1
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
2
|
Karnecki K, Świerczyński J, Steiner J, Krzyżanowska M, Kaliszan M, Gos T. The left-lateralisation of citrate synthase activity in the anterior cingulate cortex of male violent suicide victims. Eur Arch Psychiatry Clin Neurosci 2023; 273:1225-1232. [PMID: 36350374 PMCID: PMC10449962 DOI: 10.1007/s00406-022-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.
Collapse
Affiliation(s)
- Karol Karnecki
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | | | - Johann Steiner
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland.
| |
Collapse
|
3
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
4
|
Berryer MH, Tegtmeyer M, Binan L, Valakh V, Nathanson A, Trendafilova D, Crouse E, Klein JA, Meyer D, Pietiläinen O, Rapino F, Farhi SL, Rubin LL, McCarroll SA, Nehme R, Barrett LE. Robust induction of functional astrocytes using NGN2 expression in human pluripotent stem cells. iScience 2023; 26:106995. [PMID: 37534135 PMCID: PMC10391684 DOI: 10.1016/j.isci.2023.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.
Collapse
Affiliation(s)
- Martin H. Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King’s College, London, UK
| | - Loïc Binan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Crouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jenny A. Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Helsinki, Helsinki, Finland
| | - Francesca Rapino
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Samouil L. Farhi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Lindy E. Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023; 12:1767. [PMID: 37443801 PMCID: PMC10340315 DOI: 10.3390/cells12131767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Depression is a common neuropsychiatric disorder with long-term recurrent depressed mood, pain and despair, pessimism and anxiety, and even suicidal tendencies as the main symptoms. Depression usually induces or aggravates the development of other related diseases, such as sleep disorders and endocrine disorders. In today's society, the incidence of depression is increasing worldwide, and its pathogenesis is complex and generally believed to be related to genetic, psychological, environmental, and biological factors. Current studies have shown the key role of glial cells in the development of depression, and it is noteworthy that some recent evidence suggests that the development of depression may be closely related to viral infections, such as SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which infect the organism and cause some degree of glial cells, such as astrocytes, oligodendrocytes, and microglia. This can affect the transmission of related proteins, neurotransmitters, and cytokines, which in turn leads to neuroinflammation and depression. Based on the close relationship between viruses and depression, this paper provides an in-depth analysis of the new mechanism of virus-induced depression, which is expected to provide a new perspective on the mechanism of depression and a new idea for the diagnosis of depression in the future.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Hongyuan Chang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Pufan Shan
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lin Yang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Wenjie Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| |
Collapse
|
6
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
7
|
Polo Y, Luzuriaga J, Gonzalez de Langarica S, Pardo-Rodríguez B, Martínez-Tong DE, Tapeinos C, Manero-Roig I, Marin E, Muñoz-Ugartemendia J, Ciofani G, Ibarretxe G, Unda F, Sarasua JR, Pineda JR, Larrañaga A. Self-assembled three-dimensional hydrogels based on graphene derivatives and cerium oxide nanoparticles: scaffolds for co-culture of oligodendrocytes and neurons derived from neural stem cells. NANOSCALE 2023; 15:4488-4505. [PMID: 36753326 DOI: 10.1039/d2nr06545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have shown promising results for the regeneration of the nervous system. However, the survival and integration of the stem cells in the neural circuitry is suboptimal and might compromise the therapeutic outcomes of this approach. The development of functional scaffolds capable of actively interacting with stem cells may overcome the current limitations of stem cell-based therapies. In this study, three-dimensional hydrogels based on graphene derivatives and cerium oxide (CeO2) nanoparticles are presented as prospective supports allowing neural stem cell adhesion, migration and differentiation. The morphological, mechanical and electrical properties of the resulting hydrogels can be finely tuned by controlling several parameters of the self-assembly of graphene oxide sheets, namely the amount of incorporated reducing agent (ascorbic acid) and CeO2 nanoparticles. The intrinsic properties of the hydrogels, as well as the presence of CeO2 nanoparticles, clearly influence the cell fate. Thus, stiffer adhesion substrates promote differentiation to glial cell lineages, while softer substrates enhance mature neuronal differentiation. Remarkably, CeO2 nanoparticle-containing hydrogels support the differentiation of neural stem cells to neuronal, astroglial and oligodendroglial lineage cells, promoting the in vitro generation of nerve tissue grafts that might be employed in neuroregenerative cell therapies.
Collapse
Affiliation(s)
| | - Jon Luzuriaga
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Sergio Gonzalez de Langarica
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Beatriz Pardo-Rodríguez
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel E Martínez-Tong
- Polymers and advanced materials: Physics, Chemistry and Technology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain & Centro de Física de Materiales (UPV/EHU-CSIC), Donostia-San Sebastian, Spain
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Manero-Roig
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Université de Bordeaux IINS - UMR 5297, Bordeaux, France
| | - Edurne Marin
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jone Muñoz-Ugartemendia
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
| | - Gaskon Ibarretxe
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Fernando Unda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Jose-Ramon Sarasua
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jose Ramon Pineda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
8
|
Fang Q, Liu J, Chen L, Chen Q, Wang Y, Li Z, Fu W, Liu Y. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis. Metab Brain Dis 2022; 37:2077-2088. [PMID: 35048325 DOI: 10.1007/s11011-021-00896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Taurine as an essential amino acid in the brain could play an important role in protecting the fetal brain of intrauterine growth restriction (IUGR). The hippocampus with IUGR showed neural metabolic disorder and structure changed that affected memory and learning ability. This study was aimed to identify the effect of taurine supplementation on the metabolism alterations and cellular composition changes of the hippocampus in IUGR immature rats. Metabolite concentrations were determined by magnetic resonance spectroscopy (MRS) in the hippocampus of juvenile rats with IUGR following taurine supplementation with antenatal or postnatal supply. The composition of neural cells in the hippocampus was observed by immunohistochemical staining (IHC) and western blotting (WB). Antenatal taurine supplementation increased the ratios of N-acetylaspartate (NAA) /creatine (Cr) and glutamate (Glu) /Cr of the hippocampus in the IUGR immature rats, but reduced the ratios of choline (Cho) /Cr and myoinositol (mI) /Cr. At the same time, the protein expression of NeuN in the IUGR rats was increased through intrauterine taurine supplementation, and the GFAP expression was reduced. Especially the effect of antenatal taurine was better than postpartum. Furthermore, there existed a positive correlation between the NAA/Cr ratio and the NeuN protein expression (R = 0.496 p < 0.001 IHC; R = 0.568 p < 0.001 WB), the same results existed in the relationship between the mI/Cr ratio and the GFAP protein expression (R = 0.338 p = 0.019 IHC; R = 0.440 p = 0.002 WB). Prenatal taurine supplementation can better improve hippocampal neuronal metabolism by increasing NAA / Cr ratio related to the number of neurons and reducing Cho / Cr ratio related to the number of glial cells.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China.
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun district, Guangzhou, 510515, Guangdong Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Wang
- Neonatal Intensive Care Unit of Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian Province, China
| | - Wei Fu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
9
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
10
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
11
|
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022; 13:781063. [PMID: 35547368 PMCID: PMC9081727 DOI: 10.3389/fneur.2022.781063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is expressed in glial cells and some populations of neurons. MCT1 facilitates astrocytes or oligodendrocytes (OLs) in the energy supplement of neurons, which is crucial for maintaining the neuronal activity and axonal function. It is suggested that MCT1 upregulation in cerebral ischemia is protective to ischemia/reperfusion (I/R) injury. Otherwise, its underlying mechanism has not been clearly discussed. In this review, it provides a novel insight that MCT1 may protect brain from I/R injury via facilitating lactate transport from glial cells (such as, astrocytes and OLs) to neurons. It extensively discusses (1) the structure and localization of MCT1; (2) the regulation of MCT1 in lactate transport among astrocytes, OLs, and neurons; and (3) the regulation of MCT1 in the cellular response of lactate accumulation under ischemic attack. At last, this review concludes that MCT1, in cerebral ischemia, may improve lactate transport from glial cells to neurons, which subsequently alleviates cellular damage induced by lactate accumulation (mostly in glial cells), and meets the energy metabolism of neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Richelle A, Kellman BP, Wenzel AT, Chiang AW, Reagan T, Gutierrez JM, Joshi C, Li S, Liu JK, Masson H, Lee J, Li Z, Heirendt L, Trefois C, Juarez EF, Bath T, Borland D, Mesirov JP, Robasky K, Lewis NE. Model-based assessment of mammalian cell metabolic functionalities using omics data. CELL REPORTS METHODS 2021; 1:100040. [PMID: 34761247 PMCID: PMC8577426 DOI: 10.1016/j.crmeth.2021.100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to define gene sets associated with each metabolic task. We further developed a framework to overlay omics data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach can be used to quantify metabolic functions of diverse biological samples from the single cell to whole tissues and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach into GenePattern (www.genepattern.org-CellFie).
Collapse
Affiliation(s)
- Anne Richelle
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Benjamin P. Kellman
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander T. Wenzel
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Austin W.T. Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Tyler Reagan
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jahir M. Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chintan Joshi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joanne K. Liu
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Masson
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jooyong Lee
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zerong Li
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christophe Trefois
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Edwin F. Juarez
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tyler Bath
- Department of Biomedical Informatics, UC San Diego Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Borland
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jill P. Mesirov
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kimberly Robasky
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Health and Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathan E. Lewis
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Chen K, Wellman SM, Yaxiaer Y, Eles JR, Kozai TD. In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials 2020; 268:120526. [PMID: 33302121 DOI: 10.1016/j.biomaterials.2020.120526] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Intracortical microelectrodes with the ability to detect intrinsic electrical signals and/or deliver electrical stimulation into local brain regions have been a powerful tool to understand brain circuitry and for therapeutic applications to neurological disorders. However, the chronic stability and sensitivity of these intracortical microelectrodes are challenged by overwhelming biological responses, including severe neuronal loss and thick glial encapsulation. Unlike microglia and astrocytes whose activity have been extensively examined, oligodendrocytes and their myelin processes remain poorly studied within the neural interface field. Oligodendrocytes have been widely recognized to modulate electrical signal conductance along axons through insulating myelin segments. Emerging evidence offers an alternative perspective on neuron-oligodendrocyte coupling where oligodendrocytes provide metabolic and neurotrophic support to neurons through cytoplasmic myelin channels and monocarboxylate transporters. This study uses in vivo multi-photon microscopy to gain insights into the dynamics of oligodendrocyte soma and myelin processes in response to chronic device implantation injury over 4 weeks. We observe that implantation induces acute oligodendrocyte injury including initial deformation and substantial myelinosome formation, an early sign of myelin injury. Over chronic implantation periods, myelin and oligodendrocyte soma suffer severe degeneration proximal to the interface. Interestingly, wound healing attempts such as oligodendrogenesis are initiated over time, however they are hampered by continued degeneration near the implant. Nevertheless, this detailed characterization of oligodendrocyte spatiotemporal dynamics during microelectrode-induced inflammation may provide insights for novel intervention targets to facilitate oligodendrogenesis, enhance the integration of neural-electrode interfaces, and improve long-term functional performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Yalikun Yaxiaer
- Eberly College of Science, Pennsylvania State University, University Park, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA; Center for Neuroscience, University of Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; NeuroTech Center, University of Pittsburgh Brain Institute, USA.
| |
Collapse
|
14
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Lyman KA, Chetkovich DM. Moving Metabolism to Make Inroads in a Model of Mitochondrial Epilepsy. Epilepsy Curr 2019; 19:408-410. [PMID: 31495198 PMCID: PMC6891183 DOI: 10.1177/1535759719873360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Bastian C, Quinn J, Doherty C, Franke C, Faris A, Brunet S, Baltan S. Role of Brain Glycogen During Ischemia, Aging and Cell-to-Cell Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:347-361. [PMID: 31667815 PMCID: PMC11218841 DOI: 10.1007/978-3-030-27480-1_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The astrocyte-neuron lactate transfer shuttle (ANLS) is one of the important metabolic systems that provides a physiological infrastructure for glia-neuronal interactions where specialized architectural organization supports the function. Perivascular astrocyte end-feet take up glucose via glucose transporter 1 to actively regulate glycogen stores, such that high ambient glucose upregulates glycogen and low levels of glucose deplete glycogen stores. A rapid breakdown of glycogen into lactate during increased neuronal activity or low glucose conditions becomes essential for maintaining axon function. However, it fails to benefit axon function during an ischemic episode in white matter (WM). Aging causes a remarkable change in astrocyte architecture characterized by thicker, larger processes oriented parallel to axons, as opposed to vertically-transposing processes. Subsequently, aging axons become more vulnerable to depleted glycogen, although aging axons can use lactate as efficiently as young axons. Lactate equally supports function during aglycemia in corpus callosum (CC), which consists of a mixture of myelinated and unmyelinated axons. Moreover, axon function in CC shows greater resilience to a lack of glucose compared to optic nerve, although both WM tracts show identical recovery after aglycemic injury. Interestingly, emerging evidence implies that a lactate transport system is not exclusive to astrocytes, as oligodendrocytes support the axons they myelinate, suggesting another metabolic coupling pathway in WM. Future studies are expected to unravel the details of oligodendrocyte-axon lactate metabolic coupling to establish that all WM components metabolically cooperate and that lactate may be the universal metabolite to sustain central nervous system function.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John Quinn
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Doherty
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Caroline Franke
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anna Faris
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
18
|
Osipovitch M, Asenjo Martinez A, Mariani JN, Cornwell A, Dhaliwal S, Zou L, Chandler-Militello D, Wang S, Li X, Benraiss SJ, Agate R, Lampp A, Benraiss A, Windrem MS, Goldman SA. Human ESC-Derived Chimeric Mouse Models of Huntington's Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell 2018; 24:107-122.e7. [PMID: 30554964 DOI: 10.1016/j.stem.2018.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 09/04/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is characterized by hypomyelination and neuronal loss. To assess the basis for myelin loss in HD, we generated bipotential glial progenitor cells (GPCs) from human embryonic stem cells (hESCs) derived from mutant Huntingtin (mHTT) embryos or normal controls and performed RNA sequencing (RNA-seq) to assess mHTT-dependent changes in gene expression. In human GPCs (hGPCs) derived from 3 mHTT hESC lines, transcription factors associated with glial differentiation and myelin synthesis were sharply downregulated relative to normal hESC GPCs; NKX2.2, OLIG2, SOX10, MYRF, and their downstream targets were all suppressed. Accordingly, when mHTT hGPCs were transplanted into hypomyelinated shiverer mice, the resultant glial chimeras were hypomyelinated; this defect could be rescued by forced expression of SOX10 and MYRF by mHTT hGPCs. The mHTT hGPCs also manifested impaired astrocytic differentiation and developed abnormal fiber architecture. White matter involution in HD is thus a product of the cell-autonomous, mHTT-dependent suppression of glial differentiation.
Collapse
Affiliation(s)
- Mikhail Osipovitch
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, 2200 Copenhagen N, Denmark
| | - Andrea Asenjo Martinez
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, 2200 Copenhagen N, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Simrat Dhaliwal
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Su Wang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Xiaojie Li
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Sarah-Jehanne Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Robert Agate
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Andrea Lampp
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, 2200 Copenhagen N, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 10021, USA; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
19
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
20
|
Oligodendrocytes: Development, Physiology and Glucose Metabolism. ADVANCES IN NEUROBIOLOGY 2018; 13:275-294. [PMID: 27885633 DOI: 10.1007/978-3-319-45096-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glutamate-glutamine cycle is an outstanding example of how essential neuronal-glial interactions are for brain function. For several decades, this and other metabolic cycles in the brain have only included neurons and astrocytes but not oligodendrocytes, the myelinating cells of the central nervous system (CNS). Recent data revealed that oligodendrocytes are highly metabolically active cells in the brain and, therefore, should not be ignored. Using 13C-labelled glucose in combination with nuclear magnetic resonance spectroscopy (MRS) and/or mass spectrometry (MS) it is possible to characterize metabolic functions in primary oligodendrocyte cultures. Mature rat oligodendrocytes avidly metabolize glucose in the cytosol and pyruvate derived from glucose in mitochondria. Moreover, they seem to have the ability of performing anaplerosis from pyruvate, which might enable them to synthesize metabolites de novo and transfer them to neighbouring cells. All these original findings highlight the importance of investigating oligodendrocyte metabolism separately from that of astrocytes and neurons to be able to discern the roles played by the individual partners. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present book chapter provides some background on oligodendrocyte biology and physiology and summarizes the not very extensive information published on glucose metabolism in oligodendrocytes.
Collapse
|
21
|
Belle AM, Enright HA, Sales AP, Kulp K, Osburn J, Kuhn EA, Fischer NO, Wheeler EK. Evaluation of in vitro neuronal platforms as surrogates for in vivo whole brain systems. Sci Rep 2018; 8:10820. [PMID: 30018409 PMCID: PMC6050270 DOI: 10.1038/s41598-018-28950-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Quantitatively benchmarking similarities and differences between the in vivo central nervous system and in vitro neuronal cultures can qualify discrepancies in functional responses and establish the utility of in vitro platforms. In this work, extracellular electrophysiology responses of cortical neurons in awake, freely-moving animals were compared to in vitro cultures of dissociated cortical neurons. After exposure to two well-characterized drugs, atropine and ketamine, a number of key points were observed: (1) significant differences in spontaneous firing activity for in vivo and in vitro systems, (2) similar response trends in single-unit spiking activity after exposure to atropine, and (3) greater sensitivity to the effects of ketamine in vitro. While in vitro cultures of dissociated cortical neurons may be appropriate for many types of pharmacological studies, we demonstrate that for some drugs, such as ketamine, this system may not fully capture the responses observed in vivo. Understanding the functionality associated with neuronal cultures will enhance the relevance of electrophysiology data sets and more accurately frame their conclusions. Comparing in vivo and in vitro rodent systems will provide the critical framework necessary for developing and interpreting in vitro systems using human cells that strive to more closely recapitulate human in vivo function and response.
Collapse
Affiliation(s)
- Anna M Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Kristen Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Joanne Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Edward A Kuhn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.
| |
Collapse
|
22
|
Valny M, Honsa P, Waloschkova E, Matuskova H, Kriska J, Kirdajova D, Androvic P, Valihrach L, Kubista M, Anderova M. A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia 2018; 66:1068-1081. [DOI: 10.1002/glia.23301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Martin Valny
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
- 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Eliska Waloschkova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Hana Matuskova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
- 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
- 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Peter Androvic
- Laboratory of Gene Expression; Institute of Biotechnology, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression; Institute of Biotechnology, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression; Institute of Biotechnology, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
- 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| |
Collapse
|
23
|
Minchenberg SB, Massa PT. The control of oligodendrocyte bioenergetics by interferon-gamma (IFN-γ) and Src homology region 2 domain-containing phosphatase-1 (SHP-1). J Neuroimmunol 2017; 331:46-57. [PMID: 29113698 DOI: 10.1016/j.jneuroim.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Glycolysis and mitochondrial respiration are essential for oligodendrocyte metabolism in both the developing and adult CNS. Based on recent reports on the effects of the proinflammatory cytokine IFN-γ on metabolism and on oligodendrocytes, we addressed whether IFN-γ may affect oligodendrocyte bioenergetics in ways relevant to CNS disease. Oligodendrocytes of mice treated with IFN-γ showed significant reductions in aerobic glycolysis and mitochondrial respiration. As expected, IFN-γ treatment led to the induction of STAT1 in oligodendrocytes indicating active signaling into these cells. To determine the direct effects of IFN-γ on oligodendrocyte metabolism, cultured oligodendrocytes were treated with IFN-γ in vitro, which resulted in suppression of glycolysis similar to oligodendrocytes of animals treated with IFN-γ in vivo. Mice lacking SHP-1, a key regulator of IFN-γ and STAT1 signaling in CNS glia, had high constitutive levels of STAT1 and decreased aerobic glycolysis and mitochondrial respiration rates relative to wild type mouse oligodendrocytes. Together, these data show that IFN-γ and SHP-1 control oligodendrocyte bioenergetics in ways that may relate to the role of this cytokine in CNS disease.
Collapse
Affiliation(s)
- Scott B Minchenberg
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, United States
| | - Paul T Massa
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, United States; Department of Neurology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, United States.
| |
Collapse
|
24
|
Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz S, McCoy K, Miller RH, Wang S, Nedergaard M, Findling RL, Tesar PJ, Goldman SA. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell 2017; 21:195-208.e6. [PMID: 28736215 PMCID: PMC5576346 DOI: 10.1016/j.stem.2017.06.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
In this study, we investigated whether intrinsic glial dysfunction contributes to the pathogenesis of schizophrenia (SCZ). Our approach was to establish humanized glial chimeric mice using glial progenitor cells (GPCs) produced from induced pluripotent stem cells derived from patients with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial differentiation-associated and synaptic gene expression, indicating that glial pathology was cell autonomous. Our data therefore suggest a causal role for impaired glial maturation in the development of schizophrenia and provide a humanized model for its in vivo assessment.
Collapse
Affiliation(s)
- Martha S Windrem
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Zhengshan Liu
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Janna Bates
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jared Munir
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Schanz
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine McCoy
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert H Miller
- Department of Neuroscience, George Washington University School of Medicine, Washington, D.C. 20037, USA
| | - Su Wang
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Robert L Findling
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul J Tesar
- Department of Genetics, Case Western University Medical School, Cleveland, OH 44106, USA
| | - Steven A Goldman
- Department of Neurology and Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark; Neuroscience Center, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
Li X, Ren C, Li S, Han R, Gao J, Huang Q, Jin K, Luo Y, Ji X. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion. Aging Dis 2017; 8:392-401. [PMID: 28840054 PMCID: PMC5524802 DOI: 10.14336/ad.2016.1227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Limb Remote ischemic conditioning (LRIC) has been proved to be a promising neuroprotective method in white matter lesions after ischemia; however, its mechanism underlying protection after chronic cerebral hypoperfusion remains largely unknown. Here, we investigated whether LRIC promoted myelin growth by activating PI3K/Akt/mTOR signal pathway in a rat chronic hypoperfusion model. Thirty adult male Sprague Dawley underwent permanent double carotid artery (2VO), and limb remote ischemic conditioning was applied for 3 days after the 2VO surgery. Cognitive function, oligodendrocyte counts, myelin density, apoptosis and proliferation activity, as well as PTEN/Akt/mTOR signaling activity were determined 4 weeks after treatment. We found that LRIC significantly inhibited oligodendrocytes apoptosis (p<0.05), promoted myelination (p<0.01) in the corpus callosum and improved spatial learning impairment (p<0.05) at 4 weeks after chronic cerebral hypoperfusion. Oligodendrocytes proliferation, along with demyelination, in corpus callosum were not obviously affected by LRIC (p>0.05). Western blot analysis indicated that LRIC upregulated PTEN/Akt/mTOR signaling activities in corpus callosum (p<0.05). Our results suggest that LRIC exerts neuroprotective effect on white matter injuries through activating PTEN/Akt/mTOR signaling pathway after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Sijie Li
- 5Emergency department, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Rongrong Han
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Jinhuan Gao
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Qingjian Huang
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- 4Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Yinghao Luo
- 2Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,3Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| |
Collapse
|
26
|
Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. J Neurosci 2017; 36:4698-707. [PMID: 27122029 DOI: 10.1523/jneurosci.4077-15.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/21/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Multiple sclerosis (MS) lesions feature demyelination with limited remyelination. A distinct injury phenotype of MS lesions features dying back of oligodendrocyte (OL) terminal processes, a response that destabilizes myelin/axon interactions. This oligodendrogliopathy has been linked with local metabolic stress, similar to the penumbra of ischemic/hypoxic states. Here, we developed an in vitro oligodendrogliopathy model using human CNS-derived OLs and related this injury response to their distinct bioenergetic properties. We determined the energy utilization properties of adult human surgically derived OLs cultured under either optimal or metabolic stress conditions, deprivation of growth factors, and glucose and/or hypoxia using a Seahorse extracellular flux analyzer. Baseline studies were also performed on OL progenitor cells derived from the same tissue and postnatal rat-derived cells. Under basal conditions, adult human OLs were less metabolically active than their progenitors and both were less active than the rat cells. Human OLs and progenitors both used aerobic glycolysis for the majority of ATP production, a process that contributes to protein and lipid production necessary for myelin biosynthesis. Under stress conditions that induce significant process retraction with only marginal cell death, human OLs exhibited a significant reduction in overall energy utilization, particularly in glycolytic ATP production. The stress-induced reduction of glycolytic ATP production by the human OLs would exacerbate myelin process withdrawal while favoring cell survival, providing a potential basis for the oligodendrogliopathy observed in MS. The glycolytic pathway is a potential therapeutic target to promote myelin maintenance and enhance repair in MS. SIGNIFICANCE STATEMENT The neurologic deficits that characterize multiple sclerosis (MS) reflect disruption of myelin (demyelination) within the CNS and failure of repair (remyelination). We define distinct energy utilization properties of human adult brain-derived oligodendrocytes and oligodendrocyte progenitor cells under conditions of metabolic stress that model the initial relapsing and subsequent progressive phases of MS. The observed changes in energy utilization affect both cell survival and myelination capacity. These processes may be amenable to therapeutic interventions to limit the extent of cumulative tissue injury and to promote repair in MS.
Collapse
|
27
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
28
|
Bonvento G, Valette J, Flament J, Mochel F, Brouillet E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. J Cereb Blood Flow Metab 2017; 37:1927-1943. [PMID: 28276944 PMCID: PMC5464722 DOI: 10.1177/0271678x17697989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Changes in energy metabolism are generally considered to play an important role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Whether these changes are causal or simply a part of self-defense mechanisms is a matter of debate. Furthermore, energy defects have often been discussed solely in the context of their probable neuronal origin without considering the cellular heterogeneity of the brain. Recent data point towards the existence of a tri-cellular compartmentation of brain energy metabolism between neurons, astrocytes, and oligodendrocytes, each cell type having a distinctive metabolic profile. Still, the number of methods to follow energy metabolism in patients is extremely limited and existing clinical techniques are blind to most cellular processes. There is a need to better understand how brain energy metabolism is regulated in health and disease through experiments conducted at different scales in animal models to implement new methods in the clinical setting. The purpose of this review is to offer a brief overview of the broad spectrum of methodological approaches that have emerged in recent years to probe energy metabolism in more detail. We conclude that multi-modal neuroimaging is needed to follow non-cell autonomous energy metabolism dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gilles Bonvento
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
- INSERM US 27, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, France
- Department of Genetics, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| | - Emmanuel Brouillet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
29
|
Oheim M, Schmidt E, Hirrlinger J. Local energy on demand: Are 'spontaneous' astrocytic Ca 2+-microdomains the regulatory unit for astrocyte-neuron metabolic cooperation? Brain Res Bull 2017; 136:54-64. [PMID: 28450076 DOI: 10.1016/j.brainresbull.2017.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Astrocytes are a neural cell type critically involved in maintaining brain energy homeostasis as well as signaling. Like neurons, astrocytes are a heterogeneous cell population. Cortical astrocytes show a complex morphology with a highly branched aborization and numerous fine processes ensheathing the synapses of neighboring neurons, and typically extend one process connecting to blood vessels. Recent studies employing genetically encoded fluorescent calcium (Ca2+) indicators have described 'spontaneous' localized Ca2+-transients in the astrocyte periphery that occur asynchronously, independently of signals in other parts of the cells, and that do not involve somatic Ca2+ transients; however, neither it is known whether these Ca2+-microdomains occur at or near neuronal synapses nor have their molecular basis nor downstream effector(s) been identified. In addition to Ca2+ microdomains, sodium (Na+) transients occur in astrocyte subdomains, too, most likely as a consequence of Na+ co-transport with the neurotransmitter glutamate, which also regulates mitochondrial movements locally - as do cytoplasmic Ca2+ levels. In this review, we cover various aspects of these local signaling events and discuss how structural and biophysical properties of astrocytes might foster such compartmentation. Astrocytes metabolically interact with neurons by providing energy substrates to active neurons. As a single astrocyte branch covers hundreds to thousands of synapses, it is tempting to speculate that these metabolic interactions could occur localized to specific subdomains of astrocytes, perhaps even at the level of small groups of synapses. We discuss how astrocytic metabolism might be regulated at this scale and which signals might contribute to its regulation. We speculate that the astrocytic structures that light up transiently as Ca2+-microdomains might be the functional units of astrocytes linking signaling and metabolic processes to adapt astrocytic function to local energy demands. The understanding of these local regulatory and metabolic interactions will be fundamental to fully appreciate the complexity of brain energy homeostasis as well as its failure in disease and may shed new light on the controversy about neuron-glia bi-directional signaling at the tripartite synapse.
Collapse
Affiliation(s)
- Martin Oheim
- CNRS UMR 8118, Brain Physiology Laboratory, F-75006 Paris, France; Fédération de Recherche en Neurosciences FR3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Université Sorbonne Paris Cité (USPC), F-75006 Paris, France.
| | - Elke Schmidt
- CNRS UMR 8118, Brain Physiology Laboratory, F-75006 Paris, France; Fédération de Recherche en Neurosciences FR3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Université Sorbonne Paris Cité (USPC), F-75006 Paris, France
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, D-04103 Leipzig, Germany; Dept. of Neurogenetics, Max-Planck-Institute for Experimental Medicine, D-37075 Göttingen, Germany.
| |
Collapse
|
30
|
Effect of nitric oxide to axonal degeneration in multiple sclerosis via downregulating monocarboxylate transporter 1 in oligodendrocytes. Nitric Oxide 2017; 67:75-80. [PMID: 28392448 DOI: 10.1016/j.niox.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Axonal degeneration, one of the main pathological characteristics of MS, is affected by nitric oxide (NO). In turn, NO induces mitochondrial dysfunction of neurons and glial cells. Inadequate glucose causes monocarboxylate transporter 1 (MCT1) to transfer lactate from oligodendrocytes (OLs) to neurons, which decreases MCT1 and results in energy substrate deficit (mainly lactate) in axons. The condition gradually leads to axonal degeneration. This study proposes that NO-induced MCT1 down-regulation in OLs may be involved in the pathological process of axonal degeneration, which eventually leads to MS.
Collapse
|
31
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
32
|
I Amaral A, Hadera MG, Kotter M, Sonnewald U. Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro. Neurochem Res 2017; 42:827-837. [PMID: 27394419 PMCID: PMC5357468 DOI: 10.1007/s11064-016-1985-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022]
Abstract
Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6-13C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.
Collapse
Affiliation(s)
- Ana I Amaral
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Mussie Ghezu Hadera
- Department of Pharmacy, College of Health Sciences, Mekelle University, Tigray, Ethiopia
| | - Mark Kotter
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK.
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), PO Box 8905, MTFS, 7491, Trondheim, Norway.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
33
|
Simões RV, Muñoz-Moreno E, Cruz-Lemini M, Eixarch E, Bargalló N, Sanz-Cortés M, Gratacós E. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. Am J Obstet Gynecol 2017; 216:62.e1-62.e14. [PMID: 27667762 DOI: 10.1016/j.ajog.2016.09.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. OBJECTIVE The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. STUDY DESIGN A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. RESULTS Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. CONCLUSIONS Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization.
Collapse
|
34
|
Juraszek B, Nałęcz KA. Protein phosphatase PP2A - a novel interacting partner of carnitine transporter OCTN2 (SLC22A5) in rat astrocytes. J Neurochem 2016; 139:537-551. [DOI: 10.1111/jnc.13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Barbara Juraszek
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna A. Nałęcz
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
35
|
Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1561-1568. [PMID: 27287543 PMCID: PMC4990131 DOI: 10.1016/j.bbabio.2016.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/16/2016] [Accepted: 06/04/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd ~ 10− 8 M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2 ± 6.0% and 56.4 ± 5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Complex II in mitochondrial membranes is inhibited by tightly-bound oxaloacetate. Oxaloacetate binds to the heart enzyme during isolation. In brain a large fraction of Complex II is present in oxaloacetate-bound form. Short-time tissue ischemia does not affect the content of the free Complex II in brain.
Collapse
|
36
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
37
|
Ford TC, Crewther DP. A Comprehensive Review of the (1)H-MRS Metabolite Spectrum in Autism Spectrum Disorder. Front Mol Neurosci 2016; 9:14. [PMID: 27013964 PMCID: PMC4783404 DOI: 10.3389/fnmol.2016.00014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/16/2016] [Indexed: 01/11/2023] Open
Abstract
Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy (1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current 1H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in 1H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders.
Collapse
Affiliation(s)
- Talitha C Ford
- Faculty of Health, Arts and Design, Centre for Human Psychopharmacology, Swinburne University of Technology Melbourne, VIC, Australia
| | - David P Crewther
- Faculty of Health, Arts and Design, Centre for Human Psychopharmacology, Swinburne University of Technology Melbourne, VIC, Australia
| |
Collapse
|
38
|
Zhang M, Ma Z, Qin H, Yao Z. Monocarboxylate Transporter 1 in the Medial Prefrontal Cortex Developmentally Expresses in Oligodendrocytes and Associates with Neuronal Amounts. Mol Neurobiol 2016; 54:2315-2326. [DOI: 10.1007/s12035-016-9820-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023]
|
39
|
Amaral AI, Hadera MG, Tavares JM, Kotter MRN, Sonnewald U. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 2016; 64:21-34. [PMID: 26352325 PMCID: PMC4832329 DOI: 10.1002/glia.22900] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/22/2015] [Indexed: 12/24/2022]
Abstract
Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS.
Collapse
Affiliation(s)
- Ana I. Amaral
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Mussie G. Hadera
- Department of Neuroscience, Faculty of MedicineNorwegian University of Science and TechnologyTrondheim7491Norway
| | - Joana M. Tavares
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Mark R. N. Kotter
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of MedicineNorwegian University of Science and TechnologyTrondheim7491Norway
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2100Denmark
| |
Collapse
|
40
|
Pun H, Awamleh L, Lee JC, Avivi-Arber L. Decreased face primary motor cortex (face-M1) excitability induced by noxious stimulation of the rat molar tooth pulp is dependent on the functional integrity of medullary astrocytes. Exp Brain Res 2015; 234:645-57. [DOI: 10.1007/s00221-015-4448-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/18/2015] [Indexed: 02/03/2023]
|
41
|
Shannon RJ, van der Heide S, Carter EL, Jalloh I, Menon DK, Hutchinson PJ, Carpenter KLH. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury. J Neurotrauma 2015; 33:319-29. [PMID: 26159566 PMCID: PMC4761801 DOI: 10.1089/neu.2015.3950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism.
Collapse
Affiliation(s)
- Richard J Shannon
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Susan van der Heide
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Eleanor L Carter
- 3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
42
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
43
|
Abstract
Vertebrate myelination is an evolutionary advancement essential for motor, sensory, and higher-order cognitive function. CNS myelin, a multilamellar differentiation of the oligodendrocyte plasma membrane, ensheaths axons to facilitate electrical conduction. Myelination is one of the most pivotal cell-cell interactions for normal brain development, involving extensive information exchange between differentiating oligodendrocytes and axons. The molecular mechanisms of myelination are discussed, along with new perspectives on oligodendrocyte plasticity and myelin remodeling of the developing and adult CNS.
Collapse
|
44
|
Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 2015; 272:17-25. [PMID: 25819104 DOI: 10.1016/j.expneurol.2015.03.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients.
Collapse
Affiliation(s)
- Hong Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Anesthesiology of Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Xiaoming Hu
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yejie Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Chengrui An
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
45
|
Weber B, Barros LF. The Astrocyte: Powerhouse and Recycling Center. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020396. [PMID: 25680832 DOI: 10.1101/cshperspect.a020396] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain metabolism is characterized by fuel monodependence, high-energy expenditure, autonomy from the rest of body, local recycling, and marked division of labor between cell types. Although neurons spend most of the brain's energy on signaling, astrocytes bear the brunt of the metabolic load, controlling the composition of the interstitial fluid, supplying neurons with energy substrates and precursors for biosynthesis, and recycling neurotransmitters, oxidized scavengers, and other waste products. Outstanding questions in this field are the role of oligodendrocytes, the metabolic behavior of the different subtypes of astrocytes during development and disease, and the emerging notion that metabolism may participate directly in information processing.
Collapse
Affiliation(s)
- Bruno Weber
- University of Zürich, Institute of Pharmacology and Toxicology, 8057 Zürich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos, Casilla 1469, Valdivia, Chile
| |
Collapse
|
46
|
Baltan S. Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health? Metab Brain Dis 2015; 30:25-30. [PMID: 25034458 PMCID: PMC4297510 DOI: 10.1007/s11011-014-9595-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
In the mammalian white matter, glycogen-derived lactate from astrocytes plays a critical role in supporting axon function using the astrocyte-neuron lactate transfer shuttle (ANLTS) system with specialized monocarboxylate transporters (MCTs). A rapid breakdown of glycogen to lactate during increased neuronal activity or low glucose conditions becomes essential to maintain axon function. Therefore astrocytes actively regulate their glycogen stores with respect to ambient glucose levels such that high ambient glucose upregulates glycogen and low levels of glucose depletes glycogen stores. Although lactate fully supports axon function in the absence of glucose and becomes a preferred energy metabolite when axons discharge at high frequency, it fails to benefit axon function during an ischemic episode in white matter. Emerging evidence implies a similar lactate transport system between oligodendrocytes and the axons they myelinate, suggesting another metabolic coupling pathway in white matter. Therefore the conditions that activate this lactate shuttle system and the signaling mechanisms that mediate activation of this system are of great interest. Future studies are expected to unravel the details of oligodendrocyte-axon lactate metabolic coupling to establish how white matter components metabolically cooperate and that lactate may be the universal metabolite to sustain CNS function.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, NC/30, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA,
| |
Collapse
|
47
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
48
|
Boska MD, Dash PK, Knibbe J, Epstein AA, Akhter SP, Fields N, High R, Makarov E, Bonasera S, Gelbard HA, Poluektova LY, Gendelman HE, Gorantla S. Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener 2014; 9:58. [PMID: 25523827 PMCID: PMC4297430 DOI: 10.1186/1750-1326-9-58] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Host-species specificity of the human immunodeficiency virus (HIV) limits pathobiologic, diagnostic and therapeutic research investigations to humans and non-human primates. The emergence of humanized mice as a model for viral infection of the nervous system has overcome such restrictions enabling research for HIV-associated end organ disease including behavioral, cognitive and neuropathologic deficits reflective of neuroAIDS. Chronic HIV-1 infection of NOD/scid-IL-2Rgcnull mice transplanted with human CD34+ hematopoietic stem cells (CD34-NSG) leads to persistent viremia, profound CD4+ T lymphocyte loss and infection of human monocyte-macrophages in the meninges and perivascular spaces. Murine cells are not infected with virus. Methods Changes in mouse behavior were measured, starting at 8 weeks after viral infection. These were recorded coordinate with magnetic resonance spectroscopy metabolites including N-acetylaspartate (NAA), creatine and choline. Diffusion tensor magnetic resonance imaging (DTI) was recorded against multispectral immunohistochemical staining for neuronal markers that included microtubule associated protein-2 (MAP2), neurofilament (NF) and synaptophysin (SYN); for astrocyte glial fibrillary acidic protein (GFAP); and for microglial ionized calcium binding adaptor molecule 1 (Iba-1). Oligodendrocyte numbers and integrity were measured for myelin associated glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG) antigens. Results Behavioral abnormalities were readily observed in HIV-1 infected mice. Longitudinal open field activity tests demonstrated lack of habituation indicating potential for memory loss and persistent anxiety in HIV-1 infected mice compared to uninfected controls. End-point NAA and creatine in the cerebral cortex increased with decreased MAG. NAA and glutamate decreased with decreased SYN and MAG. Robust inflammation reflected GFAP and Iba-1 staining intensities. DTI metrics were coordinate with deregulation of NF, Iba-1, MOG and MAG levels in the whisker barrel and MAP2, NF, MAG, MOG and SYN in the corpus callosum. Conclusions The findings are consistent with some of the clinical, biochemical and pathobiologic features of human HIV-1 nervous system infections. This model will prove useful towards investigating the mechanisms of HIV-1 induced neuropathology and in developing novel biomarkers and therapeutic strategies for disease. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-58) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | |
Collapse
|
49
|
Preston MA, Macklin WB. Zebrafish as a model to investigate CNS myelination. Glia 2014; 63:177-93. [PMID: 25263121 DOI: 10.1002/glia.22755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
50
|
Xiao L, Saiki C, Ide R. Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 2014; 9:1253-60. [PMID: 25221575 PMCID: PMC4160849 DOI: 10.4103/1673-5374.137570] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells.
Collapse
Affiliation(s)
- Li Xiao
- Pharmacology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Chikako Saiki
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryoji Ide
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|