1
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, FitzGerald JA, Crispie F, Cotter PD, Aranaz P. Pediococcus acidilactici CECT 9879 (pA1c®) and heat inactivated pA1c® (pA1c® HI) ameliorate gestational diabetes mellitus in mice. Life Sci 2025; 362:123359. [PMID: 39761739 DOI: 10.1016/j.lfs.2024.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
AIMS Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM. MAIN METHODS 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI). Serum biochemical parameters were analyzed, gene expression analyses were conducted, and fecal microbiota composition was evaluated by shot-gun sequencing. KEY FINDINGS pA1c®- and pA1c® HI-supplemented groups presented reduced fasting blood glucose levels and reduced insulin resistance during gestation and exhibited lower visceral adiposity and increased muscle tissue, together with an improvement in intrahepatic TGs content and ALT levels. Liver gene expression analyses demonstrated that pA1c® and pA1c® HI activities were mediated by modulation of the insulin receptor, but also by an overexpression of beta-oxidation genes, and downregulation of fatty acid biosynthesis genes. Shot-gun metagenomics demonstrated that Pediococcus acidilactici was detected in the feces of all the pA1c® and pA1c® HI-group after the supplementation period (75 % of the microbial profile was Pediococcus acidilactici) in only nine weeks of supplementation, and modulated gut microbiota composition. SIGNIFICANCE These results may be considered as future perspectives for the development of preventive, even therapeutic options for GDM based on hyperglycemia reduction, blood glucose regulation, hepatic steatosis attenuation and insulin resistance alleviation.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain; University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Fermín I Milagro
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - Ignacio Goyache
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Miguel López-Yoldi
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jamie A FitzGerald
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paula Aranaz
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ning P, Lin S, Shi Y, Liu T. Potential role of gut-related factors in the pathology of cartilage in osteoarthritis. Front Nutr 2025; 11:1515806. [PMID: 39845920 PMCID: PMC11753001 DOI: 10.3389/fnut.2024.1515806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Osteoarthritis (OA) is a common progressive degenerative disease. Gut microbiota (GM) and their metabolites have been closely associated with the onset, progression, and pathology of OA. GM and their metabolites may influence the cartilage directly, or indirectly by affecting the gut, the immune system, and the endocrine system. They function through classical pathways in cartilage metabolism and novel pathways that have recently been discovered. Some of them have been used as targets for the prevention and treatment of OA. The current study sought to describe the major pathological signaling pathways in OA chondrocytes and the potential role of gut-related factors in these pathways.
Collapse
Affiliation(s)
- Peng Ning
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuting Lin
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Liang X, Wan D, Li X, Peng Y, Chen L. Study on the effects of Massa Medicata Fermentata with different formulations on the intestinal microbiota and enzyme activities in mice with spleen deficiency constipation. Front Cell Infect Microbiol 2025; 14:1524327. [PMID: 39844840 PMCID: PMC11753248 DOI: 10.3389/fcimb.2024.1524327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Objective This study aims to explore the therapeutic mechanism of Massa Medicata Fermentata (MMF) with different formulations on spleen deficiency constipation in mice by analyzing gastrointestinal hormones, D-xylose, intestinal microbiota, and intestinal enzyme activities. Methods A spleen deficiency constipation model was established using an oral administration of Sennae Folium decoction combined with controlled diet and water intake. After successful model establishment, the mice with spleen deficiency constipation were treated with MMF S1, S2, S3. Following the intervention, serum samples from each group of mice were collected to measure VIP, 5-HT, and D-xylose. Additionally, small intestine contents were analyzed for intestinal enzyme activity and subjected to 16S rRNA high-throughput sequencing. Results Mice with spleen deficiency constipation showed significant decreases in body weight and fecal water content. In contrast, the body weight of the CS2 and CS3 groups returned to normal levels, and fecal water content in the CS2 and CS3 groups also returned to normal. The MMF S2 and S3 significantly increased protease and sucrase enzymes levels compared with CM group. Serum D-xylose levels were significantly reduced in the CM and CS2 group. VIP levels increased significantly in the CM group but decreased in the CS2 and CS3 groups. Additionally, 5-HT levels in the CM and CS1 groups decreased significantly, with the CS2 group returning to normal and the CS3 group showing significant increases. 16S rRNA sequencing analysis revealed that all three MMF formulations effectively restored the intestinal microbiota composition in mice. LEfSe analysis identified characteristic microbiota linked to different intervention groups. The CS3 group significantly upregulated the chloroalkane and chloroalkene degradation and vibrio cholerae pathogenic cycle pathways compared to the CM group. Candidatus_Arthromitus in the CS3 group and Psychrobacter in the CS2 group were positive and negative correlations with 5-HT and VIP, respectively. Conclusion The three formulations of MMF significantly alleviated spleen deficiency constipation symptoms by modulating intestinal enzyme activities, D-xylose, VIP, and 5-HT levels, and restoring intestinal microbiota balance. Psychrobacter and Candidatus_Arthromitus were identified as potential biomarkers for the treatment of spleen deficiency constipation. Different formulations of MMF have different mechanisms of regulating constipation through intestinal microbiota.
Collapse
Affiliation(s)
- Xuejuan Liang
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xinliang Li
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Linglong Chen
- Scientific Research Department, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
6
|
WANG Y, LIU J, XIONG Y, ZHANG Y, WEN Y, XUE M, GUO H, QIU J. Analysis of composition of gut microbial community in a rat model of functional dyspepsia treated with Simo Tang. J TRADIT CHIN MED 2024; 44:1168-1176. [PMID: 39617702 PMCID: PMC11589550 DOI: 10.19852/j.cnki.jtcm.20240927.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate composition of gut microbial community in a rat model of functional dyspepsia (FD) and to explore the interventional effects of Simo Tang (, SMT). METHODS A rat model of FD was established through the tail-clamping stimulation method. The rat model of FD was assessed by the state of rats, their weight, sucrose preference rate, and intestinal propulsion rate. The DNA was extracted from stool samples after treatment with SMT. Amplified polymerase chain reaction (PCR) products of the 16S rDNA were sequenced using NovaseQ6000 after construction of libraries. Composition of gut microbial community in the stool samples was determined and analyzed by cluster analysis, bioinformatic analysis, and analysis of α-diversity and β-diversity. RESULTS The rat model of FD was successfully established using the tail-clamping stimulation method. The statistical results of cluster analysis of operational taxonomic units (OTUs) showed that the relative abundance of OTUs in the FD group was the lowest, while it was the highest in the normal (N) group. The composition of microbiome in the four groups was similar at phyla level. Compared with the FD group, the abundance of Firmicutes was downregulated, and the abundance of Proteobacteria and Bacteroidetes was upregulated in the Simo Tang (SMT) and high-dose Simo Tang (SMT.G) groups. The ratio of Bacteroidetes/ Firmicutes was also elevated. According to the analysis of α-diversity and β-diversity, the abundance of flora in FD rats was significantly reduced. The treatment using SMT appeared beneficial to improve the diversity of flora. SMT could improve the intestinal flora in FD rats. The results showed that FD rats had intestinal flora imbalance, and species diversity increased. The results suggested that SMT could regulate the disorders of intestinal flora caused by FD. CONCLUDIONS SMT could restore gut homeostasis and maintain gut flora diversity by modulating the gut microbiota and its associated metabolites in rats, thereby treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Yiying WANG
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jianjun LIU
- 2 Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongjian XIONG
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongli ZHANG
- 3 Department of Critical Care Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuqi WEN
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Mengli XUE
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Huishu GUO
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Juanjuan QIU
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
7
|
Wang X, Shi R, Zi Y, Long J. Association of dietary inflammatory index with sarcopenia in patients with Metabolic dysfunction-associated fatty liver disease: a cross-sectional study. Front Nutr 2024; 11:1486898. [PMID: 39582665 PMCID: PMC11583804 DOI: 10.3389/fnut.2024.1486898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sarcopenia is a common complication of fatty liver, and sarcopenia increases the risk of advanced liver fibrosis in patients with Metabolic dysfunction-associated fatty liver disease (MAFLD). Chronic inflammation is the crucial link between sarcopenia and fatty liver. An anti-inflammatory diet is expected to be an essential measure to prevent sarcopenia in patients with fatty liver, and the dietary inflammatory index (DII) is a crucial tool for assessing the inflammatory potential of diets. However, the relationship between DII and sarcopenia in patients with fatty liver is unclear. Objective This study investigated the correlation between the dietary inflammatory index (DII) and sarcopenia in patients with Metabolic dysfunction-associated fatty liver disease (MAFLD). Methods Data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2017-2018, with 917 patients with MAFLD participating in the study. Participants were divided into three groups based on DII tertiles: group T1 (n = 305), group T2 (n = 306), and group T3 (n = 306), and binary logistic regression was used to assess the relationship between DII and sarcopenia with stratified analyses based on the weights recommended by the NHANES and multivariate linear regression was used to evaluate the association of DII with total appendicular lean mass. Results After adjusting for all confounders, DII was significantly and positively associated with the risk of sarcopenia in women [OR: 1.61, 95% CI: (1.226, 2.06), p < 0.001]. The risk of sarcopenia was higher in the T3 group compared to the T1 group [OR: 4.04, 95% CI: (1.66, 9.84), p = 0.002]. DII was negatively associated with appendicular lean mass adjusted for body mass index in both men and women. Conclusion DII was significantly associated with the risk of sarcopenia in female patients with MAFLD, with higher DII scores related to a higher risk of sarcopenia. Higher DII scores related to a higher risk of sarcopenia in men with significant fibrosis.
Collapse
Affiliation(s)
| | - Rongjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | | | | |
Collapse
|
8
|
Xiang X, Zhu Y, Wang T, Ding P, Cheng K, Ming Y. Association between salivary microbiota and tacrolimus pharmacokinetic variability in kidney transplant. Genomics 2024; 116:110952. [PMID: 39426572 DOI: 10.1016/j.ygeno.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Kidney transplantation (KT) serves as a highly effective treatment for end-stage renal disease (ESRD). Nonetheless, the administration of tacrolimus, a commonly used immunosuppressant in KT, faces challenges due to the lack of dependable biomarkers for its efficacy and the considerable variability in tacrolimus pharmacokinetics (TacIPV). In this study, 183 saliva samples from 48 KT recipients under tacrolimus therapy, alongside 9 healthy control samples, were subjected to 16S rRNA sequencing. The analysis revealed significant differences in the composition of salivary microbiota among KT recipients, patients with ESRD, and healthy controls. Moreover, trough blood concentrations (C0) of tacrolimus were associated with alterations in microbiota composition. Notably, Capnocytophage consistently exhibited a negative correlation in both group-level and individual trends. Furthermore, distinct taxa were identified that effectively distinguished recipients with varying TacIPV, as demonstrated by a cross-validation random forest model (mean AUC = 0.7560), with Anaerolinea emerging as a prominent contributor to the classifier. These findings suggest that salivary microbiota is closely linked to tacrolimus C0 levels and could aid clinicians in differentiating KT recipients based on TacIPV.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Ke Cheng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China.
| |
Collapse
|
9
|
Zhang X, Qiao Y, Li G, Rong L, Liang X, Wang Q, Liu Y, Pi L, Wei L, Bi H. Exploratory studies of the antidepressant effect of Cordyceps sinensis polysaccharide and its potential mechanism. Int J Biol Macromol 2024; 277:134281. [PMID: 39084447 DOI: 10.1016/j.ijbiomac.2024.134281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Cordyceps sinensis, a traditionally prized medicinal fungus, contains polysaccharides as one of its main bioactive constituents, known for their significant immunomodulatory properties. In this study, we systematically investigated the composition and structure of Cordyceps sinensis polysaccharide, followed by an evaluation of its therapeutic effect on depression using a chronic restraint stress-induced depression model. The polysaccharide CSWP-2, extracted via hot water, precipitated with ethanol, and purified using DEAE-cellulose column chromatography from Cordyceps sinensis, is primarily composed of glucose, mannose, and galactose, with α-1,4-D-glucan as its major structural component. Behavioral tests, immunological profiling, metabolomics, and gut microbiota analyses indicated a notable ameliorative effect of CSWP-2 on depressive-like symptoms in mice. Furthermore, the action of CSWP-2 may be attributed to the modulation of the gut microbiome's abundance and its metabolic impacts, thereby transmitting signals to the host immune system and exerting immunomodulatory activity, ultimately contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Lin Rong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Xinxin Liang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Qiannan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yi Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Li Pi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| |
Collapse
|
10
|
Qi D, Huang D, Ba M, Xuan S, Si H, Lu D, Pei X, Zhang W, Huang S, Li Z. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands. Exp Eye Res 2024; 246:110008. [PMID: 39025460 DOI: 10.1016/j.exer.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Mengru Ba
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shuting Xuan
- Department of Ophthalmology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Wenxiao Zhang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Banerjee A, Chatterji U. Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice. CHEMOSPHERE 2024; 364:143293. [PMID: 39245217 DOI: 10.1016/j.chemosphere.2024.143293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Severe toxic effects of arsenic on human physiology have been of immense concern worldwide. Arsenic causes irrevocable structural and functional disruption of tissues, leading to major diseases in chronically exposed individuals. However, it is yet to be resolved whether the effects result from direct deposition and persistence of arsenic in tissues, or via activation of indirect signaling components. Emerging evidences suggest that gut inhabitants play an active role in orchestrating various aspects of brain physiology, as the gut-brain axis maintains cognitive health, emotions, learning and memory skills. Arsenic-induced dysbiosis may consequentially evoke neurotoxicity, eventually leading to anxiety and depression. To delineate the mechanism of action, mice were exposed to different concentrations of arsenic. Enrichment of Gram-negative bacteria and compromised barrier integrity of the gut enhanced lipopolysaccharide (LPS) level in the bloodstream, which in turn elicited systemic inflammation. Subsequent alterations in neurotransmitter levels, microglial activation and histoarchitectural disruption in brain triggered onset of anxiety- and depression-like behaviour in a dose-dependent manner. Finally, to confirm whether the neurotoxic effects are specifically a consequence of modulation of gut microbiota (GM) by arsenic and not arsenic accumulation in the brain, fecal microbiota transplantations (FMT) were performed from arsenic-exposed mice to healthy recipients. 16S rRNA gene sequencing indicated major alterations in GM population in FMT mice, leading to severe structural, functional and behavioural alterations. Moreover, suppression of Toll-like receptor 4 (TLR4) using vivo-morpholino oligomers (VMO) indicated restoration of the altered parameters towards normalcy in FMT mice, confirming direct involvement of the GM in inducing neurotoxicity through the arsenic-gut-brain axis. This study accentuates the potential role of the gut microbiota in promoting neurotoxicity in arsenic-exposed mice, and has immense relevance in predicting neurotoxicity under altered conditions of the gut for designing therapeutic interventions that will target gut dysbiosis to attenuate arsenic-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India; Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, India.
| |
Collapse
|
12
|
Zhao X, Wang X, Quan L. Association between dietary inflammatory index and energy-adjusted dietary inflammatory index and constipation in US adults. BMC Gastroenterol 2024; 24:235. [PMID: 39060983 PMCID: PMC11282795 DOI: 10.1186/s12876-024-03307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Diet and inflammation are associated with constipation. Dietary inflammation index (DII) and energy-dietary inflammation index (E-DII) have not been evaluated together with constipation. Therefore, this study was conducted to further observe the relationship between DII and E-DII and constipation in American adults. METHODS Data were extracted from the National Health and Nutrition Examination Survey (NHANES) for 12,400 adults aged 20 years and older between 2005 and 2010. DII and E-DII were obtained by employing data from the two 24-h dietary recall of the participants. Constipation was defined and categorized using the Bristol Stool Form Scale. RESULTS In the logistic regression model, the relationship between DII and E-DII and constipation remained positive after adjusting for confounding factors (odds ratio [OR] = 1.13; 95% confidence interval [CI]: 1.07-1.20 in DII logistic regression model III; odds ratio [OR] = 1.09; 95% confidence interval [CI]: 1.03-1.17 in E-DII logistic regression model III). Constipation was more common in quartile 4 (DII: 2.87-5.09; E-DII: 1.78-8.95) than in quartile 1 (DII: -5.11-0.25; E-DII: -2.60-0.11) (OR = 1.79, 95% CI: 1.30-2.47 in DII and OR = 1.75, 95% CI: 1.25-2.46 in E-DII for all participants; OR = 2.04, 95% CI: 1.39-3.00 in DII OR = 2.20, 95% CI: 1.39-3.47 in E-DII for males; OR = 1.86, 95% CI: 1.08-3.22 and OR = 1.80, 95% CI: 1.06-3.06 for females). These results were confirmed using multiple imputations. CONCLUSIONS The findings of this study show that a high DII and E-DII were associated with an increased incidence of constipation among US adults.
Collapse
Affiliation(s)
- Xuelian Zhao
- Graduated School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyu Wang
- Graduated School, Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Longfang Quan
- Department of Anorectal Research, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing City, 100091, People's Republic of China.
| |
Collapse
|
13
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Song F, Li Q, Cui J, Wang J, Xiao S, Yu B, Sun Y, Song W, Wu L, Zhou Y. Exploring the gut microbiota-hippocampus-metabolites axis dysregulation in sepsis mice. Front Microbiol 2024; 15:1302907. [PMID: 38827158 PMCID: PMC11140095 DOI: 10.3389/fmicb.2024.1302907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Background Sepsis is commonly associated with a sudden impairment of brain function, thus leading to significant rates of illness and mortality. The objective of this research was to integrate microbiome and metabolome to reveal the mechanism of microbiota-hippocampus-metabolites axis dysfunction in a mouse model of sepsis. Methods A mouse model of sepsis was established via cecal ligation and puncture. The potential associations between the composition of the gut microbiota and metabolites in the hippocampus of mice with sepsis were investigated by combining 16S ribosomal RNA gene sequencing and ultra-high-performance liquid chromatography tandem mass spectrometry. Results A total of 140 differential metabolites were identified in the hippocampal tissues of mice with sepsis when compared to those of control mice. These differential metabolites in mice with sepsis were not only associated with autophagy and serotonergic synapse, but also involved in the metabolism and synthesis of numerous amino acids. At the phylum level, the abundance of Bacteroidota was increased, while that of Firmicutes (Bacillota) was decreased in mice with sepsis. At the genus level, the abundance of Alistipes was increased, while that of Lachnospiraceae_NK4A136_group was decreased in mice with sepsis. The Firmicutes (Bacillota)/Bacteroidota (F/B) ratio was decreased in mice with sepsis when compared to that of control mice. Furthermore, the F/B ratio was positively correlated with 5'-methylthioadenosine, PC (18:3(9Z,12Z,15Z)/18:0) and curdione, and negatively correlated with indoxylsulfuric acid, corticosterone, kynurenine and ornithine. Conclusion Analysis revealed a reduction in the F/B ratio in mice with sepsis, thus contributing to the disturbance of 5'-methylthioadenosine, curdione, PC (18:3(9Z,12Z,15Z)/18:0), corticosterone, ornithine, indoxylsulfuric acid and kynurenine; eventually, these changes led to hippocampus dysfunction. Our findings provide a new direction for the management of sepsis-induced hippocampus dysfunction.
Collapse
Affiliation(s)
- Fangqiang Song
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Qinglun Li
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Jiyao Cui
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining NO. 1 People’s Hospital, Jining, China
| | - Shuai Xiao
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Bo Yu
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yanqi Sun
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Wenke Song
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yongqin Zhou
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, China
| |
Collapse
|
15
|
Mustika S, Handayani D, Rudijanto A, Santosaningsih D, Mariyatun M, Gatya M, Pramesi PC, Rahayu ES, Fajar JK. Comparative analysis of short-chain fatty acid levels in non-alcoholic steatohepatitis rat model: Impact of high-fat high-fructose (HFHF), high fat, and Western diets. NARRA J 2024; 4:e670. [PMID: 38798866 PMCID: PMC11125312 DOI: 10.52225/narra.v4i1.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/17/2024] [Indexed: 05/29/2024]
Abstract
The evidence on the role of diets in the production of short-chain fatty acids (SCFAs) was limited. The aim of this study was to assess the potential effects of high-fat high-fructose (HFHF), high-fat, and Western diets on the levels of SCFA. A research experiment employing a post-test-only control group design was carried out from January to April 2022. A total of 27 rats were randomly allocated to each study group. SCFA was measured two weeks after diet administration. Analysis of variance (ANOVA) test was used to analyze the differences among groups, and the effect estimate of each group was analyzed using post hoc Tukey. The concentrations of SCFAs post HFHF diets were recorded as follows: acetic acid at 54.60±10.58 mmol/g, propionic acid at 28.03±8.81 mmol/g, and butyric acid at 4.23±1.68 mmol/g. Following the high-fat diet, acetic acid measured 61.85±14.25 mmol/gr, propionic acid measured 25.19±5.55 mmol/gr, and butyric acid measured 6.10±2.93 mmol/gr. After the administration of Western diet, the levels of SCFA were 68.18±25.73, 29.69±12.76, and 7.48±5.51 mmol/g for acetic acid, propionic acid, and butyric acid, respectively. The level of butyric acid was significantly lower in HFHF diet group compared to the normal diet (mean difference (MD) 6.34; 95%CI: 0.61, 12.04; p=0.026). The levels of acetic acid (p=0.419) and propionic acid (p=0.316) were not statistically different among diet types (HFHF, high-fat, and Western diet). In conclusion, HFHF diet is associated with a lower level of butyric acid than the normal diet in a rat model.
Collapse
Affiliation(s)
- Syifa Mustika
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dian Handayani
- Department of Nutrition, Faculty of Health Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Achmad Rudijanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dewi Santosaningsih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Mariyatun Mariyatun
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mifta Gatya
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putrika C. Pramesi
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endang S. Rahayu
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jonny K. Fajar
- Brawijaya Internal Medicine Research Center, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
16
|
Gan Q, Song G, Fang W, Wang Y, Qi W. Fructose dose-dependently influences colon barrier function by regulation of some main physical, immune, and biological factors in rats. J Nutr Biochem 2024; 126:109582. [PMID: 38242179 DOI: 10.1016/j.jnutbio.2024.109582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Little is known about the effects of fructose on colonic function. Here, forty-eight 7-week-old male SD rats were randomly divided into four groups and given 0, 7.5%, 12.75%, and 35% fructose in diet for 8 weeks respectively to investigate the regulatory influence of fructose on colonic barrier function. The exact amount of fructose intake was tracked and recorded. We showed that fructose affects colonic barrier function in a dose-dependent manner. High-fructose at a dose of 1.69±0.23 g/kg/day could damage the physical barrier function of the colon by down-regulating expression of tight junction proteins (ZO-1 and occludin) and mucus layer biomarkers (MUC2 and TFF3). High fructose reduced sIgA and the anti-inflammatory cytokine (IL-10), induced abdominal fat accumulation and pro-inflammatory cytokines (IL-6 and IL-8), leading to colon inflammation and immune barrier dysfunction. In addition, high-fructose altered the biological barrier of the colon by decreasing the abundance of Blautia, Ruminococcus, and Lactobacillius, and increasing the abundance of Allobaculum at the genus level, leading to a reduction in short-chain fatty acids (SCFAs), amino acids, and carbohydrates, etc. Low fructose at a dose of 0.31±0.05 g/kg/day showed no adverse effects on the colonic barrier. The ability of fructose to affect the colonic barrier through physical, immune, and biological pathways provides additional insight into the intestinal disorders caused by high-fructose diets.
Collapse
Affiliation(s)
- Qianyun Gan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wentao Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
17
|
Peng Y, Li Y, Pi Y, Yue X. Effects of almond (Armeniaca Sibirica L. Lam) polysaccharides on gut microbiota and anti-inflammatory effects on LPS-induced RAW264.7 cells. Int J Biol Macromol 2024; 263:130098. [PMID: 38342264 DOI: 10.1016/j.ijbiomac.2024.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
The aim of this study was to investigate the prebiotic properties of the almond polysaccharide AP-1 on intestinal microorganisms by using an in vitro fecal fermentation method and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW264.7 cells. The results showed that during the in vitro fermentation of AP-1, the pH value of the fermentation broth decreased obviously, while the concentration of short-chain fatty acids (SCFAs) increased significantly, especially acetic acid and butyric acid. In genus level, the number of Clostridium and Megamonas increased markedly in the AP-1 group after 24 h of fermentation. After 48 h of fermentation, there was a noticeable increase in the number of beneficial genera Lactobacillaceae and Bifidobacteriaceae, and a considerable decrease in the number of pro-inflammatory genera. In addition, we found that AP-1 had no toxic effect on RAW264.7 cells. In the LPS-induced inflammation model of RAW264.7 cells, AP-1 could effectively inhibit the release of NO, regulate the level of reactive oxides (ROS), and effectively down-regulate the mRNA expression of TNF-α, IL-1β, IL-6 and iNOS. In conclusion, the almond polysaccharide AP-1 may be a functional active substance aimed at promoting intestinal health and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
18
|
Ocampo-Anguiano PV, Victoria-Ruiz LL, Reynoso-Camacho R, Olvera-Ramírez AM, Rocha-Guzmán NE, Ramos-Gómez M, Ahumada-Solórzano SM. Ingestion of Bean Leaves Reduces Metabolic Complications and Restores Intestinal Integrity in C57BL/6 Mice with Obesity Induced by a High-Fat and High-Fructose Diet. Nutrients 2024; 16:367. [PMID: 38337654 PMCID: PMC10856891 DOI: 10.3390/nu16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical characterization of BL were determined. Afterwards, the animals were supplemented with BL (10%) or a standard diet (SD) as a strategy to encourage a healthy diet for 12 additional weeks. Changes in body composition, lipid profile, and intestinal integrity were analyzed. The characterization of BL stood out for its content of 27.2% dietary fiber, total phenolics (475.04 mg/100 g), and saponins (2.2 mg/100 g). The visceral adipose tissue (VAT) decreased in the BL group by 52% compared to the HFFD group. Additionally, triglyceride levels were 23% lower in the BL consumption group compared to the HFFD group. The improvement in lipid profile was attributed to the 1.77-fold higher fecal lipid excretion in the BL consumption group compared to the HFFD group and the inhibition of pancreatic lipase by 29%. Furthermore, BL supplementation reduced the serum levels of IL-6 (4.4-fold) and FITC-dextran by 50% compared with those in the HFFD group. Metabolic endotoxemia was inhibited after BL supplementation (-33%) compared to the HFFD group. BL consumption as a treatment in obese mice reduces adipose tissue accumulation and improves the lipid profile. Furthermore, we report for the first time that BL consumption improves intestinal integrity.
Collapse
Affiliation(s)
- Perla Viridiana Ocampo-Anguiano
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| | - Laura Lizeth Victoria-Ruiz
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Rosalía Reynoso-Camacho
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Andrea Margarita Olvera-Ramírez
- Department of Veterinary Medicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Durango 34080, Mexico;
| | - Minerva Ramos-Gómez
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
19
|
Yang M, Gan J, Liu S, Yang Y, Han J, Meng Q, Yang F, Ji Y. Associations Between Plasma Orexin-A Level and Constipation in Cognitive Impairment. J Alzheimers Dis 2024; 97:409-419. [PMID: 38143347 DOI: 10.3233/jad-230625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Constipation is a common symptom in dementia, and the cause is controversial. Rare clinical studies focused on plasma orexin-A levels and constipation in dementia. OBJECTIVE To evaluate the associations between orexin-A and constipation in patients with cognitive impairment. METHODS A total of 21 patients with mild cognitive impairment (MCI), 142 with Alzheimer's disease (AD), and 57 with Lewy body dementia (LBD) were conducted. Besides informant-based history, neurological examinations or neuropsychological assessments, plasma levels of orexin-A, and constipation were assessed. The associations between orexin-A and constipation were evaluated by logistic regression models. RESULTS There were 47/220 (21.36%) cognitive impairment patients having constipation, and the proportion of constipation in LBD (61.40%) was significantly higher than AD (5.63%) and MCI (19.05%). No significant age or sex differences in the prevalence of constipation were found in the MCI, AD, and LBD groups. We found the cognitive impairment patients with constipation had lower levels of plasma orexin-A [1.00 (0.86, 1.28) versus 1.29 (1.01, 1.50) ng/ml, p < 0.001] than those without. And the plasma levels of orexin-A were significantly associated with the occurrence of constipation after adjusting for all variables in all patients with cognitive impairment (OR = 0.151, 95% CI: 0.042-0.537, p = 0.003). And the same finding was more prominent in the LBD group (p = 0.048). CONCLUSIONS The decrease of plasma level of orexin-A is closely associated with the occurrence of constipation. Orexin-A has an intestinal protective effect and is involved in the gastrointestinal symptoms of patients with cognitive impairment.
Collapse
Affiliation(s)
- Mengli Yang
- Department of Neurology, Henan Provincial People's Hospital, Henan Provincial Key Medicine Laboratory of Nursing, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yaqi Yang
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Jiuyan Han
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Fan Yang
- Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
20
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
22
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
23
|
Abuqwider J, Di Porzio A, Barrella V, Gatto C, Sequino G, De Filippis F, Crescenzo R, Spagnuolo MS, Cigliano L, Mauriello G, Iossa S, Mazzoli A. Limosilactobacillus reuteri DSM 17938 reverses gut metabolic dysfunction induced by Western diet in adult rats. Front Nutr 2023; 10:1236417. [PMID: 37908302 PMCID: PMC10613642 DOI: 10.3389/fnut.2023.1236417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in the Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Liu H, Li F, Tang H, Chen B, Geng Y, Chen D, Ouyang P, Li L, Huang X. Eucommia ulmoides Oliver repairs the disorder of intestinal microflora caused by high starch in Micropterus salmoides and improves resistance to pathogens. Front Microbiol 2023; 14:1223723. [PMID: 37808277 PMCID: PMC10552156 DOI: 10.3389/fmicb.2023.1223723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Eucommia ulmoides Oliver (EuO) is a natural medicine that can improve the composition of intestinal flora in fish, but more experiments and data are needed to support whether it can effectively improve the changes of intestinal flora and intestinal damage caused by high starch. This study examined the changes in intestinal structure as well as intestinal flora before and after the addition of EuO to high-starch diets and analyzed the effects of such changes on immune and digestive functions. The results showed that EuO reduces mortality during Nocardia seriolae attack and can reduce starch-induced intestinal inflammation. Eucommia ulmoides Oliver supplementation was able to alter the changes of intestinal flora in fatty acid degradation, bacterial chemotaxis, porphyrin metabolism and flagella assembly caused by high starch. By analyzing the abundance and correlation of bacterial communities, three bacterial communities that were significantly related to the intervention effect of EuO were screened. Further analysis revealed that EuO supplementation reduced the increase in abundance of Limnochordaceae, Nitrolancea, Lysinibacillus, and Hydrogenispora induced by high starch, which were negatively correlated with levels of the immunoreactive substance LZM in fish. This study reveals the regulatory effects of EuO on the intestinal flora of Micropterus salmoides fed on high starch diets, and provides a theoretical basis for reducing starch damage to fish in production.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Tang
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Peng X, Yi X, Deng N, Liu J, Tan Z, Cai Y. Zhishi Daozhi decoction alleviates constipation induced by a high-fat and high-protein diet via regulating intestinal mucosal microbiota and oxidative stress. Front Microbiol 2023; 14:1214577. [PMID: 37789856 PMCID: PMC10544343 DOI: 10.3389/fmicb.2023.1214577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Background A growing body of evidence has demonstrated that a high-fat and high-protein diet (HFHPD) causes constipation. This study focuses on understanding how the use of Zhishi Daozhi decoction (ZDD) affects the intricate balance of intestinal microorganisms. The insights gained from this investigation hold the potential to offer practical clinical approaches to mitigate the constipation-related issues associated with HFHPD. Materials and methods Mice were randomly divided into five groups: the normal (MN) group, the natural recovery (MR) group, the low-dose ZDD (MLD) group, the medium-dose ZDD (MMD) group, and the high-dose ZDD (MHD) group. After the constipation model was established by HFHPD combined with loperamide hydrochloride (LOP), different doses of ZDD were used for intervention. Subsequently, the contents of cholecystokinin (CCK) and calcitonin gene-related peptide (CGRP) in serum, superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were determined. The DNA of intestinal mucosa was extracted, and 16S rRNA amplicon sequencing was used to analyze the changes in intestinal mucosal microbiota. Results After ZDD treatment, CCK content in MR group decreased and CGRP content increased, but the changes were not significant. In addition, the SOD content in MR group was significantly lower than in MLD, MMD, and MHD groups, and the MDA content in MR group was significantly higher than in MN, MLD, and MHD groups. Constipation modeling and the intervention of ZDD changed the structure of the intestinal mucosal microbiota. In the constipation induced by HFHPD, the relative abundance of pathogenic bacteria such as Aerococcus, Staphylococcus, Corynebacterium, Desulfovibrio, Clostridium, and Prevotella increased. After the intervention of ZDD, the relative abundance of these pathogenic bacteria decreased, and the relative abundance of Candidatus Arthromitus and the abundance of Tropane, piperidine, and pyridine alkaloid biosynthesis pathways increased in MHD group. Conclusion Constipation induced by HFHPD can increase pathogenic bacteria in the intestinal mucosa, while ZDD can effectively relieve constipation, reduce the relative abundance of pathogenic bacteria, and alleviate oxidative stress injury. In addition, high-dose ZDD can increase the abundance of beneficial bacteria, which is more conducive to the treatment of constipation.
Collapse
Affiliation(s)
- Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Suzuki Y, Yokoyama D, Matsuura C, Kondo K, Shimazaki T, Ryoke K, Kobayashi A, Sakakibara H. Active-phase Plasma Alkaline Phosphatase Isozyme Activity Is a Sensitive Biomarker for Excessive Fructose Intake. In Vivo 2023; 37:1967-1974. [PMID: 37652475 PMCID: PMC10500485 DOI: 10.21873/invivo.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Excessive fructose intake reportedly leads to the development of nonalcoholic fatty liver disease (NAFLD). In our previous study, we reported that plasma activities of alkaline phosphatase (ALP) isozymes were markedly changed in rats with excessive fructose intake-induced hepatomegaly. In this study, we examined ALP isozyme activity prior to the occurrence of hepatomegaly, and investigated the effect of the timing of sample collection, to explore its potential as a biomarker. MATERIALS AND METHODS After 1-week intake of a 63% high-fructose diet (HFrD), blood samples were collected from male rats during sleep or active phases to analyze biochemical parameters. RESULTS Body and liver weights were similar between the HFrD and control diet groups, indicating that hepatomegaly due to excessive fructose intake had not occurred. The triglyceride levels and glutamate dehydrogenase (GLDH) activity were significantly elevated to similar degrees at both time points. HFrD intake significantly increased liver-type ALP (L-ALP) activity, stimulating it by 12.7% at the sleep phase and by 124.3% at the active phase. HFrD consumption also significantly decreased intestinal-type ALP (I-ALP) at the active phase, but only showed a decreasing trend during the sleep phase. CONCLUSION Measurements of plasma ALP isozyme and GLDH activity, and triglyceride levels are effective early biomarkers of impending NAFLD caused by excessive fructose intake. L-ALP and I-ALP activities during the active phase are particularly sensitive for detection of excessive fructose intake before the occurrence of NAFLD.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
- Toxicology Research Laboratories Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Daigo Yokoyama
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Chizuru Matsuura
- Toxicology Research Laboratories Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Kazuma Kondo
- Toxicology Research Laboratories Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Taishi Shimazaki
- Toxicology Research Laboratories Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Katsunori Ryoke
- Toxicology Research Laboratories Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - Akio Kobayashi
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Hiroyuki Sakakibara
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan;
| |
Collapse
|
27
|
Qi D, Zou S, Lu D, Pei X, Huang S, Huang DL, Liu J, Si H, Li Z. Long-term high fructose intake promotes lacrimal gland dysfunction by inducing gut dysbiosis in mice. Exp Eye Res 2023; 234:109573. [PMID: 37442219 DOI: 10.1016/j.exer.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The lacrimal gland is essential for maintaining ocular surface health through the secretion of the aqueous layer of the tear film. It is therefore important to explore the intrinsic and extrinsic factors that affect the structure and function of the lacrimal gland and the mechanisms underlying them. With the prevalence of Westernized diets characterized by high sugar and fat content, the susceptibility to many diseases, including ocular diseases, is increased by inducing dysbiosis of the gut microbiome. Here, we found that the composition, abundance, and diversity of the gut microbiome was significantly altered in mice by drinking 15% high fructose water for one month, as determined by 16S rRNA sequencing. This was accompanied by a significant increase in lipid deposition and inflammatory cell infiltration in the extraorbital lacrimal glands (ELGs) of mice. Transcriptome analysis based on bulk RNA-sequencing revealed abnormal activation of some of several metabolic and immune-related pathways. In addition, the secretory response to stimulation with the cholinergic receptor agonist pilocarpine was significantly reduced. However, when the composition and diversity of the gut microbiome of high fructose intake (HFI)-treated mice were improved by transplanting feces from normal young healthy mice, the pathological alterations in ELG structure, inflammatory cell infiltration, secretory function and transcriptome analysis described above were significantly reversed compared to age-matched control mice. In conclusion, our data suggest that prolonged HFI may cause pathological damage to the structure and function of the ELG through the induction of gut dysbiosis. Restoration of intestinal dysbiosis in HFI-treated mice by fecal transplantation has a potential role in ameliorating these pathological impairments.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Du-Liurui Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
28
|
Wang D, Meng S, Li J, Zhao J, Wang Y, Du M, Wang Y, Lu W, Zhu Y. Associations of Adherence to the 2018 World Cancer Research Fund and the American Institute for Cancer Research Dietary Recommendations with Gut Microbiota and Inflammation Levels. Nutrients 2023; 15:3705. [PMID: 37686736 PMCID: PMC10490500 DOI: 10.3390/nu15173705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Whether the World Cancer Research Fund and the American Institute for Cancer Research (WCRF/AICR) dietary recommendations affect the gut microbiota and inflammatory status remains unclear. We examined the association of dietary adherence scores to the WCRF/AICR with gut microbiota and inflammation in a cross-sectional setting. METHODS The WCRF/AICR diet adherence scores were calculated for 151 participants (adenoma 97, non-adenoma 54) from 7-day dietary records. The gut microbiota was analyzed by 16S rRNA gene sequencing of fecal samples. The levels of inflammatory biomarkers in both blood (i.e., IL-6, IL-8, IgA, IgM, and IgG) and fecal samples (i.e., FCP) were evaluated in 97 colorectal adenoma patients who had blood samples available. Multivariable linear regression analyses were conducted to examine the association of individual and total dietary adherence scores with gut microbiota and inflammatory biomarker levels. RESULTS Participants with higher adherence had lower relative abundance of Proteobacteria (β = -0.041, 95%CI: -0.073, -0.009), Enterobacteriaceae (β = -0.035, 95%CI: -0.067, -0.003), and unidentified Enterobacteriaceae at the genus level (β = -0.029, 95%CI: -0.055, -0.003) compared to those with lower adherence. Plant-based food intake was positively correlated with increased abundance of Phascolarctobacterium (β = 0.013, 95%CI: 0.001, 0.026). Restricting fast food was linked to high abundance of Bacteroidaceae (β = 0.149, 95%CI: 0.040, 0.257) and Bacteroides (β = 0.149, 95%CI: 0.040, 0.257). Limiting sugary drinks was associated with reduced abundance of Lachnospiraceae (β = -0.155, 95%CI: -0.292, -0.018). Plant-based food intake (β = -0.251, 95%CI: -0.450, -0.052) and restriction of fast food (β = -0.226, 95%CI: -0.443, -0.008) were associated with reduced IGG levels in men. Alcohol restriction was linked to lower IL-6 (β = -7.095, 95%CI: -11.286, -2.903) and IL-8 (β = -7.965, 95%CI: -14.700, -1.230) levels in women, but with higher IL-6 (β = 0.918, 95%CI: 0.161, 1.675) levels in men. CONCLUSIONS Our findings support the association of adherence to the WCRF/AICR diet with gut microbiota and inflammation. These results need to be validated in additional prospective or interventional studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (D.W.); (S.M.); (J.L.); (J.Z.); (Y.W.); (M.D.); (Y.W.); (W.L.)
| |
Collapse
|
29
|
Xu J, Xu X, Hua D, Yuan Z, Bai M, Song H, Yang L, Li J, Zhu D, Liu H. Defatted hempseed meal altered the metabolic profile of fermented yogurt and enhanced the ability to alleviate constipation in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4778-4791. [PMID: 36971462 DOI: 10.1002/jsfa.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hempseeds (Cannabis sativa L.) are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber and are of high nutritional value. Probiotics have been found to relieve constipation, which solves a health problem that constantly troubles a lot of people. Therefore, the changes in the metabolites of fermented yogurt with or without 10% defatted hempseed meal (10% SHY or 0% SHY respectively) were studied and their laxative effects were examined through animal experiments. RESULTS Amino acids and peptides, terpene glycosides, carbohydrates, lineolic acids, and fatty acids were found to be the major contributors to the discrimination of the metabolic profile between 0% SHY and 10% SHY. The differentially accumulated metabolites may lead to the discrepancy in the yogurt's functionality. Animal experiments showed that the 10% SHY treatment prevented constipation by increasing feces number, fecal water content, and small intestinal transit rate and reducing inflammatory injury in loperamide-induced constipated rats. Further analysis of the gut microbiota revealed that 10% SHY gavage increased the relative abundances of the Lactobacillus, Allobaculum, Turicibacter, Oscillibacter, Ruminococcus, and Phascolarctobacterium genera in the constipated rats, whereas Akkermansia, Clostridium_XIVa, Bacteroides, Staphylococcus, and Clostridium_IV were decreased. The combination of defatted hempseed meal and probiotics was found to be effective in relieving constipation, probably due to the enriched amino acids and peptides, such as Thr-Leu and lysinoalanine through correlation analysis. CONCLUSION Our findings indicated that defatted hempseed meal in yogurt altered the metabolic profile and effectively alleviated constipation in rats, which is a promising therapeutic candidate for constipation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jifeng Li
- Liaoning Qiaopai Biotech Co. Ltd, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
30
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
31
|
Zhou X, Zhang X, Niu D, Zhang S, Wang H, Zhang X, Nan F, Jiang S, Wang B. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice. Sci Rep 2023; 13:6701. [PMID: 37095192 PMCID: PMC10126116 DOI: 10.1038/s41598-023-33806-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Jamar G, Pisani LP. Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis. Eur J Nutr 2023; 62:1077-1091. [PMID: 36484808 DOI: 10.1007/s00394-022-03062-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE High-fat diets have different metabolic responses via gut dysbiosis. In this review, we discuss the complex interaction between the intake of long- and medium-chain saturated fatty acids (SFAs), gut microbiota, and white adipose tissue (WAT) dysfunction, particularly focusing on the type of fat. RESULTS The evidence for the impact of dietary SFAs on the gut microbiota-WAT axis has been mostly derived from in vitro and animal models, but there is now also evidence emerging from human studies. Most current reports show that, in response to high long- and medium-chain SFA diets, WAT functions are altered and can be modulated from microbial metabolites in several manners; and it appears to be also modified under conditions of obesity. SFAs overconsumption can reduce bacterial content and disrupt the gut environment. Both long- and medium-chain SFAs may contribute to proinflammatory cytokines release and TLR4 cascade signaling, either by regulation of endotoxemia markers or myristoylated protein. Palmitic and stearic acids have pathological effects on the intestinal epithelium, microbes, and inflammatory and lipogenic WAT profiles. While myristic and lauric acids display somewhat controversial outcomes, from probiotic effects and contribution to weight loss to cardiometabolic alterations from WAT inflammation. CONCLUSION Identifying an interference of distinct types of SFA in the binomial gut microbiota-WAT may elucidate essential mechanisms of metabolic endotoxemia, which may be the key to triggering obesity, innovating the therapeutic tools for this disease.
Collapse
Affiliation(s)
- Giovana Jamar
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil.
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
33
|
Multi-omics analysis of the effects of dietary changes and probiotics on diet-induced obesity. Curr Res Food Sci 2023; 6:100435. [PMID: 36691590 PMCID: PMC9860293 DOI: 10.1016/j.crfs.2023.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
The consumption of a healthy diet is critical for maintaining and promoting human health. In the context of the rapid transformation from a high-fat diet (HFD) to a Mediterranean diet (MD) leading to major systemic changes, we explored the necessity of a transitional standard diet (TSD) between these two varied diets and the adjuvant effect of probiotics. HFD-fed mice were used for studying the changes and benefits of a dietary intervention and probiotic treatment. By measuring multiple systemic alterations such as weight (group B vs. group E, P < 0.05), liver function (AST, group C vs. group E, P < 0.001), and histopathology, we found that an MD, TSD and Bifidobacterium longum all contribute to alleviating lipid deposition and liver injury. The downregulation of IL-17 (group B vs. group E, P < 0.01) and MIP-1α (group B vs. group E, P < 0.001) also demonstrated the anti-inflammatory effects of the TSD. Moreover, we performed multi-omics analysis combined with the 16S sequencing, transcriptome and metabolome results and found that the TSD increased the abundance of the Lactobacillus genus (group C vs. group E, P < 0.01) and effectively lowered lipid accumulation and systemic inflammation. Furthermore, B. longum played an important role in the synergistic effect. The results showed that a TSD might be useful for HFD-induced obesity before drastic dietary changes, and probiotics were also beneficial.
Collapse
|
34
|
Tan R, Jin M, Chen Z, Shao Y, Song Y, Yin J, Wang L, Chen T, Li J, Yang D. Exogenous antibiotic resistance gene contributes to intestinal inflammation by modulating the gut microbiome and inflammatory cytokine responses in mouse. Gut Microbes 2023; 15:2156764. [PMID: 36573825 PMCID: PMC9809935 DOI: 10.1080/19490976.2022.2156764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the gut microbiota by environmental factors is associated with a variety of autoimmune and immune-mediated diseases. In addition, naturally-occurring extracellular antibiotic resistance genes (eARGs) might directly enter the gut via the food chain. However, following gut microbiota exposure to eARGs, the ecological processes shaping the microbiota community assembly, as well as the interplay between the microbiota composition, metabolic function, and the immune responses, are not well understood. Increasing focus on the One Health approach has led to an urgent need to investigate the direct health damage caused by eARGs. Herein, we reveal the significant influence of eARGs on microbiota communities, strongly driven by stochastic processes. How eARGs-stimulate variations in the composition and metabolomic function of the gut microbiota led to cytokine responses in mice of different age and sex were investigated. The results revealed that cytokines were significantly associated with immunomodulatory microbes, metabolites, and ARGs biomarkers. Cytokine production was associated with specific metabolic pathways (arachidonic acid and tryptophan metabolic pathways), as confirmed by ex vivo cytokine responses and recovery experiments in vivo. Furthermore, the gut microbial profile could be applied to accurately predict the degree of intestinal inflammation ascribed to the eARGs (area under the curve = 0.9616). The present study provided a comprehensive understanding of the influence of an eARGs on immune responses and intestinal barrier damage, shedding light on the interplay between eARGs, microbial, metabolites, and the gut antibiotic resistome in modulating the human immune system.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhengshan Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yuanyuan Song
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Lifang Wang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,CONTACT Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin300050, China
| |
Collapse
|
35
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Saha A, Dreyfuss I, Sarfraz H, Friedman M, Markowitz J. Dietary Considerations for Inflammatory Bowel Disease Are Useful for Treatment of Checkpoint Inhibitor-Induced Colitis. Cancers (Basel) 2022; 15:84. [PMID: 36612082 PMCID: PMC9817715 DOI: 10.3390/cancers15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Checkpoint molecules are cell surface receptors on immune cells that mitigate excessive immune responses, but they have increased expression levels in cancer to facilitate immune escape. Checkpoint blockade therapies (e.g., anti-PD-1, anti-CTLA-4, and anti-LAG-3 therapy, among others) have been developed for multiple cancers. Colitis associated with checkpoint blockade therapy has pathophysiological similarities to inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis. Current therapeutic guidelines for checkpoint blockade-induced colitis include corticosteroids and, if the patient is refractory to steroids, immunomodulating antibodies, such as anti-TNF and anti-integrin agents. Interestingly, immunomodulatory molecules, such as TNFα, are upregulated in both IBD and checkpoint-mediated colitis. The inflammatory colitis toxicity symptoms from checkpoint blockade are similar to clinical symptoms experienced by patients with IBD. The pathophysiologic, dietary, and genetic factors associated with IBD will be reviewed. We will then explain how the principles developed for the treatment of IBD can be applied to patients experiencing inflammatory bowel toxicity secondary to checkpoint blockade.
Collapse
Affiliation(s)
- Aditi Saha
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Isabella Dreyfuss
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Humaira Sarfraz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mark Friedman
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida School of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
37
|
Jiang T, Li Y, Li L, Liang T, Du M, Yang L, Yang J, Yang R, Zhao H, Chen M, Ding Y, Zhang J, Wang J, Xie X, Wu Q. Bifidobacterium longum 070103 Fermented Milk Improve Glucose and Lipid Metabolism Disorders by Regulating Gut Microbiota in Mice. Nutrients 2022; 14:nu14194050. [PMID: 36235706 PMCID: PMC9573661 DOI: 10.3390/nu14194050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022] Open
Abstract
Background: Fermented milk is beneficial for metabolic disorders, while the underlying mechanisms of action remain unclear. This study explored the benefits and underlying mechanisms of Bifidobacterium longum 070103 fermented milk (BLFM) in thirteen-week high-fat and high-sugar (HFHS) fed mice using omics techniques. Methods and results: BLFM with activated glucokinase (GK) was screened by a double-enzyme coupling method. After supplementing BLFM with 10 mL/kg BW per day, fasting blood glucose, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin were significantly reduced compared with the HFHS group. Among them, the final body weight (BW), epididymal fat, perirenal fat, and brown fat in BLFM group had better change trends than Lacticaseibacillus rhamnosus GG fermented milk (LGGFM) group. The amplicon and metabolomic data analysis identified Bifibacterium as a key gut microbiota at regulating glycolipid metabolism. BLFM reverses HFHS-induced reduction in bifidobacteria abundance. Further studies showed that BLFM significantly reduces the content of 3-indoxyl sulofphate associated with intestinal barrier damage. In addition, mice treated with BLFM improved BW, glucose tolerance, insulin resistance, and hepatic steatosis. Conclusion: BLFM consumption attenuates obesity and related symptoms in HFHS-fed mice probably via the modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Tong Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mingzhu Du
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Xinqiang Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| |
Collapse
|
38
|
Izadi MS, Eskandari F, Binayi F, Salimi M, Rashidi FS, Hedayati M, Dargahi L, Ghanbarian H, Zardooz H. Oxidative and endoplasmic reticulum stress develop adverse metabolic effects due to the high-fat high-fructose diet consumption from birth to young adulthood. Life Sci 2022; 309:120924. [PMID: 36063978 DOI: 10.1016/j.lfs.2022.120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress intervention in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels. While, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.
Collapse
Affiliation(s)
- Mina Sadat Izadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Sindhunata DP, Meijnikman AS, Gerdes VE, Nieuwdorp M. Dietary fructose as a metabolic risk factor. Am J Physiol Cell Physiol 2022; 323:C847-C856. [DOI: 10.1152/ajpcell.00439.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decades, the role of the intestinal microbiota in metabolic diseases has come forward. In this regard, both composition and function of our intestinal microbiota is highly variable and influenced by multiple factors, of which diet is one of the major elements. Between 1970 and 1990 diet composition has changed and consumption of dietary sugars has increased, of which fructose intake rose by more than tenfold. This increased intake of sugars and fructose is considered as one of the major risk factors in the developments of obesity and several metabolic disturbances. In this review, we describe the association of dietary fructose intake with insulin resistance, non-alcoholic fatty liver disease (NAFLD) and lipid metabolism. Moreover, we will focus on the potential causality of this altered gut microbiota using fecal transplantation studies in human metabolic disease and whether fecal microbial transplant can reverse this phenotype.
Collapse
Affiliation(s)
- Daniko P. Sindhunata
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM, Hoofddorp, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Abraham Stijn Meijnikman
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Victor E.A. Gerdes
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM, Hoofddorp, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| |
Collapse
|
40
|
Luo Q, Jahangir A, He J, Huang C, Xia Y, Jia L, Wei X, Pan T, Du Y, Mu B, Gong H, Liu W, Ur-Rehman S, Pan K, Chen Z. Ameliorating Effects of TRIM67 against Intestinal Inflammation and Barrier Dysfunction Induced by High Fat Diet in Obese Mice. Int J Mol Sci 2022; 23:7650. [PMID: 35887011 PMCID: PMC9317707 DOI: 10.3390/ijms23147650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Asad Jahangir
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Junbo He
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ting Pan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanni Du
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Saif Ur-Rehman
- Department of Parasitology and Microbiology, FV&AS, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
41
|
Xia P, Liu X, Hou T, Zhan F, Geng F, Zhang Z, Li B. Evaluation of the effect of prebiotic sesame candies on loperamide-induced constipation in mice. Food Funct 2022; 13:5690-5700. [PMID: 35510626 DOI: 10.1039/d2fo00067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constipation is one of the most common gastrointestinal tract symptoms. In this study, prebiotic sesame sugar (PSC) was prepared from isomalto-oligosaccharide, konjac glucomannan and sesame, and the relieving effect of PSC on constipation induced by loperamide was explored. The results showed that PSC treatment profoundly improved the defecation function and boosted intestinal motility. Moreover, PSC repaired gastrointestinal tissue injury and inflammation induced by constipation, which confirmed the effectiveness of PSC intervention in the treatment of constipation. The mechanism of PSC improving constipation might be that PSC improved the imbalance of gastrointestinal neurotransmitters and increased the content of short-chain fatty acids in feces. In conclusion, PSC dietotherapy could effectively alleviate the symptoms and lay a theoretical foundation for the development of an anti-constipation diet.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Ziyang Zhang
- College of Sanquan, Xinxiang Medical University, Henan 453003, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
42
|
Wang L, Chai M, Wang J, Yu Q, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice. Food Funct 2022; 13:5037-5049. [PMID: 35394000 DOI: 10.1039/d1fo04151g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Constipation is a major health concern worldwide, requiring effective and safe treatment options. This study mainly focused on three species and nine strains of bifidobacteria from different sources to study their abilities to relieve constipation induced by loperamide in BALB/C mice. By monitoring constipation-related indicators, it was found that only Bifidobacterium longum (B. longum) relieved constipation, which indicated that bifidobacteria had inter-species differences in relieving constipation. Furthermore, through the detection of biological, chemical, mechanical, and immune barriers in mice, it was discovered that B. longum upregulates the relative abundance of 22 genera that were positively related to faecal water content, small intestinal propulsion rate, acetate, propionate, and intestinal mechanical barrier and negatively correlated with inflammatory factors, AQP8 and the time of first black stool and downregulates the relative abundance of Akkermansia. Furthermore, it increased the level of acetate in faeces and reduced the expression of AQP8 in the colon. This enhances intestinal motility and improves water and electrolyte metabolism. Meanwhile, it inhibited inflammation and prevented loperamide-induced intestinal barrier damage in constipated mice by upregulating occludin and downregulating IL-1β and TNF-α. In summary, B. longum relieved constipation by regulating the intestinal barrier in constipated mice.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Mao Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
43
|
Qu L, Shi K, Xu J, Liu C, Ke C, Zhan X, Xu K, Liu Y. Atractylenolide-1 targets SPHK1 and B4GALT2 to regulate intestinal metabolism and flora composition to improve inflammation in mice with colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153945. [PMID: 35114452 DOI: 10.1016/j.phymed.2022.153945] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Atractylenolide-1, an active component of Atractylodes Lancea, which is widely used to improve the gastrointestinal function. However, the efficacy and mechanism remain unclear in treating ulcerative colitis (UC). PURPOSE This study aimed to investigate the efficacy and the underlying mechanism of atractylenolide-1in UC. METHODS A dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of atractylenolide-1. 16S DNA sequencing, GC-MS technique and transcriptome sequencing were used to detect the composition of mouse intestinal flora, the changes of metabolites and gene expression in mouse intestine. Compound-reaction-enzyme-gene network was used to find drug targets. Recombinant plasmid overexpression was used to verify drug targets in DSS mouse models. RESULTS The results showed that Atractylenolide-1 could significantly improve weight loss, diarrhea, blood in the stool, shortening of the colon, the loss of colonic goblet cells, reduction in mucoprotein MUC2, and tight junction proteins (zo-1, occludin) in mice with colitis. It reduced the inflammatory factors TNF-α, IL-6, IL-1β as well. The 16S sequencing showed that Atractylenolide-1 regulated the diversity and abundance of the intestinal flora in mice with colitis, and the analysis of flora enrichment indicated that the regulation of intestinal flora by atractylenolide-1 may be related to the regulation of metabolism. Correlation analysis of metabolomics and transcriptome showed that two genes SPHK1 and B4GALT2 related to the metabolism of fructose and galactose were regulated by atractylenolide-1. Further verification showed that atractylenolide-1 significantly inhibited the aberrance of SPHK1 and B4GALT2 in the colon with colitis. Meanwhile, it inhibited the activation of the PI3K-AKT pathway. SPHK1 and B4GALT2 overexpressing reversed the therapeutic effect of atractylenolide-1 in mice with colitis. CONCLUSION Atractylenolide-1 is a potential drug for the treatment of colitis by suppressing inflammation via the SPHK1/PI3K/AKT axis and by targeting SPHK1 and B4GAT2 to regulate fructose/galactose-related metabolism, thereby regulating the composition of the intestinal flora.
Collapse
Affiliation(s)
- Linghang Qu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Xu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunlian Liu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chang Ke
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Zhan
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kang Xu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM processing technology engineering, Wuhan 430065, China.
| | - Yanju Liu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM processing technology engineering, Wuhan 430065, China.
| |
Collapse
|
44
|
High fructose diet: A risk factor for immune system dysregulation. Hum Immunol 2022; 83:538-546. [DOI: 10.1016/j.humimm.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
45
|
Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022; 14:2022442. [PMID: 35030982 PMCID: PMC8765071 DOI: 10.1080/19490976.2021.2022442] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,CONTACT Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| |
Collapse
|
46
|
Wen M, Dang X, Feng S, He Q, Li X, Liu T, He X. Integrated Analyses of Gut Microbiome and Host Metabolome in Children With Henoch-Schönlein Purpura. Front Cell Infect Microbiol 2022; 11:796410. [PMID: 35145922 PMCID: PMC8821812 DOI: 10.3389/fcimb.2021.796410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that intestinal microbes and metabolites are involved in the pathogenesis of many diseases. However, whether and how they are related to Henoch–Schönlein purpura (HSP) has yet to be understood. This work is designed to detect gut microbes, intestinal and serum metabolites in children with HSP, trying to discover the etiology and pathogenesis of HSP. A total of 86 children were recruited in this study, namely, 58 children with HSP (HSP group) and 28 healthy children as control groups (CON group). 16S rDNA amplicon sequencing technology and UPLC-QTOF/MS non-targeted metabolomics analysis were used to detect the intestinal microbes and metabolites, and also multi-reaction monitoring technology for detecting serum arachidonic acid (AA) and its metabolites. Then, correlation analysis was performed to explore the possible interaction between the differential gut microbes and metabolites. As a result, at the microbiota family level, the CON group had an advantage of Coriobacteriaceae while the HSP group had a dominant Bacteroidaceae. Five kinds of bacteria in the HSP group were significantly enriched at the genus level, and seven kinds of bacteria were significantly enriched in the CON group. A total of 59 kinds of gut metabolites significantly differ between the two groups, in which most are lipids and peptides. Spearman correlation analysis showed that Bacteroides, Dialister, and Agathobacter were associated with unsaturated fatty acids, especially AA metabolism. Then, we tested the AA related metabolites in serum and found thromboxane B2, leukotriene B4, prostaglandin D2, 9S-hydroxyoctadecadienoic acid, and 13S-hydroxyoctadecadienoic acid significantly changed. In conclusion, children with HSP had dominant Bacteroidaceae and decreased Coriobacteriaceae in the family level of gut microbes, and also lipids and peptides changed most in the gut metabolites. Our data suggested that the biosynthesis and metabolism of unsaturated fatty acids, especially AA and its metabolites, might participate in the occurrence and development of HSP.
Collapse
Affiliation(s)
- Min Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shipin Feng
- Department of Pediatric Nephrology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingnan He
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaojie He,
| |
Collapse
|
47
|
Hua Q, Han Y, Zhao H, Zhang H, Yan B, Pei S, He X, Li Y, Meng X, Chen L, Zhong F, Li D. Punicalagin alleviates renal injury via the gut-kidney axis in high-fat diet-induced diabetic mice. Food Funct 2022; 13:867-879. [PMID: 34989745 DOI: 10.1039/d1fo03343c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic renal injury was associated with dysbiosis of the gut microbiota and intestinal barrier. Punicalagin (PU) from pomegranates potentially impacts the microbial ecosystem, intestinal barrier, and renal function. Therefore, we hypothesized that PU may improve diabetic renal injury by modulating the gut-kidney axis. The present study evaluated the effect of PU on the gut-kidney axis and kidney function in a diabetic renal injury mouse model induced by a high-fat diet (HFD). Mice were fed a HFD without PU or with at doses of 50 and 100 mg kg-1 d-1 for 8 weeks. Targeted metabolomics by GC-MS and 16S rRNA sequencing were implemented to determine short-chain fatty acids (SCFAs) and microbes. Further RNA sequencing analyses were performed to determine which differentially expressed genes were changed by PU. Compared with the DM model group, PU supplementation improved diabetic renal injury, ameliorated kidney architecture and function, and reshaped gut microbial ecology. Additionally, PU reversed HFD-induced gut barrier dysfunction, promoted cecal SCFA concentrations and inhibited serum lipopolysaccharide (LPS) and diamine oxidase (DAO) levels. Moreover, correlation analysis found that cecal SCFAs were significantly negatively correlated with inflammation-related genes in the kidney. The present results indicated that PU, a promising bioactive polyphenol, successfully improved diabetic renal injury, most likely through the gut-kidney axis.
Collapse
Affiliation(s)
- Qinglian Hua
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Yaling Han
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Haowen Zhang
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Bei Yan
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Shengjie Pei
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Xin He
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Yue Li
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Xiangyuan Meng
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Lei Chen
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Feng Zhong
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Duo Li
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
49
|
Wu Z, Cheng W, Wang Z, Feng S, Zou H, Tan X, Yang Y, Wang Y, Zhang H, Dong M, Xiao Y, Tao S, Wei H. Intestinal Microbiota and Serum Metabolic Profile Responded to Two Nutritional Different Diets in Mice. Front Nutr 2022; 8:813757. [PMID: 35071302 PMCID: PMC8766985 DOI: 10.3389/fnut.2021.813757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
There is an interaction and bidirectional selection between dietary intake and gut microbiota due to the different efficiency of nutrients in the gut. The nutritional composition of germ-free (GF) diets differs significantly from specific pathogen-free (SPF) diets. There is, however, no data revealing how SPF animals from the same microbial background respond to them and if they affect the host. We examined the growth of SPF mice on the GF diet and found that it reduced body weight, intestinal length and intestinal morphology. Interestingly, the GF diet increased the level of pro-inflammatory bacteria in the gut of SPF mice, including Proteobacteria, Burkholderiaceae, Alloprevotella and Parasutterella. Furthermore, GF diets caused significant increases in malondialdehyde (MDA), IL-1β, IL-6, and D-lactate levels in the serum of SPF mice and significantly altered their serum metabolic profile, especially amino acid metabolism. In conclusion, GF diets are not suitable for the growth and development of SPF mice. These findings, based on the role of gut microbiota in diet selection, provide new insights into the scientific and rational use of experimental animal diets.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuaifei Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|