1
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Petro CD, Hooper AT, Peace A, Mohammadi K, Eagan W, Elbashir SM, DiPiazza A, Makrinos D, Pascal K, Bandawane P, Durand M, Basu R, Coppi A, Wang B, Golubov J, Asrat S, Ganguly S, Koehler-Stec EM, Wipperman MF, Ehrlich G, Gonzalez Ortiz AM, Isa F, Lewis MG, Andersen H, Musser BJ, Torres M, Lee WY, Edwards D, Skokos D, Orengo J, Sleeman M, Norton T, O'Brien M, Forleo-Neto E, Herman GA, Hamilton JD, Murphy AJ, Kyratsous CA, Baum A. Monoclonal antibodies against the spike protein alter the endogenous humoral response to SARS-CoV-2 vaccination and infection. Sci Transl Med 2024; 16:eadn0396. [PMID: 39504352 DOI: 10.1126/scitranslmed.adn0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increased use of antiviral monoclonal antibodies (mAbs) for treatment and prophylaxis necessitates better understanding of their impact on endogenous immunity to vaccines and viruses. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study immunity in individuals who received antiviral mAbs and were subsequently immunized with vaccines encoding the mAb-targeted viral spike antigen. Here, we describe the impact of administration of an antibody combination, casirivimab plus imdevimab (CAS+IMD), on immune responses to subsequent SARS-CoV-2 vaccination in humans, nonhuman primates, and mice. The presence of CAS+IMD at the time of vaccination led to a specific diminishment of vaccine-elicited pseudovirus neutralizing antibody titers without overall dampening of spike protein-directed immune responses, including antibody, B cell, and T cell responses. The impact on pseudovirus neutralizing titers extended to other therapeutic anti-spike protein antibodies when used as either monotherapy or combination therapy. The specific reduction in pseudovirus neutralizing titers was the result of epitope masking, a phenomenon where specific epitopes are bound by high-affinity antibodies and blocked from B cell recognition. Encouragingly, this reduction in pseudovirus neutralizing titers was reversible with additional booster vaccination. Moreover, by assessing the antiviral immune response in SARS-CoV-2-infected individuals treated therapeutically with CAS+IMD, we demonstrated alteration of antiviral humoral immunity in those who had received mAb therapy, but only in those individuals who had yet to start mounting their natural immune response at the time of mAb treatment. Together, these data demonstrate that antiviral mAbs can alter endogenous humoral immunity during vaccination or infection.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/immunology
- Animals
- Humans
- SARS-CoV-2/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Antibodies, Neutralizing/immunology
- COVID-19 Vaccines/immunology
- Antibodies, Monoclonal/immunology
- Female
- Antibodies, Viral/immunology
- Mice
- Vaccination
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Male
- Middle Aged
- Adult
- Drug Combinations
Collapse
Affiliation(s)
| | | | - Avery Peace
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Will Eagan
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Kristen Pascal
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Ranu Basu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Alida Coppi
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Bei Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Samit Ganguly
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - George Ehrlich
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Flonza Isa
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Bret J Musser
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - Jamie Orengo
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Thomas Norton
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Meagan O'Brien
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Gary A Herman
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
3
|
Bratcher A, Kao SY, Chun K, Petropoulos CJ, Gundlapalli AV, Jones J, Clarke KEN. Quantitative SARS-CoV-2 Spike Receptor-Binding Domain and Neutralizing Antibody Titers in Previously Infected Persons, United States, January 2021-February 2022. Emerg Infect Dis 2024; 30:2352-2361. [PMID: 39447163 PMCID: PMC11521179 DOI: 10.3201/eid3011.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
We studied SARS-CoV-2 binding and neutralizing antibody titers among previously infected persons in the United States over time. We assayed SARS-CoV-2 spike protein receptor-binding domain and neutralizing antibody titers for a convenience sample of residual clinical serum specimens that had evidence of prior SARS-CoV-2 infection gathered during January 2021-February 2022. We correlated titers and examined them by age group (<18, 18-49, 50-64, and >65 years) across 4 different SARS-CoV-2 variant epochs. Among selected specimens, 30,967 had binding antibody titers and 744 had neutralizing titers available. Titers in specimens from children and adults correlated. In addition, mean binding antibody titers increased over time for all age groups, and mean neutralization titers increased over time for persons 16-49 and >65 years of age. Incorporating binding and neutralization antibody titers into infectious disease surveillance could provide a clearer picture of overall immunity and help target vaccination campaigns.
Collapse
|
4
|
Bronder S, Sester M. A promising boost for the Rift Valley fever vaccine pipeline. THE LANCET. INFECTIOUS DISEASES 2024; 24:1184-1185. [PMID: 39068956 DOI: 10.1016/s1473-3099(24)00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Saskia Bronder
- Department of Transplant and Infection Immunology, Saarland University, D-66424 Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, D-66424 Homburg, Germany; Center for Gender-specific Biology and Medicine, Saarland University, D-66424 Homburg, Germany.
| |
Collapse
|
5
|
Nguyen VH, Crépey P, Pivette JM, Settembre E, Rajaram S, Youhanna J, Ferraro A, Chang C, van Boxmeer J, Mould-Quevedo JF. Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data. Vaccines (Basel) 2024; 12:1161. [PMID: 39460327 PMCID: PMC11511100 DOI: 10.3390/vaccines12101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Self-amplifying mRNA vaccines have the potential to increase the magnitude and duration of protection against COVID-19 by boosting neutralizing antibody titers and cellular responses. Methods: In this study, we used the immunogenicity data from a phase 3 randomized trial comparing the immunogenicity of ARCT-154, a self-amplifying mRNA COVID-19 vaccine, with BNT162b2 mRNA COVID-19 vaccine to estimate the relative vaccine efficacy (rVE) of the two vaccines over time in younger (<60 years) and older (≥60 years) adults. Results: By day 181 post-vaccination, the rVE against symptomatic and severe Wuhan-Hu-1 disease was 9.2-11.0% and 1.2-1.5%, respectively, across age groups whereas the rVE against symptomatic and severe Omicron BA.4/5 disease was 26.8-48.0% and 5.2-9.3%, respectively, across age groups. Sensitivity analysis showed that varying the threshold titer for 50% protection against severe disease up to 10% of convalescent sera revealed incremental benefits of ARCT-154 over BNT162b2, with an rVE of up to 28.0% against Omicron BA.4/5 in adults aged ≥60 year. Conclusions: Overall, the results of this study indicate that ARCT-154 elicits broader and more durable immunogenicity against SARS-CoV-2, translating to enhanced disease protection, particularly for older adults against Omicron BA.4/5.
Collapse
Affiliation(s)
| | - Pascal Crépey
- RSMS—Inserm U 1309, Arènes—UMR 6051, EHESP, CNRS, IEP Rennes, University of Rennes, 35043 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alirezaylavasani A, Skeie LG, Egner IM, Chopra A, Dahl TB, Prebensen C, Vaage JT, Halvorsen B, Lund-Johansen F, Tonby K, Reikvam DH, Stiksrud B, Holter JC, Dyrhol-Riise AM, Munthe LA, Kared H. Vaccine responses and hybrid immunity in people living with HIV after SARS-CoV-2 breakthrough infections. NPJ Vaccines 2024; 9:185. [PMID: 39384763 PMCID: PMC11464709 DOI: 10.1038/s41541-024-00972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
The COVID-19 pandemic posed a challenge for people living with HIV (PLWH), particularly immune non-responders (INR) with compromised CD4 T-cell reconstitution following antiretroviral therapy (CD4 count <350 cells per mm3). Their diminished vaccine responses raised concerns about their vulnerability to SARS-CoV-2 breakthrough infections (BTI). Our in-depth study here revealed chronic inflammation in PLWH and a limited anti-Spike IgG response after vaccination in INR. Nevertheless, the imprinting of Spike-specific B cells by vaccination significantly enhanced the humoral responses after BTI. Notably, the magnitude of cellular CD4 response in all PLWH was comparable to that in healthy donors (HD). However, the polyfunctionality and phenotype of Spike-specific CD8 T cells in INR differed from controls. The findings highlight the need for additional boosters with variant vaccines, and for monitoring ART adherence and the durability of both humoral and cellular anti-SARS-CoV-2 immunity in INR.
Collapse
Affiliation(s)
- Amin Alirezaylavasani
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Linda Gail Skeie
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ingrid Marie Egner
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Adity Chopra
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- ImmunoLingo Convergence Center, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian Prebensen
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - John Torgils Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- ImmunoLingo Convergence Center, University of Oslo, Oslo, Norway
| | - Kristian Tonby
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B Cell Malignancies, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B Cell Malignancies, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Toh ZQ, Anderson J, Mazarakis N, Quah L, Nguyen J, Higgins RA, Do LAH, Ng YY, Jalali S, Neeland MR, McMinn A, Saffery R, McNab S, McVernon J, Marcato A, Burgner DP, Curtis N, Steer AC, Mulholland K, Pellicci DG, Crawford NW, Tosif S, Licciardi PV. Humoral and cellular immune responses in vaccinated and unvaccinated children following SARS-CoV-2 Omicron infection. Clin Transl Immunology 2024; 13:e70008. [PMID: 39364394 PMCID: PMC11447454 DOI: 10.1002/cti2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Objectives The immune response in children elicited by SARS-CoV-2 Omicron infection alone or in combination with COVID-19 vaccination (hybrid immunity) is poorly understood. We examined the humoral and cellular immune response following SARS-CoV-2 Omicron infection in unvaccinated children and children who were previously vaccinated with COVID-19 mRNA vaccine. Methods Participants were recruited as part of a household cohort study conducted during the Omicron predominant wave (Jan to July 2022) in Victoria, Australia. Blood samples were collected at 1, 3, 6 and 12 months following COVID-19 diagnosis. Humoral immune responses to SARS-CoV-2 Spike proteins from Wuhan, Omicron BA.1, BA.4/5 and JN.1, as well as cellular immune responses to Wuhan and BA.1 were assessed. Results A total of 43 children and 113 samples were included in the analysis. Following Omicron infection, unvaccinated children generated low antibody responses but elicited Spike-specific CD4 and CD8 T-cell responses. In contrast, vaccinated children infected with the Omicron variant mounted robust humoral and cellular immune responses to both ancestral strain and Omicron subvariants. Hybrid immunity persisted for at least 6 months post infection, with cellular immune memory characterised by the generation of Spike-specific polyfunctional CD8 T-cell responses. Conclusion SARS-CoV-2 hybrid immunity in children is characterised by persisting SARS-CoV-2 antibodies and robust CD4 and CD8 T-cell activation and polyfunctional responses. Our findings contribute to understanding hybrid immunity in children and may have implications regarding COVID-19 vaccination and SARS-CoV-2 re-infections.
Collapse
Affiliation(s)
- Zheng Quan Toh
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Jeremy Anderson
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Nadia Mazarakis
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Leanne Quah
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Jill Nguyen
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Rachel A Higgins
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Lien Anh Ha Do
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Yan Yung Ng
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Sedi Jalali
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Melanie R Neeland
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Alissa McMinn
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Richard Saffery
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
| | - Sarah McNab
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Jodie McVernon
- Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville VIC Australia
| | - Adrian Marcato
- Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville VIC Australia
| | - David P Burgner
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Nigel Curtis
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Andrew C Steer
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Kim Mulholland
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Faculty of Epidemiology and Public Health London School of Hygiene and Tropical Medicine London UK
| | - Daniel G Pellicci
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville VIC Australia
| | - Nigel W Crawford
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Shidan Tosif
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
- Department of General Medicine The Royal Children's Hospital Parkville VIC Australia
| | - Paul V Licciardi
- Infection, Immunity and Global Health Murdoch Children's Research Institute Parkville VIC Australia
- Department of Paediatrics The University of Melbourne Parkville VIC Australia
| |
Collapse
|
9
|
Zhang XS, Windau A, Meyers J, Yang X, Dong F. Diversified humoral immunity and impacts of booster vaccines: SARS-CoV-2 antibody profile and Omicron BA.2 neutralization before and after first or second boosters. Microbiol Spectr 2024; 12:e0060524. [PMID: 39162540 PMCID: PMC11448022 DOI: 10.1128/spectrum.00605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
This study aims to investigate humoral immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and assess the impact of booster vaccines. We recruited individuals scheduled to receive either the first (original formula) or the second (bivalent) booster following the initial two-dose SARS-CoV-2 vaccination. We tested for IgG antibodies targeting the spike protein receptor-binding domain (RBD), S1, S2, and nucleocapsid protein, as well as for neutralizing antibodies against Omicron BA.2, before and 14-28 days after receiving the boosters. One year after receiving the initial series of vaccinations, all participants maintained anti-RBD/S1 antibodies. However, levels were lower in individuals who were vaccinated only compared to those who had both vaccination and prior infection (hybrid immunity). Participants with hybrid immunity also showed higher retention of neutralizing antibodies (93% compared to 24% in vaccine-only individuals). Even before receiving any booster shots, participants with hybrid immunity had antibody levels similar to those of vaccine-only individuals after their first booster. After receiving booster shots, antibody levels at 14-28 days were similar regardless of the number of boosters or the type of immunity. About 1 year after the first booster, all participants maintained neutralizing antibodies, and vaccine-only individuals retained about 10 times higher levels of binding antibodies than those without a booster. Humoral immunity varies widely among individuals, and vaccination planning should consider both vaccination and infection history. Boosters are beneficial for increasing antibody levels to ensure sufficient protection against infection and helping bridge the immunity gap between vaccine-only and hybrid immunity.IMPORTANCEAs we move into the era of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine boosters and shifting from pandemic to endemic, the landscape has changed for both the circulating SARS-CoV-2 variants and population immunity. Even though recent waves of infection have been clinically milder than earlier variants due to the high levels of population immunity and the properties of the Omicron subvariants, vaccination remains crucial for managing COVID-19 in the post-pandemic era. Our study unveils significant variations in the retention of anti-SARS-CoV-2 binding antibody profiles and neutralizing antibody levels 1 year after the primary and the first booster mRNA vaccination. It adds new information regarding how boosters change antibody levels and durability in individuals with hybrid (vaccination plus infection) or vaccine-only (never-infected) immunity. The findings can shed light on future vaccination planning.
Collapse
Affiliation(s)
- Xiaochun Susan Zhang
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Anne Windau
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Jamie Meyers
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Xiaohua Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Feng Dong
- College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
10
|
Singh K, Rocco JM, Nussenblatt V. The winding road: Infectious disease considerations for CAR-T and other novel adoptive cellular therapies in the era of COVID-19. Semin Hematol 2024; 61:321-332. [PMID: 39379249 DOI: 10.1053/j.seminhematol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Adoptive cellular therapies (ACT) are novel, promising treatments for life-threatening malignancies. In addition to the better known chimeric antigen receptor (CAR) T cells, ACTs include tumor infiltrating lymphocytes (TIL), cancer antigen-specific T cell receptors (TCRs), and CAR-NK (natural killer) cells. In key historic milestones, several adoptive therapies recently received FDA approvals, including 6 CAR-T products for the treatment of hematologic malignancies and the first TIL therapy for the treatment for metastatic melanoma. The rapid pace of clinical trials in the field and the discoveries they provide are ushering in a new era of cancer immunotherapy. However, the potential complications of these therapies are still not fully understood. In particular, patients receiving ACT may be at increased risk for severe infections due to immunocompromise resulting from their underlying malignancies, which are further compounded by the immune derangements that develop in the setting of cellular immunotherapy and/or the preconditioning treatment needed to enhance ACT efficacy. Moreover, these treatments are being readily implemented at a time following the height of the COVID-19 pandemic, and it remains unclear what additional risks these patients may face from SARS-CoV-2 and similar infections. Here, we examine the evidence for infectious complications with emerging adoptive therapies, and provide a focused review of the epidemiology, complications, and clinical management for COVID-19 in CAR-T recipients to understand the risk this disease may pose to recipients of other forms of ACT.
Collapse
Affiliation(s)
- Kanal Singh
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| | - Joseph M Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Veronique Nussenblatt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Cromer D, Reynaldi A, Mitchell A, Schlub TE, Juno JA, Wheatley AK, Kent SJ, Khoury DS, Davenport MP. Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates. Nat Commun 2024; 15:8395. [PMID: 39333473 PMCID: PMC11436652 DOI: 10.1038/s41467-024-52194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based largely on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in vaccine manufacture and distribution meant that the updated booster vaccine was no longer well-matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variants containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95% CI: 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the rollout of future booster vaccination programmes.
Collapse
Affiliation(s)
- Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ainslie Mitchell
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Lustig Y, Barda N, Weiss-Ottolenghi Y, Indenbaum V, Margalit I, Asraf K, Doolman R, Chalkias S, Das R, Elfatarany G, Harats D, Kreiss Y, Regev-Yochay G. Humoral response superiority of the monovalent XBB.1.5 over the bivalent BA.1 and BA.5 mRNA COVID-19 vaccines. Vaccine 2024; 42:126010. [PMID: 38806352 DOI: 10.1016/j.vaccine.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
JN.1, the dominating SARS-CoV-2 variant, is antigenically distinct from ancestral BA.1, BA.5 and XBB.1.5 variants, raising concern about effectiveness of updated COVID-19 vaccines. Here, we compared the neutralizing antibody response against JN.1, 1-month after receipt of the three available Moderna mRNA vaccines. Sera obtained from 37, 30 and 30 XBB.1.5, BA.1 and BA.4-5 -vaccine recipients, respectively, were tested for anti-RBD IgG and for JN-1 specific neutralizing antibody levels. Geometric mean fold rise (GMFR) in JN.1 specific neutralizing titers was 27 (95 % CI: 17-43.1), 10.1 (95 % CI: 6.48-15.7) and 8.77 (95 % CI: 5.69-13.5) following XBB.1.5, BA.1 and BA.4-5 vaccines, respectively, translating into a 64 % lower adjusted response (geometric mean ratio [GMR] = 0.36, 95 % CI: 0.21-0.6) in the BA.1 arm, and a 75 % lower response (GMR = 0.25, 95 % CI: 0.15-0.43) in the BA.4-5 arm. This suggests that XBB.1.5 vaccination will most likely, result in improved effectiveness against JN.1 compared with other COVID-19 vaccines.
Collapse
MESH Headings
- Humans
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Female
- Male
- Immunity, Humoral
- Middle Aged
- Adult
- mRNA Vaccines/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Aged
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical and Health Sciences, Tel-Aviv University, Israel; The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center Tel Hashomer, Ramat Gan, Israel.
| | - Noam Barda
- The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center Tel Hashomer, Ramat Gan, Israel; Software and Information Systems Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Epidemiology, Biostatistics, and Community Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yael Weiss-Ottolenghi
- The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | - Victoria Indenbaum
- Central Virology Laboratory, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Ili Margalit
- Faculty of Medical and Health Sciences, Tel-Aviv University, Israel; The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | - Keren Asraf
- Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | - Ram Doolman
- Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | - Spyros Chalkias
- Clinical Development, Infectious Diseases Unit, Moderna, Israel
| | - Rituparna Das
- Clinical Development, Infectious Diseases Unit, Moderna, Israel
| | | | - Dror Harats
- Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | | | - Gili Regev-Yochay
- Faculty of Medical and Health Sciences, Tel-Aviv University, Israel; The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
15
|
Moghnieh R, Haddad W, Jbeily N, El-Hassan S, Eid S, Baba H, Sily M, Saber Y, Abdallah D, Bizri AR, Sayegh MH. Immunogenicity and real-world effectiveness of COVID-19 vaccines in Lebanon: Insights from primary and booster schemes, variants, infections, and hospitalization. PLoS One 2024; 19:e0306457. [PMID: 39269963 PMCID: PMC11398646 DOI: 10.1371/journal.pone.0306457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/18/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we conducted a case-control investigation to assess the immunogenicity and effectiveness of primary and first booster homologous and heterologous COVID-19 vaccination regimens against infection and hospitalization, targeting variants circulating in Lebanon during 2021-2022. The study population comprised active Lebanese military personnel between February 2021 and September 2022. Vaccine effectiveness (VE) against laboratory-confirmed SARS-CoV-2 infection and associated hospitalization was retrospectively determined during different variant-predominant periods using a case-control study design. Vaccines developed by Sinopharm, Pfizer, and AstraZeneca as well as Sputnik V were analyzed. Prospective assessment of humoral immune response, which was measured based on the SARS-CoV-2 antispike receptor binding domain IgG titer, was performed post vaccination at various time points, focusing on Sinopharm and Pfizer vaccines. Statistical analyses were performed using IBM SPSS and GraphPad Prism. COVID-19 VE remained consistently high before the emergence of the Omicron variant, with lower estimates during the Delta wave than those during the Alpha wave for primary vaccination schemes. However, vaccines continued to offer significant protection against infection. VE estimates consistently decreased for the Omicron variant across post-vaccination timeframes and schemes. VE against hospitalization declined over time and was influenced by the variant. No breakthrough infections progressed to critical or fatal COVID-19. Immunogenicity analysis revealed that the homologous Pfizer regimen elicited a stronger humoral response than Sinopharm, while a heterologous Sinopharm/Pfizer regimen yielded comparable results to the Pfizer regimen. Over time, both Sinopharm's and Pfizer's primary vaccination schemes exhibited decreased humoral immunity titers, with Pfizer being a more effective booster than Sinopharm. This study, focusing on healthy young adults, provides insights into VE during different pandemic waves. Continuous research and monitoring are essential for understanding vaccine-mediated immune responses under evolving circumstances.
Collapse
Affiliation(s)
- Rima Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Wajdi Haddad
- Department of Internal Medicine, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
| | - Nayla Jbeily
- Head of Laboratory Department, FMPS Holding S.A.L., Beirut, Lebanon
| | | | - Shadi Eid
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Hicham Baba
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Marilyne Sily
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Yara Saber
- Laboratory Department, FMPS Holding S.A.L., Beirut, Lebanon
| | - Dania Abdallah
- Pharmacy Department, Makassed General Hospital, Beirut, Lebanon
| | | | - Mohamed H Sayegh
- American University of Beirut, Beirut, Lebanon
- Department of Health and Human Services, GAP Solutions (Contract No. 75N93019D00026), National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America
| |
Collapse
|
16
|
Mahyuddin AP, Swa HLF, Weng R, Zhang J, Dhanaraj JP, Sesurajan BP, Rauff M, Dashraath P, Kanneganti A, Lee R, Wang LF, Young BE, Tambyah PA, Lye DC, Chai LYA, Yee S, Choolani M, Mattar CNZ. COVID-19 vaccination before or during pregnancy results in high, sustained maternal neutralizing activity to SARS-CoV-2 wild-type and Delta/Omicron variants of concern, particularly following a booster dose or infection. Int J Infect Dis 2024; 146:107121. [PMID: 38823622 DOI: 10.1016/j.ijid.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES To investigate multi-dose and timings of COVID-19 vaccines in preventing antenatal infection. DESIGN Prospective observational study investigating primary vaccinations, boosters, antenatal COVID-19 infections, neutralizing antibody (Nab) durability, and cross-reactivity to Delta and Omicron variants of concern (VOCs). RESULTS Ninety-eight patients completed primary vaccination prepregnancy (29.6%) and antenatally (63.3%), 24.2% of whom had antenatal COVID-19, while 7.1% were unvaccinated (28.6% had antenatal COVID-19). None had severe COVID-19. Prepregnancy vaccination resulted in vaccination-to-infection delay of 23.3 weeks, which extended to 45.2 weeks with a booster, compared to 16.9 weeks following antenatal vaccination (P < 0.001). Infections occurred at 26.2 weeks gestation in women vaccinated prepregnancy compared to 36.2 weeks gestation in those vaccinated during pregnancy (P < 0.007). The risk of COVID-19 infection was higher without antenatal vaccination (hazard ratio [HR] 14.6, P = 0.05) and after prepregnancy vaccination without a booster (HR 10.4, P = 0.002). Antenatal vaccinations initially led to high Nab levels, with mild waning but subsequent rebound. Significant Nab enhancement occurred with a third-trimester booster. Maternal-neonatal Nab transfer was efficient (transfer ratio >1), and cross-reactivity to VOCs was observed. CONCLUSION Completing vaccination during any trimester delays COVID-19 infection and maintains effective neutralizing activity throughout pregnancy, with robust cross-reactivity to VOCs and efficient maternal-neonatal transfer.
Collapse
Affiliation(s)
- Aniza P Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah L F Swa
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ruifen Weng
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jingxian Zhang
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Janice P Dhanaraj
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Binny P Sesurajan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mary Rauff
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Pradip Dashraath
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Abhiram Kanneganti
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Rachel Lee
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore
| | - Barnaby E Young
- The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - David C Lye
- The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Louis Y A Chai
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Sidney Yee
- Innovation and Enterprise, Agency for Science, Technology and Research, Connexis North Tower, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore.
| |
Collapse
|
17
|
Lovell JF, Miura K, Baik YO, Lee C, Choi Y, Her H, Lee JY, Ylade M, Lee-Llacer R, De Asis N, Trinidad-Aseron M, Ranola JM, De Jesus LZ. Interim safety and immunogenicity analysis of the EuCorVac-19 COVID-19 vaccine in a Phase 3 randomized, observer-blind, immunobridging trial in the Philippines. J Med Virol 2024; 96:e29927. [PMID: 39318203 DOI: 10.1002/jmv.29927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
EuCorVac-19 (ECV-19) is a recombinant receptor binding domain (RBD) COVID-19 vaccine that displays the RBD (derived from the SARS-CoV-2 Wuhan strain) on immunogenic liposomes. This study compares the safety and immunogenicity of ECV-19 to the COVISHIELDTM (CS) adenoviral-vectored vaccine. Interim analysis is presented of a randomized, observer-blind, immunobridging Phase 3 trial in the Philippines in 2600 subjects, with treatment and biospecimen collection between October 2022 and January 2023. Healthy male and female adults who received investigational vaccines were 18 years and older, and randomly assigned to ECV-19 (n = 2004) or CS (n = 596) groups. Immunization followed a two-injection, intramuscular regimen with 4 weeks between prime and boost vaccination. Safety endpoints were assessed in all participants and immunogenicity analysis was carried out in a subset (n = 585 in ECV-19 and n = 290 in CS groups). The primary immunological endpoints were superiority of neutralizing antibody response, as well as noninferiority in seroresponse rate (defined as a 4-fold increase in RBD antibody titers from baseline). After prime vaccination, ECV-19 had a lower incidence of local solicited adverse events (AEs) (12.0% vs. 15.8%, p < 0.01), and solicited systemic AEs (13.1 vs. 17.4%, p < 0.01) relative to CS. After the second injection, both ECV-19 and CS had lower overall solicited AEs (7.8% vs. 7.6%). For immunological assessment, 98% of participants had prior COVID-19 exposure (based on the presence of anti-nucleocapsid antibodies) at the time of the initial immunization, without differing baseline antibody levels or microneutralization (MN) titers against the Wuhan strain in the two groups. After prime vaccination, ECV-19 induced higher anti-RBD IgG relative to CS (1,464 vs. 355 BAU/mL, p < 0.001) and higher neutralizing antibody response (1,303 vs. 494 MN titer, p < 0.001). After boost vaccination, ECV-19 and CS maintained those levels of anti-RBD IgG (1367 vs. 344 BAU/mL, p < 0.001) and neutralizing antibodies (1128 vs. 469 MN titer, p < 0.001). ECV-19 also elicited antibodies that better neutralized the Omicron variant, compared to CS (763 vs. 373 MN titer, p < 0.001). Women displayed higher responses to both vaccines than men. The ECV-19 group had a greater seroresponse rate compared to CS (83% vs. 30%, p < 0.001). In summary, both ECV-19 and CS had favorable safety profiles, with ECV-19 showing diminished local and systemic solicited AE after prime immunization. ECV-19 had significantly greater immunogenicity in terms of anti-RBD IgG, neutralizing antibodies, and seroresponse rate. These data establish a relatively favorable safety and immunogenicity profile for ECV-19. The trial is registered on ClinicalTrials.gov (NCT05572879).
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Chankyu Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - YoungJin Choi
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Howard Her
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Jeong-Yoon Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Roxas Lee-Llacer
- Bicol Regional Training and Teaching Hospital, Albay, Philippines
| | - Norman De Asis
- Norzel Medical & Diagnostic Clinic, Cebu City, Philippines
| | | | | | | |
Collapse
|
18
|
Sullivan DJ. Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects. Curr Top Microbiol Immunol 2024. [PMID: 39117846 DOI: 10.1007/82_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St Rm W4606, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Yan X, Zhao X, Du Y, Wang H, Liu L, Wang Q, Liu J, Wei S. Dynamics of anti-SARS-CoV-2 IgG antibody responses following breakthrough infection and the predicted protective efficacy: A longitudinal community-based population study in China. Int J Infect Dis 2024; 145:107075. [PMID: 38697605 DOI: 10.1016/j.ijid.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES To assess the dynamics of the anti-SARS-CoV-2 IgG antibody levels and their efficacy against COVID-19. METHODS We conducted a longitudinal serological analysis of 852 breakthrough COVID-19 infections among the community-based population in Yichang, China. Anti-SARS-CoV-2 IgG levels were measured by chemiluminescence at approximately 3, 4, and 9 months after infection. A linear mixed model predicted IgG antibody decline over 18 months. The effectiveness of antibodies in preventing symptomatic and severe infections was determined using an existing meta-regression model. RESULTS IgG antibodies slowly declined after breakthrough infections. Initially high at around 3 months (339.44 AU/mL, IQR: 262.78-382.95 AU/mL), levels remained significant at 9 months (297.74 AU/mL, IQR: 213.22-360.62 AU/mL). The elderly (≥60 years) had lower antibody levels compared to the young (<20 years) (P < 0.001). The protective efficacy of antibodies against symptomatic and severe infections was lower in the elderly (≥60 years) (78.34% and 86.33%) compared to the young (<20 years) (96.56% and 98.75%) after 1 year. CONCLUSION The study indicated a slow decline in anti-SARS-CoV-2 IgG antibodies, maintaining considerable efficacy for over 1 year. However, lower levels in the elderly suggest reduced protective effects, underscoring the need for age-specific vaccination strategies.
Collapse
Affiliation(s)
- Xiaolong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhao
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Yin Du
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Liu
- Center for Disease Control and Prevention, Yichang, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
20
|
Costa Clemens SA, Jepson B, Bhorat QE, Ahmad A, Akhund T, Aley PK, Bansal H, Bibi S, Kelly EJ, Khan M, Lambe T, Lombaard JJ, Matthews S, Pipolo Milan E, Olsson U, Ramasamy MN, Moura de Oliveira Paiva MS, Seegobin S, Shoemaker K, Szylak A, Villafana T, Pollard AJ, Green JA. Immunogenicity and safety of beta variant COVID-19 vaccine AZD2816 and AZD1222 (ChAdOx1 nCoV-19) as primary-series vaccination for previously unvaccinated adults in Brazil, South Africa, Poland, and the UK: a randomised, partly double-blinded, phase 2/3 non-inferiority immunobridging study. THE LANCET. MICROBE 2024; 5:100863. [PMID: 38878794 DOI: 10.1016/s2666-5247(24)00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AZD2816 is a variant-adapted COVID-19 vaccine that expresses the full-length SARS-CoV-2 beta variant spike protein but is otherwise similar to AZD1222 (ChAdOx1 nCoV-19). This study aimed to evaluate the safety and immunogenicity of AZD1222 or AZD2816 (or both) primary-series vaccination in a cohort of adult participants who were previously unvaccinated. METHODS In this phase 2/3, randomised, multinational, active-controlled, non-inferiority, immunobridging study, adult participants previously unvaccinated for COVID-19 were enrolled at 16 study sites in Brazil, South Africa, Poland, and the UK. Participants were stratified by age, sex, and comorbidity and randomly assigned 5:5:5:2 to receive a primary series of AZD1222 (AZD1222 group), AZD2816 (AZD2816 [4-week] group), or AZD1222-AZD2816 (AZD1222-AZD2816 group) at 4-week dosing intervals, or AZD2816 at a 12-week interval (AZD2816 [12-week] group) and evaluated for safety and immunogenicity through 180 days after dose 2. Primary outcomes were safety (rates of solicited adverse events occurring during 7 days and unsolicited adverse events occurring during 28 days after each dose) and immunogenicity (non-inferiority of pseudovirus neutralising antibody geometric mean titre [GMT], GMT ratio margin of 0·67, and seroresponse rate, rate difference margin of -10%, recorded 28 days after dose 2 with AZD2816 [4-week interval] against beta vs AZD1222 against ancestral SARS-CoV-2) in participants who were seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS Between July 7 and Nov 12, 2021, 1449 participants were assigned to the AZD1222 group (n=413), the AZD2816 (4-week) group (n=415), the AZD1222-AZD2816 group (n=412), and the AZD2816 (12-week) group (n=209). Ten (2·6%) of 378 participants who were seronegative at baseline in the AZD1222 group, nine (2·4%) of 379 in the AZD2816 (4-week) group, eight (2·1%) of 380 in the AZD1222-AZD2816 group, and 11 (5·8%) of 191 in the AZD2816 (12-week) group had vaccine-related unsolicited adverse events. Serious adverse events were recorded in one (0·3%) participant in the AZD1222 group, one (0·3%) in the AZD2816 (4-week) group, two (0·5%) in the AZD1222-AZD2816 group, and none in the AZD2816 (12-week) group. Co-primary immunogenicity endpoints were met: neutralising antibody GMT (ratio 1·19 [95% CI 1·08-1·32]; lower bound greater than 0·67) and seroresponse rate (difference 1·7% [-3·1 to 6·5]; lower bound greater than -10%) at 28 days after dose 2 were non-inferior in the AZD2816 (4-week) group against beta versus in the AZD1222 group against ancestral SARS-CoV-2. Seroresponse rates were highest with AZD2816 against beta (12-week interval 94·3% [95% CI 89·4-97·3]; 4-week interval 85·7% [81·5-89·2]) and with AZD1222 (84·6% [80·3-88·2]) against ancestral SARS-CoV-2. INTERPRETATION Primary series of AZD1222 and AZD2816 were well tolerated, with no emergent safety concerns. Both vaccines elicited robust immunogenicity against beta and ancestral SARS-CoV-2 with greater responses demonstrated when testing against SARS-CoV-2 strains that matched those targeted by the respective vaccine. These findings demonstrate the continued importance of ancestral COVID-19 vaccines in protecting against severe COVID-19 and highlight the feasibility of using the ChAdOx1 platform to develop COVID-19 vaccines against future SARS-CoV-2 variants. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Sue Ann Costa Clemens
- Department of Paediatrics, University of Oxford, Oxford, UK; Institute for Global Health, Siena University, Siena, Italy
| | - Brett Jepson
- Biometrics, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Qasim E Bhorat
- Soweto Clinical Trials Centre, Soweto, Gauteng, South Africa
| | - Abdullahi Ahmad
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tauseefullah Akhund
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Himanshu Bansal
- Biometrics, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elizabeth J Kelly
- Formerly Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark Khan
- Clinical Development, BioPharmaceuticals R&D, AstraZeneca, Mississauga, ON, Canada
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science, Oxford Institute, University of Oxford, Oxford, UK
| | | | - Sam Matthews
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eveline Pipolo Milan
- Centro de Estudos e Pesquisas em Moléstias Infec, Centro de Pesquisas Clínicas de Natal, Natal, Rio Grande do Norte, Brazil
| | - Urban Olsson
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Seth Seegobin
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kathryn Shoemaker
- Biometrics, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Ameena Szylak
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Mississauga, ON, Canada
| | - Tonya Villafana
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Justin A Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
21
|
Sumner KM, Yadav R, Noble EK, Sandford R, Joshi D, Tartof SY, Wernli KJ, Martin ET, Gaglani M, Zimmerman RK, Talbot HK, Grijalva CG, Belongia EA, Chung JR, Rogier E, Coughlin MM, Flannery B. Anti-SARS-CoV-2 Antibody Levels Associated With COVID-19 Protection in Outpatients Tested for SARS-CoV-2, US Flu Vaccine Effectiveness Network, October 2021-June 2022. J Infect Dis 2024; 230:45-54. [PMID: 39052724 PMCID: PMC11272097 DOI: 10.1093/infdis/jiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND We assessed associations between binding antibody (bAb) concentration <5 days from symptom onset and testing positive for COVID-19 among patients in a test-negative study. METHODS From October 2021 to June 2022, study sites in 7 states enrolled patients aged ≥6 months presenting with acute respiratory illness. Respiratory specimens were tested for SARS-CoV-2. In blood specimens, we measured concentrations of anti-SARS-CoV-2 antibodies against the spike protein receptor binding domain (RBD) and nucleocapsid antigens from the ancestral strain in standardized bAb units (BAU). Percentage change in odds of COVID-19 by increasing anti-RBD bAb was estimated via logistic regression as (1 - adjusted odds ratio of COVID-19) × 100, adjusting for COVID-19 mRNA vaccine doses, age, site, and high-risk exposure. RESULTS Out of 2018 symptomatic patients, 662 (33%) tested positive for acute SARS-CoV-2 infection. Geometric mean RBD bAb levels were lower among COVID-19 cases than SARS-CoV-2 test-negative controls during the Delta-predominant period (112 vs 498 BAU/mL) and Omicron-predominant period (823 vs 1189 BAU/mL). Acute-phase ancestral spike RBD bAb levels associated with 50% lower odds of COVID-19 were 1968 BAU/mL against Delta and 3375 BAU/mL against Omicron; thresholds may differ in other laboratories. CONCLUSIONS During acute illness, antibody concentrations against ancestral spike RBD were associated with protection against COVID-19.
Collapse
Affiliation(s)
- Kelsey M Sumner
- US Centers for Disease Control and Prevention, Atlanta, Georgia
- Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ruchi Yadav
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Emma K Noble
- US Centers for Disease Control and Prevention, Atlanta, Georgia
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Ryan Sandford
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Devyani Joshi
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, Texas
- Baylor College of Medicine–Temple, Temple, Texas
- College of Medicine, Texas A&M University, Temple, Texas
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Jessie R Chung
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
22
|
Tharmaraj D, Boo I, O'Hara J, Sun S, Polkinghorne KR, Dendle C, Turner SJ, van Zelm MC, Drummer HE, Khoury G, Mulley WR. Serological responses and clinical outcomes following a three-dose primary COVID-19 vaccine schedule in kidney transplant recipients and people on dialysis. Clin Transl Immunology 2024; 13:e1523. [PMID: 39055736 PMCID: PMC11272417 DOI: 10.1002/cti2.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Despite vaccination strategies, people with chronic kidney disease, particularly kidney transplant recipients (KTRs), remained at high risk of poor COVID-19 outcomes. We assessed serological responses to the three-dose COVID-19 vaccine schedule in KTRs and people on dialysis, as well as seroresponse predictors and the relationship between responses and breakthrough infection. Methods Plasma from 30 KTRs and 17 people receiving dialysis was tested for anti-Spike receptor binding domain (RBD) IgG and neutralising antibodies (NAb) to the ancestral and Omicron BA.2 variant after Doses 2 and 3 of vaccination. Results After three doses, KTRs achieved lower anti-Spike RBD IgG levels (P < 0.001) and NAb titres than people receiving dialysis (P = 0.002). Seropositive cross-reactive Omicron neutralisation levels were achieved in 11/27 (40.7%) KTRs and 11/14 (78.6%) dialysis recipients. ChAdOx1/viral-vector vaccine type, higher mycophenolate dose (> 1 g per day) and lower absolute B-cell counts predicted poor serological responses in KTRs. ChAdOx-1 vaccine type and higher monocyte counts were negative predictors in dialysis recipients. Among ancestral NAb seroresponders, higher NAb levels positively correlated with higher Omicron neutralisation (R = 0.9, P < 0.001). More KTRs contracted SARS-CoV-2 infection (14/30; 47%) than dialysis recipients (5/17; 29%) and had more severe disease. Those with breakthrough infections had significantly lower median interdose incremental change in anti-Spike RBD IgG and ancestral NAb titres. Conclusion Serological responses to COVID-19 vaccines in KTRs lag behind their dialysis counterparts. KTRs remained at high risk of breakthrough infection after their primary vaccination schedule underlining their need for booster doses, strict infection prevention measures and close surveillance.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
| | - Irene Boo
- Burnet InstituteMelbourneVICAustralia
| | - Jessie O'Hara
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Shir Sun
- Burnet InstituteMelbourneVICAustralia
- Department of Immunology, School of Translational MedicineMonash University and Alfred HealthMelbourneVICAustralia
| | - Kevan R Polkinghorne
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
- Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVICAustralia
| | - Claire Dendle
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
- Monash Infectious DiseasesMonash HealthClaytonVICAustralia
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Menno C van Zelm
- Department of Immunology, School of Translational MedicineMonash University and Alfred HealthMelbourneVICAustralia
- Department of Immunology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Heidi E Drummer
- Burnet InstituteMelbourneVICAustralia
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Gabriela Khoury
- Burnet InstituteMelbourneVICAustralia
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - William R Mulley
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
| |
Collapse
|
23
|
Cabrera-Alvargonzalez JJ, Davina-Nunez C, Rey-Cao S, Rodriguez Calviño L, Silva-Bea S, Gonzalez-Alonso E, Carballo-Fernandez R, Lameiro Vilariño C, Cortizo-Vidal S, Valiño-Prieto P, Rodriguez-Perez M, Pérez Castro S, López Miragaya I, Fernández-Nogueira A, Del Campo-Perez V, Regueiro-Garcia B. Comparative analysis of eleven SARS-CoV-2 immunoassays and neutralisation data: time to enhance standardisation and correlation of protection. Infect Dis (Lond) 2024:1-13. [PMID: 39046827 DOI: 10.1080/23744235.2024.2382263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND To infer a reliable SARS-CoV-2 antibody protection level from a serological test, an appropriate quantitative threshold and solid equivalence across serological tests are needed. Additionally, tests should show a solid correlation with neutralising assays and with the protection observed in large population cohorts even against emerging variants. OBJECTIVES We studied convalescent and vaccinated populations using 11 commercial antibody assays. Results were compared to evaluate discrepancies across tests. Neutralisation capacity was measured in a subset of the samples with a lentiviral-based assay. METHODS Serum from convalescent (n = 121) and vaccinated individuals (n = 471, 260 with Comirnaty, 110 with Spikevax, and 96 with Vaxzevria) was assessed using 11 different assays, including two from Abbott, Euroimmun, Liaison, Roche, and Vircell, and one from Siemens. A spike protein-lentiviral vector with a fluorescent reporter was used for neutralisation assay of serum from convalescent (n = 26) and vaccinated (n = 39) individuals. RESULTS Positivity ranged between 81.3 and 94.3% after infection and 99.4 and 99.7% after vaccination, depending on the assay. Both cohorts showed a high level of qualitative agreement across tests (Fleiss' kappa = 0.598 and 0.719 for convalescent and vaccinated respectively). Spikevax vaccine recipients showed the highest level of antibodies in all tests. Effectiveness of each test predicting SARS-CoV-2 neutralising capacity depended on assay type and target, with CLIA and anti-S being more effective than ELISA and anti-N assays, respectively. CONCLUSIONS High-throughput immunoassays are good predictors of neutralising capacity. Updated targets and better standardisation would be required to find an effective correlate of protection, especially to account for antibodies against new variants.
Collapse
Affiliation(s)
- Jorge-Julio Cabrera-Alvargonzalez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Carlos Davina-Nunez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Faculty of Biology, Universidade de Vigo, Vigo, Spain
| | - Sonia Rey-Cao
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Leticia Rodriguez Calviño
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sergio Silva-Bea
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | - Elena Gonzalez-Alonso
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | | | - Carmen Lameiro Vilariño
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sandra Cortizo-Vidal
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Pilar Valiño-Prieto
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Miriam Rodriguez-Perez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sonia Pérez Castro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Isabel López Miragaya
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Arturo Fernández-Nogueira
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Victor Del Campo-Perez
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Benito Regueiro-Garcia
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
24
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, Amiri M, Krivelyova A, Vats S, Nassim M, Kumar N, Van de Velde N. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-analysis Using GRADE. Infect Dis Ther 2024; 13:1419-1438. [PMID: 38802704 PMCID: PMC11219657 DOI: 10.1007/s40121-024-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-dose coronavirus disease 2019 (COVID-19) vaccines may offer increased immunogenicity. METHODS A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune responses. RESULTS mRNA-1273 was associated with a significantly higher seroconversion likelihood [relative risk, 1.11 (95% CI, 1.08, 1.14); P < 0.0001; I2 = 66.8%] and higher total antibody titers [relative increase, 50.45% (95% CI, 34.63%, 66.28%); P < 0.0001; I2 = 89.5%] versus BNT162b2. mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing antibody titers and cellular immune responses versus BNT162b2. CONCLUSION Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC patients.
Collapse
|
26
|
Clegg LE, Stepanov O, Matthews S, White T, Seegobin S, Thomas S, Tuffy KM, Någård M, Esser MT, Streicher K, Cohen TS, Aksyuk AA. Serum AZD7442 (tixagevimab-cilgavimab) concentrations and in vitroIC 50 values predict SARS-CoV-2 neutralising antibody titres. Clin Transl Immunology 2024; 13:e1517. [PMID: 38873124 PMCID: PMC11175839 DOI: 10.1002/cti2.1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates rapid methods for assessing monoclonal antibody (mAb) potency against emerging variants. Authentic virus neutralisation assays are considered the gold standard for measuring virus-neutralising antibody (nAb) titres in serum. However, authentic virus-based assays pose inherent practical challenges for measuring nAb titres against emerging SARS-CoV-2 variants (e.g. storing infectious viruses and testing at biosafety level-3 facilities). Here, we demonstrate the utility of pseudovirus neutralisation assay data in conjunction with serum mAb concentrations to robustly predict nAb titres in serum. Methods SARS-CoV-2 nAb titres were determined via authentic- and lentiviral pseudovirus-based neutralisation assays using serological data from three AZD7442 (tixagevimab-cilgavimab) studies: PROVENT (NCT04625725), TACKLE (NCT04723394) and a phase 1 dose-ranging study (NCT04507256). AZD7442 serum concentrations were assessed using immunocapture. Serum-based half-maximal inhibitory concentration (IC50) values were derived from pseudovirus nAb titres and serum mAb concentrations, and compared with in vitro IC50 measurements. Results nAb titres measured via authentic- and lentiviral pseudovirus-based neutralisation assays were strongly correlated for the ancestral SARS-CoV-2 virus and SARS-CoV-2 Alpha. Serum AZD7442 concentrations and pseudovirus nAb titres were strongly correlated for multiple SARS-CoV-2 variants with all Spearman correlation coefficients ≥ 0.78. Serum-based IC50 values were similar to in vitro IC50 values for AZD7442, for ancestral SARS-CoV-2 and Alpha, Delta, Omicron BA.2 and Omicron BA.4/5 variants. Conclusions These data highlight that serum mAb concentrations and pseudovirus in vitro IC50 values can be used to rapidly predict nAb titres in serum for emerging and historical SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaGaithersburgMDUSA
| | - Oleg Stepanov
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaCambridgeUK
| | - Sam Matthews
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Tom White
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Seth Seegobin
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Steven Thomas
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaDurhamNCUSA
| | - Kevin M Tuffy
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&DAstraZenecaGaithersburgMDUSA
| | - Mark T Esser
- Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Katie Streicher
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Taylor S Cohen
- Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| | - Anastasia A Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&DAstraZenecaGaithersburgMDUSA
| |
Collapse
|
27
|
Rabezanahary H, Gilbert C, Santerre K, Scarrone M, Gilbert M, Thériault M, Brousseau N, Masson JF, Pelletier JN, Boudreau D, Trottier S, Baz M. Live virus neutralizing antibodies against pre and post Omicron strains in food and retail workers in Québec, Canada. Heliyon 2024; 10:e31026. [PMID: 38826717 PMCID: PMC11141348 DOI: 10.1016/j.heliyon.2024.e31026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Background Measuring the ability of SARS-CoV-2 antibodies to neutralize live viruses remains an effective approach to quantify the level of protection of individuals. We assessed the neutralization activity against the ancestral SARS-CoV-2, Delta, Omicron BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 strains, in 280 vaccinated restaurant/bar, grocery and hardware store workers in Québec, Canada. Methods Participants were recruited during the emergence of Omicron BA.1 variant. The neutralizing activity of participant sera was assessed by microneutralization assay. Results Serum neutralizing antibody (NtAb) titers of all participants against the ancestral SARS-CoV-2 strain were comparable with those against Delta variant (ranges of titers 10-2032 and 10-2560, respectively), however, their response was significantly reduced against Omicron BA.1, BA2, BA.2.12.1, BA.4 and BA.5 (10-1016, 10-1016, 10-320, 10-80 and 10-254, respectively). Individuals who received 2 doses of vaccine had significantly reduced NtAb titers against all SARS-CoV-2 strains compared to those infected and then vaccinated (≥1 dose), vaccinated (≥2 doses) and then infected, or those who received 3 doses of vaccine. Participants vaccinated with 2 or 3 doses of vaccine and then infected had the highest NtAb titers against all SARS-CoV-2 strains tested. Conclusion We assessed for the first time the NtAb response in food and retail workers. We found that vaccination prior to the emergence of Omicron BA.1 was associated with higher neutralizing activity against pre-Omicron variants, suggesting the importance of updating vaccines to increase antibody response against new SARS-CoV-2 variants. Vaccination followed by infection was associated with higher neutralizing activity against all SARS-CoV-2 strains tested.
Collapse
Affiliation(s)
- Henintsoa Rabezanahary
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Caroline Gilbert
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Kim Santerre
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Martina Scarrone
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Megan Gilbert
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Mathieu Thériault
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Nicholas Brousseau
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Biological Risks Department, Institut National de Santé Publique du Québec, Québec, QC, G1V 5B3, Canada
| | - Jean-François Masson
- Department of Chemistry, Quebec Center for Advanced Materials, Regroupement québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Université de Montréal, Montréal, Canada
| | - Joelle N. Pelletier
- Department of Chemistry, Department of Biochemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
- PROTEO-The Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Denis Boudreau
- Département de Chimie et Centre d'Optique, Photonique et laser (COPL), Université Laval, Québec, Canada
| | - Sylvie Trottier
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Mariana Baz
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| |
Collapse
|
28
|
Walmsley S, Nabipoor M, Qi F, Lovblom LE, Ravindran R, Colwill K, Dayam RM, Tursun TR, Silva A, Gingras AC. Declining Levels of Neutralizing Antibodies to SARS-CoV-2 Omicron Variants Are Enhanced by Hybrid Immunity and Original/Omicron Bivalent Vaccination. Vaccines (Basel) 2024; 12:564. [PMID: 38932293 PMCID: PMC11209254 DOI: 10.3390/vaccines12060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
We determined neutralizing antibody levels to the ancestral Wuhan SARS-CoV-2 strain and three Omicron variants, namely BA.5, XBB.1.5, and EG.5, in a heavily vaccinated cohort of 178 adults 15-19 months after the initial vaccine series and prospectively after 4 months. Although all participants had detectable neutralizing antibodies to Wuhan, the proportion with detectable neutralizing antibodies to the Omicron variants was decreased, and the levels were lower. Individuals with hybrid immunity at the baseline visit and those receiving the Original/Omicron bivalent vaccine between the two sampling times demonstrated increased neutralizing antibodies to all strains. Both a higher baseline neutralizing antibody titer to Omicron BA.5 and hybrid immunity were associated with protection against a breakthrough SARS-CoV-2 infection during a 4-month period of follow up during the Omicron BA.5 wave. Neither were associated with protection from a breakthrough infection at 10 months follow up. Receipt of an Original/Omicron BA.4/5 vaccine was associated with protection from a breakthrough infection at both 4 and 10 months follow up. This work demonstrates neutralizing antibody escape with the emerging Omicron variants and supports the use of additional vaccine doses with components that match circulating SARS-CoV-2 variants. A threshold value for neutralizing antibodies for protection against reinfection cannot be determined.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Amanda Silva
- DATA Team, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | |
Collapse
|
29
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
30
|
Brinkkemper M, Poniman M, Siteur-van Rijnstra E, Iddouch WA, Bijl TP, Guerra D, Tejjani K, Grobben M, Bhoelan F, Bemelman D, Kempers R, van Gils MJ, Sliepen K, Stegmann T, van der Velden YU, Sanders RW. A spike virosome vaccine induces pan-sarbecovirus antibody responses in mice. iScience 2024; 27:109719. [PMID: 38706848 PMCID: PMC11068555 DOI: 10.1016/j.isci.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Zoonotic events by sarbecoviruses have sparked an epidemic (severe acute respiratory syndrome coronavirus [SARS-CoV]) and a pandemic (SARS-CoV-2) in the past two decades. The continued risk of spillovers from animals to humans is an ongoing threat to global health and a pan-sarbecovirus vaccine would be an important contribution to pandemic preparedness. Here, we describe multivalent virosome-based vaccines that present stabilized spike proteins from four sarbecovirus strains, one from each clade. A cocktail of four monovalent virosomes or a mosaic virosome preparation induced broad sarbecovirus binding and neutralizing antibody responses in mice. Pre-existing immunity against SARS-CoV-2 and extending the intervals between immunizations enhanced antibody responses. These results should inform the development of a pan-sarbecovirus vaccine, as part of our efforts to prepare for and/or avoid a next pandemic.
Collapse
Affiliation(s)
- Mitch Brinkkemper
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Esther Siteur-van Rijnstra
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Widad Ait Iddouch
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom P.L. Bijl
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Denise Guerra
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Farien Bhoelan
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | | | - Ronald Kempers
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | - Yme U. van der Velden
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
31
|
Marquez-Martinez S, Salisch N, Serroyen J, Zahn R, Khan S. Peak transgene expression after intramuscular immunization of mice with adenovirus 26-based vector vaccines correlates with transgene-specific adaptive immune responses. PLoS One 2024; 19:e0299215. [PMID: 38626093 PMCID: PMC11020485 DOI: 10.1371/journal.pone.0299215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 04/18/2024] Open
Abstract
Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.
Collapse
Affiliation(s)
| | - Nadine Salisch
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| |
Collapse
|
32
|
Chisty ZA, Li DD, Haile M, Houston H, DaSilva J, Overton R, Schuh AJ, Haynie J, Clemente J, Branch AG, Arons MM, Tsang CA, Pellegrini GJ, Bugrysheva J, Ilutsik J, Mohelsky R, Comer P, Hundia SB, Oh H, Stuckey MJ, Bohannon CD, Rasheed MAU, Epperson M, Thornburg NJ, McDonald LC, Brown AC, Kutty PK. Immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination among nursing home residents-Georgia, October 2020-July 2022. PLoS One 2024; 19:e0301367. [PMID: 38625908 PMCID: PMC11020945 DOI: 10.1371/journal.pone.0301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.
Collapse
Affiliation(s)
- Zeshan A. Chisty
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deana D. Li
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melia Haile
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hollis Houston
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Juliana DaSilva
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rahsaan Overton
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amy J. Schuh
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jenn Haynie
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Goldbelt C6, LLC, Chesapeake, Virginia, United States of America
| | - Jacob Clemente
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alicia G. Branch
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa M. Arons
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Clarisse A. Tsang
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gerald J. Pellegrini
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julia Bugrysheva
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Justina Ilutsik
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Goldbelt C6, LLC, Chesapeake, Virginia, United States of America
| | - Romy Mohelsky
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patricia Comer
- A.G. Rhodes Wesley Woods Heath and Rehab, Atlanta, Georgia, United States of America
| | | | - Hyungseok Oh
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Matthew J. Stuckey
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Caitlin D. Bohannon
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mohammed Ata Ur Rasheed
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Monica Epperson
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Natalie J. Thornburg
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - L. Clifford McDonald
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Allison C. Brown
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Preeta K. Kutty
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
33
|
Urschel R, Bronder S, Klemis V, Marx S, Hielscher F, Abu-Omar A, Guckelmus C, Schneitler S, Baum C, Becker SL, Gärtner BC, Sester U, Martinez L, Widera M, Schmidt T, Sester M. SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals. Nat Commun 2024; 15:3077. [PMID: 38594497 PMCID: PMC11004149 DOI: 10.1038/s41467-024-47429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.
Collapse
Affiliation(s)
- Rebecca Urschel
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Saskia Bronder
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Verena Klemis
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Franziska Hielscher
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Amina Abu-Omar
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Candida Guckelmus
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Christina Baum
- Occupational Health Care Center, Saarland University, 66421, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Urban Sester
- Department of Nephrology, SHG-Klinikum Völklingen, 66333, Völklingen, Germany
| | - Leonardo Martinez
- Boston University, School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
34
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
35
|
Di Chiara C, Boracchini R, Cantarutti A, Kakkar F, Oletto A, Padoan A, Donà D, Giaquinto C. Risk of SARS-CoV-2 Reinfection in Children Within the 12 Months Following Mild COVID-19: Insights From a Survey Study. Pediatr Infect Dis J 2024; 43:e128-e130. [PMID: 38241645 PMCID: PMC10919262 DOI: 10.1097/inf.0000000000004233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Understanding the correlation between immune response and protection from COVID-19 will play a pivotal role in predicting the effectiveness of vaccines in children. We studied SARS-CoV-2 reinfection risk in children 12 months post-mild COVID-19. Children under 5 years old exhibited lower reinfection risk than older infected or vaccinated siblings during 12 months postimmunization.
Collapse
Affiliation(s)
- Costanza Di Chiara
- From the Department for Women's and Children's Health, University of Padua, Padua, Italy
- Penta - Child Health Research, Padua, Italy
| | - Riccardo Boracchini
- Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Anna Cantarutti
- Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Fatima Kakkar
- Division of Infectious Diseases, Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
| | | | - Andrea Padoan
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Daniele Donà
- From the Department for Women's and Children's Health, University of Padua, Padua, Italy
- Penta - Child Health Research, Padua, Italy
| | - Carlo Giaquinto
- From the Department for Women's and Children's Health, University of Padua, Padua, Italy
- Penta - Child Health Research, Padua, Italy
| |
Collapse
|
36
|
Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses 2024; 16:479. [PMID: 38543844 PMCID: PMC10975673 DOI: 10.3390/v16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The emergence of new virus variants, including the Omicron variant (B.1.1.529) of SARS-CoV-2, can lead to reduced vaccine effectiveness (VE) and the need for new vaccines or vaccine doses if the extent of immune evasion is severe. Neutralizing antibody titers have been shown to be a correlate of protection for SARS-CoV-2 and other pathogens, and could be used to quickly estimate vaccine effectiveness for new variants. However, no model currently exists to provide precise VE estimates for a new variant against severe disease for SARS-CoV-2 using robust datasets from several populations. We developed predictive models for VE against COVID-19 symptomatic disease and hospitalization across a 54-fold range of mean neutralizing antibody titers. For two mRNA vaccines (mRNA-1273, BNT162b2), models fit without Omicron data predicted that infection with the BA.1 Omicron variant increased the risk of hospitalization 2.8-4.4-fold and increased the risk of symptomatic disease 1.7-4.2-fold compared to the Delta variant. Out-of-sample validation showed that model predictions were accurate; all predictions were within 10% of observed VE estimates and fell within the model prediction intervals. Predictive models using neutralizing antibody titers can provide rapid VE estimates, which can inform vaccine booster timing, vaccine design, and vaccine selection for new virus variants.
Collapse
Affiliation(s)
- Billy J. Gardner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
37
|
Goguet E, Olsen CH, Meyer WA, Ansari S, Powers JH, Conner TL, Coggins SA, Wang W, Wang R, Illinik L, Sanchez Edwards M, Jackson-Thompson BM, Hollis-Perry M, Wang G, Alcorta Y, Wong MA, Saunders D, Mohammed R, Balogun B, Kobi P, Kosh L, Bishop-Lilly K, Cer RZ, Arnold CE, Voegtly LJ, Fitzpatrick M, Luquette AE, Malagon F, Ortega O, Parmelee E, Davies J, Lindrose AR, Haines-Hull H, Moser MS, Samuels EC, Rekedal MS, Graydon EK, Malloy AMW, Tribble D, Burgess TH, Campbell W, Robinson S, Broder CC, O’Connell RJ, Weiss CD, Pollett S, Laing E, Mitre E. Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection. Front Immunol 2024; 15:1287504. [PMID: 38566991 PMCID: PMC10985347 DOI: 10.3389/fimmu.2024.1287504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.
Collapse
Affiliation(s)
- Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Cara H. Olsen
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Sara Ansari
- Quest Diagnostics, Secaucus, NJ, United States
| | - John H. Powers
- Clinical Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tonia L. Conner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Si’Ana A. Coggins
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wei Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Richard Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luca Illinik
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Sanchez Edwards
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Belinda M. Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Monique Hollis-Perry
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory Wang
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Yolanda Alcorta
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Mimi A. Wong
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - David Saunders
- Translational Medicine Unit, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roshila Mohammed
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bolatito Balogun
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Priscilla Kobi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lakeesha Kosh
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Regina Z. Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Logan J. Voegtly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Maren Fitzpatrick
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrea E. Luquette
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Francisco Malagon
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Orlando Ortega
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Parmelee
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Julian Davies
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alyssa R. Lindrose
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hannah Haines-Hull
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew S. Moser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Marana S. Rekedal
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wesley Campbell
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Sara Robinson
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert J. O’Connell
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Simon Pollett
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
38
|
Magaret CA, Li L, deCamp AC, Rolland M, Juraska M, Williamson BD, Ludwig J, Molitor C, Benkeser D, Luedtke A, Simpkins B, Heng F, Sun Y, Carpp LN, Bai H, Dearlove BL, Giorgi EE, Jongeneelen M, Brandenburg B, McCallum M, Bowen JE, Veesler D, Sadoff J, Gray GE, Roels S, Vandebosch A, Stieh DJ, Le Gars M, Vingerhoets J, Grinsztejn B, Goepfert PA, de Sousa LP, Silva MST, Casapia M, Losso MH, Little SJ, Gaur A, Bekker LG, Garrett N, Truyers C, Van Dromme I, Swann E, Marovich MA, Follmann D, Neuzil KM, Corey L, Greninger AL, Roychoudhury P, Hyrien O, Gilbert PB. Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features. Nat Commun 2024; 15:2175. [PMID: 38467646 PMCID: PMC10928100 DOI: 10.1038/s41467-024-46536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.
Collapse
Affiliation(s)
- Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Li Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian D Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - James Ludwig
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cindy Molitor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Benkeser
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alex Luedtke
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Brian Simpkins
- Department of Computer Science, Pitzer College, Claremont, CA, USA
| | - Fei Heng
- University of North Florida, Jacksonville, FL, USA
| | - Yanqing Sun
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Elena E Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mandy Jongeneelen
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Boerries Brandenburg
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jerald Sadoff
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Sanne Roels
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - An Vandebosch
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel J Stieh
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Mathieu Le Gars
- Johnson & Johnson Innovative Medicine, Janssen Vaccines & Prevention B.V, Leiden, The Netherlands
| | - Johan Vingerhoets
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonardo Paiva de Sousa
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mayara Secco Torres Silva
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Martin Casapia
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peru, Iquitos, Peru
| | - Marcelo H Losso
- Hospital General de Agudos José María Ramos Mejia, Buenos Aires, Argentina
| | - Susan J Little
- Division of Infectious Diseases, University of California San Diego, La Jolla, CA, USA
| | - Aditya Gaur
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carla Truyers
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van Dromme
- Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Edith Swann
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Marovich
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
39
|
Martín Pérez C, Aguilar R, Jiménez A, Salmerón G, Canyelles M, Rubio R, Vidal M, Cuamba I, Barrios D, Díaz N, Santano R, Serra P, Santamaria P, Izquierdo L, Trilla A, Vilella A, Barroso S, Tortajada M, García-Basteiro AL, Moncunill G, Dobaño C. Correlates of protection and determinants of SARS-CoV-2 breakthrough infections 1 year after third dose vaccination. BMC Med 2024; 22:103. [PMID: 38454385 PMCID: PMC10921636 DOI: 10.1186/s12916-024-03304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The emergence of new SARS-CoV-2 variants and the waning of immunity raise concerns about vaccine effectiveness and protection against COVID-19. While antibody response has been shown to correlate with the risk of infection with the original variant and earlier variants of concern, the effectiveness of antibody-mediated protection against Omicron and the factors associated with protection remain uncertain. METHODS We evaluated antibody responses to SARS-CoV-2 spike (S) and nucleocapsid (N) antigens from Wuhan and variants of concern by Luminex and their role in preventing breakthrough infections 1 year after a third dose of mRNA vaccination, in a cohort of health care workers followed since the pandemic onset in Spain (N = 393). Data were analyzed in relation to COVID-19 history, demographic factors, comorbidities, vaccine doses, brand, and adverse events. RESULTS Higher levels of anti-S IgG and IgA to Wuhan, Delta, and Omicron were associated with protection against vaccine breakthroughs (IgG against Omicron S antigen HR, 0.06, 95%CI, 0.26-0.01). Previous SARS-CoV-2 infection was positively associated with antibody levels and protection against breakthroughs, and a longer time since last infection was associated with lower protection. In addition, priming with BNT162b2 followed by mRNA-1273 booster was associated with higher antibody responses than homologous mRNA-1273 vaccination. CONCLUSIONS Data show that IgG and IgA induced by vaccines against the original strain or by hybrid immunization are valid correlates of protection against Omicron BA.1 despite immune escape and support the benefits of heterologous vaccination regimens to enhance antibodies and the prioritization of booster vaccination in individuals without recent infections.
Collapse
Affiliation(s)
- Carla Martín Pérez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, 08036, Spain
| | - Gemma Salmerón
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Mar Canyelles
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Inocencia Cuamba
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- Centro de Investigação Em Saúde de Manhiça, Maputo, CP, 1929, Mozambique
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Natalia Díaz
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08036, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08036, Spain
| | - Antoni Trilla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Anna Vilella
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Sonia Barroso
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Marta Tortajada
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
- Centro de Investigação Em Saúde de Manhiça, Maputo, CP, 1929, Mozambique
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08036, Spain
- International Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08036, Spain.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, 08036, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08036, Spain.
| |
Collapse
|
40
|
Reiter L, Greffrath J, Zidel B, Ostrowski M, Gommerman J, Madhi SA, Tran R, Martin-Orozco N, Panicker RKG, Cooper C, Pastrak A. Comparable safety and non-inferior immunogenicity of the SARS-CoV-2 mRNA vaccine candidate PTX-COVID19-B and BNT162b2 in a phase 2 randomized, observer-blinded study. Sci Rep 2024; 14:5365. [PMID: 38438427 PMCID: PMC10912344 DOI: 10.1038/s41598-024-55320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
In the aftermath of the COVID-19 pandemic, the evolution of the SARS-CoV-2 into a seasonal pathogen along with the emergence of new variants, underscores the need for dynamic and adaptable responses, emphasizing the importance of sustained vaccination strategies. This observer-blind, double-dummy, randomized immunobridging phase 2 study (NCT05175742) aimed to compare the immunogenicity induced by two doses of 40 μg PTX-COVID19-B vaccine candidate administered 28 days apart, with the response induced by two doses of 30 µg Pfizer-BioNTech COVID-19 vaccine (BNT162b2), administered 21 days apart, in Nucleocapsid-protein seronegative adults 18-64 years of age. Both vaccines were administrated via intramuscular injection in the deltoid muscle. Two weeks after the second dose, the neutralizing antibody (NAb) geometric mean titer ratio and seroconversion rate met the non-inferiority criteria, successfully achieving the primary immunogenicity endpoints of the study. PTX-COVID19-B demonstrated similar safety and tolerability profile to BNT162b2 vaccine. The lowest NAb response was observed in subjects with low-to-undetectable NAb at baseline or no reported breakthrough infection. Conversely, participants who experienced breakthrough infections during the study exhibited higher NAb titers. This study also shows induction of cell-mediated immune (CMI) responses by PTX-COVID19-B. In conclusion, the vaccine candidate PTX-COVID19-B demonstrated favourable safety profile along with immunogenicity similar to the active comparator BNT162b2 vaccine.
Collapse
Affiliation(s)
- Lawrence Reiter
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | - Johann Greffrath
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bian Zidel
- Malton Medical Center, 6870 Goreway Dr., Mississauga, ON, L4V 1P1, Canada
| | - Mario Ostrowski
- Department of Medicine, Immunology, University of Toronto, Medical Sciences Building, Rm 6271. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jennifer Gommerman
- Department of Immunology, Temerty Faculty of Medicine, 1 King's College Circle, Rm. 7233, Toronto, ON, M5S 1A8, Canada
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Tran
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | - Natalia Martin-Orozco
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | | | - Curtis Cooper
- The Ottawa Hospital Viral Hepatitis Program, Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, University of Ottawa, 75 Laurier Ave. East, Ottawa, ON, K1N 6N5, Canada
| | - Aleksandra Pastrak
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada.
| |
Collapse
|
41
|
Decker S, Xiao S, Dillen C, Schumacher CM, Milstone AM, Frieman M, Debes AK. Association of Nirmatrelvir/Ritonavir Treatment and COVID-19-Neutralizing Antibody Titers in a Longitudinal Health Care Worker Cohort. Open Forum Infect Dis 2024; 11:ofad625. [PMID: 38352152 PMCID: PMC10863641 DOI: 10.1093/ofid/ofad625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 02/16/2024] Open
Abstract
Nirmatrelvir/ritonavir (NMV/r) is used for the treatment of coronavirus disease 2019 (COVID-19) infection. However, rebound COVID-19 infections can occur after taking NMV/r. We examined neutralizing antibodies to the severe acute respiratory syndrome coronavirus 2 spike protein before and after infection in people who did and did not take NMV/r to determine if NMV/r impedes the humoral immune response.
Collapse
Affiliation(s)
- Slade Decker
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaoming Xiao
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carly Dillen
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Aaron M Milstone
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda K Debes
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
43
|
Prins MLM, Roozen GVT, Pothast CR, Huisman W, van Binnendijk R, den Hartog G, Kuiper VP, Prins C, Janse JJ, Lamers OAC, Koopman JPR, Kruithof AC, Kamerling IMC, Dijkland RC, de Kroon AC, Azimi S, Feltkamp MCW, Kuijer M, Jochems SP, Heemskerk MHM, Rosendaal FR, Roestenberg M, Visser LG, Roukens AHE. Immunogenicity and reactogenicity of intradermal mRNA-1273 SARS-CoV-2 vaccination: a non-inferiority, randomized-controlled trial. NPJ Vaccines 2024; 9:1. [PMID: 38167735 PMCID: PMC10761693 DOI: 10.1038/s41541-023-00785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Fractional dosing can be a cost-effective vaccination strategy to accelerate individual and herd immunity in a pandemic. We assessed the immunogenicity and safety of primary intradermal (ID) vaccination, with a 1/5th dose compared with the standard intramuscular (IM) dose of mRNA-1273 in SARS-CoV-2 naïve persons. We conducted an open-label, non-inferiority, randomized controlled trial in the Netherlands between June and December 2021. One hundred and fifty healthy and SARS-CoV-2 naïve participants, aged 18-30 years, were randomized (1:1:1) to receive either two doses of 20 µg mRNA-1273 ID with a standard needle (SN) or the Bella-mu® needle (BM), or two doses of 100 µg IM, 28 days apart. The primary outcome was non-inferiority in seroconversion rates at day 43 (D43), defined as a neutralizing antibody concentration threshold of 465 IU/mL, the lowest response in the IM group. The non-inferiority margin was set at -15%. Neutralizing antibody concentrations at D43 were 1789 (95% CI: 1488-2150) in the IM and 1263 (951-1676) and 1295 (1020-1645) in the ID-SN and ID-BM groups, respectively. The absolute difference in seroconversion proportion between fractional and standard-dose groups was -13.95% (-24.31 to -3.60) for the ID-SN and -13.04% (-22.78 to -3.31) for the ID-BM group and exceeded the predefined non-inferiority margin. Although ID vaccination with 1/5th dose of mRNA-1273 did not meet the predefined non-inferior criteria, the neutralizing antibody concentrations in these groups are far above the proposed proxy for protection against severe disease (100 IU/mL), justifying this strategy in times of vaccine scarcity to accelerate mass protection against severe disease.
Collapse
Affiliation(s)
- Manon L M Prins
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert V T Roozen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cilia R Pothast
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wesley Huisman
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob van Binnendijk
- Department of Immune Surveillance, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Gerco den Hartog
- Department of Immune Surveillance, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Medical Immunology, RadboudUMC, Nijmegen, The Netherlands
| | - Vincent P Kuiper
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Olivia A C Lamers
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Pieter R Koopman
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelieke C Kruithof
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Center for Human Drug Research, Leiden, The Netherlands
| | - Ingrid M C Kamerling
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Center for Human Drug Research, Leiden, The Netherlands
| | - Romy C Dijkland
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicia C de Kroon
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shohreh Azimi
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan Kuijer
- Department of Immune Surveillance, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Simon P Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna H E Roukens
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
44
|
Edwards AL, Tavakol MM, Mello A, Kerney J, Roberts JP. Pretransplantation coronavirus disease 2019 vaccination requirements: A matched case-control study of factors associated with waitlist inactivation. Am J Transplant 2024; 24:134-140. [PMID: 37748555 DOI: 10.1016/j.ajt.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Numerous United States transplant centers require solid organ transplantation candidates to be vaccinated against the coronavirus disease of 2019 to be active on the United Network for Organ Sharing waiting list. This study examined characteristics of adult patients on one center's kidney transplantation waiting list whose status was inactivated due to a lack of coronavirus disease 2019 vaccination by July 1, 2022, and who did not subsequently provide proof of vaccination by August 31, 2022 (cases). Patients in the control group were retrospectively matched to patients in the case group in a 4-to-1 fashion according to age, sex, and "active" status on the waiting list. Multivariable logistic regression was performed, with race/ethnicity, primary language, health insurance, education, and Vaccine Equity Metric (VEM, a measure of health equity at the zip code level) quartile as covariates. Results revealed that patients from zip codes in the lowest VEM quartile (odds ratio [OR] 1.89; P = .02) and those insured by governmental payors (Medicare: OR, 2.00; P < .01 and Medicaid: OR, 2.89; P < .01) had higher odds of being inactivated than those from zip codes that make up the highest VEM quartile and those insured by commercial payors, respectively. These findings serve as a cautionary tale regarding universal pretransplantation vaccination requirements, which may raise equity concerns that should be considered upon policy implementation.
Collapse
Affiliation(s)
- Anya L Edwards
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mehdi M Tavakol
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Anna Mello
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Kerney
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - John P Roberts
- Department of Surgery, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
45
|
Walmsley S, Nabipoor M, Lovblom LE, Ravindran R, Colwill K, McGeer A, Dayam RM, Manase D, Gingras AC. Predictors of Breakthrough SARS-CoV-2 Infection after Vaccination. Vaccines (Basel) 2023; 12:36. [PMID: 38250849 PMCID: PMC10820583 DOI: 10.3390/vaccines12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Alison McGeer
- Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada;
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Dorin Manase
- DATA Team, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A1, Canada
| | | |
Collapse
|
46
|
Watschinger C, Stampfel G, Zollner A, Hoog AM, Rössler A, Reiter S, Dax K, Kimpel J, Tilg H, Antlanger M, Schwaiger E, Moschen AR. B and T Cell Responses to SARS-CoV-2 Vaccination in Kidney and Liver Transplant Recipients with and without Previous COVID-19. Viruses 2023; 16:1. [PMID: 38275936 PMCID: PMC10820906 DOI: 10.3390/v16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Vulnerable populations including transplant recipients are jeopardised by COVID-19. Herein, we report on B and T cell responses among liver and kidney organ recipients at our centre. (2) Methods: 23 liver and 45 kidney (14 thereof combined kidney/pancreas) transplanted patients were vaccinated with two doses of BNT162b2 followed by a booster dose of mRNA-1273 in 28 non-responders 4 months thereafter. Anti-SARS-CoV-2-Ig was measured by specific ELISA and virus neutralisation assay; T cell responses were measured by a spike protein-specific IFN-γ release assay. (3) Results: Compared to controls, B and T cell responses were weak in transplant recipients, particularly in those without prior exposure to SARS-CoV-2. Within this group, only 15% after the first and 58.3% after the second vaccination achieved seroconversion. A total of 14 out of 28 vaccination non-responders achieved a seroconversion after a third dose. Vaccination side effects were more frequent in healthy controls. The use of mycophenolate was associated with reduced anti-SARS-CoV-2-Ig production. (4) Conclusions: Our data confirm that vaccination responses are insufficient after standard vaccination in liver and kidney transplant recipients and are affected to a variable degree by specific immunosuppressants, particularly mycophenolate. Monitoring vaccination success and re-vaccinating those who are unresponsive seems prudent to achieve sufficient titres. Overall, prospective large-scale, multinational, multicentre studies or high-quality meta-analyses will be needed to generate personalised vaccination strategies in order to achieve protective immunity in high-risk, hard-to-immunize populations.
Collapse
Affiliation(s)
- Christina Watschinger
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Gerald Stampfel
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Andreas Zollner
- Christian Doppler Laboratory for Mucosal Immunology, Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
- Department of Medicine, Division of Internal Medicine 1 (Gastroenterology and Hepatology, Endocrinology and Metabolism), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna M. Hoog
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Reiter
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Kristina Dax
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Tilg
- Department of Medicine, Division of Internal Medicine 1 (Gastroenterology and Hepatology, Endocrinology and Metabolism), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marlies Antlanger
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Elisabeth Schwaiger
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
- Department of Internal Medicine, Brothers of Saint John of God Eisenstadt, 7000 Eisenstadt, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Faculty of Medicine, Johannes Kepler University Linz, 4021 Linz, Austria
| |
Collapse
|
47
|
Mózner O, Moldvay J, Szabó KS, Vaskó D, Domján J, Ács D, Ligeti Z, Fehér C, Hirsch E, Puskás L, Stahl C, Frey M, Sarkadi B. Application of a Receptor-Binding-Domain-Based Simple Immunoassay for Assessing Humoral Immunity against Emerging SARS-CoV-2 Virus Variants. Biomedicines 2023; 11:3193. [PMID: 38137414 PMCID: PMC10740953 DOI: 10.3390/biomedicines11123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
We have developed a simple, rapid, high-throughput RBD-based ELISA to assess the humoral immunity against emerging SARS-CoV-2 virus variants. The cDNAs of the His-tagged RBD proteins of the virus variants were stably engineered into HEK cells secreting the protein into the supernatant, and RBD purification was performed by Ni-chromatography and buffer exchange by membrane filtration. The simplified assay uses single dilutions of sera from finger-pricked native blood samples, purified RBD in 96-well plates, and a chromogenic dye for development. The results of this RBD-ELISA were confirmed to correlate with those of a commercial immunoassay measuring antibodies against the Wuhan strain, as well as direct virus neutralization assays assessing the cellular effects of the Wuhan and the Omicron (BA.5) variants. Here, we document the applicability of this ELISA to assess the variant-specific humoral immunity in vaccinated and convalescent patients, as well as to follow the time course of selective vaccination response. This simple and rapid assay, easily modified to detect humoral immunity against emerging SARS-CoV-2 virus variants, may help to assess the level of antiviral protection after vaccination or infection.
Collapse
Affiliation(s)
- Orsolya Mózner
- Research Centre for Natural Sciences, 1117 Budapest, Hungary; (O.M.)
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary
- CelluVir Biotechnology Ltd., 1094 Budapest, Hungary
| | - Judit Moldvay
- CelluVir Biotechnology Ltd., 1094 Budapest, Hungary
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Kata Sára Szabó
- Research Centre for Natural Sciences, 1117 Budapest, Hungary; (O.M.)
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Júlia Domján
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Dorottya Ács
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Zoltán Ligeti
- Research Centre for Natural Sciences, 1117 Budapest, Hungary; (O.M.)
| | - Csaba Fehér
- Biorefinery Research Group, Department of Applied Biotechnology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | | | - Cordula Stahl
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim, Germany
| | - Manfred Frey
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim, Germany
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, 1117 Budapest, Hungary; (O.M.)
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary
- CelluVir Biotechnology Ltd., 1094 Budapest, Hungary
| |
Collapse
|
48
|
Vergori A, Tavelli A, Matusali G, Azzini AM, Augello M, Mazzotta V, Pellicanò GF, Costantini A, Cascio A, De Vito A, Marconi L, Righi E, Sartor A, Pinnetti C, Maggi F, Bai F, Lanini S, Piconi S, Levy Hara G, Marchetti G, Giannella M, Tacconelli E, d’Arminio Monforte A, Antinori A, Cozzi-Lepri A. SARS-CoV-2 mRNA Vaccine Response in People Living with HIV According to CD4 Count and CD4/CD8 Ratio. Vaccines (Basel) 2023; 11:1664. [PMID: 38005996 PMCID: PMC10675416 DOI: 10.3390/vaccines11111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Our aim was to estimate the rates of not achieving a robust/above-average humoral response to the COVID-19 mRNA vaccine in people living with HIV (PLWH) who received ≥2 doses and to investigate the role of the CD4 and CD4/CD8 ratio in predicting the humoral response. METHODS We evaluated the humoral anti-SARS-CoV-2 response 1-month after the second and third doses of COVID-19 mRNA vaccine as a proportion of not achieving a robust/above-average response using two criteria: (i) a humoral threshold identified as a correlate of protection against SARS-CoV-2 (<90% vaccine efficacy): anti-RBD < 775 BAU/mL or anti-S < 298 BAU/mL, (ii) threshold of binding antibodies equivalent to average neutralization activity from the levels of binding (nAb titer < 1:40): anti-RBD < 870 BAU/mL or anti-S < 1591 BAU/mL. PLWH were stratified according to the CD4 count and CD4/CD8 ratio at first dose. Logistic regression was used to compare the probability of not achieving robust/above-average responses. A mixed linear model was used to estimate the mean anti-RBD titer at various time points across the exposure groups. RESULTS a total of 1176 PLWH were included. The proportions of participants failing to achieve a robust/above-average response were significantly higher in participants with a lower CD4 and CD4/CD8 ratio, specifically, a clearer gradient was observed for the CD4 count. The CD4 count was a better predictor of the humoral response of the primary cycle than ratio. The third dose was pivotal in achieving a robust/above-average humoral response, at least for PLWH with CD4 > 200 cells/mm3 and a ratio > 0.6. CONCLUSIONS A robust humoral response after a booster dose has not been reached by 50% of PLWH with CD4 < 200 cells mm3. In the absence of a validated correlate of protections in the Omicron era, the CD4 count remains the most solid marker to guide vaccination campaigns in PLWH.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (V.M.); (C.P.); (S.L.); (A.A.)
| | | | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (G.M.); (F.M.)
| | - Anna Maria Azzini
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.R.); (E.T.)
| | - Matteo Augello
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.A.); (F.B.); (G.M.)
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (V.M.); (C.P.); (S.L.); (A.A.)
| | - Giovanni Francesco Pellicanò
- Department of Human Pathology of the Adult and the Developmental Age “G. Barresi”, University of Messina, 98121 Messina, Italy;
| | - Andrea Costantini
- Clinical Immunology Unit, Azienda Ospedaliero Universitaria delle Marche, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Lorenzo Marconi
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.M.); (M.G.)
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.R.); (E.T.)
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, 33100 Udine, Italy;
| | - Carmela Pinnetti
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (V.M.); (C.P.); (S.L.); (A.A.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (G.M.); (F.M.)
| | - Francesca Bai
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.A.); (F.B.); (G.M.)
| | - Simone Lanini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (V.M.); (C.P.); (S.L.); (A.A.)
| | - Stefania Piconi
- Infectious Diseases Unit, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy;
| | - Gabriel Levy Hara
- Instituto Alberto Taquini de Investigación en Medicina Traslacional, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1122AAJ, Argentina;
| | - Giulia Marchetti
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.A.); (F.B.); (G.M.)
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.M.); (M.G.)
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.R.); (E.T.)
| | - Antonella d’Arminio Monforte
- Icona Foundation, 20142 Milan, Italy;
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.A.); (F.B.); (G.M.)
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (V.M.); (C.P.); (S.L.); (A.A.)
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London NW3 2PF, UK;
| | | |
Collapse
|
49
|
Leal L, Pich J, Ferrer L, Nava J, Martí-Lluch R, Esteban I, Pradenas E, Raïch-Regué D, Prenafeta A, Escobar K, Pastor C, Ribas-Aulinas M, Trinitè B, Muñoz-Basagoiti J, Domenech G, Clotet B, Corominas J, Corpes-Comes A, Garriga C, Barreiro A, Izquierdo-Useros N, Arnaiz JA, Soriano A, Ríos J, Nadal M, Plana M, Blanco J, Prat T, Torroella E, Ramos R. Safety and immunogenicity of a recombinant protein RBD fusion heterodimer vaccine against SARS-CoV-2. NPJ Vaccines 2023; 8:147. [PMID: 37775521 PMCID: PMC10541407 DOI: 10.1038/s41541-023-00736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
In response to COVID-19 pandemic, we have launched a vaccine development program against SARS-CoV-2. Here we report the safety, tolerability, and immunogenicity of a recombinant protein RBD fusion heterodimeric vaccine against SARS-CoV-2 (PHH-1V) evaluated in a phase 1-2a dose-escalation, randomized clinical trial conducted in Catalonia, Spain. 30 young healthy adults were enrolled and received two intramuscular doses, 21 days apart of PHH-1V vaccine formulations [10 µg (n = 5), 20 µg (n = 10), 40 µg (n = 10)] or control [BNT162b2 (n = 5)]. Each PHH-1V group had one safety sentinel and the remaining participants were randomly assigned. The primary endpoint was solicited events within 7 days and unsolicited events within 28 days after each vaccination. Secondary endpoints were humoral and cellular immunogenicity against the variants of concern (VOCs) alpha, beta, delta and gamma. All formulations were safe and well tolerated, with tenderness and pain at the site of injection being the most frequently reported solicited events. Throughout the study, all participants reported having at least one mild to moderate unsolicited event. Two unrelated severe adverse events (AE) were reported and fully resolved. No AE of special interest was reported. Fourteen days after the second vaccine dose, all participants had a >4-fold change in total binding antibodies from baseline. PHH-1V induced robust humoral responses with neutralizing activities against all VOCs assessed (geometric mean fold rise at 35 days p < 0.0001). The specific T-cell response assessed by ELISpot was moderate. This initial evaluation has contributed significantly to the further development of PHH-1V, which is now included in the European vaccine portfolio.ClinicalTrials.gov Identifier NCT05007509EudraCT No. 2021-001411-82.
Collapse
Affiliation(s)
- Lorna Leal
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
| | - Judit Pich
- Clinical Trials Unit (CTU), Hospital Clínic Barcelona, Barcelona, Spain
| | - Laura Ferrer
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Jocelyn Nava
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ruth Martí-Lluch
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Ignasi Esteban
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | | | - Karla Escobar
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carmen Pastor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Ribas-Aulinas
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
| | - Benjamin Trinitè
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Gemma Domenech
- Medical Statistics Core Facility, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
| | | | - Aida Corpes-Comes
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
| | - Carme Garriga
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clinic Barcelona, Barcelona, Spain
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marga Nadal
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Teresa Prat
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Elia Torroella
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Rafel Ramos
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
50
|
Sumner KM, Yadav R, Noble EK, Sandford R, Joshi D, Tartof SY, Wernli KJ, Martin ET, Gaglani M, Zimmerman RK, Talbot HK, Grijalva CG, Chung JR, Rogier E, Coughlin MM, Flannery B. Anti-SARS-CoV-2 Antibody Levels Associated with COVID-19 Protection in Outpatients Tested for SARS-CoV-2, US Flu VE Network, October 2021-June 2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295919. [PMID: 37790578 PMCID: PMC10543239 DOI: 10.1101/2023.09.21.23295919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background We assessed the association between antibody concentration ≤5 days of symptom onset and COVID-19 illness among patients enrolled in a test-negative study. Methods From October 2021-June 2022, study sites in seven states enrolled and tested respiratory specimens from patients of all ages presenting with acute respiratory illness for SARS-CoV-2 infection using rRT-PCR. In blood specimens, we measured concentration of anti-SARS-CoV-2 antibodies against the ancestral strain spike protein receptor binding domain (RBD) and nucleocapsid (N) antigens in standardized binding antibody units (BAU/mL). Percent reduction in odds of symptomatic COVID-19 by anti-RBD antibody was estimated using logistic regression modeled as (1-adjusted odds ratio of COVID-19)×100, adjusting for COVID-19 vaccination status, age, site, and high-risk exposure. Results A total of 662 (33%) of 2,018 symptomatic patients tested positive for acute SARS-CoV-2 infection. During the Omicron-predominant period, geometric mean anti-RBD binding antibody concentrations measured 823 BAU/mL (95%CI:690-981) among COVID-19 case-patients versus 1,189 BAU/mL (95%CI:1,050-1,347) among SARS-CoV-2 test-negative patients. In the adjusted logistic regression, increasing levels of anti-RBD antibodies were associated with reduced odds of COVID-19 for both Delta and Omicron infections. Conclusion Higher anti-RBD antibodies in patients were associated with protection against symptomatic COVID-19 during emergence of SARS-CoV-2 Delta and Omicron variants.
Collapse
Affiliation(s)
- Kelsey M. Sumner
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ruchi Yadav
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emma K. Noble
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Ryan Sandford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devyani Joshi
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sara Y. Tartof
- Kaiser Permanente Southern California, Department of Research & Evaluation
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Karen J. Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Emily T Martin
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University College of Medicine, Temple, TX, USA
| | | | | | | | - Jessie R. Chung
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Rogier
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|