1
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Grants
- R01HL175488 National Institutes of Health, NHLBI, USA
- R01HL175488 National Institutes of Health, NHLBI, USA
- R01HL175488 National Institutes of Health, NHLBI, USA
- pre-doctoral fellowship to Bhavana Shewale American Heart Association
- pre-doctoral fellowship to Bhavana Shewale American Heart Association
- R01HL173318 National Institutes of Health, NHLBI, USA,
- R01HL173318 National Institutes of Health, NHLBI, USA,
- Single Ventricle Research Fund Additional Ventures
- Single Ventricle Research Fund Additional Ventures
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
3
|
Othon-Martínez D, Fernandez-Betances OA, Málaga-Espinoza BX, Torres-Perez ME, Cobos E, Gutierrez-Martinez C. Iron and cardiovascular health: A review. J Investig Med 2024; 72:787-797. [PMID: 39075673 DOI: 10.1177/10815589241268462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Iron is an essential element for the biological processes of living organisms, including the production of crucial oxygen-carrying proteins, formation of heme enzymes, and playing roles in electron transfer and oxidation-reduction reactions. It plays a significant role in various cardiovascular functions, including bioenergetics, electrical activity, and programmed cell death. Minor deficiencies of iron have been found to have negative impact on cardiovascular function in patients with heart failure (HF). The contractility of human cardiomyocytes is impaired by iron deficiency (ID), which results in reduced mitochondrial function and lower energy production, ultimately leading to cardiac function impairment, contributing to significant morbidity and mortality in patients with HF. This review discusses iron homeostasis within the human body, as well as ID pathophysiology and its role in HF. Focusing on therapeutic approaches including iron supplementation and/or repletion in patients with ID and HF, comparing results from recent clinical trials. Intravenous (IV) iron therapy has shown promising results in treating ID in HF patients. Large, randomized trials and meta-analysis, like Ferinject Assessment in patients with ID and chronic HF, AFFIRM-AHF, IRONMAN, and HEART-FID have demonstrated the efficacy of IV iron supplementation with IV ferric carboxymaltose or IV ferric derisomaltose in reducing hospitalizations and improving quality of life in patients with Heart Failure with reduced ejection fraction (HFrEF), New York Heart Association (NYHA) II-III. However, survival and mortality have demonstrated no improvement during acute exacerbations of HF or in outpatient management. The potential benefits of IV iron across the entire HF spectrum and its interaction with other HF therapies remain areas of interest for further research.
Collapse
Affiliation(s)
- Diana Othon-Martínez
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | | | - Maria E Torres-Perez
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Everardo Cobos
- Department of Internal Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | |
Collapse
|
4
|
Zhou C, Hu Y, Dong Z, Wang Z, Zheng S, Li D, Xiao Y, Chen D, Chen H, Sun S, Ye L, Zhang H. Right ventricular volume overload reboots cardiomyocyte proliferation via immune responses. J Transl Med 2024; 22:1075. [PMID: 39609689 PMCID: PMC11604012 DOI: 10.1186/s12967-024-05839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Right ventricular volume overload (RVVO) is one of the most important hemodynamic characteristics in children with congenital heart disease (CHD) and heart failure, and cardiomyocyte (CM) proliferation is one of the most vital factors for improving cardiac performance. However, whether and how RVVO reboots CM proliferation remains elusive. METHODS AND RESULTS We first created a neonatal RVVO mouse model via abdominal aorta and inferior vena cava-fistula microsurgery at postnatal day 7 (P7), the edge of CM proliferation window. We subsequently performed bulk RNA-seq, single cell RNA-seq/flow cytometry, and immunofluorescence staining on the right ventricles (RV) of RVVO mice at P14/P21, defined as prepubertal stage, revealing that RVVO temporarily reboots prepubertal CM proliferation via immune responses. CONCLUSIONS In considering the importance of RVVO and CM proliferation, this study may bring an opportunity to create a novel paradigm to treat pediatric CHDs or heart failure.
Collapse
Affiliation(s)
- Chunxia Zhou
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yuqing Hu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoya Dong
- Department of Pediatric Intensive Care Unit, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Zheng Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Debao Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dian Chen
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Hao Chen
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Sijuan Sun
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Huo Y, Wang W, Bai F, Gui Y. The Decreased Proliferation Capacity of Cardiomyocytes Induced By Androsterone Is Mediated By the Interactions Between Androgen Receptor and Retinoblastoma Protein. J Biochem Mol Toxicol 2024; 38:e70029. [PMID: 39492647 DOI: 10.1002/jbt.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Our previous study has demonstrated that the decline in cardiomyocytes proliferation capacity induced by maternal androgen excess was mainly attributed to the accumulation of androsterone in the heart. However, the underlying mechanism by which androsterone inhibits cardiomyocytes proliferation remains unknown. In this study, pregnant mice were injected subcutaneously daily with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was dissected and used for analyzing androgen receptor (AR) levels. H9c2 cells and primary cardiomyocytes, isolated from fetal hearts, were applied to investigate the mechanism. H9c2 cells under androsterone treatment were subjected to RNA sequencing analysis and the results showed that genes were primarily enriched in cell cycle and DNA replication pathways. Elevated AR levels were observed in fetal cardiac tissue in the maternal DHT-treated group. Androsterone treatment increased the ratio of nuclear AR and cytoplasmic AR both in H9c2 cells and primary cardiomyocytes. The ablation and overexpression of AR can mildly reverse and aggravate cell cycle arrest induced by androsterone, respectively. ChIP-qPCR analysis suggested that AR can directly repress cell cycle and DNA replication-related gene expression, which was mediated by the recruitment of retinoblastoma protein (Rb). The repression of cell proliferation in response to androsterone was alleviated partly through the downregulation of Rb by siRNA transfection. In conclusion, AR repression to cell cycle and DNA replication-related gene expression, mediated by recruitment of Rb, may be one of the potential mechanisms of cell cycle arrest in cardiomyocytes induced by androsterone.
Collapse
Affiliation(s)
- Yu Huo
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Wenji Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Fan Bai
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yonghao Gui
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
7
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
8
|
Liang J, He X, Wang Y. Cardiomyocyte proliferation and regeneration in congenital heart disease. PEDIATRIC DISCOVERY 2024; 2:e2501. [PMID: 39308981 PMCID: PMC11412308 DOI: 10.1002/pdi3.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Despite advances in prenatal screening and a notable decrease in mortality rates, congenital heart disease (CHD) remains the most prevalent congenital disorder in newborns globally. Current therapeutic surgical approaches face challenges due to the significant rise in complications and disabilities. Emerging cardiac regenerative therapies offer promising adjuncts for CHD treatment. One novel avenue involves investigating methods to stimulate cardiomyocyte proliferation. However, the mechanism of altered cardiomyocyte proliferation in CHD is not fully understood, and there are few feasible approaches to stimulate cardiomyocyte cell cycling for optimal healing in CHD patients. In this review, we explore recent progress in understanding genetic and epigenetic mechanisms underlying defective cardiomyocyte proliferation in CHD from development through birth. Targeting cell cycle pathways shows promise for enhancing cardiomyocyte cytokinesis, division, and regeneration to repair heart defects. Advancements in human disease modeling techniques, CRISPR-based genome and epigenome editing, and next-generation sequencing technologies will expedite the exploration of abnormal machinery governing cardiomyocyte differentiation, proliferation, and maturation across diverse genetic backgrounds of CHD. Ongoing studies on screening drugs that regulate cell cycling are poised to translate this nascent technology of enhancing cardiomyocyte proliferation into a new therapeutic paradigm for CHD surgical interventions.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
Bailey LR, Bugg D, Reichardt IM, Ortaç CD, Nagle A, Gunaje J, Martinson A, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM. MBNL1 Regulates Programmed Postnatal Switching Between Regenerative and Differentiated Cardiac States. Circulation 2024; 149:1812-1829. [PMID: 38426339 PMCID: PMC11147738 DOI: 10.1161/circulationaha.123.066860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.
Collapse
Affiliation(s)
- Logan R.J. Bailey
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Darrian Bugg
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Isabella M. Reichardt
- Bioengineering, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - C. Dessirée Ortaç
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Abigail Nagle
- Bioengineering, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jagadambika Gunaje
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Amy Martinson
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | | | | | - Tomoya Sakamoto
- Cardiovascular Institute, Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel P. Kelly
- Cardiovascular Institute, Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Regnier
- Bioengineering, University of Washington, Seattle, WA
- Center for Translational Muscle Research, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jennifer M. Davis
- Lab Medicine and Pathology, University of Washington, Seattle, WA
- Bioengineering, University of Washington, Seattle, WA
- Center for Translational Muscle Research, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Chen X, Wu H, Liu Y, Liu L, Houser SR, Wang WE. Metabolic Reprogramming: A Byproduct or a Driver of Cardiomyocyte Proliferation? Circulation 2024; 149:1598-1610. [PMID: 38739695 DOI: 10.1161/circulationaha.123.065880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defining mechanisms of cardiomyocyte proliferation should guide the understanding of endogenous cardiac regeneration and could lead to novel treatments for diseases such as myocardial infarction. In the neonatal heart, energy metabolic reprogramming (phenotypic alteration of glucose, fatty acid, and amino acid metabolism) parallels cell cycle arrest of cardiomyocytes. The metabolic reprogramming occurring shortly after birth is associated with alterations in blood oxygen levels, metabolic substrate availability, hemodynamic stress, and hormone release. In the adult heart, myocardial infarction causes metabolic reprogramming but these changes cannot stimulate sufficient cardiomyocyte proliferation to replace those lost by the ischemic injury. Some putative pro-proliferative interventions can induce the metabolic reprogramming. Recent data show that altering the metabolic enzymes PKM2 [pyruvate kinase 2], LDHA [lactate dehydrogenase A], PDK4 [pyruvate dehydrogenase kinase 4], SDH [succinate dehydrogenase], CPT1b [carnitine palmitoyl transferase 1b], or HMGCS2 [3-hydroxy-3-methylglutaryl-CoA synthase 2] is sufficient to partially reverse metabolic reprogramming and promotes adult cardiomyocyte proliferation. How metabolic reprogramming regulates cardiomyocyte proliferation is not clearly defined. The possible mechanisms involve biosynthetic pathways from the glycolysis shunts and the epigenetic regulation induced by metabolic intermediates. Metabolic manipulation could represent a new approach to stimulate cardiac regeneration; however, the efficacy of these manipulations requires optimization, and novel molecular targets need to be defined. In this review, we summarize the features, triggers, and molecular regulatory networks responsible for metabolic reprogramming and discuss the current understanding of metabolic reprogramming as a critical determinant of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Xiaokang Chen
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Wu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingyan Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Steven R Houser
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (S.R.H.)
| | - Wei Eric Wang
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
12
|
Zheng S, Ye L. Hemodynamic Melody of Postnatal Cardiac and Pulmonary Development in Children with Congenital Heart Diseases. BIOLOGY 2024; 13:234. [PMID: 38666846 PMCID: PMC11048247 DOI: 10.3390/biology13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Hemodynamics is the eternal theme of the circulatory system. Abnormal hemodynamics and cardiac and pulmonary development intertwine to form the most important features of children with congenital heart diseases (CHDs), thus determining these children's long-term quality of life. Here, we review the varieties of hemodynamic abnormalities that exist in children with CHDs, the recently developed neonatal rodent models of CHDs, and the inspirations these models have brought us in the areas of cardiomyocyte proliferation and maturation, as well as in alveolar development. Furthermore, current limitations, future directions, and clinical decision making based on these inspirations are highlighted. Understanding how CHD-associated hemodynamic scenarios shape postnatal heart and lung development may provide a novel path to improving the long-term quality of life of children with CHDs, transplantation of stem cell-derived cardiomyocytes, and cardiac regeneration.
Collapse
Affiliation(s)
- Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| |
Collapse
|
13
|
Hao DJ, Qin Y, Zhou SJ, Dong BH, Yang JS, Zou P, Wang LP, Zhao YT. Hapln1 promotes dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping. J Pharm Anal 2024; 14:335-347. [PMID: 38618242 PMCID: PMC11010450 DOI: 10.1016/j.jpha.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/08/2023] [Accepted: 09/18/2023] [Indexed: 04/16/2024] Open
Abstract
Hyaluronan and proteoglycan link protein 1 (Hapln1) supports active cardiomyogenesis in zebrafish hearts, but its regulation in mammal cardiomyocytes is unclear. This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and an adult mouse model of myocardial infarction. HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models, respectively. Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration. The results showed that recombinant human Hapln1 (rhHapln1) promotes the proliferation of hiPSC-CMs in a dose-dependent manner. As a physical binding protein of Hapln1, versican interacted with Nodal growth differentiation factor (NODAL) and growth differentiation factor 11 (GDF11). GDF11, but not NODAL, was expressed by hiPSC-CMs. GDF11 expression was unaffected by rhHapln1 treatment. However, this molecule was required for rhHapln1-mediated activation of the transforming growth factor (TGF)-β/Drosophila mothers against decapentaplegic protein (SMAD)2/3 signaling in hiPSC-CMs, which stimulates cell dedifferentiation and proliferation. Recombinant mouse Hapln1 (rmHapln1) could induce cardiac regeneration in the adult mouse model of myocardial infarction. In addition, rmHapln1 induced hiPSC-CM proliferation. In conclusion, Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway. Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
Collapse
Affiliation(s)
- Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yue Qin
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shi-Jie Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bu-Huai Dong
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jun-Song Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Li-Ping Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
14
|
Janssen ML, Liu T, Özel M, Bril M, Prasad Thelu HV, E Kieltyka R. Dynamic Exchange in 3D Cell Culture Hydrogels Based on Crosslinking of Cyclic Thiosulfinates. Angew Chem Int Ed Engl 2024; 63:e202314738. [PMID: 38055926 DOI: 10.1002/anie.202314738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Dynamic polymer materials are highly valued substrates for 3D cell culture due to their viscoelasticity, a time-dependent mechanical property that can be tuned to resemble the energy dissipation of native tissues. Herein, we report the coupling of a cyclic thiosulfinate, mono-S-oxo-4-methyl asparagusic acid, to a 4-arm PEG-OH to prepare a disulfide-based dynamic covalent hydrogel with the addition of 4-arm PEG-thiol. Ring opening of the cyclic thiosulfinate by nucleophilic substitution results in the rapid formation of a network showing a viscoelastic fluid-like behaviour and relaxation rates modulated by thiol content through thiol-disulfide exchange, whereas its viscoelastic behaviour upon application as a small molecule linear crosslinker is solid-like. Further introduction of 4-arm PEG-vinylsulfone in the network yields a hydrogel with weeks-long cell culture stability, permitting 3D culture of cell types that lack robust proliferation, such as human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). These cells display native behaviours such as cell elongation and spontaneous beating as a function of the hydrogel's mechanical properties. We demonstrate that the mode of dynamic cyclic thiosulfinate crosslinker presentation within the network can result in different stress relaxation profiles, opening the door to model tissues with disparate mechanics in 3D cell culture.
Collapse
Affiliation(s)
- Merel L Janssen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Tingxian Liu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Mertcan Özel
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Maaike Bril
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Hari Veera Prasad Thelu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
15
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
16
|
Li Y, Johnson JP, Yang Y, Yu D, Kubo H, Berretta RM, Wang T, Zhang X, Foster M, Yu J, Tilley DG, Houser SR, Chen X. Effects of maternal hypothyroidism on postnatal cardiomyocyte proliferation and cardiac disease responses of the progeny. Am J Physiol Heart Circ Physiol 2023; 325:H702-H719. [PMID: 37539452 PMCID: PMC10659327 DOI: 10.1152/ajpheart.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Tao Wang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part I: Experimental Injury Models to Study Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:325. [PMID: 37623338 PMCID: PMC10455172 DOI: 10.3390/jcdd10080325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which, ischemic heart disease is the most prevalent. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian heart. In contrast, some lower vertebrate species can regenerate the heart after injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this two-part review, we discuss the current state of the principal response in heart regeneration, where several involved processes are essential for full cardiac function in recovery.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
18
|
Kumar A, He S, Mali P. Systematic discovery of transcription factors that improve hPSC-derived cardiomyocyte maturation via temporal analysis of bioengineered cardiac tissues. APL Bioeng 2023; 7:026109. [PMID: 37252678 PMCID: PMC10219684 DOI: 10.1063/5.0137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have the potential to become powerful tools for disease modeling, drug testing, and transplantation; however, their immaturity limits their applications. Transcription factor (TF) overexpression can improve hPSC-CM maturity, but identifying these TFs has been elusive. Toward this, we establish here an experimental framework for systematic identification of maturation enhancing factors. Specifically, we performed temporal transcriptome RNAseq analyses of progressively matured hPSC-derived cardiomyocytes across 2D and 3D differentiation systems and further compared these bioengineered tissues to native fetal and adult-derived tissues. These analyses revealed 22 TFs whose expression did not increase in 2D differentiation systems but progressively increased in 3D culture systems and adult mature cell types. Individually overexpressing each of these TFs in immature hPSC-CMs identified five TFs (KLF15, ZBTB20, ESRRA, HOPX, and CAMTA2) as regulators of calcium handling, metabolic function, and hypertrophy. Notably, the combinatorial overexpression of KLF15, ESRRA, and HOPX improved all three maturation parameters simultaneously. Taken together, we introduce a new TF cocktail that can be used in solo or in conjunction with other strategies to improve hPSC-CM maturation and anticipate that our generalizable methodology can also be implemented to identify maturation-associated TFs for other stem cell progenies.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Starry He
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
19
|
Sono R, Larrinaga TM, Huang A, Makhlouf F, Kang X, Su J, Lau R, Arboleda VA, Biniwale R, Fishbein GA, Khanlou N, Si MS, Satou GM, Halnon N, Van Arsdell GS, Gregorio CC, Nelson S, Touma M. Whole-Exome Sequencing Identifies Homozygote Nonsense Variants in LMOD2 Gene Causing Infantile Dilated Cardiomyopathy. Cells 2023; 12:1455. [PMID: 37296576 PMCID: PMC10252268 DOI: 10.3390/cells12111455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
As an essential component of the sarcomere, actin thin filament stems from the Z-disk extend toward the middle of the sarcomere and overlaps with myosin thick filaments. Elongation of the cardiac thin filament is essential for normal sarcomere maturation and heart function. This process is regulated by the actin-binding proteins Leiomodins (LMODs), among which LMOD2 has recently been identified as a key regulator of thin filament elongation to reach a mature length. Few reports have implicated homozygous loss of function variants of LMOD2 in neonatal dilated cardiomyopathy (DCM) associated with thin filament shortening. We present the fifth case of DCM due to biallelic variants in the LMOD2 gene and the second case with the c.1193G>A (p.W398*) nonsense variant identified by whole-exome sequencing. The proband is a 4-month male infant of Hispanic descent with advanced heart failure. Consistent with previous reports, a myocardial biopsy exhibited remarkably short thin filaments. However, compared to other cases of identical or similar biallelic variants, the patient presented here has an unusually late onset of cardiomyopathy during infancy. Herein, we present the phenotypic and histological features of this variant, confirm the pathogenic impact on protein expression and sarcomere structure, and discuss the current knowledge of LMOD2-related cardiomyopathy.
Collapse
Affiliation(s)
- Reiri Sono
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
| | - Alden Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frank Makhlouf
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Su
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ryan Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Valerie A. Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Reshma Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Negar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stanly Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Chaudhari U, Pohjolainen L, Ruskoaho H, Talman V. Genome-wide profiling of miRNA-gene regulatory networks in mouse postnatal heart development-implications for cardiac regeneration. Front Cardiovasc Med 2023; 10:1148618. [PMID: 37283582 PMCID: PMC10241105 DOI: 10.3389/fcvm.2023.1148618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background After birth, mammalian cardiomyocytes substantially lose proliferative capacity with a concomitant switch from glycolytic to oxidative mitochondrial energy metabolism. Micro-RNAs (miRNAs) regulate gene expression and thus control various cellular processes. Their roles in the postnatal loss of cardiac regeneration are however still largely unclear. Here, we aimed to identify miRNA-gene regulatory networks in the neonatal heart to uncover role of miRNAs in regulation of cell cycle and metabolism. Methods and results We performed global miRNA expression profiling using total RNA extracted from mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23. We used the miRWalk database to predict the potential target genes of differentially expressed miRNAs and our previously published mRNA transcriptomics data to identify verified target genes that showed a concomitant differential expression in the neonatal heart. We then analyzed the biological functions of the identified miRNA-gene regulatory networks using enriched Gene Ontology (GO) and KEGG pathway analyses. Altogether 46 miRNAs were differentially expressed in the distinct stages of neonatal heart development. For twenty miRNAs, up- or downregulation took place within the first 9 postnatal days thus correlating temporally with the loss of cardiac regeneration. Importantly, for several miRNAs, including miR-150-5p, miR-484, and miR-210-3p there are no previous reports about their role in cardiac development or disease. The miRNA-gene regulatory networks of upregulated miRNAs negatively regulated biological processes and KEGG pathways related to cell proliferation, while downregulated miRNAs positively regulated biological processes and KEGG pathways associated with activation of mitochondrial metabolism and developmental hypertrophic growth. Conclusion This study reports miRNAs and miRNA-gene regulatory networks with no previously described role in cardiac development or disease. These findings may help in elucidating regulatory mechanism of cardiac regeneration and in the development of regenerative therapies.
Collapse
|
21
|
Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 2023; 118:18. [PMID: 37160529 PMCID: PMC10169894 DOI: 10.1007/s00395-023-00987-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.
Collapse
Affiliation(s)
- Hanna Bräuninger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Krüger
- Clinic for Cardiology, University Heart and Vascular Centre Hamburg, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
22
|
Brlecic PE, Bonham CA, Rosengart TK, Mathison M. Direct cardiac reprogramming: A new technology for cardiac repair. J Mol Cell Cardiol 2023; 178:51-58. [PMID: 36965701 PMCID: PMC10124164 DOI: 10.1016/j.yjmcc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with myocardial infarctions being amongst the deadliest manifestations. Reduced blood flow to the heart can result in the death of cardiac tissue, leaving affected patients susceptible to further complications and recurrent disease. Further, contemporary management typically involves a pharmacopeia to manage the metabolic conditions contributing to atherosclerotic and hypertensive heart disease, rather than regeneration of the damaged myocardium. With modern healthcare extending lifespan, a larger demographic will be at risk for heart disease, driving the need for novel therapeutics that surpass those currently available in efficacy. Transdifferentiation and cellular reprogramming have been looked to as potential methods for the treatment of diseases throughout the body. Specifically targeting the fibrotic cells in cardiac scar tissue as a source to be reprogrammed into induced cardiomyocytes remains an appealing option. This review aims to highlight the history of and advances in cardiac reprogramming and describe its translational potential as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Paige E Brlecic
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clark A Bonham
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Megumi Mathison
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Dark N, Cosson MV, Tsansizi LI, Owen TJ, Ferraro E, Francis AJ, Tsai S, Bouissou C, Weston A, Collinson L, Abi-Gerges N, Miller PE, MacLeod KT, Ehler E, Mitter R, Harding SE, Smith JC, Bernardo AS. Generation of left ventricle-like cardiomyocytes with improved structural, functional, and metabolic maturity from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100456. [PMID: 37159667 PMCID: PMC10163040 DOI: 10.1016/j.crmeth.2023.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/23/2023] [Accepted: 03/25/2023] [Indexed: 05/11/2023]
Abstract
Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.
Collapse
Affiliation(s)
| | | | - Lorenza I. Tsansizi
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andreia S. Bernardo
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| |
Collapse
|
24
|
Teranikar T, Nguyen P, Lee J. Biomechanics of cardiac development in zebrafish model. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Mol Diagn Ther 2023; 27:129-140. [PMID: 36512179 PMCID: PMC10123801 DOI: 10.1007/s40291-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Heart disease is the primary cause of death worldwide. Even though extensive research has been done, and many pharmacological and surgical treatments have been introduced to treat heart disease, the mortality rate still remains high. Gene therapy is widely used to understand molecular mechanisms of myocardial infarction and to treat cardiomyocyte loss. It was reported that adult cardiomyocytes proliferate at a very low rate; thus, targeting their proliferation has become a new regenerative therapeutic approach. Currently, re-activating cardiomyocyte proliferation appears to be one of the most promising methods to promote adult cardiomyocyte renewal. In this article, we highlight gene therapeutic targets of cell proliferation presently being pursued to re-activate the cell cycle of cardiomyocytes, including cell cycle regulators, transcription factors, microRNAs, signal transduction, and other contributing factors. We also summarize gene delivery vectors that have been used in cardiac research and major challenges to be overcome in the translation to the clinical approach and future directions.
Collapse
|
26
|
Brewer PL, D'Agata AL, Sullivan MC. A new cardiovascular disease risk factor for young adults: Preterm birth. J Am Assoc Nurse Pract 2022; 34:1252-1257. [PMID: 36191343 DOI: 10.1097/jxx.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022]
Abstract
ABSTRACT Adults born preterm (birth <37 weeks' gestation) have a two-fold increased risk of early cardiovascular mortality. With 10% of the U.S. population born prematurely and perinatal advancements dramatically improving survival rates, millions of survivors are now reaching adulthood. This phenomenon has introduced a whole new population of individuals with a history of preterm birth. Although the prevailing notion has been that preterm birth is a condition confined only to infancy and early childhood, we now know preterm birth is a risk for lifelong chronic health conditions. Despite almost a decade of epidemiological evidence showing increased cardiovascular risk for those born preterm, this has not yet been translated into clinical practice. As a result, clinicians are caring for adults born prematurely without screening and treatment guidelines for this at-risk population and few inquire about birth history during clinical encounters. This brief report presents growing evidence about disrupted cardiogenesis and consequential structural and functional modifications. By asking the question "Were you born preterm?," nurse practitioners can take the first step of increasing their awareness of this at-risk population and mitigate adverse cardiovascular outcomes by using preterm birth as a risk factor when determining health promotion and treatment decisions.
Collapse
Affiliation(s)
- Pamela L Brewer
- College of Nursing, University of Rhode Island, Providence, RI
| | | | | |
Collapse
|
27
|
Wang X, Wu DH, Senyo SE. mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Front Bioeng Biotechnol 2022; 10:1037051. [PMID: 36507276 PMCID: PMC9732118 DOI: 10.3389/fbioe.2022.1037051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death in the world. This is partly due to the low regenerative capacity of adult hearts. mRNA therapy is a promising approach under development for cardiac diseases. In mRNA therapy, expression of the target protein is modulated by delivering synthetic mRNA. mRNA therapy benefits cardiac regeneration by increasing cardiomyocyte proliferation, reducing fibrosis, and promoting angiogenesis. Because mRNA is translated in the cytoplasm, the delivery efficiency of mRNA into the cytoplasm and nucleus significantly affects its therapeutic efficacy. To improve delivery efficiency, non-viral vehicles such as lipid nanoparticles have been developed. Non-viral vehicles can protect mRNA from enzymatic degradation and facilitate the cellular internalization of mRNA. In addition to non-viral vehicles, viral vectors have been designed to deliver mRNA templates into cardiac cells. This article reviews lipid nanoparticles, polymer nanoparticles, and viral vectors that have been utilized to deliver mRNA into the heart. Because of the growing interest in lipid nanoparticles, recent advances in lipid nanoparticles designed for cardiac mRNA delivery are discussed. Besides, potential targets of mRNA therapy for myocardial infarction are discussed. Gene therapies that have been investigated in patients with cardiac diseases are analyzed. Reviewing mRNA therapy from a clinically relevant perspective can reveal needs for future investigations.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas H. Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Lee SG, Kim YJ, Son MY, Oh MS, Kim J, Ryu B, Kang KR, Baek J, Chung G, Woo DH, Kim CY, Chung HM. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022; 290:121860. [DOI: 10.1016/j.biomaterials.2022.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022]
|
29
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
30
|
Hall B, Alonzo M, Texter K, Garg V, Zhao MT. Probing single ventricle heart defects with patient-derived induced pluripotent stem cells and emerging technologies. Birth Defects Res 2022; 114:959-971. [PMID: 35199491 PMCID: PMC9586491 DOI: 10.1002/bdr2.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Single ventricle heart defects (SVHDs) are a severe type of congenital heart disease with poorly understood pathogenic mechanisms. New research using patient-specific induced pluripotent stem cells (iPSCs) as a cellular model is beginning to uncover genetic and cellular etiologies of SVHDs. Hypoplastic left heart syndrome (HLHS) is a type of SVHD that is characterized by an underdeveloped left ventricle and other malformations in the left side of the heart. Hypoplastic right heart syndrome (HRHS), the second type of SVHD, is characterized by an underdeveloped right heart, including malformed tricuspid and pulmonary valves. Despite a noticeable lack of research on SVHD, emerging technologies offer a promising future to further probe the genetic and cellular mechanisms of these diseases. Pediatric cardiovascular research is at the dawn of a new era in terms of what can be discovered with patient-specific iPSCs in conjunction with other technologies (e.g., organoids, single-cell genomics, CRISPR/Cas9 genome editing). In this review, we present recent approaches and findings utilizing patient-specific iPSCs to identify cellular mechanisms responsible for improper cardiac organogenesis in HLHS and HRHS.
Collapse
Affiliation(s)
- Bailey Hall
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Karen Texter
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| |
Collapse
|
31
|
Kałużna E, Nadel A, Zimna A, Rozwadowska N, Kolanowski T. Modeling the human heart ex vivo-current possibilities and strive for future applications. J Tissue Eng Regen Med 2022; 16:853-874. [PMID: 35748158 PMCID: PMC9796015 DOI: 10.1002/term.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.
Collapse
Affiliation(s)
- Ewelina Kałużna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Nadel
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Zimna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | | | | |
Collapse
|
32
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
33
|
Sun J, Yang T, Wei T, Zhou L, Shan T, Chen J, Gu L, Chen B, Liu L, Jiang Q, Du C, Ma Y, Wang H, Chen F, Guo X, Ji Y, Wang L. CDK9 binds and activates SGK3 to promote cardiac repair after injury via the GSK-3β/β-catenin pathway. Front Cardiovasc Med 2022; 9:970745. [PMID: 36082129 PMCID: PMC9445272 DOI: 10.3389/fcvm.2022.970745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian heart possesses entire regeneration capacity after birth, which is lost in adulthood. The role of the kinase network in myocardial regeneration remains largely elusive. SGK3 (threonine-protein kinase 3) is a functional kinase we identified previously with the capacity to promote cardiomyocyte proliferation and cardiac repair after myocardial infarction. However, the upstream signals regulating SGK3 are still unknown. Based on the quantitative phosphoproteomics data and pulldown assay, we identified cyclin-dependent kinase 9 (CDK9) as a novel therapeutic target in regeneration therapy. The direct combination between CDK9 and SGK3 was further confirmed by co-immunoprecipitation (Co-IP). CDK9 is highly expressed in the newborn period and rarely detected in the adult myocardium. In vitro, the proliferation ratio of primary cardiomyocytes was significantly elevated by CDK9 overexpression while inhibited by CDK9 knockdown. In vivo, inhibition of CDK9 shortened the time window of cardiac regeneration after apical resection (AR) in neonatal mice, while overexpression of CDK9 significantly promoted mature cardiomyocytes (CMs) to re-enter the cell cycle and cardiac repair after myocardial infarction (MI) in adult mice. Mechanistically, CDK9 promoted cardiac repair by directly activating SGK3 and downstream GSK-3β/β-catenin pathway. Consequently, our study indicated that CDK9 might be a novel target for MI therapy by stimulating myocardial regeneration.
Collapse
Affiliation(s)
- Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translation, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translation, Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Liansheng Wang,
| |
Collapse
|
34
|
Teranikar T, Villarreal C, Salehin N, Ijaseun T, Lim J, Dominguez C, Nguyen V, Cao H, Chuong C, Lee J. SCALE SPACE DETECTOR FOR ANALYZING SPATIOTEMPORAL VENTRICULAR CONTRACTILITY AND NUCLEAR MORPHOGENESIS IN ZEBRAFISH. iScience 2022; 25:104876. [PMID: 36034231 PMCID: PMC9404658 DOI: 10.1016/j.isci.2022.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
In vivo quantitative assessment of structural and functional biomarkers is essential for characterizing the pathophysiology of congenital disorders. In this regard, fixed tissue analysis has offered revolutionary insights into the underlying cellular architecture. However, histological analysis faces major drawbacks with respect to lack of spatiotemporal sampling and tissue artifacts during sample preparation. This study demonstrates the potential of light sheet fluorescence microscopy (LSFM) as a non-invasive, 4D (3days + time) optical sectioning tool for revealing cardiac mechano-transduction in zebrafish. Furthermore, we have described the utility of a scale and size-invariant feature detector, for analyzing individual morphology of fused cardiomyocyte nuclei and characterizing zebrafish ventricular contractility. Cardiac defect genes in humans have corresponding zebrafish orthologs Light sheet modality is very effective for non-invasive, 4D modeling of zebrafish Hessian detector is robust to varying nuclei scales and geometric transformations Watershed filter is effective for separating fused cellular volumes
Collapse
Affiliation(s)
- Tanveer Teranikar
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Cameron Villarreal
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Nabid Salehin
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Toluwani Ijaseun
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Jessica Lim
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Cynthia Dominguez
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Vivian Nguyen
- Martin High School/ UT Arlington, Arlington, TX, USA
| | - Hung Cao
- Department of Electrical Engineering, UC Irvine, Irvine, CA, USA
| | - Cheng–Jen Chuong
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Juhyun Lee
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX 76107, USA
- Corresponding author
| |
Collapse
|
35
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
36
|
Ahrens JH, Uzel SGM, Skylar-Scott M, Mata MM, Lu A, Kroll KT, Lewis JA. Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200217. [PMID: 35451188 DOI: 10.1002/adma.202200217] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The ability to replicate the 3D myocardial architecture found in human hearts is a grand challenge. Here, the fabrication of aligned cardiac tissues via bioprinting anisotropic organ building blocks (aOBBs) composed of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) is reported. A bioink composed of contractile cardiac aOBBs is first generated and aligned cardiac tissue sheets with linear, spiral, and chevron features are printed. Next, aligned cardiac macrofilaments are printed, whose contractile force and conduction velocity increase over time and exceed the performance of spheroid-based cardiac tissues. Finally, the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment is highlighted. This research opens new avenues to generating functional cardiac tissue with high cell density and complex cellular alignment.
Collapse
Affiliation(s)
- John H Ahrens
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Skylar-Scott
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Mariana M Mata
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Aric Lu
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Katharina T Kroll
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
37
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
38
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
39
|
Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS NANO 2022; 16:5335-5348. [PMID: 35324164 PMCID: PMC11238821 DOI: 10.1021/acsnano.1c04303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Natasha Fernandez
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
41
|
Yang H, Liu W, Song S, Bai L, Nie Y, Bai Y, Zhang G. Proteogenomics Integrating Reveal a Complex Network, Alternative Splicing, Hub Genes Regulating Heart Maturation. Genes (Basel) 2022; 13:genes13020250. [PMID: 35205300 PMCID: PMC8872128 DOI: 10.3390/genes13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Heart maturation is an essentially biological process for neonatal heart transition to adult heart, thus illustrating the mechanism of heart maturation may be helpful to explore postnatal heart development and cardiac cardiomyopathy. This study combined proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) and transcriptome analysis based on RNA sequencing to detect the proteins and genes associated with heart maturation in mice. The proteogenomics integrating analysis identified 254 genes/proteins as commonly differentially expressed between neonatal and adult hearts. Functional and pathway analysis demonstrated that these identified genes/proteins contribute to heart maturation mainly by regulating mRNA processing and energy metabolism. Genome-wide alternative splicing (AS) analysis showed that some important sarcomere and energy-associated genes undergo different AS events. Through the Cytoscape plug-in CytoHubba, a total of 23 hub genes were found and further confirmed by RT-qPCR. Next, we verified that the most up-regulated hub gene, Ogdhl, plays an essential role in heart maturation by detecting energy metabolism phenotype changes in the Ogdhl-interfering cardiomyocytes. Together, we revealed a complex gene network, AS genes and patterns, and candidate hub genes controlling heart maturation by proteome and transcriptome combination analysis.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Weijing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China;
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
42
|
Sakabe M, Thompson M, Chen N, Verba M, Hassan A, Lu R, Xin M. Inhibition of β1-AR/Gαs signaling promotes cardiomyocyte proliferation in juvenile mice through activation of RhoA-YAP axis. eLife 2022; 11:74576. [PMID: 36479975 PMCID: PMC9767473 DOI: 10.7554/elife.74576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The regeneration potential of the mammalian heart is incredibly limited, as cardiomyocyte proliferation ceases shortly after birth. β-adrenergic receptor (β-AR) blockade has been shown to improve heart functions in response to injury; however, the underlying mechanisms remain poorly understood. Here, we inhibited β-AR signaling in the heart using metoprolol, a cardio-selective β blocker for β1-adrenergic receptor (β1-AR) to examine its role in heart maturation and regeneration in postnatal mice. We found that metoprolol enhanced cardiomyocyte proliferation and promoted cardiac regeneration post myocardial infarction, resulting in reduced scar formation and improved cardiac function. Moreover, the increased cardiomyocyte proliferation was also induced by the genetic deletion of Gnas, the gene encoding G protein alpha subunit (Gαs), a downstream effector of β-AR. Genome wide transcriptome analysis revealed that the Hippo-effector YAP, which is associated with immature cardiomyocyte proliferation, was upregulated in the cardiomyocytes of β-blocker treated and Gnas cKO hearts. Moreover, the increased YAP activity is modulated by RhoA signaling. Our pharmacological and genetic studies reveal that β1-AR-Gαs-YAP signaling axis is involved in regulating postnatal cardiomyocyte proliferation. These results suggest that inhibiting β-AR-Gαs signaling promotes the regenerative capacity and extends the cardiac regenerative window in juvenile mice by activating YAP-mediated transcriptional programs.
Collapse
Affiliation(s)
- Masahide Sakabe
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Michael Thompson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Nong Chen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Mark Verba
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine, University of CincinnatiCincinnatiUnited States
| |
Collapse
|
43
|
Limyati Y, Sanjaya A, Lucretia T, Gunadi JW, Biben V, Jasaputra DK, Lesmana R. Potential Role of Exercise in Regulating YAP and TAZ During Cardiomyocytes Aging. Curr Cardiol Rev 2022; 18:24-33. [PMID: 35379136 PMCID: PMC9896415 DOI: 10.2174/1573403x18666220404152924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Adaptation of cardiac muscle to regular exercise results in morphological and structural changes known as physiological cardiac hypertrophy, to which the Hippo signaling pathway might have contributed. Two major terminal effectors in the Hippo signaling pathway are Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ). The latest studies have reported the role of YAP and TAZ in different life stages, such as in fetal, neonatal, and adult hearts. Their regulation might involve several mechanisms and effectors. One of the possible coregulators is exercise. Exercise plays a role in cardiomyocyte hypertrophic changes during different stages of life, including in aged hearts. YAP/TAZ signaling pathway has a role in physiological cardiac hypertrophy induced by exercise and is associated with cardiac remodelling. Thus, it can be believed that exercise has roles in activating the signaling pathway of YAP and TAZ in aged cardiomyocytes. However, the studies regarding the roles of YAP and TAZ during cardiomyocyte aging are limited. The primary purpose of this review is to explore the response of cardiovascular aging to exercise via signaling pathway of YAP and TAZ.
Collapse
Affiliation(s)
- Yenni Limyati
- Address correspondence to this author at the Postgraduate Doctoral Program Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161; Department of Physical Medicine and Rehabilitation, Unggul Karsa Medika Hospital, Bandung, West Java, 40218; Department of Clinical Skills, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia; Tel/Fax: +62222012186, +62222017621;
| | | | | | | | | | | | | |
Collapse
|
44
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
45
|
Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021; 17:2107-2119. [PMID: 34365591 PMCID: PMC8349465 DOI: 10.1007/s12015-021-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over 190 million people to date, causing a global pandemic. SARS-CoV-2 relies on binding of its spike glycoprotein to angiotensin-converting enzyme 2 (ACE2) for infection. In addition to fever, cough, and shortness of breath, severe cases of SARS-CoV-2 infection may result in the rapid overproduction of pro-inflammatory cytokines. This overactive immune response is known as a cytokine storm, which leads to several serious clinical manifestations such as acute respiratory distress syndrome and myocardial injury. Cardiovascular disorders such as acute coronary syndrome (ACS) and heart failure not only enhance disease progression at the onset of infection, but also arise in hospitalized patients with COVID-19. Tissue-specific differentiated cells and organoids derived from human pluripotent stem cells (hPSCs) serve as an excellent model to address how SARS-CoV-2 damages the lungs and the heart. In this review, we summarize the molecular basis of SARS-CoV-2 infection and the current clinical perspectives of the bidirectional relationship between the cardiovascular system and viral progression. Furthermore, we also address the utility of hPSCs as a dynamic model for SARS-CoV-2 research and clinical translation.
Collapse
Affiliation(s)
- Kyle Ernzen
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccine and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
46
|
Khan A, Ramos-Gomes F, Markus A, Mietsch M, Hinkel R, Alves F. Label-free imaging of age-related cardiac structural changes in non-human primates using multiphoton nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:7009-7023. [PMID: 34858695 PMCID: PMC8606147 DOI: 10.1364/boe.432102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Heart failure is one of the most common causes of morbidity and mortality. Both maturational abnormalities and age-associated cardiac pathologies contribute to heart failure. Imaging-based assessment to discern detailed cardiac structure at various maturational stages is imperative for understanding mechanisms behind cardiac growth and aging. Using multiphoton nonlinear optical microscopy (NLOM) based label-free imaging, we investigated cardiac structural composition in a human-relevant aging model, the common marmoset monkey (Callithrix jacchus). Animals were divided into three different age groups including neonatal, young adult and old. By devising a unique strategy for segregating collagen and myosin emitted second harmonic generation (SHG) signals, we performed a volumetric assessment of collagen and total scattering tissue (collagen + myosin). Aged marmoset hearts exhibited an increase in collagen and total scattering tissue volume at the sites of severe tissue remodelling indicating age-related cardiac fibrosis. Significantly low scattering tissue volume in neonatal marmoset hearts was attributed to a lack of binding between the myofibrils in maturing cardiac tissue. Comprehensive quantitative assessment of structural composition during maturation and aging of marmoset hearts revealed significant differences in myofibril length, alignment, curvature and angular distribution. In conclusion, label-free high-resolution NLOM facilitates visualization and quantification of subcellular structural features for understanding vital age-related morphological alterations in the marmoset heart.
Collapse
Affiliation(s)
- Amara Khan
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Andrea Markus
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Matthias Mietsch
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Frauke Alves
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
47
|
Khori V, Mohammad Zadeh F, Tavakoli-Far B, Alizadeh AM, Khalighfard S, Ghandian Zanjan M, Gharghi M, Khodayari S, Khodayari H, Keshavarz P. Role of oxytocin and c-Myc pathway in cardiac remodeling in neonatal rats undergoing cardiac apical resection. Eur J Pharmacol 2021; 908:174348. [PMID: 34280399 DOI: 10.1016/j.ejphar.2021.174348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Oxytocin (OT) is a nonapeptide hormone that can improve cardiomyocyte proliferation, suggesting a potential heart regeneration function. Here, we investigated the role of oxytocin and the c-Myc pathway in cardiac remodeling in neonatal rats undergoing cardiac apical resection. We have utilized a knockout of oxytocin receptor (OTR) with OTR-shRNA. A neonatal rat model of cardiac resection (≈10%-15%) was first established. The protein levels of OTR and c-Myc and the expression of cyclin d1 and c-Myc genes were then evaluated in the cardiac tissues at 1, 7, and 21 days after cardiac resection. We also analyzed the proliferation of cardiomyocytes through α-actinin, BrdU, and ki-67 markers. At last, the hemodynamic and electrophysiologic functions were evaluated eight weeks after cardiac resection. At 21 days, the regeneration of cardiomyocytes was repaired among rats in the control and resection groups, while OTR-shRNA groups were failed to improve. Inhibition of OTR failed cardiac regeneration and reduced the number of proliferating cardiomyocytes. The c-Myc protein was significantly reduced in the OTR-shRNA injection hearts. Moreover, we have severely found a depressed heart function in the OTR-shRNA injection animals. These observations revealed that the OT must improve cardiac remodeling in neonatal rat hearts by regulating the c-Myc pathway.
Collapse
Affiliation(s)
- Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Khalighfard
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Ghandian Zanjan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Gharghi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Khodayari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; International Center for Personalized Medicine, Düsseldorf, Germany
| | - Hamid Khodayari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; International Center for Personalized Medicine, Düsseldorf, Germany
| | - Pedram Keshavarz
- Department of Radiology, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| |
Collapse
|
48
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
49
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
50
|
Downregulated developmental processes in the postnatal right ventricle under the influence of a volume overload. Cell Death Discov 2021; 7:208. [PMID: 34365468 PMCID: PMC8349357 DOI: 10.1038/s41420-021-00593-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
The molecular atlas of postnatal mouse ventricular development has been made available and cardiac regeneration is documented to be a downregulated process. The right ventricle (RV) differs from the left ventricle. How volume overload (VO), a common pathologic state in children with congenital heart disease, affects the downregulated processes of the RV is currently unclear. We created a fistula between the abdominal aorta and inferior vena cava on postnatal day 7 (P7) using a mouse model to induce a prepubertal RV VO. RNAseq analysis of RV (from postnatal day 14 to 21) demonstrated that angiogenesis was the most enriched gene ontology (GO) term in both the sham and VO groups. Regulation of the mitotic cell cycle was the second-most enriched GO term in the VO group but it was not in the list of enriched GO terms in the sham group. In addition, the number of Ki67-positive cardiomyocytes increased approximately 20-fold in the VO group compared to the sham group. The intensity of the vascular endothelial cells also changed dramatically over time in both groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the downregulated transcriptome revealed that the peroxisome proliferators-activated receptor (PPAR) signaling pathway was replaced by the cell cycle in the top-20 enriched KEGG terms because of the VO. Angiogenesis was one of the primary downregulated processes in postnatal RV development, and the cell cycle was reactivated under the influence of VO. The mechanism underlying the effects we observed may be associated with the replacement of the PPAR-signaling pathway with the cell-cycle pathway.
Collapse
|