1
|
Mittendorfer B, Johnson JD, Solinas G, Jansson PA. Insulin Hypersecretion as Promoter of Body Fat Gain and Hyperglycemia. Diabetes 2024; 73:837-843. [PMID: 38768368 PMCID: PMC11109786 DOI: 10.2337/dbi23-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Bettina Mittendorfer
- Departments of Medicine and Nutrition & Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giovanni Solinas
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Hasani M, Monfared V, Aleebrahim-Dehkordi E, Jafari A, Agh F, Khazdouz M, Vahid F, Vafa M. The Effect of Selenium, Zinc, and their Combined Supplementation on Cardiometabolic Biomarkers-comparing their Effects in the Energy Restriction and High-fat Diet Methods in Obese Rats. Curr Mol Med 2024; 24:1307-1315. [PMID: 38258780 DOI: 10.2174/0115665240268180231113045836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
INTRODUCTION The fat distribution in the body determines the risk of cardiometabolic problems such as heart disease and diabetes. Some dietary supplements, such as selenium and zinc, possess lipolytic and anti-angiogenic functions, which may be a useful strategy in reducing the risk of cardiometabolic complications. This study evaluated the effect of zinc (Zn), selenium (Se), and their combined supplementation on cardiometabolic risk factors in male Wistar rats in two nutritional models, including caloric restriction (CR) and high-fat diet (HFD). METHODS AND MATERIALS The 48 male Wistar rats were divided into three diet groups (HFD and CR and normal diet (ND)). The HFD group was subdivided into four groups (N=8 rats in each group) that received (HFD+Se), (HFD+Zn), (HFD+Zn+Se), and HFD alone as the control group, respectively. After 8 weeks of intervention, biochemical tests were performed on serum levels, including measurement of lipid profile (triglyceride, Cholesterol, LDL and HDL) and glycemic indices (fasting blood sugar, insulin and insulin sensitivity markers). RESULTS The results showed that supplementation significantly improved the lipid profile (P <0.001). A comparison of glucose homeostasis indices in the study groups also showed a significant difference. The serum level of glucose was higher in the HFD group than in the intervention groups (P <0.001). Also, the rate of improvement of lipid profile and glycemic indexes in the group receiving the combination of two supplements showed a better trend than those receiving zinc and selenium alone. However, the values were statistically significant only for glucose homeostasis indices (P <0.001). CONCLUSION Although obesity is a multifactorial condition, controlling other risk factors, zinc and selenium and their combined supplementation can lead to promising solutions for the treatment of obesity-induced glucose and lipid homeostasis disorders.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Monfared
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Maryam Khazdouz
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Luxembourg
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Skelin Klemen M, Kopecky J, Dolenšek J, Stožer A. Human Beta Cell Functional Adaptation and Dysfunction in Insulin Resistance and Its Reversibility. Nephron Clin Pract 2023; 148:78-84. [PMID: 37883937 PMCID: PMC10860743 DOI: 10.1159/000534667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Beta cells play a key role in the pathophysiology of diabetes since their functional adaptation is able to maintain euglycemia in the face of insulin resistance, and beta cell decompensation or dysfunction is a necessary condition for full-blown type 2 diabetes (T2D). The mechanisms behind compensation and decompensation are incompletely understood, especially for human beta cells, and even less is known about influences of chronic kidney disease (CKD) or immunosupressive therapy after transplantation on these processes and the development of posttransplant diabetes. SUMMARY During compensation, beta cell sensitivity to glucose becomes left-shifted, i.e., their sensitivity to stimulation increases, and this is accompanied by enhanced signals along the stimulus-secretion coupling cascade from membrane depolarization to intracellular calcium and the most distal insulin secretion dynamics. There is currently no clear evidence regarding changes in intercellular coupling during this stage of disease progression. During decompensation, intracellular stimulus-secretion coupling remains enhanced to some extent at low or basal glucose concentrations but seems to become unable to generate effective signals to stimulate insulin secretion at high or otherwise stimulatory glucose concentrations. Additionally, intercellular coupling becomes disrupted, lowering the number of cells that contribute to secretion. During progression of CKD, beta cells also seem to drift from a compensatory left-shift to failure, and immunosupressants can further impair beta cell function following kidney transplantation. KEY MESSAGES Beta cell stimulus-secretion coupling is enhanced in compensated insulin resistance. With worsening insulin resistance, both intra- and intercellular coupling become disrupted. CKD can progressively disrupt beta cell function, but further studies are needed, especially regarding changes in intercellular coupling.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia,
| | - Jan Kopecky
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Corkey BE. Reactive oxygen species: role in obesity and mitochondrial energy efficiency. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220210. [PMID: 37482778 PMCID: PMC10363708 DOI: 10.1098/rstb.2022.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Changes correlating with increasing obesity include insulin resistance, hyperlipidaemia, hyperinsulinaemia, highly processed food and environmental toxins including plastics and air pollution. The relationship between the appearance of each of these potential causes and the onset of obesity is unknown. The cause(s) must precede obesity, the consequence, and temporally relate to its rising incidence. Macronutrients such as carbohydrates or fats are unlikely to cause obesity since these have long been constituents of human diets. Furthermore, food consumption and body weight have been well-regulated in most humans and other species until recent times. Thus, attention must focus on changes that have occurred in the last half-century and the relationship between such changes and specific populations that are impacted. The hypothesis presented here is that substances that have entered our bodies recently cause obesity by generating false and misleading information about energy status. We propose that this misinformation is caused by changes in the oxidation-reduction (redox) potential of metabolites that circulate and communicate to organs throughout the body. Examples are provided of food additives that generate reactive oxygen species and impact redox state, thereby, eliciting inappropriate tissue-specific functional changes, including insulin secretion. Reversal requires identification, neutralization, or removal of these compounds. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Norlin S, Axelsson J, Ericsson M, Edlund H. O304 ameliorates hyperglycemia in mice by dually promoting muscle glucose effectiveness and preserving β-cell function. Commun Biol 2023; 6:877. [PMID: 37626210 PMCID: PMC10457357 DOI: 10.1038/s42003-023-05255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Although insulin mediated glucose uptake in skeletal muscle is a major mechanism ensuring glucose disposal in humans, glucose effectiveness, i.e., the ability of glucose itself to stimulate its own uptake independent of insulin, accounts for roughly half of the glucose disposed during an oral glucose tolerance test. Both insulin dependent and insulin independent skeletal muscle glucose uptake are however reduced in individuals with diabetes. We here show that AMPK activator O304 stimulates insulin independent glucose uptake and utilization in skeletal muscle and heart in vivo, while preventing glycogen accumulation. Combined glucose uptake and utilization requires an increased metabolic demand and we show that O304 acts as a mitochondrial uncoupler, i.e., generates a metabolic demand. O304 averts gene expression changes associated with metabolic inflexibility in skeletal muscle and heart of diabetic mice and reverts diabetic cardiomyopathy. In Type 2 diabetes, insulin resistance elicits compensatory insulin hypersecretion, provoking β-cell stress and eventually compensatory failure. In db/db mice O304 preserves β-cell function by preventing decline in insulin secretion, β-cell mass, and pancreatic insulin content. Thus, as a dual AMPK activator and mitochondrial uncoupler O304 mitigates two central defects of T2D; impaired glucose uptake/utilization and β-cell failure, which today lack effective treatment.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, SE-901 87, Umeå, Sweden
| | - Madelene Ericsson
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Qureshi FM, Panzer JK, Põder J, Malek TR, Caicedo A. Immunotherapy With Low-Dose IL-2/CD25 Prevents β-Cell Dysfunction and Dysglycemia in Prediabetic NOD Mice. Diabetes 2023; 72:769-780. [PMID: 36939730 PMCID: PMC10202767 DOI: 10.2337/db22-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
Low-dose IL-2 is a promising immunotherapy in clinical trials for treating type 1 diabetes. A new IL-2 analog, IL-2/CD25 fusion protein, has been shown to more efficiently delay or prevent diabetes in NOD mice by expanding the population of activated regulatory T cells. This therapy is intended for use before clinical diagnosis, in the early stages of type 1 diabetes progression. During this prediabetic period, there is a chronic decline in β-cell function that has long-term implications for disease pathogenesis. Yet, to date, the effects of IL-2/CD25 on β-cell function have not been evaluated. In this study, we treated prediabetic NOD mice with low-dose mouse IL-2/CD25 over 5 weeks and determined its impact on β-cell function. This treatment limited the progressive impairment of glucose tolerance and insulin secretion typical of the later stages of prediabetes. Intracellular Ca2+ responses to glucose in β-cells became more robust and synchronous, indicating that changing the local immune cell infiltrate with IL-2/CD25 preserved β-cell function even after treatment cessation. Our study thus provides mechanistic insight and serves as a steppingstone for future research using low-dose IL-2/CD25 immunotherapy in patients. ARTICLE HIGHLIGHTS Immunotherapies such as IL-2/CD25 are known to prevent or delay diabetes. However, their impact on individual β-cell function is not yet understood. Female NOD mice progress from stage 1 to 2 pre-type 1 diabetes between 12 and 17 weeks. Treatment with mouse IL-2 (mIL-2)/CD25 prevents this progression even after treatment cessation. Individual β-cell function (measured via intracellular Ca2+ responses to glucose) declines during the pathogenesis of type 1 diabetes. Treatment with mIL-2/CD25 therapy limits β-cell dysfunction, and function continues to improve after treatment cessation. Insulin secretion is improved with mIL-2/CD25 therapy.
Collapse
Affiliation(s)
- Farhan M. Qureshi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular, Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL
| | - Julia K. Panzer
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Janika Põder
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Thomas R. Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular, Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
7
|
Carroll DT, Elsakr JM, Miller A, Fuhr J, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Maternal Western-style diet in nonhuman primates leads to offspring islet adaptations including altered gene expression and insulin hypersecretion. Am J Physiol Endocrinol Metab 2023; 324:E577-E588. [PMID: 37134140 PMCID: PMC10259856 DOI: 10.1152/ajpendo.00087.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate β-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future β-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter β-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.
Collapse
Affiliation(s)
- Darian T Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer Fuhr
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sarah Rene Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Melissa Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Dong G, Adak S, Spyropoulos G, Zhang Q, Feng C, Yin L, Speck SL, Shyr Z, Morikawa S, Kitamura RA, Kathayat RS, Dickinson BC, Ng XW, Piston DW, Urano F, Remedi MS, Wei X, Semenkovich CF. Palmitoylation couples insulin hypersecretion with β cell failure in diabetes. Cell Metab 2023; 35:332-344.e7. [PMID: 36634673 PMCID: PMC9908855 DOI: 10.1016/j.cmet.2022.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased β cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to β cell failure, modeling the evolution of some forms of human type 2 diabetes.
Collapse
Affiliation(s)
- Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - George Spyropoulos
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Zeenat Shyr
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Shuntaro Morikawa
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rie Asada Kitamura
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Rahul S Kathayat
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xue Wen Ng
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - David W Piston
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Modeling the progression of Type 2 diabetes with underlying obesity. PLoS Comput Biol 2023; 19:e1010914. [PMID: 36848379 PMCID: PMC9997875 DOI: 10.1371/journal.pcbi.1010914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 03/09/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Environmentally induced or epigenetic-related beta-cell dysfunction and insulin resistance play a critical role in the progression to diabetes. We developed a mathematical modeling framework capable of studying the progression to diabetes incorporating various diabetogenic factors. Considering the heightened risk of beta-cell defects induced by obesity, we focused on the obesity-diabetes model to further investigate the influence of obesity on beta-cell function and glucose regulation. The model characterizes individualized glucose and insulin dynamics over the span of a lifetime. We then fit the model to the longitudinal data of the Pima Indian population, which captures both the fluctuations and long-term trends of glucose levels. As predicted, controlling or eradicating the obesity-related factor can alleviate, postpone, or even reverse diabetes. Furthermore, our results reveal that distinct abnormalities of beta-cell function and levels of insulin resistance among individuals contribute to different risks of diabetes. This study may encourage precise interventions to prevent diabetes and facilitate individualized patient treatment.
Collapse
|
11
|
Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, Sheikh-Hamad D, Basu R, Kumar MNVR. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release 2023; 353:621-633. [PMID: 36503070 PMCID: PMC9904426 DOI: 10.1016/j.jconrel.2022.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Treatments for diabetic kidney disease (DKD) mainly focus on managing hyperglycemia and hypertension, but emerging evidence suggests that inflammation also plays a role in the pathogenesis of DKD. This 10-week study evaluated the efficacy of daily oral nanoparticulate-curcumin (nCUR) together with long-acting insulin (INS) to treat DKD in a rodent model. Diabetic rats were dosed with unformulated CUR alone, nCUR alone or together with INS, or INS alone. The progression of diabetes was reflected by increases in plasma fructosamine, blood urea nitrogen, creatinine, bilirubin, ALP, and decrease in albumin and globulins. These aberrancies were remedied by nCUR+INS or INS but not by CUR or nCUR. Kidney histopathological results revealed additional abnormalities characteristic of DKD, such as basement membrane thickening, tubular atrophy, and podocyte cytoskeletal impairment. nCUR and nCUR+INS mitigated these lesions, while CUR and INS alone were far less effective, if not ineffective. To elucidate how our treatments modulated inflammatory signaling in the liver and kidney, we identified hyperactivation of P38 (MAPK) and P53 with INS and CUR, whereas nCUR and nCUR+INS deactivated both targets. Similarly, the latter interventions led to significant downregulation of renal NLRP3, IL-1β, NF-ĸB, Casp3, and MAPK8 mRNA, indicating a normalization of inflammasome and apoptotic pathways. Thus, we show therapies that reduce both hyperglycemia and inflammation may offer better management of diabetes and its complications.
Collapse
Affiliation(s)
- Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Nikhil K Nuthalapati
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Subhash Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Dianxiong Zou
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Shapira SN, Naji A, Atkinson MA, Powers AC, Kaestner KH. Understanding islet dysfunction in type 2 diabetes through multidimensional pancreatic phenotyping: The Human Pancreas Analysis Program. Cell Metab 2022; 34:1906-1913. [PMID: 36206763 PMCID: PMC9742126 DOI: 10.1016/j.cmet.2022.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
In this perspective, we provide an overview of a recently established National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) initiative, the Human Pancreas Analysis Program for Type 2 Diabetes (HPAP-T2D). This program is designed to define the molecular pathogenesis of islet dysfunction by studying human pancreatic tissue samples from organ donors with T2D. HPAP-T2D generates detailed datasets of physiological, histological, transcriptomic, epigenomic, and genomic information. Importantly, all data collected, generated, and analyzed by HPAP-T2D are made immediately and freely available through a centralized database, PANC-DB, thus providing a comprehensive data resource for the diabetes research community.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| |
Collapse
|
13
|
Scheithauer TP, Herrema H, Yu H, Bakker GJ, Winkelmeijer M, Soukhatcheva G, Dai D, Ma C, Havik SR, Balvers M, Davids M, Meijnikman AS, Aydin Ö, van den Born BJH, Besselink MG, Busch OR, de Brauw M, van de Laar A, Belzer C, Stahl M, de Vos WM, Vallance BA, Nieuwdorp M, Verchere CB, van Raalte DH. Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction. Gut Microbes 2022; 14:2111951. [PMID: 35984746 PMCID: PMC9397137 DOI: 10.1080/19490976.2022.2111951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam UMC, Amsterdam, AZ1105The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hongbing Yu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Guido J. Bakker
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Galina Soukhatcheva
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Derek Dai
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stefan R. Havik
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon Balvers
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Olivier R. Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Martin Stahl
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Daniël H. van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Lipotoxicity in a Vicious Cycle of Pancreatic Beta Cell Exhaustion. Biomedicines 2022; 10:biomedicines10071627. [PMID: 35884932 PMCID: PMC9313354 DOI: 10.3390/biomedicines10071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hyperlipidemia is a common metabolic disorder in modern society and may precede hyperglycemia and diabetes by several years. Exactly how disorders of lipid and glucose metabolism are related is still a mystery in many respects. We analyze the effects of hyperlipidemia, particularly free fatty acids, on pancreatic beta cells and insulin secretion. We have developed a computational model to quantitatively estimate the effects of specific metabolic pathways on insulin secretion and to assess the effects of short- and long-term exposure of beta cells to elevated concentrations of free fatty acids. We show that the major trigger for insulin secretion is the anaplerotic pathway via the phosphoenolpyruvate cycle, which is affected by free fatty acids via uncoupling protein 2 and proton leak and is particularly destructive in long-term chronic exposure to free fatty acids, leading to increased insulin secretion at low blood glucose and inadequate insulin secretion at high blood glucose. This results in beta cells remaining highly active in the “resting” state at low glucose and being unable to respond to anaplerotic signals at high pyruvate levels, as is the case with high blood glucose. The observed fatty-acid-induced disruption of anaplerotic pathways makes sense in the context of the physiological role of insulin as one of the major anabolic hormones.
Collapse
|
15
|
Fletcher PA, Marinelli I, Bertram R, Satin LS, Sherman AS. Pulsatile Basal Insulin Secretion Is Driven by Glycolytic Oscillations. Physiology (Bethesda) 2022; 37:0. [PMID: 35378996 PMCID: PMC9191171 DOI: 10.1152/physiol.00044.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well studied at high glucose levels, comparatively little is known about its origin under basal conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations in glycolysis, demonstrated using an established mathematical model. At high glucose, this is superseded by a calcium-dependent mechanism.
Collapse
Affiliation(s)
- P. A. Fletcher
- 1Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - I. Marinelli
- 2Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - R. Bertram
- 3Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - L. S. Satin
- 4Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - A. S. Sherman
- 1Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Laget J, Vigor C, Nouvel A, Rocher A, Leroy J, Jeanson L, Reversat G, Oger C, Galano JM, Durand T, Péraldi-Roux S, Azay-Milhau J, Lajoix AD. Reduced production of isoprostanes by peri-pancreatic adipose tissue from Zucker fa/fa rats as a new mechanism for β-cell compensation in insulin resistance and obesity. Free Radic Biol Med 2022; 182:160-170. [PMID: 35227851 DOI: 10.1016/j.freeradbiomed.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
During early stages of type 2 diabetes, named prediabetes, pancreatic β-cells compensate for insulin resistance through increased insulin secretion in order to maintain normoglycemia. Obesity leads to the development of ectopic fat deposits, among which peri-pancreatic white adipose tissue (pWAT) can communicate with β-cells through soluble mediators. Thus we investigated whether pWAT produced oxygenated lipids, namely isoprostanes and neuroprostanes and whether they can influence β-cell function in obesity. In the Zucker fa/fa rat model, pWAT and epididymal white adipose tissue (eWAT) displayed different inflammatory profiles. In obese rats, pWAT, but not eWAT, released less amounts of 5-F2t-isoprostanes, 15-F2t-isoprostanes, 4-F4t-neuroprostanes and 10-F4t-neuroprostane compared to lean animals. These differences could be explained by a greater induction of antioxidant defenses enzymes such as SOD-1, SOD-2, and catalase in pWAT of obese animals compared to eWAT. In addition, sPLA2 IIA, involved in the release of isoprostanoids from cellular membranes, was decreased in pWAT of obese animals, but not in eWAT, and may also account for the reduced release of oxidized lipids by this tissue. At a functional level, 15-F2t-isoprostane epimers, but not 5-F2t-isoprostanes, were able to decrease glucose-induced insulin secretion in pancreatic islets from Wistar rats. This effect appeared to be mediated through activation of the thromboxane A2 receptor and reduction of cAMP signaling in pancreatic islets. In conclusion, through the removal of an inhibitory tone exerted by isoprostanes, we have shown, for the first time, a new mechanism allowing β-cells to compensate for insulin resistance in obesity that is linked to a biocommunication between adipose tissue and β-cells.
Collapse
Affiliation(s)
- Jonas Laget
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; RD-Néphrologie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Agathe Nouvel
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jérémy Leroy
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Laura Jeanson
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Sylvie Péraldi-Roux
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | | | | |
Collapse
|
17
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Markovič R, Grubelnik V, Vošner HB, Kokol P, Završnik M, Janša K, Zupet M, Završnik J, Marhl M. Age-Related Changes in Lipid and Glucose Levels Associated with Drug Use and Mortality: An Observational Study. J Pers Med 2022; 12:jpm12020280. [PMID: 35207767 PMCID: PMC8876997 DOI: 10.3390/jpm12020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The pathogenesis of type 2 diabetes mellitus is complex and still unclear in some details. The main feature of diabetes mellitus is high serum glucose, and the question arises of whether there are other statistically observable dysregulations in laboratory measurements before the state of hyperglycemia becomes severe. In the present study, we aim to examine glucose and lipid profiles in the context of age, sex, medication use, and mortality. Methods: We conducted an observational study by analyzing laboratory data from 506,083 anonymized laboratory tests from 63,606 different patients performed by a regional laboratory in Slovenia between 2008 and 2019. Laboratory data-based results were evaluated in the context of medication use and mortality. The medication use database contains anonymized records of 1,632,441 patients from 2013 to 2018, and mortality data were obtained for the entire Slovenian population. Results: We show that the highest percentage of the population with elevated glucose levels occurs approximately 20 years later than the highest percentage with lipid dysregulation. Remarkably, two distinct inflection points were observed in these laboratory results. The first inflection point occurs at ages 55 to 59 years, corresponding to the greatest increase in medication use, and the second coincides with the sharp increase in mortality at ages 75 to 79 years. Conclusions: Our results suggest that medications and mortality are important factors affecting population statistics and must be considered when studying metabolic disorders such as dyslipidemia and hyperglycemia using laboratory data.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia;
- Faculty of Health and Social Sciences, 2380 Slovenj Gradec, Slovenia
- Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Matej Završnik
- Department of Endocrinology and Diabetology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Karmen Janša
- The Health Insurance Institute of Slovenia, Miklošičeva cesta 24, 1507 Ljubljana, Slovenia; (K.J.); (M.Z.)
| | - Marjeta Zupet
- The Health Insurance Institute of Slovenia, Miklošičeva cesta 24, 1507 Ljubljana, Slovenia; (K.J.); (M.Z.)
| | - Jernej Završnik
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Community Healthcare Center Dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia;
- Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
- Science and Research Center Koper, 6000 Koper, Slovenia
- Correspondence: (J.Z.); (M.M.)
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence: (J.Z.); (M.M.)
| |
Collapse
|
19
|
Schwartz SS, Rachfal AW, Corkey BE. The time is now for new, lower diabetes diagnostic thresholds. Trends Endocrinol Metab 2022; 33:4-7. [PMID: 34776305 DOI: 10.1016/j.tem.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Current thresholds for diagnosing diabetes are outdated and do not represent advancements in disease understanding or ability to impact course. Today, evidence supports intervening earlier along the disease continuum to mitigate transition to frank disease and delay/reduce adverse clinical outcomes. We believe it is time for lower diabetes diagnostic criteria.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Stanley Schwartz MD, LLC, Main Line Health System, Wynnewood, PA, USA; Emeritus Professor, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA.
| | | | - Barbara E Corkey
- Emeritus Professor, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 2022; 50:102236. [PMID: 35144052 PMCID: PMC8844812 DOI: 10.1016/j.redox.2022.102236] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
This review addresses the role of the essential trace element, selenium, in type-2 diabetes mellitus (T2DM) and its metabolic co-morbidities, i.e., metabolic syndrome, obesity and non-alcoholic fatty liver disease. We refer to the dietary requirements of selenium and the key physiological roles of selenoproteins. We explore the dysregulated fuel metabolism in T2DM and its co-morbidities, emphasizing the relevance of inflammation and oxidative stress. We describe the epidemiology of observational and experimental studies of selenium in diabetes and related conditions, explaining that the interaction between selenium status and glucose control is not limited to hyperglycemia but extends to hypoglycemia. We propose that the association between high plasma/serum selenium and T2DM/fasting plasma glucose observed in many cross-sectional studies may rely on the upregulation of hepatic selenoprotein-P biosynthesis in conditions of hyperglycemia and insulin resistance. While animal studies have revealed potential molecular mechanisms underlying adverse effects of severe selenium/selenoprotein excess and deficiency in the pathogenesis of insulin resistance and β-cell dysfunction, their translational significance is rather limited. Importantly, dietary selenium supplementation does not appear to be a major causal factor for the development of T2DM in humans though we cannot currently exclude a small contribution of selenium on top of other risk factors, in particular if it is ingested at high (supranutritional) doses. Elevated selenium biomarkers that are often measured in T2DM patients are more likely to be a consequence, rather than a cause, of diabetes.
Collapse
|
21
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
22
|
Perng W, Kelsey MM, Sauder KA, Dabelea D. How does exposure to overnutrition in utero lead to childhood adiposity? Testing the insulin hypersecretion hypothesis in the EPOCH cohort. Diabetologia 2021; 64:2237-2246. [PMID: 34272965 DOI: 10.1007/s00125-021-05515-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Our aim was to explore metabolic pathways linking overnutrition in utero to development of adiposity in normal-weight children. METHODS We included 312 normal-weight youth exposed or unexposed to overnutrition in utero (maternal BMI ≥25 kg/m2 or gestational diabetes). Fasting insulin, glucose and body composition were measured at age ~10 years (baseline) and ~16 years (follow-up). We examined associations of overnutrition in utero with baseline fasting insulin, followed by associations of baseline fasting insulin with adiposity (BMI z score [BMIZ], subcutaneous adipose tissue [SAT], visceral adipose tissue [VAT]), insulin resistance (HOMA-IR) and fasting glucose during follow-up. RESULTS >All participants were normal weight at baseline (BMIZ -0.32 ± 0.88), with no difference in BMIZ for exposed vs unexposed youth (p = 0.14). Of the study population, 47.8% were female sex and 47.4% were of white ethnicity. Overnutrition in utero corresponded with 14% higher baseline fasting insulin (geometric mean ratio 1.14 [95% CI 1.01, 1.29]), even after controlling for VAT/SAT ratio. Higher baseline fasting insulin corresponded with higher BMIZ (0.41 [95% CI 0.26, 0.55]), SAT (13.9 [95% CI 2.4, 25.4] mm2), VAT (2.0 [95% CI 0.1, 3.8] mm2), HOMA-IR (0.87 [95% CI 0.68, 1.07]) and fasting glucose (0.23 [95% CI 0.09, 0.38] SD). CONCLUSIONS/INTERPRETATION Overnutrition in utero may result in hyperinsulinaemia during childhood, preceding development of adiposity. However, our study started at age 10 years, so earlier metabolic changes in response to overnutrition were not taken into account. Longitudinal studies in normal-weight youth starting earlier in life, and with repeated measurements of body weight, fat distribution, insulin sensitivity, beta cell function and blood glucose levels, are needed to clarify the sequence of metabolic changes linking early-life exposures to adiposity and dysglycaemia.
Collapse
Affiliation(s)
- Wei Perng
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Megan M Kelsey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine A Sauder
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dana Dabelea
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Wang X, Younis S, Cen J, Wang Y, Krizhanovskii C, Andersson L, Welsh N. ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia 2021; 64:2292-2305. [PMID: 34296320 PMCID: PMC8423654 DOI: 10.1007/s00125-021-05517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS ZBED6 (zinc finger, BED-type containing 6) is known to regulate muscle mass by suppression of Igf2 gene transcription. In insulin-producing cell lines, ZBED6 maintains proliferative capacity at the expense of differentiation and beta cell function. The aim was to study the impact of Zbed6 knockout on beta cell function and glucose tolerance in C57BL/6 mice. METHODS Beta cell area and proliferation were determined in Zbed6 knockout mice using immunohistochemical analysis. Muscle and fat distribution were assessed using micro-computed tomography. Islet gene expression was assessed by RNA sequencing. Effects of a high-fat diet were analysed by glucose tolerance and insulin tolerance tests. ZBED6 was overexpressed in EndoC-βH1 cells and human islet cells using an adenoviral vector. Beta cell cell-cycle analysis, insulin release and mitochondrial function were studied in vitro using propidium iodide staining and flow cytometry, ELISA, the Seahorse technique, and the fluorescent probes JC-1 and MitoSox. RESULTS Islets from Zbed6 knockout mice showed lowered expression of the cell cycle gene Pttg1, decreased beta cell proliferation and decreased beta cell area, which occurred independently from ZBED6 effects on Igf2 gene expression. Zbed6 knockout mice, but not wild-type mice, developed glucose intolerance when given a high-fat diet. The high-fat diet Zbed6 knockout islets displayed upregulated expression of oxidative phosphorylation genes and genes associated with beta cell differentiation. In vitro, ZBED6 overexpression resulted in increased EndoC-βH1 cell proliferation and a reduced glucose-stimulated insulin release in human islets. ZBED6 also reduced mitochondrial JC-1 J-aggregate formation, mitochondrial oxygen consumption rates (OCR) and mitochondrial reactive oxygen species (ROS) production, both at basal and palmitate + high glucose-stimulated conditions. ZBED6-induced inhibition of OCR was not rescued by IGF2 addition. ZBED6 reduced levels of the mitochondrial regulator PPAR-γ related coactivator 1 protein (PRC) and bound its promoter/enhancer region. Knockdown of PRC resulted in a lowered OCR. CONCLUSIONS/INTERPRETATION It is concluded that ZBED6 is required for normal beta cell replication and also limits excessive beta cell mitochondrial activation in response to an increased functional demand. ZBED6 may act, at least in part, by restricting PRC-mediated mitochondrial activation/ROS production, which may lead to protection against beta cell dysfunction and glucose intolerance in vivo.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yun Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Camilla Krizhanovskii
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX, USA.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Johnson JD. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 2021; 64:2138-2146. [PMID: 34296322 DOI: 10.1007/s00125-021-05505-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Hundreds of millions of people are affected by hyperinsulinaemia, insulin resistance, obesity and the dysglycaemia that mark a common progression from metabolic health to type 2 diabetes. Although the relative contribution of these features and the order in which they appear may differ between individuals, the common clustering and seemingly progressive nature of type 2 diabetes aetiology has guided research and clinical practice in this area for decades. At the same time, lively debate around the causal relationships between these features has continued, as new data from human trials and highly controlled animal studies are presented. This 'For debate' article was prompted by the review in Diabetologia by Esser, Utzschneider and Kahn ( https://doi.org/10.1007/s00125-020-05245-x ), with the purpose of reviewing established and emerging data that provide insight into the relative contributions of hyperinsulinaemia and impaired glucose-stimulated insulin secretion in progressive stages between health, obesity and diabetes. It is concluded that these beta cell defects are not mutually exclusive and that they are both important, but at different stages.
Collapse
Affiliation(s)
- James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
- Institute for Personalized Therapeutic Nutrition, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Abstract
PRACTICAL RELEVANCE Up to 40% of the domestic feline population is overweight or obese. Obesity in cats leads to insulin resistance via multiple mechanisms, with each excess kilogram of body weight resulting in a 30% decline in insulin sensitivity. Obese, insulin-resistant cats with concurrent beta-cell dysfunction are at risk of progression to overt diabetes mellitus. APPROACH TO MANAGEMENT In cats that develop diabetes, appropriate treatment includes dietary modification to achieve ideal body condition (for reduction of insulin resistance), and optimization of diet composition and insulin therapy (for glycemic control and the chance of diabetic remission). Initially, as many obese cats that become diabetic will have lost a significant amount of weight and muscle mass by the time of presentation, some degree of diabetic control should be attempted with insulin before initiating any caloric restriction. Once body weight has stabilized, if further weight loss is needed, a diet with ≤ 12-15% carbohydrate metabolizable energy (ME) and >40% protein ME should be fed at 80% of resting energy requirement for ideal weight, with the goal of 0.5-1% weight loss per week. Other approaches may be necessary in some cats that need either substantial caloric restriction or do not find low carbohydrate diets palatable. Long-acting insulins are preferred as initial choices and oral antidiabetic drugs can be used in combination with diet if owners are unable or unwilling to give insulin injections. Glucagon-like peptide-1 (GLP-1) agonists have recently been investigated for use as adjunctive treatment in diabetic cats and sodium-glucose cotransporter-2 (SGLT2) inhibitors are currently being evaluated in clinical trials. EVIDENCE BASE The information in this review is drawn from: epidemiological studies on obesity prevalence; prospective longitudinal studies of development of insulin resistance with obesity; randomized controlled studies; and expert opinion regarding the effect of diet on diabetes management in cats.
Collapse
Affiliation(s)
- Melissa Clark
- Gulf Coast Veterinary Specialists, 8042 Katy Freeway, Houston, TX 77024, USA
| | - Margarethe Hoenig
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
27
|
Sanchez PKM, Khazaei M, Gatineau E, Geravandi S, Lupse B, Liu H, Dringen R, Wojtusciszyn A, Gilon P, Maedler K, Ardestani A. LDHA is enriched in human islet alpha cells and upregulated in type 2 diabetes. Biochem Biophys Res Commun 2021; 568:158-166. [PMID: 34217973 DOI: 10.1016/j.bbrc.2021.06.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022]
Abstract
The lactate dehydrogenase isoform A (LDHA) is a key metabolic enzyme that preferentially catalyzes the conversion of pyruvate to lactate. Whereas LDHA is highly expressed in many tissues, its expression is turned off in the differentiated adult β-cell within the pancreatic islets. The repression of LDHA under normal physiological condition and its inappropriate upregulation under a diabetogenic environment is well-documented in rodent islets/β-cells but little is known about LDHA expression in human islet cells and whether its abundance is altered under diabetic conditions. Analysis of public single-cell RNA-seq (sc-RNA seq) data as well as cell type-specific immunolabeling of human pancreatic islets showed that LDHA was mainly localized in human α-cells while it is expressed at a very low level in β-cells. Furthermore, LDHA, both at mRNA and protein, as well as lactate production is upregulated in human pancreatic islets exposed to chronic high glucose treatment. Microscopic analysis of stressed human islets and autopsy pancreases from individuals with type 2 diabetes (T2D) showed LDHA upregulation mainly in human α-cells. Pharmacological inhibition of LDHA in isolated human islets enhanced insulin secretion under physiological conditions but did not significantly correct the deregulated secretion of insulin or glucagon under diabetic conditions.
Collapse
Affiliation(s)
| | - Mona Khazaei
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Eva Gatineau
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Anne Wojtusciszyn
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Laurenti MC, Matveyenko A, Vella A. Measurement of Pulsatile Insulin Secretion: Rationale and Methodology. Metabolites 2021; 11:409. [PMID: 34206296 PMCID: PMC8305896 DOI: 10.3390/metabo11070409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Pancreatic β-cells are responsible for the synthesis and exocytosis of insulin in response to an increase in circulating glucose. Insulin secretion occurs in a pulsatile manner, with oscillatory pulses superimposed on a basal secretion rate. Insulin pulses are a marker of β-cell health, and secretory parameters, such as pulse amplitude, time interval and frequency distribution, are impaired in obesity, aging and type 2 diabetes. In this review, we detail the mechanisms of insulin production and β-cell synchronization that regulate pulsatile insulin secretion, and we discuss the challenges to consider when measuring fast oscillatory secretion in vivo. These include the anatomical difficulties of measuring portal vein insulin noninvasively in humans before the hormone is extracted by the liver and quickly removed from the circulation. Peripheral concentrations of insulin or C-peptide, a peptide cosecreted with insulin, can be used to estimate their secretion profile, but mathematical deconvolution is required. Parametric and nonparametric approaches to the deconvolution problem are evaluated, alongside the assumptions and trade-offs required for their application in the quantification of unknown insulin secretory rates from known peripheral concentrations. Finally, we discuss the therapeutical implication of targeting impaired pulsatile secretion and its diagnostic value as an early indicator of β-cell stress.
Collapse
Affiliation(s)
- Marcello C. Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| |
Collapse
|
29
|
Montefusco L, Ben Nasr M, D'Addio F, Loretelli C, Rossi A, Pastore I, Daniele G, Abdelsalam A, Maestroni A, Dell'Acqua M, Ippolito E, Assi E, Usuelli V, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Finzi G, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Nebuloni M, Folli F, Zuccotti GV, Galli M, Fiorina P. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 2021; 3:774-785. [PMID: 34035524 PMCID: PMC9931026 DOI: 10.1038/s42255-021-00407-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.
Collapse
Affiliation(s)
- Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Antonio Rossi
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuseppe Daniele
- Metabolic Diseases, Department of Medicine, University of Pisa, Pisa, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Marco Dell'Acqua
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Division of Endocrinology, Aziende Socio Sanitarie Territoriali Fatebenefratelli Sacco, Milan, Italy
| | - Elio Ippolito
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Roberta Maria Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Enrica Chebat
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Morpurgo
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | | | - Giovanna Finzi
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, Italy
| | - Reza Abdi
- Renal Division and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Renal Division and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefano Rusconi
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Agostino Riva
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università di Milano, Milan, Italy
| | - Manuela Nebuloni
- Department of Pathology, Papa Giovanni XXIII Hospital, Bergamo, Italy
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, Italy
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Department of Pediatrics, Children's Hospital Buzzi, Università di Milano, Milan, Italy
| | - Massimo Galli
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Lin H, Yan Y, Luo Y, So WY, Wei X, Zhang X, Yang X, Zhang J, Su Y, Yang X, Zhang B, Zhang K, Jiang N, Chow BKC, Han W, Wang F, Rao F. IP 6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat Commun 2021; 12:2461. [PMID: 33911083 PMCID: PMC8080631 DOI: 10.1038/s41467-021-22941-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
COP1 and COP9 signalosome (CSN) are the substrate receptor and deneddylase of CRL4 E3 ligase, respectively. How they functionally interact remains unclear. Here, we uncover COP1–CSN antagonism during glucose-induced insulin secretion. Heterozygous Csn2WT/K70E mice with partially disrupted binding of IP6, a CSN cofactor, display congenital hyperinsulinism and insulin resistance. This is due to increased Cul4 neddylation, CRL4COP1 E3 assembly, and ubiquitylation of ETV5, an obesity-associated transcriptional suppressor of insulin secretion. Hyperglycemia reciprocally regulates CRL4-CSN versus CRL4COP1 assembly to promote ETV5 degradation. Excessive ETV5 degradation is a hallmark of Csn2WT/K70E, high-fat diet-treated, and ob/ob mice. The CRL neddylation inhibitor Pevonedistat/MLN4924 stabilizes ETV5 and remediates the hyperinsulinemia and obesity/diabetes phenotypes of these mice. These observations were extended to human islets and EndoC-βH1 cells. Thus, a CRL4COP1-ETV5 proteolytic checkpoint licensing GSIS is safeguarded by IP6-assisted CSN-COP1 competition. Deregulation of the IP6-CSN-CRL4COP1-ETV5 axis underlies hyperinsulinemia and can be intervened to reduce obesity and diabetic risk. Mediators of insulin signalling are targets of cullin-RING ubiquitin ligases (CRL) that mediate protein degradation, but the role of protein degradation in insulin signalling is incompletely understood. Here, the authors identified a glucose-responsive CRL4-COP1-ETV5 proteolytic axis that promotes insulin secretion, and is inhibited under hypoglycemia.
Collapse
Affiliation(s)
- Hong Lin
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuan Yan
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Luo
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Yan So
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Xiayun Wei
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaozhe Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bobo Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kangjun Zhang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Feng Rao
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Gordon BA, Taylor CJ, Church JE, Cousins SD. A Comparison of the Gluco-Regulatory Responses to High-Intensity Interval Exercise and Resistance Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18010287. [PMID: 33401694 PMCID: PMC7795282 DOI: 10.3390/ijerph18010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
High-intensity interval exercise and resistance exercise both effectively lower blood glucose; however, it is not clear whether different regulatory mechanisms exist. This randomised cross-over study compared the acute gluco-regulatory and the physiological responses of high-intensity interval exercise and resistance exercise. Sixteen (eight males and eight females) recreationally active individuals, aged (mean ± SD) 22 ± 7 years, participated with a seven-day period between interventions. The high-intensity interval exercise trial consisted of twelve, 30 s cycling intervals at 80% of peak power capacity and 90 s active recovery. The resistance exercise trial consisted of four sets of 10 repetitions for three lower-limb exercises at 80% 1-RM, matched for duration of high-intensity interval exercise. Exercise was performed after an overnight fast, with blood samples collected every 30 min, for two hours after exercise. There was a significant interaction between time and intervention for glucose (p = 0.02), which was, on average (mean ± SD), 0.7 ± 0.7 mmol∙L−1 higher following high-intensity interval exercise, as compared to resistance exercise. Cortisol concentration over time was affected by intervention (p = 0.03), with cortisol 70 ± 103 ng∙mL−1 higher (p = 0.015), on average, following high-intensity interval exercise. Resistance exercise did not induce the acute rise in glucose that was induced by high-intensity interval exercise and appears to be an appropriate alternative to positively regulate blood glucose.
Collapse
Affiliation(s)
- Brett A. Gordon
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia;
- Correspondence: ; Tel.: +61-3-5444-7680
| | - Caroline J. Taylor
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.J.T.); (J.E.C.)
| | - Jarrod E. Church
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.J.T.); (J.E.C.)
| | - Stephen D. Cousins
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
32
|
Rakshit K, Matveyenko AV. Induction of Core Circadian Clock Transcription Factor Bmal1 Enhances β-Cell Function and Protects Against Obesity-Induced Glucose Intolerance. Diabetes 2021; 70:143-154. [PMID: 33087455 PMCID: PMC7881843 DOI: 10.2337/db20-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by β-cell dysfunction as a result of impaired glucose-stimulated insulin secretion (GSIS). Studies show that β-cell circadian clocks are important regulators of GSIS and glucose homeostasis. These observations raise the question about whether enhancement of the circadian clock in β-cells will confer protection against β-cell dysfunction under diabetogenic conditions. To test this, we used an approach by first generating mice with β-cell-specific inducible overexpression of Bmal1 (core circadian transcription factor; β-Bmal1 OV ). We subsequently examined the effects of β-Bmal1 OV on the circadian clock, GSIS, islet transcriptome, and glucose metabolism in the context of diet-induced obesity. We also tested the effects of circadian clock-enhancing small-molecule nobiletin on GSIS in mouse and human control and T2DM islets. We report that β-Bmal1 OV mice display enhanced islet circadian clock amplitude and augmented in vivo and in vitro GSIS and are protected against obesity-induced glucose intolerance. These effects were associated with increased expression of purported BMAL1-target genes mediating insulin secretion, processing, and lipid metabolism. Furthermore, exposure of isolated islets to nobiletin enhanced β-cell secretory function in a Bmal1-dependent manner. This work suggests therapeutic targeting of the circadian system as a potential strategy to counteract β-cell failure under diabetogenic conditions.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic School of Medicine, Rochester, MN
| |
Collapse
|
33
|
Ashraf A, Palakkott A, Ayoub MA. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr Diabetes Rev 2021; 17:198-206. [PMID: 32496987 DOI: 10.2174/1573399816666200604122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is recognized as the most common and the world's fastest-growing chronic disease with severe complications leading to increased mortality. Many strategies exist for the management of DM and its control, including treatment with insulin and insulin analogs, oral hypoglycemic therapy such as insulin secretion stimulators and insulin sensitizers, and diet and physical training. Over the years, many types of drugs and molecules with an interesting pharmacological diversity have been developed and proposed for their anti-diabetic potential. Such molecules target diverse key receptors, enzymes, and regulatory/signaling proteins known to be directly or indirectly involved in the pathophysiology of DM. Among them, insulin receptor (IR) is undoubtedly the target of choice for its central role in insulin-mediated glucose homeostasis and its utilization by the major insulin-sensitive tissues such as skeletal muscles, adipose tissue, and the liver. In this review, we focus on the implication of antibodies targeting IR in the pathology of DM as well as the recent advances in the development of IR antibodies as promising anti-diabetic drugs. The challenge still entails development of more powerful, highly selective, and safer anti-diabetic drugs.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Cochrane VA, Wu Y, Yang Z, ElSheikh A, Dunford J, Kievit P, Fortin DA, Shyng SL. Leptin modulates pancreatic β-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors. J Biol Chem 2020; 295:17281-17297. [PMID: 33037073 PMCID: PMC7863909 DOI: 10.1074/jbc.ra120.015489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic β-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in β-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase-mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, β-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate β-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.
Collapse
Affiliation(s)
- Veronica A Cochrane
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Yi Wu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA; Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Jeremy Dunford
- Department of Integrated Physiology and Neuroscience, College of Arts and Sciences, Washington State University, Vancouver, Washington, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dale A Fortin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA; Department of Integrated Physiology and Neuroscience, College of Arts and Sciences, Washington State University, Vancouver, Washington, USA.
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
35
|
Chareyron I, Christen S, Moco S, Valsesia A, Lassueur S, Dayon L, Wollheim CB, Santo Domingo J, Wiederkehr A. Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells. Diabetologia 2020; 63:2628-2640. [PMID: 32960311 PMCID: PMC7641954 DOI: 10.1007/s00125-020-05275-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023]
Abstract
AIMS/HYPOTHESIS In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.
Collapse
Affiliation(s)
- Isabelle Chareyron
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stefan Christen
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Steve Lassueur
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Jaime Santo Domingo
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland.
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Corkey BE, Deeney JT. The Redox Communication Network as a Regulator of Metabolism. Front Physiol 2020; 11:567796. [PMID: 33178037 PMCID: PMC7593883 DOI: 10.3389/fphys.2020.567796] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Key tissues are dysfunctional in obesity, diabetes, cardiovascular disease, fatty liver and other metabolic diseases. Focus has centered on individual organs as though each was isolated. Attention has been paid to insulin resistance as the key relevant pathosis, particularly insulin receptor signaling. However, many tissues play important roles in synergistically regulating metabolic homeostasis and should be considered part of a network. Our approach identifies redox as an acute regulator of the greater metabolic network. Redox reactions involve the transfer of electrons between two molecules and in this work refer to commonly shared molecules, reflective of energy state, that can readily lose electrons to increase or gain electrons to decrease the oxidation state of molecules including NAD(P), NAD(P)H, and thiols. Metabolism alters such redox molecules to impact metabolic function in many tissues, thus, responding to anabolic and catabolic stimuli appropriately and synergistically. It is also important to consider environmental factors that have arisen or increased in recent decades as putative modifiers of redox and reactive oxygen species (ROS) and thus metabolic state. ROS are highly reactive, controlled by the thiol redox state and influence the function of thousands of proteins. Lactate (L) and pyruvate (P) in cells are present in a ratio of about 10 reflective of the cytosolic NADH to NAD ratio. Equilibrium is maintained in cells because lactate dehydrogenase is highly expressed and near equilibrium. The major source of circulating lactate and pyruvate is muscle, although other tissues also contribute. Acetoacetate (A) is produced primarily by liver mitochondria where β-hydroxybutyrate dehydrogenase is highly expressed, and maintains a ratio of β-hydroxybutyrate (β) to A of about 2, reflective of the mitochondrial NADH to NAD ratio. All four metabolites as well as the thiols, cysteine and glutathione, are transported into and out of cells, due to high expression of relevant transporters. Our model supports regulation of all collaborating metabolic organs through changes in circulating redox metabolites, regardless of whether change was initiated exogenously or by a single organ. Validation of these predictions suggests novel ways to understand function by monitoring and impacting redox state.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
37
|
Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020; 63:2007-2021. [PMID: 32894311 DOI: 10.1007/s00125-020-05245-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Obesity and insulin resistance are associated with the development of type 2 diabetes. It is well accepted that beta cell dysfunction is required for hyperglycaemia to occur. The prevailing view is that, in the presence of insulin resistance, beta cell dysfunction that occurs early in the course of the disease process is the critical abnormality. An alternative model has been proposed in which primary beta cell overstimulation results in insulin hypersecretion that then leads to the development of obesity and insulin resistance, and ultimately to beta cell exhaustion. In this review, data from preclinical and clinical studies, including intervention studies, are discussed in the context of these models. The preponderance of the data supports the view that an early beta cell functional defect is the more likely mechanism underlying the pathogenesis of hyperglycaemia in the majority of individuals who develop type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristina M Utzschneider
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
van Vliet S, Koh HCE, Patterson BW, Yoshino M, LaForest R, Gropler RJ, Klein S, Mittendorfer B. Obesity Is Associated With Increased Basal and Postprandial β-Cell Insulin Secretion Even in the Absence of Insulin Resistance. Diabetes 2020; 69:2112-2119. [PMID: 32651241 PMCID: PMC7506835 DOI: 10.2337/db20-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
We tested the hypothesis that obesity, independent of insulin resistance, is associated with increased insulin secretion. We compared insulin kinetics before and after glucose ingestion in lean healthy people and people with obesity who were matched on multiorgan insulin sensitivity (inhibition of adipose tissue lipolysis and glucose production and stimulation of muscle glucose uptake) as assessed by using a two-stage hyperinsulinemic-euglycemic pancreatic clamp procedure in conjunction with glucose and palmitate tracer infusions and positron emission tomography. We also evaluated the effect of diet-induced weight loss on insulin secretion in people with obesity who did not improve insulin sensitivity despite marked (∼20%) weight loss. Basal and postprandial insulin secretion rates were >50% greater in people with obesity than lean people even though insulin sensitivity was not different between groups. Weight loss in people with obesity decreased insulin secretion by 35% even though insulin sensitivity did not change. These results demonstrate that increased insulin secretion in people with obesity is associated with excess adiposity itself and is not simply a compensatory response to insulin resistance. These findings have important implications regarding the pathogenesis of diabetes because hyperinsulinemia causes insulin resistance and insulin hypersecretion is an independent risk factor for developing diabetes.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Richard LaForest
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St. Louis, MO
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
39
|
Das D, Das A, Sahu M, Mishra SS, Khan S, Bejugam PR, Rout PK, Das A, Bano S, Mishra GP, Raghav SK, Dixit A, Panda AC. Identification and Characterization of Circular Intronic RNAs Derived from Insulin Gene. Int J Mol Sci 2020; 21:ijms21124302. [PMID: 32560282 PMCID: PMC7352490 DOI: 10.3390/ijms21124302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a large family of noncoding RNAs that have emerged as novel regulators of gene expression. However, little is known about the function of circRNAs in pancreatic β-cells. Here, transcriptomic analysis of mice pancreatic islet RNA-sequencing data identified 77 differentially expressed circRNAs between mice fed with a normal diet and a high-fat diet. Surprisingly, multiple circRNAs were derived from the intron 2 of the preproinsulin 2 (Ins2) gene and are termed as circular intronic (ci)-Ins2. The expression of ci-Ins2 transcripts in mouse pancreatic islets, and βTC6 cells were confirmed by reverse transcription PCR, DNA sequencing, and RNase R treatment experiments. The level of ci-Ins2 was altered in βTC6 cells upon exposure to elevated levels of palmitate and glucose. Computational analysis predicted the interaction of several RNA-binding proteins with ci-Ins2 and their flanking region, suggesting their role in the ci-Ins2 function or biogenesis. Additionally, bioinformatics analysis predicted the association of several microRNAs with ci-Ins2. Gene ontology and pathway analysis of genes targeted by miRNAs associated with ci-Ins2 suggested the regulation of several key biological processes. Together, our findings indicate that differential expression of circRNAs, especially ci-Ins2 transcripts, may regulate β-cell function and may play a critical role in the development of diabetes.
Collapse
Affiliation(s)
- Debojyoti Das
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aniruddha Das
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Mousumi Sahu
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Smruti Sambhav Mishra
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Shaheerah Khan
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Pruthvi R. Bejugam
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Pranita K. Rout
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Arundhati Das
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shehnaz Bano
- National Center for Cell Sciences (NCCS), Pune, Maharashtra 411007, India;
| | - Gyan Prakash Mishra
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Sunil K. Raghav
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Anshuman Dixit
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
| | - Amaresh C. Panda
- Institute of Life Sciences (ILS), Nalco Square, Bhubaneswar, Odisha 751023, India; (D.D.); (A.D.); (M.S.); (S.S.M.); (S.K.); (P.R.B.); (P.K.R.); (A.D.); (G.P.M.); (S.K.R.); (A.D.)
- Correspondence: ; Tel.: +91-674-230-43-14
| |
Collapse
|
40
|
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2020; 129:4001-4008. [PMID: 31424428 DOI: 10.1172/jci129188] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a society where physical activity is limited and food supply is abundant, metabolic diseases are becoming a serious epidemic. Metabolic syndrome (MetS) represents a cluster of metabolically related symptoms such as obesity, hypertension, dyslipidemia, and carbohydrate intolerance, and significantly increases type 2 diabetes mellitus risk. Insulin resistance and hyperinsulinemia are consistent characteristics of MetS, but which of these features is the initiating insult is still widely debated. Regardless, both of these conditions trigger adverse responses from the pancreatic β cell, which is responsible for producing, storing, and releasing insulin to maintain glucose homeostasis. The observation that the degree of β cell dysfunction correlates with the severity of MetS highlights the need to better understand β cell dysfunction in the development of MetS. This Review focuses on the current understanding from rodent and human studies of the progression of β cell responses during the development of MetS, as well as recent findings addressing the complexity of β cell identity and heterogeneity within the islet during disease progression. The differential responses observed in β cells together with the heterogeneity in disease phenotypes within the patient population emphasize the need to better understand the mechanisms behind β cell adaptation, identity, and dysfunction in MetS.
Collapse
Affiliation(s)
| | - Jane Eb Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | |
Collapse
|
41
|
Taddeo EP, Alsabeeh N, Baghdasarian S, Wikstrom JD, Ritou E, Sereda S, Erion K, Li J, Stiles L, Abdulla M, Swanson Z, Wilhelm JJ, Bellin MD, Kibbey RG, Liesa M, Shirihai OS. Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels. Diabetes 2020; 69:131-145. [PMID: 31740442 PMCID: PMC6971491 DOI: 10.2337/db19-0379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non-glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak-mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid-stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Evan P Taddeo
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nour Alsabeeh
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Siyouneh Baghdasarian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jakob D Wikstrom
- Dermatology and Venereology Unit, Department of Medicine, Karolinska Institutet, and Department of Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Ritou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel Sereda
- Endocrinology, Diabetes, Nutrition and Weight Management Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Karel Erion
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jin Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Muhamad Abdulla
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Zachary Swanson
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Joshua J Wilhelm
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Melena D Bellin
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Orian S Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
42
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
43
|
Huebschmann AG, Huxley RR, Kohrt WM, Zeitler P, Regensteiner JG, Reusch JEB. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019; 62:1761-1772. [PMID: 31451872 PMCID: PMC7008947 DOI: 10.1007/s00125-019-4939-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
By 2017 estimates, diabetes mellitus affects 425 million people globally; approximately 90-95% of these have type 2 diabetes. This narrative review highlights two domains of sex differences related to the burden of type 2 diabetes across the life span: sex differences in the prevalence and incidence of type 2 diabetes, and sex differences in the cardiovascular burden conferred by type 2 diabetes. In the presence of type 2 diabetes, the difference in the absolute rates of cardiovascular disease (CVD) between men and women lessens, albeit remaining higher in men. Large-scale observational studies suggest that type 2 diabetes confers 25-50% greater excess risk of incident CVD in women compared with men. Physiological and behavioural mechanisms that may underpin both the observed sex differences in the prevalence of type 2 diabetes and the associated cardiovascular burden are discussed in this review. Gender differences in social behavioural norms and disparities in provider-level treatment patterns are also highlighted, but not described in detail. We conclude by discussing research gaps in this area that are worthy of further investigation.
Collapse
Affiliation(s)
- Amy G Huebschmann
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel R Huxley
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Wendy M Kohrt
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of Geriatric Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Philip Zeitler
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Judith G Regensteiner
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Cardiology, University of Colorado School of Medicine (CU-SOM), Aurora, CO, USA
| | - Jane E B Reusch
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA.
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
44
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
45
|
Adulcikas J, Sonda S, Norouzi S, Sohal SS, Myers S. Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes. Nutrients 2019; 11:nu11020408. [PMID: 30781350 PMCID: PMC6412268 DOI: 10.3390/nu11020408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/13/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease associated with dysfunctional metabolic processes that lead to abnormally high levels of blood glucose. Preceding the development of T2DM is insulin resistance (IR), a disorder associated with suppressed or delayed responses to insulin. The effects of this response are predominately mediated through aberrant cell signalling processes and compromised glucose uptake into peripheral tissue including adipose, liver and skeletal muscle. Moreover, a major factor considered to be the cause of IR is endoplasmic reticulum (ER) stress. This subcellular organelle plays a pivotal role in protein folding and processes that increase ER stress, leads to maladaptive responses that result in cell death. Recently, zinc and the proteins that transport this metal ion have been implicated in the ER stress response. Specifically, the ER-specific zinc transporter ZIP7, coined the "gate-keeper" of zinc release from the ER into the cytosol, was shown to be essential for maintaining ER homeostasis in intestinal epithelium and myeloid leukaemia cells. Moreover, ZIP7 controls essential cell signalling pathways similar to insulin and activates glucose uptake in skeletal muscle. Accordingly, ZIP7 may be essential for the control of ER localized zinc and mechanisms that disrupt this process may lead to ER-stress and contribute to IR. Accordingly, understanding the mechanisms of ZIP7 action in the context of IR may provide opportunities to develop novel therapeutic options to target this transporter in the treatment of IR and subsequent T2DM.
Collapse
Affiliation(s)
- John Adulcikas
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sabrina Sonda
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Shaghayegh Norouzi
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sukhwinder Singh Sohal
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| |
Collapse
|