
Collapse
Affiliation(s)
- Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Estók
- Department of Zoology, Eszterházy Károly University, Eger, Hungary
| | - Tamara Szentiványi
- Institute of Ecology and Botany, ÖK Centre for Ecological Research, Vácrátót, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs A Somogyi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Nagy
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | | | - Gábor Dudás
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Fanni Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Piet Maes
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Bert Vanmechelen
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Djomsi DM, Mba Djonzo FA, Ndong Bass I, Champagne M, Lacroix A, Thaurignac G, Esteban A, De Nys H, Bourgarel M, Akoachere JF, Delaporte E, Ayouba A, Cappelle J, Mpoudi Ngole E, Peeters M. Dynamics of Antibodies to Ebolaviruses in an Eidolon helvum Bat Colony in Cameroon. Viruses 2022; 14:560. [PMID: 35336967 PMCID: PMC8951055 DOI: 10.3390/v14030560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The ecology of ebolaviruses is still poorly understood and the role of bats in outbreaks needs to be further clarified. Straw-colored fruit bats (Eidolon helvum) are the most common fruit bats in Africa and antibodies to ebolaviruses have been documented in this species. Between December 2018 and November 2019, samples were collected at approximately monthly intervals in roosting and feeding sites from 820 bats from an Eidolon helvum colony. Dried blood spots (DBS) were tested for antibodies to Zaire, Sudan, and Bundibugyo ebolaviruses. The proportion of samples reactive with GP antigens increased significantly with age from 0-9/220 (0-4.1%) in juveniles to 26-158/225 (11.6-70.2%) in immature adults and 10-225/372 (2.7-60.5%) in adult bats. Antibody responses were lower in lactating females. Viral RNA was not detected in 456 swab samples collected from 152 juvenile and 214 immature adult bats. Overall, our study shows that antibody levels increase in young bats suggesting that seroconversion to Ebola or related viruses occurs in older juvenile and immature adult bats. Multiple year monitoring would be needed to confirm this trend. Knowledge of the periods of the year with the highest risk of Ebolavirus circulation can guide the implementation of strategies to mitigate spill-over events.
Collapse
Affiliation(s)
- Dowbiss Meta Djomsi
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Flaubert Auguste Mba Djonzo
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Innocent Ndong Bass
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Maëliss Champagne
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Audrey Lacroix
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Guillaume Thaurignac
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Amandine Esteban
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Helene De Nys
- ASTRE, CIRAD, Harare, Zimbabwe; (H.D.N.); (M.B.)
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France
| | - Mathieu Bourgarel
- ASTRE, CIRAD, Harare, Zimbabwe; (H.D.N.); (M.B.)
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France
| | - Jane-Francis Akoachere
- Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (J.-F.A.); (J.C.)
| | - Eric Delaporte
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Ahidjo Ayouba
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Julien Cappelle
- Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (J.-F.A.); (J.C.)
| | - Eitel Mpoudi Ngole
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Martine Peeters
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| |
Collapse
|
19
|
Görföl T, Tóth GE, Boldogh SA, Jakab F, Kemenesi G. Lloviu Virus in Europe is an Emerging Disease of Concern. ECOHEALTH 2022; 19:5-7. [PMID: 35107640 PMCID: PMC9090692 DOI: 10.1007/s10393-021-01574-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary.
- Department of Zoology, Hungarian Natural History Museum, Baross utca 13, Budapest, 1088, Hungary.
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
| | | | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
| |
Collapse
|
20
|
Fischhoff IR, Castellanos AA, Rodrigues JPGLM, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc Biol Sci 2021; 288:20211651. [PMID: 34784766 PMCID: PMC8596006 DOI: 10.1098/rspb.2021.1651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Back and forth transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals will establish wild reservoirs of virus that endanger long-term efforts to control COVID-19 in people and to protect vulnerable animal populations. Better targeting surveillance and laboratory experiments to validate zoonotic potential requires predicting high-risk host species. A major bottleneck to this effort is the few species with available sequences for angiotensin-converting enzyme 2 receptor, a key receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with three-dimensional modelling of host-virus protein-protein interactions using machine learning. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for greater than 5000 mammals-an order of magnitude more species than previously possible. Our predictions are strongly corroborated by in vivo studies. The predicted zoonotic capacity and proximity to humans suggest enhanced transmission risk from several common mammals, and priority areas of geographic overlap between these species and global COVID-19 hotspots. With molecular data available for only a small fraction of potential animal hosts, linking data across biological scales offers a conceptual advance that may expand our predictive modelling capacity for zoonotic viruses with similarly unknown host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7700 Cape Town, Rondebosch, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| |
Collapse
|
21
|
Bokelmann M, Vogel U, Debeljak F, Düx A, Riesle-Sbarbaro S, Lander A, Wahlbrink A, Kromarek N, Neil S, Couacy-Hymann E, Prescott J, Kurth A. Tolerance and Persistence of Ebola Virus in Primary Cells from Mops condylurus, a Potential Ebola Virus Reservoir. Viruses 2021; 13:v13112186. [PMID: 34834992 PMCID: PMC8622823 DOI: 10.3390/v13112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Franka Debeljak
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany;
| | - Silke Riesle-Sbarbaro
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Annette Wahlbrink
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Nicole Kromarek
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Stuart Neil
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Emmanuel Couacy-Hymann
- Laboratoire National d’Appui au Développement Agricole, Bingerville BP 206, Côte d’Ivoire;
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
- Correspondence:
| |
Collapse
|
22
|
Virome of bat-infesting arthropods: highly divergent viruses in different vectors. J Virol 2021; 96:e0146421. [PMID: 34586860 DOI: 10.1128/jvi.01464-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bats are reservoirs of important zoonotic viruses like Nipah and SARS viruses. However, whether the blood-sucking arthropods on the body surface of bats also carry these viruses, and the relationship between viruses carried by the blood-sucking arthropods and viruses carried by bats, have not been reported. This study collected 686 blood-sucking arthropods on the body surface of bats from Yunnan Province, China between 2012 and 2015, and they included wingless bat flies, bat flies, ticks, mites, and fleas. The viruses carried by these arthropods were analyzed using meta-transcriptomic approach, and 144 highly diverse positive-sense single-stranded RNA, negative-sense single-stranded RNA, and double-stranded RNA viruses were found, of which 138 were potentially new viruses. These viruses were classified into 14 different virus families or orders, including Bunyavirales, Mononegavirales, Reoviridae, and Picornavirales. Further analyses found that Bunyavirales were the most abundant virus group (84% of total virus RNA) in ticks, whereas narnaviruses were the most abundant (52-92%) in the bat flies and wingless bat flies libraries, followed by solemoviruses (1-29%) and reoviruses (0-43%). These viruses were highly structured based on the arthropod types. It is worth noting that no bat-borne zoonotic viruses were found in the virome of bat-infesting arthropod, seemly not supporting that bat surface arthropods are vectors of zoonotic viruses carried by bats. IMPORTANCE Bats are reservoir of many important viral pathogens. To evaluate whether bat-parasitic blood-sucking arthropods participate in the circulation of these important viruses, it is necessary to conduct unbiased virome studies on these arthropods. We evaluated five types of blood-sucking parasitic arthropods on the surface of bats in Yunnan, China and identified a variety of viruses, some of which had high prevalence and abundance level, although there is limited overlap in virome between distant arthropods. While most of the virome discovered here are potentially arthropod-specific viruses, we identified three possible arboviruses, including one orthobunyavirus and two vesiculoviruses (family Rhabdoviridae), suggesting bat-parasitic arthropods carry viruses with risk of spillage, which warrants further study.
Collapse
|
23
|
Fischhoff IR, Castellanos AA, Rodrigues JP, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431844. [PMID: 33619481 PMCID: PMC7899445 DOI: 10.1101/2021.02.18.431844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Back and forth transmission of SARS-CoV-2 between humans and animals may lead to wild reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, and protecting vulnerable animal populations that are particularly susceptible to lethal disease. Predicting high risk host species is key to targeting field surveillance and lab experiments that validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small number of species with available molecular information about the structure of ACE2, a key cellular receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with 3D modeling of virus and host cell protein interactions using machine learning methods. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals - an order of magnitude more species than previously possible. The high accuracy predictions achieved by this approach are strongly corroborated by in vivo empirical studies. We identify numerous common mammal species whose predicted zoonotic capacity and close proximity to humans may further enhance the risk of spillover and spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. With molecular sequence data available for only a small fraction of potential host species, predictive modeling integrating data across multiple biological scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses with similarly unknown and potentially broad host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| | | | - João P.G.L.M. Rodrigues
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| |
Collapse
|
24
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
25
|
Tan CW, Yang X, Anderson DE, Wang LF. Bat virome research: the past, the present and the future. Curr Opin Virol 2021; 49:68-80. [PMID: 34052731 DOI: 10.1016/j.coviro.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Bats have been increasingly recognised as an exceptional reservoir for emerging zoonotic viruses for the past few decades. Recent studies indicate that the unique bat immune system may be partially responsible for their ability to co-exist with viruses with minimal or no clinical diseases. In this review, we discuss the history and importance of bat virome studies and contrast the vast difference between such studies before and after the introduction of next generation sequencing (NGS) in this area of research. We also discuss the role of discovery serology and high-throughput single cell RNA-seq in future bat virome research.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Xinglou Yang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, 169857, Singapore.
| |
Collapse
|
26
|
Lacroix A, Mbala Kingebeni P, Ndimbo Kumugo SP, Lempu G, Butel C, Serrano L, Vidal N, Thaurignac G, Esteban A, Mukadi Bamuleka D, Likofata J, Delaporte E, Muyembe Tamfum JJ, Ayouba A, Peeters M, Ahuka Mundeke S. Investigating the Circulation of Ebola Viruses in Bats during the Ebola Virus Disease Outbreaks in the Equateur and North Kivu Provinces of the Democratic Republic of Congo from 2018. Pathogens 2021; 10:pathogens10050557. [PMID: 34064424 PMCID: PMC8147758 DOI: 10.3390/pathogens10050557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
With 12 of the 31 outbreaks, the Democratic Republic of Congo (DRC) is highly affected by Ebolavirus disease (EVD). To better understand the role of bats in the ecology of Ebola viruses, we conducted surveys in bats during two recent EVD outbreaks and in two areas with previous outbreaks. Dried blood spots were tested for antibodies to ebolaviruses and oral and rectal swabs were screened for the presence of filovirus using a broadly reactive semi-nested RT-PCR. Between 2018 and 2020, 892 (88.6%) frugivorous and 115 (11.4%) insectivorous bats were collected. Overall, 11/925 (1.2%) to 100/925 (10.8%) bats showed antibodies to at least one Ebolavirus antigen depending on the positivity criteria. Antibodies were detected in fruit bats from the four sites and from species previously documented to harbor Ebola antibodies or RNA. We tested for the first time a large number of bats during ongoing EVD outbreaks in DRC, but no viral RNA was detected in the 676 sampled bats. Our study illustrates the difficulty to document the role of bats as a source of Ebolaviruses as they might clear quickly the virus. Given the increasing frequency of EVD outbreaks, more studies on the animal reservoir are urgently needed.
Collapse
Affiliation(s)
- Audrey Lacroix
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Placide Mbala Kingebeni
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Simon Pierre Ndimbo Kumugo
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Guy Lempu
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Christelle Butel
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Laetitia Serrano
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Nicole Vidal
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Guillaume Thaurignac
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Amandine Esteban
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Daniel Mukadi Bamuleka
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Institut National de Recherche Biomédicale (INRB), Goma, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Eric Delaporte
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Jean-Jacques Muyembe Tamfum
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Ahidjo Ayouba
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Martine Peeters
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
- Correspondence: (M.P.); (S.A.M.)
| | - Steve Ahuka Mundeke
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Correspondence: (M.P.); (S.A.M.)
| |
Collapse
|
27
|
Schulz JE, Seifert SN, Thompson JT, Avanzato V, Sterling SL, Yan L, Letko MC, Matson MJ, Fischer RJ, Tremeau-Bravard A, Seetahal JFR, Ramkissoon V, Foster J, Goldstein T, Anthony SJ, Epstein JH, Laing ED, Broder CC, Carrington CVF, Schountz T, Munster VJ. Serological Evidence for Henipa-like and Filo-like Viruses in Trinidad Bats. J Infect Dis 2021; 221:S375-S382. [PMID: 32034942 DOI: 10.1093/infdis/jiz648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.
Collapse
Affiliation(s)
- Jonathan E Schulz
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Stephanie N Seifert
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John T Thompson
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Victoria Avanzato
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Lianying Yan
- Uniformed Services University, Bethesda, Maryland, USA
| | - Michael C Letko
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - M Jeremiah Matson
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Marshall University Joan C Edwards School of Medicine, Huntington West Virginia, USA
| | - Robert J Fischer
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Alexandre Tremeau-Bravard
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Janine F R Seetahal
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Vernie Ramkissoon
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Jerome Foster
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Eric D Laing
- Uniformed Services University, Bethesda, Maryland, USA
| | | | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Tony Schountz
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vincent J Munster
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
28
|
Kuhn JH, Adkins S, Alioto D, Alkhovsky SV, Amarasinghe GK, Anthony SJ, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bartonička T, Basler C, Bavari S, Beer M, Bente DA, Bergeron É, Bird BH, Blair C, Blasdell KR, Bradfute SB, Breyta R, Briese T, Brown PA, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Buzkan N, Calisher CH, Cao M, Casas I, Chamberlain J, Chandran K, Charrel RN, Chen B, Chiumenti M, Choi IR, Clegg JCS, Crozier I, da Graça JV, Dal Bó E, Dávila AMR, de la Torre JC, de Lamballerie X, de Swart RL, Di Bello PL, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolja VV, Dolnik O, Drebot MA, Drexler JF, Dürrwald R, Dufkova L, Dundon WG, Duprex WP, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Fernandes J, Fooks AR, Formenty PBH, Forth LF, Fouchier RAM, Freitas-Astúa J, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gbakima A, Goldstein T, Gonzalez JPJ, Griffiths A, Groschup MH, Günther S, Guterres A, Hall RA, Hammond J, Hassan M, Hepojoki J, Hepojoki S, Hetzel U, Hewson R, Hoffmann B, Hongo S, Höper D, Horie M, Hughes HR, Hyndman TH, Jambai A, Jardim R, Jiāng D, Jin Q, Jonson GB, Junglen S, Karadağ S, Keller KE, Klempa B, Klingström J, Kobinger G, Kondō H, Koonin EV, Krupovic M, Kurath G, Kuzmin IV, Laenen L, Lamb RA, Lambert AJ, Langevin SL, Lee B, Lemos ERS, Leroy EM, Li D, Lǐ J, Liang M, Liú W, Liú Y, Lukashevich IS, Maes P, Marciel de Souza W, Marklewitz M, Marshall SH, Martelli GP, Martin RR, Marzano SYL, Massart S, McCauley JW, Mielke-Ehret N, Minafra A, Minutolo M, Mirazimi A, Mühlbach HP, Mühlberger E, Naidu R, Natsuaki T, Navarro B, Navarro JA, Netesov SV, Neumann G, Nowotny N, Nunes MRT, Nylund A, Økland AL, Oliveira RC, Palacios G, Pallas V, Pályi B, Papa A, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Payne S, Pérez DR, Pfaff F, Radoshitzky SR, Rahman AU, Ramos-González PL, Resende RO, Reyes CA, Rima BK, Romanowski V, Robles Luna G, Rota P, Rubbenstroth D, Runstadler JA, Ruzek D, Sabanadzovic S, Salát J, Sall AA, Salvato MS, Sarpkaya K, Sasaya T, Schwemmle M, Shabbir MZ, Shí X, Shí Z, Shirako Y, Simmonds P, Širmarová J, Sironi M, Smither S, Smura T, Song JW, Spann KM, Spengler JR, Stenglein MD, Stone DM, Straková P, Takada A, Tesh RB, Thornburg NJ, Tomonaga K, Tordo N, Towner JS, Turina M, Tzanetakis I, Ulrich RG, Vaira AM, van den Hoogen B, Varsani A, Vasilakis N, Verbeek M, Wahl V, Walker PJ, Wang H, Wang J, Wang X, Wang LF, Wèi T, Wells H, Whitfield AE, Williams JV, Wolf YI, Wú Z, Yang X, Yáng X, Yu X, Yutin N, Zerbini FM, Zhang T, Zhang YZ, Zhou G, Zhou X. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2020; 165:3023-3072. [PMID: 32888050 PMCID: PMC7606449 DOI: 10.1007/s00705-020-04731-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon J Anthony
- Mailman School of Public Health, Columbia University, New York, NY, USA
- EcoHealth Alliance, New York, NY, USA
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Institute of Bioinformatics, Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Christopher Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- Edge BioInnovation Consulting and Mgt, Frederick, MD, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis A Bente
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Bird
- School of Veterinary Medicine, One Health Institute, University of California, Davis, CA, USA
| | - Carol Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rachel Breyta
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Thomas Briese
- Department of Epidemiology, Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Paul A Brown
- Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Heath Safety ANSES, Ploufragan, France
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service, University of the Free State, Bloemfontein, Republic of South Africa
| | - Nihal Buzkan
- Department of Plant Protection, Faculty of Agriculture, Kahramanmaras Sütçü Imam University, Avsar Campus, 46060, Kahramanmaras, Turkey
| | | | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - John Chamberlain
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, UK
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Il-Ryong Choi
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX, USA
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Alberto M R Dávila
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Rik L de Swart
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Patrick L Di Bello
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | - Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ron A M Fouchier
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aiah Gbakima
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Tracey Goldstein
- One Health Institute, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, 20057, USA
- Centaurus Biotechnologies, CTP, Manassas, VA, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Mohamed Hassan
- Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Mobidiag Ltd, Espoo, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, University of Zuerich, Zurich, Switzerland
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Seiji Hongo
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Gilda B Jonson
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Serpil Karadağ
- Republic Of Turkey Ministry Of Agriculture And Forestry, Pistachio Research Institute, Gaziantep, Turkey
| | - Karen E Keller
- United States Department of Agriculture, Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR, USA
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Ivan V Kuzmin
- US Department of Agriculture, Animal and Plant Health Inspection, National Veterinary Services Laboratories, Diagnostic Virology Laboratory, Ames, USA
| | - Lies Laenen
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elba R S Lemos
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Eric M Leroy
- MIVEGEC (IRD-CNRS-Montpellier university) Unit, French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Dexin Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mifang Liang
- Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wénwén Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yàn Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, The Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Piet Maes
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Marco Marklewitz
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Giovanni P Martelli
- Department of Plant, Soil and Food Sciences, University "Aldo Moro", Bari, Italy
| | - Robert R Martin
- United States Department of Agriculture, Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Shin-Yi L Marzano
- Department of Biology and Microbiology, Department of Plant Sciences, South Dakota State University, Brookings, SD, USA
| | - Sébastien Massart
- Gembloux Agro-Bio Tech, TERRA, Plant Pathology Laboratory, Liège University, Liège, Belgium
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Maria Minutolo
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Tomohide Natsuaki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Arnfinn L Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renata C Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrated Biosciences and Department of Entomology, Texas A&M University, College Station, USA
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aziz-Ul Rahman
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Cientifico Technológico-La Plata, Consejo Nacional de Investigaciones Científico Tecnológico-Universidad Nacional de La Plata, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jiří Salát
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamil Sarpkaya
- Department of Forestry Engineering, Faculty of Forestry, Karabuk University (UNIKA), Karabük, Turkey
| | - Takahide Sasaya
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Muhammad Z Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Zhènglì Shí
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Teemu Smura
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | | | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Ioannis Tzanetakis
- Division of Agriculture, Department of Entomology and Plant Pathology, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 73 Strada delle Cacce, 10135, Turin, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heather Wells
- Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhìqiáng Wú
- MOH Key Laboratory of Systems Biology of Pathogens, IPB, CAMS, Beijing, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xīnglóu Yáng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Xuejie Yu
- Wuhan University School of Health Sciences, Wuhan, China
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Di Paola N, Sanchez-Lockhart M, Zeng X, Kuhn JH, Palacios G. Viral genomics in Ebola virus research. Nat Rev Microbiol 2020; 18:365-378. [PMID: 32367066 PMCID: PMC7223634 DOI: 10.1038/s41579-020-0354-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. Advances in the sequencing and functional characterization of both pathogen and host genomes have provided a wealth of knowledge to clinicians, epidemiologists and public health responders during outbreaks of high-consequence viral disease. Here, we describe how genomics has been historically used to investigate Ebola virus disease outbreaks and how new technologies allow for rapid, large-scale data generation at the point of care. We highlight how genomics extends beyond consensus-level sequencing of the virus to include intra-host viral transcriptomics and the characterization of host responses in acute and persistently infected patients. Similar genomics techniques can also be applied to the characterization of non-human primate animal models and to known natural reservoirs of filoviruses, and metagenomic sequencing can be the key to the discovery of novel filoviruses. Finally, we outline the importance of reverse genetics systems that can swiftly characterize filoviruses as soon as their genome sequences are available.
Collapse
Affiliation(s)
- Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
30
|
Ayouba A, Ahuka-Mundeke S, Butel C, Mbala Kingebeni P, Loul S, Tagg N, Villabona-Arenas CJ, Lacroix A, Ndimbo-Kumugo SP, Keita AK, Toure A, Couacy-Hymann E, Calvignac-Spencer S, Leendertz FH, Formenty P, Delaporte E, Muyembe-Tamfum JJ, Mpoudi Ngole E, Peeters M. Extensive Serological Survey of Multiple African Nonhuman Primate Species Reveals Low Prevalence of Immunoglobulin G Antibodies to 4 Ebola Virus Species. J Infect Dis 2020; 220:1599-1608. [PMID: 30657940 DOI: 10.1093/infdis/jiz006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 11/14/2022] Open
Abstract
Bats are considered a reservoir species for Ebola viruses, but nonhuman primates (NHPs) have represented a source of infection in several outbreaks in humans. Here we report serological screening of blood or fecal samples from monkeys (n = 2322) and apes (n = 2327). Thirty-six NHP species from Cameroon, Democratic Republic of the Congo, and Ivory Coast were tested with a sensitive and specific Luminex-based assay for immunoglobulin G antibodies to 4 Ebola virus species. Using the simultaneous presence of antibodies to nucleoproteins and glycoproteins to define positivity, we showed that specific Ebola virus antibodies are not widespread among NHPs. Only 1 mustached monkey (Cercopithecus cephus) from Cameroon was positive for Sudan ebolavirus. These observations support that NHPs are most likely intermediate hosts for Ebola viruses. With the increasing frequency of Ebola outbreaks, it is crucial to identify the animal reservoir and understand the ecology of Ebola viruses to inform disease control.
Collapse
Affiliation(s)
- Ahidjo Ayouba
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of the Congo (DRC).,Service de Microbiologie, Cliniques Universitaires de Kinshasa, DRC
| | - Christelle Butel
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| | - Placide Mbala Kingebeni
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of the Congo (DRC)
| | - Severin Loul
- Ministry of Livestock, Fisheries and Animal Industries, Yaoundé, Cameroon
| | - Nikki Tagg
- Projet Grands Singes, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Belgium
| | - Christian-Julian Villabona-Arenas
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| | - Audrey Lacroix
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| | | | - Alpha K Keita
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France.,Centre de Recherche et de Formation en Infectiologie de Guinée
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée.,Chaire de Santé Publique, Université Gamal Abdel Nasser de Conakry, Guinea
| | - Emmanuel Couacy-Hymann
- Laboratoire National D'appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Ivory Coast
| | | | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Pierre Formenty
- Emerging and Dangerous Pathogens Laboratory Network, World Health Organization, Geneva, Switzerland
| | - Eric Delaporte
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of the Congo (DRC).,Service de Microbiologie, Cliniques Universitaires de Kinshasa, DRC
| | - Eitel Mpoudi Ngole
- Centre de Recherches sur les Maladies emergentes, ré-émergentes et la médecine nucleaire/Institut de Recherches Médicales et d'études des plantes médecinales, Yaoundé, Cameroon
| | - Martine Peeters
- Recherches Translationelles sur VIH et Maladies Infectieuses/Institut national de la santé et de la recherche médicale, Institut de Recherche pour le Développement and University of Montpellier, France
| |
Collapse
|
31
|
Seroreactive Profiling of Filoviruses in Chinese Bats Reveals Extensive Infection of Diverse Viruses. J Virol 2020; 94:JVI.02042-19. [PMID: 31941778 DOI: 10.1128/jvi.02042-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Southern China is a hot spot of emerging infectious diseases, in which diverse species of bats dwell, a large group of flying mammals considered natural reservoirs for zoonotic viruses. Recently, divergent filoviruses (FiVs) have been identified in bats within this region, which pose a potential risk to public health, but the true infection situation in bats remains largely unclear. Here, 689 archived bat serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA), Western blotting, and neutralization assay to investigate the seroprevalence and cross-reactivity of four divergent FiVs and two other viruses (rabies virus and Tuhoko pararubulavirus 1) of different families within the order Mononegavirales Results showed no cross-antigenicity between FiVs and other mononegaviruses but different cross-reactivity among the FiVs themselves. The total FiV seroreactive rate was 36.3% (250/689), with infection by the indigenous Chinese FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Further viral metagenomic analysis of fruit bat tissues also identified the gene sequence of a novel FiV. These results indicate the likely prevalence of other so far unidentified FiVs within the Chinese bat population, with frugivorous Rousettus leschenaultii and Eonycteris spelaea bats and insectivorous Myotis horsfieldii and Miniopterus schreibersii bats being their major reservoirs.IMPORTANCE Bats are natural hosts of many FiVs, from which diverse FiVs were serologically or virologically detected in Africa, Europe, and East Asia. Recently, very divergent FiVs were identified in the Chinese bat population, but their antigenic relationship with other known FiVs remains unknown. Here, we conducted serological characterization and investigation of Chinese indigenous FiVs and prototypes of other viruses in bats. Results indicated that Chinese indigenous FiVs are antigenically distant to other FiVs, and infection of novel or multiple FiVs occurred in Chinese bats, with FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Additionally, besides Rousettus leschenaultii and Eonycteris spelaea bats, the insectivorous Myotis horsfieldii and M. schreibersii bats are highly preferential hosts of FiVs. Seroreactive and viral metagenomic results indicated that more as yet unknown bat-borne FiVs circulate in Southern China, and to uncover them further, investigation and timely surveillance is needed.
Collapse
|
32
|
Huang Y, Wang X, Yang J, Lu S, Lai XH, Jin D, Pu J, Huang Y, Ren Z, Zhu W, Liang H, Zhou P, Shi Z, Xu J. Apibacter raozihei sp. nov. isolated from bat feces of Hipposideros and Taphozous spp. Int J Syst Evol Microbiol 2020; 70:611-617. [PMID: 31661042 DOI: 10.1099/ijsem.0.003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strains HY041T and HY039 were oxidase- and Gram-stain-negative, catalase-positive, rod-shaped, non-motile, and facultatively anaerobic bacteria. They were isolated from the feces of bats of the Hipposideros and Taphozous spp. collected from Chongqing City and Guangxi province (PR China), respectively. Phylogenetic analysis based on the 16S rRNA gene and 463 core genes indicated that HY041T and HY039 represent members of the genus Apibacter, forming a clade with Apibacter adventoris wkB301T (95.2 % 16S rRNA gene sequence similarity) and Apibacter mensalis R-53146T (94.0 %). In silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI) values of our isolates with the most closely related species were lower than the 70 % and 95-96 % threshold, respectively, in contrast to values above these two thresholds (isDDH value: 89.1 %; ANI value: 98.5 %) between strains HY041T and HY039. The novel isolates could grow on nutrient and MacConkey agar. HY041T and HY039 could produce β-galactosidase and N-acetyl-β-glucosaminidase, and utilize d-adonitol, d-mannose, gentiobiose, glucose and salicin. The major fatty acids (>10.0 %) of HY041T were iso-C17 : 0 3OH, iso-C15 : 0, C16 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c) and C16 : 0 3OH. Polar lipids included phosphatidylethanolamine, glycolipid, two unidentified aminolipids and four unidentified lipids. Menaquinone 6 (MK-6) was the sole respiratory quinone. On the basis of all analyses so far, strains HY041T and HY039 represent a novel species of the genus Apibacter, for which the name Apibacter raozihei sp. nov. is proposed. The type strain is HY041T (=CGMCC 1.16567T=JCM 33423T) with a genomic DNA G+C content of 32.2 mol%.
Collapse
Affiliation(s)
- Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Zhihong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Wentao Zhu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jianguo Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
33
|
Takadate Y, Kondoh T, Igarashi M, Maruyama J, Manzoor R, Ogawa H, Kajihara M, Furuyama W, Sato M, Miyamoto H, Yoshida R, Hill TE, Freiberg AN, Feldmann H, Marzi A, Takada A. Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Rep 2020; 30:308-319.e5. [PMID: 31940478 PMCID: PMC11075117 DOI: 10.1016/j.celrep.2019.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Fruit bats are suspected to be natural hosts of filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV). Interestingly, however, previous studies suggest that these viruses have different tropisms depending on the bat species. Here, we show a molecular basis underlying the host-range restriction of filoviruses. We find that bat-derived cell lines FBKT1 and ZFBK13-76E show preferential susceptibility to EBOV and MARV, respectively, whereas the other bat cell lines tested are similarly infected with both viruses. In FBKT1 and ZFBK13-76E, unique amino acid (aa) sequences are found in the Niemann-Pick C1 (NPC1) protein, one of the cellular receptors interacting with the filovirus glycoprotein (GP). These aa residues, as well as a few aa differences between EBOV and MARV GPs, are crucial for the differential susceptibility to filoviruses. Taken together, our findings indicate that the heterogeneity of bat NPC1 orthologs is an important factor controlling filovirus species-specific host tropism.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Masahiro Sato
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Terence E Hill
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia.
| |
Collapse
|
34
|
Fischer K, Camara A, Troupin C, Fehling SK, Strecker T, Groschup MH, Tordo N, Diederich S. Serological evidence of exposure to ebolaviruses in domestic pigs from Guinea. Transbound Emerg Dis 2019; 67:724-732. [PMID: 31627257 DOI: 10.1111/tbed.13391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
The genus Ebolavirus comprises several virus species with zoonotic potential and varying pathogenicity for humans. Ebolaviruses are considered to circulate in wildlife with occasional spillover events into the human population which then often leads to severe disease outbreaks. Several studies indicate a significant role of bats as reservoir hosts in the ebolavirus ecology. However, pigs from the Philippines have been found to be naturally infected with Reston virus (RESTV), an ebolavirus that is thought to only cause asymptomatic infections in humans. The recent report of ebolavirus-specific antibodies in pigs from Sierra Leone further supports natural infection of pigs with ebolaviruses. However, susceptibility of pigs to highly pathogenic Ebola virus (EBOV) was only shown under experimental settings and evidence for natural infection of pigs with EBOV is currently lacking. Between October and December 2017, we collected 308 serum samples from pigs in Guinea, West Africa, and tested for the presence of ebolavirus-specific antibodies with different serological assays. Besides reactivity to EBOV nucleoproteins in ELISA and Western blot for 19 (6.2%) and 13 (4.2%) samples, respectively, four sera recognized Sudan virus (SUDV) NP in Western blot. Furthermore, four samples specifically detected EBOV or SUDV glycoprotein (GP) in an indirect immunofluorescence assay under native conditions. Virus neutralization assay based on EBOV (Mayinga isolate) revealed five weakly neutralizing sera. The finding of (cross-) reactive and weakly neutralizing antibodies suggests the exposure of pigs from Guinea to ebolaviruses or ebola-like viruses with their pathogenicity as well as their zoonotic potential remaining unknown. Future studies should investigate whether pigs can act as an amplifying host for ebolaviruses and whether there is a risk for spillover events.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | | | | | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Noel Tordo
- Institut Pasteur de Guineé, Conakry, Guinea
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
35
|
Hume AJ, Mühlberger E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J Mol Biol 2019; 431:4290-4320. [PMID: 31260690 PMCID: PMC6879820 DOI: 10.1016/j.jmb.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Research on filoviruses has historically focused on the highly pathogenic ebola- and marburgviruses. Indeed, until recently, these were the only two genera in the filovirus family. Recent advances in sequencing technologies have facilitated the discovery of not only a new ebolavirus, but also three new filovirus genera and a sixth proposed genus. While two of these new genera are similar to the ebola- and marburgviruses, the other two, discovered in saltwater fishes, are considerably more diverse. Nonetheless, these viruses retain a number of key features of the other filoviruses. Here, we review the key characteristics of filovirus replication and transcription, highlighting similarities and differences between the viruses. In particular, we focus on key regulatory elements in the genomes, replication and transcription strategies, and the conservation of protein domains and functions among the viruses. In addition, using computational analyses, we were able to identify potential homology and functions for some of the genes of the novel filoviruses with previously unknown functions. Although none of the newly discovered filoviruses have yet been isolated, initial studies of some of these viruses using minigenome systems have yielded insights into their mechanisms of replication and transcription. In general, the Cuevavirus and proposed Dianlovirus genera appear to follow the transcription and replication strategies employed by the ebola- and marburgviruses, respectively. While our knowledge of the fish filoviruses is currently limited to sequence analysis, the lack of certain conserved motifs and even entire genes necessitates that they have evolved distinct mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Becker DJ, Washburne AD, Faust CL, Mordecai EA, Plowright RK. The problem of scale in the prediction and management of pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190224. [PMID: 31401958 PMCID: PMC6711304 DOI: 10.1098/rstb.2019.0224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 01/28/2023] Open
Abstract
Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
37
|
Karan LS, Makenov MT, Korneev MG, Sacko N, Boumbaly S, Yakovlev SA, Kourouma K, Bayandin RB, Gladysheva AV, Shipovalov AV, Yurganova IA, Grigorieva YE, Fedorova MV, Scherbakova SA, Kutyrev VV, Agafonov AP, Maksyutov RA, Shipulin GA, Maleev VV, Boiro M, Akimkin VG, Popova AY. Bombali Virus in Mops condylurus Bats, Guinea. Emerg Infect Dis 2019; 25. [PMID: 31310231 PMCID: PMC6711222 DOI: 10.3201/eid2509.190581] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In 2018, a previously unknown Ebola virus, Bombali virus, was discovered in Sierra Leone. We describe detection of Bombali virus in Guinea. We found viral RNA in internal organs of 3 Angolan free-tailed bats (Mops condylurus) trapped in the city of N’Zerekore and in a nearby village.
Collapse
|
38
|
Fischer K, Jabaty J, Suluku R, Strecker T, Groseth A, Fehling SK, Balkema-Buschmann A, Koroma B, Schmidt KM, Atherstone C, Weingartl HM, Mettenleiter TC, Groschup MH, Hoenen T, Diederich S. Serological Evidence for the Circulation of Ebolaviruses in Pigs From Sierra Leone. J Infect Dis 2019; 218:S305-S311. [PMID: 29982580 DOI: 10.1093/infdis/jiy330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many human ebolavirus outbreaks have been linked to contact with wildlife including nonhuman primates and bats, which are assumed to serve as host species. However, it is largely unknown to what extent other animal species, particularly livestock, are involved in the transmission cycle or act as additional hosts for filoviruses. Pigs were identified as a susceptible host for Reston virus with subsequent transmission to humans reported in the Philippines. To date, there is no evidence of natural Ebola virus (EBOV) infection in pigs, although pigs were shown to be susceptible to EBOV infection under experimental settings. To investigate the potential role of pigs in the ecology of EBOV, we analyzed 400 porcine serum samples from Sierra Leone for the presence of ebolavirus-specific antibodies. Three samples reacted with ebolavirus nucleoproteins but had no neutralizing antibodies. Our results (1) suggest the circulation of ebolaviruses in swine in Sierra Leone that are antigenically related but not identical to EBOV and (2) could represent undiscovered ebolaviruses with unknown pathogenic and/or zoonotic potential.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Juliet Jabaty
- Sierra Leone Agricultural Research Institute, Teko Livestock Research Centre, Sierra Leone
| | - Roland Suluku
- Njala University, Animal Science, Serology and Molecular Laboratory, Sierra Leone
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Germany
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Greifswald - Insel Riems, Germany
| | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Bashiru Koroma
- Njala University, Animal Science, Serology and Molecular Laboratory, Sierra Leone
| | - Kristina M Schmidt
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Christine Atherstone
- Sydney School of Veterinary Science, University of Sydney, Australia.,International Livestock Research Institute, Kampala, Uganda
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Greifswald - Insel Riems, Germany
| | - Sandra Diederich
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
39
|
Changula K, Kajihara M, Mori-Kajihara A, Eto Y, Miyamoto H, Yoshida R, Shigeno A, Hang'ombe B, Qiu Y, Mwizabi D, Squarre D, Ndebe J, Ogawa H, Harima H, Simulundu E, Moonga L, Kapila P, Furuyama W, Kondoh T, Sato M, Takadate Y, Kaneko C, Nakao R, Mukonka V, Mweene A, Takada A. Seroprevalence of Filovirus Infection of Rousettus aegyptiacus Bats in Zambia. J Infect Dis 2019; 218:S312-S317. [PMID: 29889270 DOI: 10.1093/infdis/jiy266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bats are suspected to play important roles in the ecology of filoviruses, including ebolaviruses and marburgviruses. A cave-dwelling fruit bat, Rousettus aegyptiacus, has been shown to be a reservoir of marburgviruses. Using an enzyme-linked immunosorbent assay with the viral glycoprotein antigen, we detected immunoglobulin G antibodies specific to multiple filoviruses in 158 of 290 serum samples of R aegyptiacus bats captured in Zambia during the years 2014-2017. In particular, 43.8% of the bats were seropositive to marburgvirus, supporting the notion that this bat species continuously maintains marburgviruses as a reservoir. Of note, distinct peaks of seropositive rates were repeatedly observed at the beginning of rainy seasons, suggesting seasonality of the presence of newly infected individuals in this bat population. These data highlight the need for continued monitoring of filovirus infection in this bat species even in countries where filovirus diseases have not been reported.
Collapse
Affiliation(s)
- Katendi Changula
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshiki Eto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Asako Shigeno
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Bernard Hang'ombe
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, Lusaka
| | - Daniel Mwizabi
- Department of National Parks and Wildlife, Ministry of Tourism and Arts, Chilanga, Zambia
| | - David Squarre
- Department of National Parks and Wildlife, Ministry of Tourism and Arts, Chilanga, Zambia
| | - Joseph Ndebe
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka
| | - Hirohito Ogawa
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka.,Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, Lusaka
| | - Edgar Simulundu
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka
| | - Ladslav Moonga
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka
| | - Penjaninge Kapila
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka
| | - Wakako Furuyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Sato
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chiho Kaneko
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Victor Mukonka
- Zambia National Public Health Institute, Ministry of Health, Lusaka
| | - Aaron Mweene
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka
| | - Ayato Takada
- School of Veterinary Medicine, The University of Zambia, Great East Road Campus, Lusaka.,Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Schmidt JP, Maher S, Drake JM, Huang T, Farrell MJ, Han BA. Ecological indicators of mammal exposure to Ebolavirus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180337. [PMID: 31401967 PMCID: PMC6711296 DOI: 10.1098/rstb.2018.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much of the basic ecology of Ebolavirus remains unresolved despite accumulating disease outbreaks, viral strains and evidence of animal hosts. Because human Ebolavirus epidemics have been linked to contact with wild mammals other than bats, traits shared by species that have been infected by Ebolavirus and their phylogenetic distribution could suggest ecological mechanisms contributing to human Ebolavirus spillovers. We compiled data on Ebolavirus exposure in mammals and corresponding data on life-history traits, movement, and diet, and used boosted regression trees (BRT) to identify predictors of exposure and infection for 119 species (hereafter hosts). Mapping the phylogenetic distribution of presumptive Ebolavirus hosts reveals that they are scattered across several distinct mammal clades, but concentrated among Old World fruit bats, primates and artiodactyls. While sampling effort was the most important predictor, explaining nearly as much of the variation among hosts as traits, BRT models distinguished hosts from all other species with greater than 97% accuracy, and revealed probable Ebolavirus hosts as large-bodied, frugivorous, and with slow life histories. Provisionally, results suggest that some insectivorous bat genera, Old World monkeys and forest antelopes should receive priority in Ebolavirus survey efforts. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- John Paul Schmidt
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Sean Maher
- Department of Biology, Missouri State University, 901 S. National Ave, Springfield, MO 65897, USA
| | - John M Drake
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Tao Huang
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - Maxwell J Farrell
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| |
Collapse
|
41
|
Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 2019; 17:593-606. [DOI: 10.1038/s41579-019-0233-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
|
42
|
Confronting data sparsity to identify potential sources of Zika virus spillover infection among primates. Epidemics 2019; 27:59-65. [DOI: 10.1016/j.epidem.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 02/03/2023] Open
|
43
|
Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses 2019; 11:v11040364. [PMID: 31010013 PMCID: PMC6521291 DOI: 10.3390/v11040364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
We explore evolved soybean ascorbate peroxidase (APEX2) as a reporter when fused to the C-termini of llama nanobodies (single-domain antibodies, sdAb; variable domains of heavy chain-only antibodies, VHH) targeted to the E. coli periplasm. Periplasmic expression preserves authentic antibody N-termini, intra-domain disulphide bond(s), and capitalizes on efficient haem loading through the porous E. coli outer membrane. Using monomeric and dimeric anti-nucleoprotein (NP) sdAb cross-reactive within the Marburgvirus genus and cross-reactive within the Ebolavirus genus, we show that periplasmic sdAb–APEX2 fusion proteins are easily purified at multi-mg amounts. The fusions were used in Western blotting, ELISA, and microscopy to visualize NPs using colorimetric and fluorescent imaging. Dimeric sdAb–APEX2 fusions were superior at binding NPs from viruses that were evolutionarily distant to that originally used to select the sdAb. Partial conservation of the anti-Marburgvirus sdAb epitope enabled the recognition of a novel NP encoded by the recently discovered Mĕnglà virus genome. Antibody–antigen interactions were rationalized using monovalent nanoluciferase titrations and contact mapping analysis of existing crystal structures, while molecular modelling was used to reveal the potential landscape of the Mĕnglà NP C-terminal domain. The sdAb–APEX2 fusions also enabled live Marburgvirus and Ebolavirus detection 24 h post-infection of Vero E6 cells within a BSL-4 laboratory setting. The simple and inexpensive mining of large amounts of periplasmic sdAb–APEX2 fusion proteins should help advance studies of past, contemporary, and perhaps Filovirus species yet to be discovered.
Collapse
|
44
|
Jääskeläinen AJ, Sironen T, Diagne CT, Diagne MM, Faye M, Faye O, Faye O, Hewson R, Mölsä M, Weidmann MW, Watson R, Sall AA, Vapalahti O. Development, validation and clinical evaluation of a broad-range pan-filovirus RT-qPCR. J Clin Virol 2019; 114:26-31. [PMID: 30904708 DOI: 10.1016/j.jcv.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND During the five decades since their discovery, filoviruses of four species have caused human hemorrhagic fever outbreaks: Marburg (MARV) marburgvirus, and Zaire (EBOV), Sudan (SUDV) and Bundybugyo (BDBV) ebolaviruses. The largest, devastating EBOV epidemic in West Africa in 2014-16, has been followed by outbreaks of MARV in Uganda, 2017, and EBOV in Democratic Republic of Congo, 2018, emphasizing the need to develop preparedness to diagnose all filoviruses. OBJECTIVES The aim of this study was to optimize a new filovirus RT-qPCR to detect all filoviruses, define its limits of detection (LOD) and perform a field evaluation with outbreak samples. STUDY DESIGN A pan-filovirus RT-qPCR targeting the L gene was developed and evaluated within the EbolaMoDRAD (Ebola virus: modern approaches for developing bedside rapid diagnostics) project. Specificity and sensitivity were determined and the effect of inactivation and PCR reagents (liquid and lyophilized format) were tested. RESULTS The LODs for the lyophilized pan-filovirus L-RT-qPCR assay were 9.4 copies per PCR reaction for EBOV, 9.9 for MARV, 1151 for SUDV, 65 for BDBV and 289 for Taï Forest virus. The test was set at the Pasteur Institute, Dakar, Senegal, and 83 Ebola patient samples, with viral load ranging from 5 to 5 million copies of EBOV per reaction, were screened. The results for the patient samples were in 100% concordance with the reference EBOV-specific assay. DISCUSSION Overall, the assay showed good sensitivity and specificity, covered all filoviruses known to be human pathogens, performed well both in lyophilized and liquid-phase formats and with EBOV outbreak clinical samples.
Collapse
Affiliation(s)
- Anne J Jääskeläinen
- Helsinki University and Helsinki University Hospital (HUSLAB), Department of Virology, Finland.
| | - Tarja Sironen
- University of Helsinki, Department of Virology, Helsinki, Finland; Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, Finland
| | | | | | - Martin Faye
- Institut Pasteur de Dakar, Pôle de virologie, Dakar, Senegal
| | - Oumar Faye
- Institut Pasteur de Dakar, Pôle de virologie, Dakar, Senegal
| | - Ousmane Faye
- Institut Pasteur de Dakar, Pôle de virologie, Dakar, Senegal
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Markos Mölsä
- National Institute for Health and Welfare, Biothreat unit, Centre for Military Medicine, Helsinki, Finland Centres for Biothreat Preparedness and for Military Medicine, Finnish Defence Forces, Finland
| | - Manfred W Weidmann
- University of Stirling, Institute of Aquaculture, Stirling, United Kingdom
| | - Robert Watson
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | | | - Olli Vapalahti
- Helsinki University and Helsinki University Hospital (HUSLAB), Department of Virology, Finland; University of Helsinki, Department of Virology, Helsinki, Finland; Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, Finland
| |
Collapse
|
45
|
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats ( Eonycteris spelaea). Viruses 2019; 11:v11030250. [PMID: 30871070 PMCID: PMC6466414 DOI: 10.3390/v11030250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends.
Collapse
|
46
|
Xu L, Wu J, Li Q, Wei Y, Tan Z, Cai J, Guo H, Yang L, Huang X, Chen J, Zhang F, He B, Tu C. Seroprevalence, cross antigenicity and circulation sphere of bat-borne hantaviruses revealed by serological and antigenic analyses. PLoS Pathog 2019; 15:e1007545. [PMID: 30668611 PMCID: PMC6358112 DOI: 10.1371/journal.ppat.1007545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/01/2019] [Accepted: 12/24/2018] [Indexed: 01/06/2023] Open
Abstract
Bats are newly identified reservoirs of hantaviruses (HVs) among which very divergent HVs have been discovered in recent years. However, their significance for public health remains unclear since their seroprevalence as well as antigenic relationship with human-infecting HVs have not been investigated. In the present study archived tissues of 1,419 bats of 22 species from 6 families collected in 5 south and southwest provinces in China were screened by pan-HV RT-PCR following viral metagenomic analysis. As a result nine HVs have been identified in two bat species in two provinces and phylogenetically classified into two species, Laibin virus (LAIV, ICTV approved species, 1 strain) and Xuan son virus (XSV, proposed species, 8 strains). Additionally, 709 serum samples of these bats were also analyzed by ELISA to investigate the seroprevalence and cross-reactivity between different HVs using expressed recombinant nucleocapsid proteins (rNPs) of LAIV, XSV and Seoul virus (SEOV). The cross-reactivity of some bat sera were further confirmed by western blot (WB) using three rNPs followed by fluorescent antibody virus neutralization test (FAVNT) against live SEOV. Results showed that the total HV seropositive rate of bat sera was 18.5% (131/709) with many cross reacting with two or all three rNPs and several able to neutralize SEOV. WB analysis using the three rNPs and their specific hyperimmune sera demonstrated cross-reactivity between XSV/SEOV and LAIV/XSV, but not LAIV/SEOV, indicating that XSV is antigenically closer to human-infecting HVs. In addition a study of the distribution of the viruses identified an area covering the region between Chinese Guangxi and North Vietnam, in which XSV and LAIV circulate within different bat colonies with a high seroprevalence. A circulation sphere of bat-borne HVs has therefore been proposed. Some HVs are life-threatening pathogens predominantly carried and transmitted by rodents. In recent years bat-borne HVs have been identified in a broad range of bat species. To understand their significance to public health the present study conducted extensive investigations on genetic diversity, seroprevalence, distribution and cross antigenicity of bat-borne HVs in south and southwest China. The results provide the first profiling of cross-reactivity between bat-borne and human-infecting HVs, demonstrating that some bat sera can neutralize SEOV in cell culture. They also revealed that divergent bat-borne HVs co-exist and are widely distributed in Chinese Guangxi/Yunnan as well as in north Vietnam, resulting in identification of an area between China and Vietnam in which natural circulation of bat-borne HVs is maintained. Given the existence of bat-borne HVs genetically and antigenically close to human-infecting HVs, the need for extensive future studies is emphasized in order to assess the potential risk of these viruses to public health.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Qi Li
- Institute for Viral Disease Prevention and Control, Hebei Province Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Yamei Wei
- Institute for Viral Disease Prevention and Control, Hebei Province Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Zhizhou Tan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jianqiu Cai
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Huancheng Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Ling’en Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Xiaohong Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Fuqiang Zhang
- Center for Disease Control and Prevention of Southern Theater Command, Kunming, Yunnan, China
- * E-mail: (FZ); (BH); (CT)
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (FZ); (BH); (CT)
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (FZ); (BH); (CT)
| |
Collapse
|
47
|
Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, Zhu Y, Lim XF, Zhou P, Liu XL, Guan W, Zhang L, Li SY, Zhang YZ, Wang LF, Shi ZL. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nat Microbiol 2019; 4:390-395. [PMID: 30617348 DOI: 10.1038/s41564-018-0328-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Filoviruses, especially Ebola virus (EBOV) and Marburg virus (MARV), are notoriously pathogenic and capable of causing severe haemorrhagic fever diseases in humans with high lethality1,2. The risk of future outbreaks is exacerbated by the discovery of other bat-borne filoviruses of wide genetic diversity globally3-5. Here we report the characterization of a phylogenetically distinct bat filovirus, named Měnglà virus (MLAV). The coding-complete genome of MLAV shares 32-54% nucleotide sequence identity with known filoviruses. Phylogenetic analysis places this new virus between EBOV and MARV, suggesting the need for a new genus taxon. Importantly, despite the low amino acid sequence identity (22-39%) of the glycoprotein with other filoviruses, MLAV is capable of using the Niemann-Pick C1 (NPC1) as entry receptor. MLAV is also replication-competent with chimeric MLAV mini-genomes containing EBOV or MARV leader and trailer sequences, indicating that these viruses are evolutionally and functionally closely related. Finally, MLAV glycoprotein-typed pseudo-types transduced cell lines derived from humans, monkeys, dogs, hamsters and bats, implying a broad species cell tropism with a high risk of interspecies spillover transmission.
Collapse
Affiliation(s)
- Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiang-Ling Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Libiao Zhang
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | | | - Yun-Zhi Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.,Dali University, Dali, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
48
|
|
49
|
De Nys HM, Kingebeni PM, Keita AK, Butel C, Thaurignac G, Villabona-Arenas CJ, Lemarcis T, Geraerts M, Vidal N, Esteban A, Bourgarel M, Roger F, Leendertz F, Diallo R, Ndimbo-Kumugo SP, Nsio-Mbeta J, Tagg N, Koivogui L, Toure A, Delaporte E, Ahuka-Mundeke S, Tamfum JJM, Mpoudi-Ngole E, Ayouba A, Peeters M. Survey of Ebola Viruses in Frugivorous and Insectivorous Bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015-2017. Emerg Infect Dis 2018; 24:2228-2240. [PMID: 30307845 PMCID: PMC6256401 DOI: 10.3201/eid2412.180740] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To clarify the role of bats in the ecology of Ebola viruses, we assessed the prevalence of Ebola virus antibodies in a large-scale sample of bats collected during 2015–2017 from countries in Africa that have had previous Ebola outbreaks (Guinea, the Democratic Republic of the Congo) or are at high risk for outbreaks (Cameroon). We analyzed 4,022 blood samples of bats from >12 frugivorous and 27 insectivorous species; 2–37 (0.05%–0.92%) bats were seropositive for Zaire and 0–30 (0%–0.75%) bats for Sudan Ebola viruses. We observed Ebola virus antibodies in 1 insectivorous bat genus and 6 frugivorous bat species. Certain bat species widespread across Africa had serologic evidence of Zaire and Sudan Ebola viruses. No viral RNA was detected in the subset of samples tested (n = 665). Ongoing surveillance of bats and other potential animal reservoirs are required to predict and prepare for future outbreaks.
Collapse
|
50
|
Wen M, Ng JHJ, Zhu F, Chionh YT, Chia WN, Mendenhall IH, Lee BPYH, Irving AT, Wang LF. Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing. Gigascience 2018; 7:5104371. [PMID: 30247613 PMCID: PMC6177735 DOI: 10.1093/gigascience/giy116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022] Open
Abstract
Background In the past two decades, bats have emerged as an important model system to study host-pathogen interactions. More recently, it has been shown that bats may also serve as a new and excellent model to study aging, inflammation, and cancer, among other important biological processes. The cave nectar bat or lesser dawn bat (Eonycteris spelaea) is known to be a reservoir for several viruses and intracellular bacteria. It is widely distributed throughout the tropics and subtropics from India to Southeast Asia and pollinates several plant species, including the culturally and economically important durian in the region. Here, we report the whole-genome and transcriptome sequencing, followed by subsequent de novo assembly, of the E. spelaea genome solely using the Pacific Biosciences (PacBio) long-read sequencing platform. Findings The newly assembled E. spelaea genome is 1.97 Gb in length and consists of 4,470 sequences with a contig N50 of 8.0 Mb. Identified repeat elements covered 34.65% of the genome, and 20,640 unique protein-coding genes with 39,526 transcripts were annotated. Conclusions We demonstrated that the PacBio long-read sequencing platform alone is sufficient to generate a comprehensive de novo assembled genome and transcriptome of an important bat species. These results will provide useful insights and act as a resource to expand our understanding of bat evolution, ecology, physiology, immunology, viral infection, and transmission dynamics.
Collapse
Affiliation(s)
- Ming Wen
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Justin H J Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yok Teng Chionh
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Benjamin PY-H Lee
- Conservation Division, National Parks Board, Singapore 259569, Singapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|