1
|
Yuan X, Li D, Wang K, Lauand F, Zhang M, Fang H, Du Q, Kang L, Alvarez A, Guo X. iGlarLixi effectively reduces residual hyperglycaemia in Chinese people with type 2 diabetes on basal insulin: A post hoc analysis of the LixiLan-L-CN study. Diabetes Obes Metab 2024; 26:5942-5949. [PMID: 39360440 DOI: 10.1111/dom.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
AIM To compare the effects of iGlarLixi versus insulin glargine 100 U/mL (iGlar) on residual hyperglycaemia in Chinese people with uncontrolled type 2 diabetes (T2D) on prior basal insulin (BI) therapy ± oral antidiabetic drugs in the LixiLan-L-CN study (NCT03798080). MATERIALS AND METHODS In this post hoc analysis, residual hyperglycaemia (i.e. HbA1c ≥ 7.0% [≥ 53 mmol/mol] and fasting plasma glucose [FPG] < 7.0 mmol/L) were assessed over 30 weeks. Outcomes were assessed at week 30 in participants with baseline residual hyperglycaemia, including changes from baseline in HbA1c, FPG, 2-hour postprandial glucose (PPG) and daily BI dose, the proportion of participants with HbA1c less than 7.0% (< 53 mmol/mol) and FPG less than 7.0 mmol/L and the incidence of hypoglycaemia. RESULTS Of 421 participants, 124 (29.5%) had baseline residual hyperglycaemia (iGlarLixi, n = 64 [31.7%]; iGlar, n = 60 [29.1%]). At week 30, the residual hyperglycaemia rate decreased to 7.0% with iGlarLixi and increased to 43.3% with iGlar. Among participants with baseline residual hyperglycaemia, a greater proportion achieved both HbA1c and FPG targets at week 30 with iGlarLixi versus iGlar (43.8% vs. 16.7%), and iGlarLixi provided greater reductions in HbA1c (least squares mean [LSM] difference, -0.9% [-9.4 mmol/mol]) and 2-hour PPG (LSM difference, -4.7 mmol/L; both P < .001). Daily BI dose and incidence of hypoglycaemia were similar in the two groups. CONCLUSIONS The findings of this post hoc analysis suggest that iGlarLixi had greater benefits than iGlar in reducing the rate of residual hyperglycaemia over 30 weeks in Chinese people with suboptimally controlled T2D on prior BI-based therapy.
Collapse
Affiliation(s)
| | - Dongmei Li
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Kun Wang
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | - Xiaohui Guo
- Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Basiri R, Cheskin LJ. Enhancing the Impact of Individualized Nutrition Therapy with Real-Time Continuous Glucose Monitoring Feedback in Overweight and Obese Individuals with Prediabetes. Nutrients 2024; 16:4005. [PMID: 39683399 DOI: 10.3390/nu16234005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES prediabetes is a significant risk factor for the development of type 2 diabetes, cardiovascular diseases, chronic kidney disease, and other complications. Early diagnosis of prediabetes, coupled with education on lifestyle changes that support blood glucose management, are crucial for the prevention or delay of type 2 diabetes and related complications. This study aimed to evaluate the impact of incorporating real-time feedback from continuous glucose monitoring (CGM) into individualized nutrition therapy (INT) on blood glucose control in individuals with prediabetes who are overweight or obese. METHODS participants (mean age ± SD: 55 ± 6 years; BMI: 31.1 ± 4.1 kg/m²) were randomly assigned to either the treatment group (n = 15) or the control group (n = 15). Both groups received INT and CGM, but the control group was blinded to the CGM data until the end of this study. Participants were followed for 30 days and visited the lab every 10 days for CGM replacement, study measurements, and dietary consultations. RESULTS the treatment group showed a significant increase in the percentage of time spent in the target blood glucose range (p = 0.02) and a significant decrease in the mean blood glucose concentration (p < 0.05), glucose management indicator (p = 0.02), percent coefficient of variation for blood glucose (p = 0.01), and percent time spent in the high or very high blood glucose ranges (p = 0.04). These changes were not statistically significant for the control group. CONCLUSIONS adding CGM feedback to INT resulted in better management of blood glucose levels in overweight or obese individuals with prediabetes.
Collapse
Affiliation(s)
- Raedeh Basiri
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
- Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Lawrence J Cheskin
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
- Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
- Department of Medicine (GI), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Kaddour N, Benyettou F, Moulai K, Mebarki A, Ghemrawi R, Amir ZC, Merzouk H, Trabolsi A, Mokhtari-Soulimane NA. Efficacy of Oral Nanoparticle-Encapsulated Insulin in Reducing Oxidative Stress and Enhancing Tissue Integrity in a Diabetic Rat Model. Int J Nanomedicine 2024; 19:10961-10981. [PMID: 39493274 PMCID: PMC11529609 DOI: 10.2147/ijn.s468756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Diabetes mellitus, a chronic metabolic disorder, leads to systemic organ damage characterized by oxidative stress and structural alterations, contributing to increased morbidity and mortality. Traditional subcutaneous insulin therapy, while managing hyperglycemia, often falls short in addressing the oxidative damage and preventing organ-specific complications. This study evaluates the therapeutic efficacy of a novel oral nanoparticle-mediated insulin (nCOF/Insulin) against these diabetes-induced changes, comparing it with traditional subcutaneous insulin in a streptozotocin (STZ)-induced diabetic rat model. Methods We induced diabetes in Wistar rats, dividing them into four groups: standard control, diabetic control, diabetic treated with subcutaneous insulin, and diabetic treated with oral nanoparticle-mediated insulin (nCOF/Insulin). Assessments included organ and body weights, histopathological examinations, and oxidative stress markers (MDA and PCOs) across various organs, including the brain, muscle, intestine, spleen, heart, liver, kidney, and adrenal glands. Additionally, we evaluated antioxidant parameters (GSH and catalase) and conducted immunohistochemical analysis of E-cadherin to assess intestinal integrity. Results Our findings reveal that STZ-induced diabetes significantly impacts organ health, with subcutaneous insulin providing limited mitigation and, in some cases, exacerbating oxidative stress. Conversely, oral nCOF/Insulin treatment effectively restored organ and body weights, reduced oxidative stress markers, and mitigated histological damage. This suggests that oral nCOF/Insulin not only offers superior glycemic control but also addresses the underlying oxidative stress. Conclusion nCOF/Insulin emerges as a promising treatment for diabetes, with the potential to improve patient quality of life by ameliorating oxidative stress and preventing organ-specific complications. This study underscores the need for further investigation into the long-term effects and mechanisms of action of oral nCOF/Insulin, aiming to revolutionize diabetes management and treatment strategies.
Collapse
Affiliation(s)
- Nawel Kaddour
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Sciences of Nature and Life, Earth Sciences and Universe (SNVSTU), University of Tlemcen, Tlemcen, 13000, Algeria
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Kawtar Moulai
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Sciences of Nature and Life, Earth Sciences and Universe (SNVSTU), University of Tlemcen, Tlemcen, 13000, Algeria
| | - Abdelouahab Mebarki
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Sciences of Nature and Life, Earth Sciences and Universe (SNVSTU), University of Tlemcen, Tlemcen, 13000, Algeria
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, P.O. Box 112612, United Arab Emirates
| | - Zine-Charaf Amir
- Department of Anatomy and Pathological Cytology, University Hospital Center Mustapha Pacha, Algiers, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Sciences of Nature and Life, Earth Sciences and Universe (SNVSTU), University of Tlemcen, Tlemcen, 13000, Algeria
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Nassima Amel Mokhtari-Soulimane
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Sciences of Nature and Life, Earth Sciences and Universe (SNVSTU), University of Tlemcen, Tlemcen, 13000, Algeria
| |
Collapse
|
4
|
Shi R, Xu W, Feng L, Ye D, Luo B, Liu Y, Cao H, Tang L. Value of Glycemic Dispersion Index in Predicting Major Adverse Cardiovascular Events in Diabetic Patients with Concomitant Acute Coronary Syndrome. Diabetes Metab Syndr Obes 2024; 17:3433-3445. [PMID: 39295645 PMCID: PMC11410034 DOI: 10.2147/dmso.s469436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Aim This investigation aims to assess the predictive value of the glycemic dispersion index (GDI), calculated by incorporating glycated hemoglobin, fasting plasma glucose, and 2-hour postprandial plasma glucose, in predicting major adverse cardiovascular events (MACE) within a 12-month timeframe for diabetic patients with concomitant acute coronary syndrome (ACS). Methods A retrospective study was conducted on 3261 diabetic patients with ACS who were hospitalized in the Department of Cardiology, the Sixth Affiliated Hospital of Kunming Medical University, from January 2016 to July 2022. Based on the inclusion and exclusion criteria, 512 patients were ultimately enrolled in the study. Their general information and laboratory test indicators were collected, and the occurrence of MACE within 12 months after admission was followed up and recorded for the enrolled patients, With the last follow-up having been concluded on July 31, 2023. The enrolled patients were stratified into four groups (Q1, Q2, Q3, Q4) based on their GDI values, from the lowest to the highest. Cox proportional hazards regression analysis and Kaplan-Meier survival analysis were employed to investigate the risk factors associated with MACE occurrence across these groups and to assess the cumulative risk of MACE over time within each group. Results The percentages of enrolled patients experiencing MACE in groups Q1 to Q4 were 10.16%, 12.50%, 15.63%, and 16.41%, respectively. GDI independently predicted the hazards for MACE in enrolled patients. The cumulative risk of MACE over time was considerably more significant in those with a GDI>4.21 than those with a GDI≤4.21. Conclusion The elevated GDI is correlated with an augmented risk of MACE in diabetic patients with concomitant ACS, thereby serving as an early indicator for assessing the unfavorable clinical prognosis of patients. This study offers novel insights into glycemic variability monitoring, enhancing prevention and treatment strategies for cardiovascular disease in people with diabetes.
Collapse
Affiliation(s)
- Rui Shi
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Wenbo Xu
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Lei Feng
- Clinical Laboratory, Yan'an Hospital of Kunming City, Kunming City, Yunnan Province, People's Republic of China
| | - Dan Ye
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Beibei Luo
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Yanmei Liu
- Clinical Laboratory, Yan'an Hospital of Kunming City, Kunming City, Yunnan Province, People's Republic of China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Huiying Cao
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Lingtong Tang
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| |
Collapse
|
5
|
Kong S, Ding K, Jiang H, Yang F, Zhang C, Han L, Ge Y, Chen L, Shi H, Zhou J. Association Between Glycemic Variability and Persistent Acute Kidney Injury After Noncardiac Major Surgery: A Multicenter Retrospective Cohort Study. Anesth Analg 2024:00000539-990000000-00945. [PMID: 39269909 DOI: 10.1213/ane.0000000000007131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND While the relationship between glycemic variability (GV) and acute kidney injury (AKI) has been a subject of interest, the specific association of GV with persistent AKI beyond 48 hours postoperative after noncardiac surgery is not well-established. METHODS This retrospective cohort study aimed to describe the patterns of different GV metrics in the immediate 48 hours after noncardiac surgery, evaluate the association between GV indices and persistent AKI within the 7-day postoperative window, and compare the risk identification capabilities of various GV for persistent AKI. A total of 10,937 patients who underwent major noncardiac surgery across 3 medical centers in eastern China between January 2015 and September 2023 were enrolled. GV was characterized using the coefficient of variations (CV), mean amplitude of glycemic excursions (MAGE), and the blood glucose risk index (BGRI). Multivariable logistic regression was used to examine the relationship between GV and AKI. Optimal cutoff values for GV metrics were calculated through the risk identification models, and an independent cohort from the INformative Surgical Patient dataset for Innovative Research Environment (INSPIRE) database with 7714 eligible cases served to externally validate the risk identification capability. RESULTS Overall, 274 (2.5%) of the 10,937 patients undergoing major noncardiac surgery met the criteria of persistent AKI. Higher GV was associated with an increased risk of persistent AKI (CV: odds ratio [OR] = 1.26, 95% confidence interval [CI], 1.08-1.46; MAGE: OR = 1.31, 95% CI, 1.15-1.49; BGRI: OR = 1.18, 95% CI, 1.08-1.29). Compared to models that did not consider glycemic factors, MAGE and BGRI independently contributed to predicting persistent AKI (MAGE: areas under the curve [AUC] = 0.768, P = .011; BGRI: AUC = 0.764, P = .014), with cutoff points of 3.78 for MAGE, and 3.02 for BGRI. The classification of both the internal and external validation cohorts using cutoffs demonstrated good performance, achieving the best AUC values of 0.768 for MAGE in the internal cohort and 0.777 for MAGE in the external cohort. CONCLUSIONS GV measured within 48 hours postoperative period is an independent risk factor for persistent AKI in patients undergoing noncardiac surgery. Specific cutoff points can be used to stratify at-risk patients. These findings indicate that stabilizing GV may potentially mitigate adverse kidney outcomes after noncardiac surgery, highlighting the importance of glycemic control in the perioperative period.
Collapse
Affiliation(s)
- Siyu Kong
- From the School of International Business, China Pharmaceutical University, Jiangsu, China
| | - Ke Ding
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Huili Jiang
- Department of Anesthesiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Yang
- From the School of International Business, China Pharmaceutical University, Jiangsu, China
| | - Chen Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Lihai Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Hongwei Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Jifang Zhou
- From the School of International Business, China Pharmaceutical University, Jiangsu, China
| |
Collapse
|
6
|
Zhang ZY, Pan L, Dang S, Wang N, Zhao SY, Li F, Wu LD, Zhang L, Liu HH, Zhao N, Yang YJ, Qian LL, Liu T, Wang RX. Glucose fluctuations aggravate cardiomyocyte apoptosis by enhancing the interaction between Txnip and Akt. BMC Cardiovasc Disord 2024; 24:470. [PMID: 39223509 PMCID: PMC11370038 DOI: 10.1186/s12872-024-04134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lu Pan
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shipeng Dang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ning Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shan-Ying Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Li-Da Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ya-Juan Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China.
| |
Collapse
|
7
|
Hu SY, Xue CD, Li YJ, Li S, Gao ZN, Qin KR. Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage. MECHANOBIOLOGY IN MEDICINE 2024; 2:100069. [DOI: 10.1016/j.mbm.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Jadav RK, Yee KC, Turner M, Mortazavi R. Potential Benefits of Continuous Glucose Monitoring for Predicting Vascular Outcomes in Type 2 Diabetes: A Rapid Review of Primary Research. Healthcare (Basel) 2024; 12:1542. [PMID: 39120245 PMCID: PMC11312427 DOI: 10.3390/healthcare12151542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
(1) Background: Chronic hyperglycaemia is a cause of vascular damage and other adverse clinical outcomes in type 2 diabetes mellitus (T2DM). Emerging evidence suggests a significant and independent role for glycaemic variability (GV) in contributing to those outcomes. Continuous glucose monitoring (CGM) provides valuable insights into GV. Unlike in type 1 diabetes mellitus, the use of CGM-derived GV indices has not been widely adopted in the management of T2DM due to the limited evidence of their effectiveness in predicting clinical outcomes. This study aimed to explore the associations between GV metrics and short- or long-term vascular and clinical complications in T2DM. (2) Methods: A rapid literature review was conducted using the Cochrane Library, MEDLINE, and Scopus databases to seek high-level evidence. Lower-quality studies such as cross-sectional studies were excluded, but their content was reviewed. (3) Results: Six studies (five prospective cohort studies and one clinical trial) reported associations between GV indices (coefficient of variation (CV), standard deviation (SD), Mean Amplitude of Glycaemic Excursions (MAGE), Time in Range (TIR), Time Above Range (TAR), and Time Below Range (TBR)), and clinical complications. However, since most evidence came from moderate to low-quality studies, the results should be interpreted with caution. (4) Conclusions: Limited but significant evidence suggests that GV indices may predict clinical compilations in T2DM both in the short term and long term. There is a need for longitudinal studies in larger and more diverse populations, longer follow-ups, and the use of numerous CGM-derived GV indices while collecting information about all microvascular and macrovascular complications.
Collapse
Affiliation(s)
| | | | | | - Reza Mortazavi
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (R.K.J.); (K.C.Y.); (M.T.)
| |
Collapse
|
9
|
Qi Y, Zhang Y, Guan S, Liu L, Wang H, Chen Y, Zhou Q, Xu F, Zhang Y. Common ground on immune infiltration landscape and diagnostic biomarkers in diabetes-complicated atherosclerosis: an integrated bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1381229. [PMID: 39145311 PMCID: PMC11323117 DOI: 10.3389/fendo.2024.1381229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a major cause of atherosclerosis (AS). However, definitive evidence regarding the common molecular mechanisms underlying these two diseases are lacking. This study aimed to investigate the mechanisms underlying the association between T2DM and AS. Methods The gene expression profiles of T2DM (GSE159984) and AS (GSE100927) were obtained from the Gene Expression Omnibus, after which overlapping differentially expressed gene identification, bioinformatics enrichment analyses, protein-protein interaction network construction, and core genes identification were performed. We confirmed the discriminatory capacity of core genes using receiver operating curve analysis. We further identified transcription factors using TRRUST database to build a transcription factor-mRNA regulatory network. Finally, the immune infiltration and the correlation between core genes and differential infiltrating immune cells were analyzed. Results A total of 27 overlapping differentially expressed genes were identified under the two-stress conditions. Functional analyses revealed that immune responses and transcriptional regulation may be involved in the potential pathogenesis. After protein-protein interaction network deconstruction, external datasets, and qRT-PCR experimental validation, four core genes (IL1B, C1QA, CCR5, and MSR1) were identified. ROC analysis further showed the reliable value of these core genes. Four common differential infiltrating immune cells (B cells, CD4+ T cells, regulatory T cells, and M2 macrophages) between T2DM and AS datasets were selected based on immune cell infiltration. A significant correlation between core genes and common differential immune cells. Additionally, five transcription factors (RELA, NFκB1, JUN, YY1, and SPI1) regulating the transcription of core genes were mined using upstream gene regulator analysis. Discussion In this study, common target genes and co-immune infiltration landscapes were identified between T2DM and AS. The relationship among five transcription factors, four core genes, and four immune cells profiles may be crucial to understanding T2DM complicated with AS pathogenesis and therapeutic direction.
Collapse
Affiliation(s)
- Yifei Qi
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongqin Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Chen
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Jia Y, Long D, Yang Y, Wang Q, Wu Q, Zhang Q. Diabetic peripheral neuropathy and glycemic variability assessed by continuous glucose monitoring: A systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 213:111757. [PMID: 38944250 DOI: 10.1016/j.diabres.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Continuous glucose monitoring (CGM)-derived metrics have been used to accurately assess glycemic variability (GV) to facilitate management of diabetes mellitus, yet their relationship with diabetic peripheral neuropathy (DPN) is not fully understood. We performed a systematic review and meta-analysis to evaluate the association between GV metrics and the risk of developing DPN. Nine studies totaling 3,649 patients with type 1 and type 2 diabetes mellitus were included. A significant association was found between increased GV, as indicated by metrics including standard deviation (SD) with OR and 95% CI of 2.58 (1.45-4.57), mean amplitude of glycemic excursions (MAGE) with OR and 95% CI of 1.90 (1.01-3.58), mean of daily difference (MODD) with OR and 95% CI of 2.88 (2.17-3.81) and the incidence of DPN. Our findings support a link between higher GV and an increased risk of DPN in patients with diabetes. These findings highlight the potential of GV metrics as indicators for the development of DPN, advocating for their inclusion in diabetes management strategies to potentially mitigate neuropathy risk. Longitudinal studies with longer observation periods and larger sample sizes are necessary to validate these associations across diverse populations.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Long
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
11
|
Negussie YM, Komicha MA, Abebe TW. Incidence and predictors of diabetic foot ulcer among patients with diabetes mellitus in a diabetic follow-up clinic in Central Ethiopia: a retrospective follow-up study. BMJ Open 2024; 14:e085281. [PMID: 38908850 PMCID: PMC11328629 DOI: 10.1136/bmjopen-2024-085281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer is a major medical, social, and economic problem, and a leading cause of hospitalisations, increased morbidity, and mortality. Despite a rising occurrence, there is a dearth of data on the incidence and its predictors. OBJECTIVE To assess the incidence and predictors of diabetic foot ulcers among patients with diabetes mellitus in a diabetic follow-up clinic in Central Ethiopia. DESIGN Retrospective follow-up study design. PARTICIPANTS A total of 418 newly diagnosed diabetes mellitus patients from 1 January 2012 to 31 December 2022. A computer-generated simple random sampling method was used to select the study participants. Data were collected using a structured data extraction checklist. The collected data were entered into Epi Info V.7.2 and exported to STATA V.14 for analysis. To estimate survival time, the Kaplan-Meier method was used, and the survival difference was tested using a log-rank test. OUTCOME MEASURES The Cox proportional hazard model was fitted to identify the predictors of diabetic foot ulcer development. The strength of the association was estimated using an adjusted hazard ratio (AHR) with a 95% confidence interval (CI), and statistical significance was proclaimed at a p<0.05. RESULT The overall incidence of diabetic foot ulcer was 1.51 cases (95% CI 1.03 to 2.22) per 100 person-years of observation. The cumulative incidence was 6.2% (95% CI 4.1% to 8.6%) over 10 years. The median time of follow-up was 45 months (IQR 21-73). Diastolic blood pressure of 90 mm Hg or above (AHR 2.91, 95% CI 1.25 to 6.77), taking combined medication (AHR 3.24, 95% CI 1.14 to 9.19) and having a peripheral arterial disease (AHR 5.26, 95% CI 1.61 to 17.18) were statistically significant predictors of diabetic foot ulcer development. CONCLUSION The risk of occurrence of diabetic foot ulcer was relatively high. Diastolic blood pressure level, combined medication and peripheral arterial disease were independent predictors of diabetic foot ulcer development. Hence, close monitoring and proper interventions are essential.
Collapse
|
12
|
Fang TZ, Wu XQ, Zhao TQ, Wang SS, Fu GMZ, Wu QL, Zhou CW. Influence of blood glucose fluctuations on chemotherapy efficacy and safety in type 2 diabetes mellitus patients complicated with lung carcinoma. World J Diabetes 2024; 15:645-653. [PMID: 38680689 PMCID: PMC11045413 DOI: 10.4239/wjd.v15.i4.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have large fluctuations in blood glucose (BG), abnormal metabolic function and low immunity to varying degrees, which increases the risk of malignant tumor diseases and affects the efficacy of tumor chemotherapy. Controlling hyperglycemia may have important therapeutic implications for cancer patients. AIM To clarify the influence of BG fluctuations on chemotherapy efficacy and safety in T2DM patients complicated with lung carcinoma (LC). METHODS The clinical data of 60 T2DM + LC patients who presented to the First Affiliated Hospital of Ningbo University between January 2019 and January 2021 were retrospectively analyzed. All patients underwent chemotherapy and were grouped as a control group (CG; normal BG fluctuation with a mean fluctuation < 3.9 mmol/L) and an observation group (OG; high BG fluctuation with a mean fluctuation ≥ 3.9 mmol/L) based on their BG fluctuations, with 30 cases each. BG-related indices, tumor markers, serum inflammatory cytokines and adverse reactions were comparatively analyzed. Pearson correlation analysis was performed to analyze the correlation between BG fluctuations and tumor markers. RESULTS The fasting blood glucose and 2-hour postprandial blood glucose levels in the OG were notably elevated compared with those in the CG, together with markedly higher mean amplitude of glycemic excursions (MAGE), mean of daily differences, largest amplitude of glycemic excursions and standard deviation of blood glucose (P < 0.05). In addition, the OG exhibited evidently higher levels of carbohydrate antigen 19-9, carbohydrate antigen 125, carcinoembryonic antigen, neuron-specific enolase, cytokeratin 19, tumor necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein than the CG (P < 0.05). Pearson analysis revealed a positive association of MAGE with serum tumor markers. The incidence of adverse reactions was significantly higher in the OG than in the CG (P < 0.05). CONCLUSION The greater the BG fluctuation in LC patients after chemotherapy, the more unfavorable the therapeutic effect of chemotherapy; the higher the level of tumor markers and inflammatory cytokines, the more adverse reactions the patient experiences.
Collapse
Affiliation(s)
- Tian-Zheng Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Xian-Qiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Ting-Qi Zhao
- Department of Endocrine, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Shan-Shan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Guo-Mei-Zhi Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Qing-Long Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Cheng-Wei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
13
|
Stanisławska-Kubiak M, Majewska KA, Krasińska A, Wais P, Majewski D, Mojs E, Kȩdzia A. Brain functional and structural changes in diabetic children. How can intellectual development be optimized in type 1 diabetes? Ther Adv Chronic Dis 2024; 15:20406223241229855. [PMID: 38560719 PMCID: PMC10981223 DOI: 10.1177/20406223241229855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
The neuropsychological functioning of people with type 1 diabetes (T1D) is of key importance to the effectiveness of the therapy, which, in its complexity, requires a great deal of knowledge, attention, and commitment. Intellectual limitations make it difficult to achieve the optimal metabolic balance, and a lack of this alignment can contribute to the further deterioration of cognitive functions. The aim of this study was to provide a narrative review of the current state of knowledge regarding the influence of diabetes on brain structure and functions during childhood and also to present possible actions to optimize intellectual development in children with T1D. Scopus, PubMed, and Web of Science databases were searched for relevant literature using selected keywords. The results were summarized using a narrative synthesis. Disturbances in glucose metabolism during childhood may have a lasting negative effect on the development of the brain and related cognitive functions. To optimize intellectual development in children with diabetes, it is essential to prevent disorders of the central nervous system by maintaining peri-normal glycemic levels. Based on the performed literature review, it seems necessary to take additional actions, including repeated neuropsychological evaluation with early detection of any cognitive dysfunctions, followed by the development of individual management strategies and the training of appropriate skills, together with complex, multidirectional environmental support.
Collapse
Affiliation(s)
- Maia Stanisławska-Kubiak
- Department of Clinical Psychology, Poznan University of Medical Sciences, ul. Bukowska 70, Poznan 60-812, Poland
| | - Katarzyna Anna Majewska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Krasińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Wais
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Majewski
- Department of Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Kȩdzia
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Lai Y, Chiu W, Huang C, Cheng B, Yu I, Kung C, Lin TY, Chiang HC, Kuo CA, Lu C. Prognostic value of longitudinal HbA1c variability in predicting the development of diabetic sensorimotor polyneuropathy among patients with type 2 diabetes mellitus: A prospective cohort observational study. J Diabetes Investig 2024; 15:326-335. [PMID: 38168098 PMCID: PMC10906024 DOI: 10.1111/jdi.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
AIMS/INTRODUCTION This prospective cohort study aims to identify the optimal measure of glycated hemoglobin (HbA1c) variability and to explore its relationship with the development of new diabetic sensorimotor polyneuropathy (DSPN) in individuals with type 2 diabetes mellitus, building upon previous cross-sectional studies that highlighted a significant association between HbA1c visit-to-visit variability and DSPN. MATERIALS AND METHODS In a prospective study, 321 participants diagnosed with type 2 diabetes mellitus underwent comprehensive clinical assessments, neurophysiologic studies, and laboratory evaluations at enrollment and follow-up. Various indices, including HbA1c standard deviation (HbA1c SD), coefficient of variation (HbA1c CV), HbA1c change score (HbA1c HVS), and average real variability (HbA1c ARV), were employed to calculate the visit-to-visit variability HbA1c based on 3 month intervals. The investigation focused on examining the associations between these indices and the development of new DSPN. RESULTS The average follow-up duration was 16.9 ± 6.9 months. The Cox proportional hazards model identified age (P = 0.001), diabetes duration (P = 0.024), and HbA1C ARV (P = 0.031) as the sole factors associated with the development of new DSPN. Furthermore, the cumulative risk of developing DSPN over 1 year demonstrated a significant association with HbA1C ARV (P = 0.03, log-rank test). CONCLUSIONS Apart from age and diabetes duration, HbA1c variability emerged as a robust predictor for the occurrence of new DSPN. Among the various measures of HbA1c variability evaluated, HbA1c ARV demonstrated the highest potential as a reliable indicator for anticipating the onset of new DSPN.
Collapse
Affiliation(s)
- Yun‐Ru Lai
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Hyperbaric Oxygen Therapy CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Wen‐Chan Chiu
- Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chih‐Cheng Huang
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ben‐Chung Cheng
- Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - I‐Hsun Yu
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chia‐Te Kung
- Department of Emergency MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ting Yin Lin
- Department of NursingKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Hui Ching Chiang
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chun‐En Aurea Kuo
- Department of Chinese MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Cheng‐Hsien Lu
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Biological ScienceNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of NeurologyXiamen Chang Gung Memorial HospitalXiamenFujianChina
| |
Collapse
|
15
|
Suaifan GARY, Alkhawaja B, Shehadeh MB, Sharmaa M, Hor Kuan C, Okechukwu PN. Glucosamine substituted sulfonylureas: IRS-PI3K-PKC-AKT-GLUT4 insulin signalling pathway intriguing agent. RSC Med Chem 2024; 15:695-703. [PMID: 38389876 PMCID: PMC10880904 DOI: 10.1039/d3md00647f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Mridula Sharmaa
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Chan Hor Kuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Patrick Nwabueze Okechukwu
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
16
|
Shaltout I, Abdelwahab AM, El Meligi A, Hammad H, Abdelghaffar S, Elbahry A, Taha N, Elsaid NH, Gad A, Hammouda L, Abdelmaboud S, Soliman AR. Risk Stratification in People with Diabetes for Fasting During Ramadan: Consensus from Arabic Association for the Study of Diabetes and Metabolism. Curr Diabetes Rev 2024; 20:e201023222409. [PMID: 37867270 PMCID: PMC11041120 DOI: 10.2174/0115733998249793231005105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Current international guidelines recommend a pre-Ramadan risk assessment for people with diabetes (PwDM) who plan on fasting during the Holy month. However, a comprehensive risk assessment-based recommendation for the management of PwDM intending to fast is still controversial. Therefore, the Arabic Association for the Study of Diabetes and Metabolism (AASD) developed this consensus to provide further insights into risk stratification in PwDM intending to fast during Ramadan. METHODS The present consensus was based on the three-step modified Delphi method. The modified Delphi method is based on a series of voting rounds and in-between meetings of the expert panel to reach agreements on the statements that did not reach the consensus level during voting. The panel group comprised professors and consultants in endocrinology (both adult and pediatric). Other members included experts in the fields of cardiovascular medicine, nephrology, ophthalmology, and vascular surgery, affiliated with academic institutions in Egypt. RESULT In PwDM who intend to fast during Ramadan, risk stratification is crucial to optimize patient outcomes and prevent serious complications. The present consensus provides risk assessment of those living with diabetes according to several factors, including the type of diabetes, presence, and severity of complications, number of fasting hours, and other socioeconomic factors. According to their risk factors, patients were classified into four categories (very high, high, moderate, and low risk). CONCLUSION Future research is warranted due to the controversial literature regarding the impact of fasting on certain comorbidities.
Collapse
Affiliation(s)
- Inass Shaltout
- Internal Medicine and Diabetes Department, Cairo University, Cairo, Egypt
| | | | - Amr El Meligi
- Internal Medicine and Diabetes Department, Cairo University, Cairo, Egypt
| | - Hany Hammad
- Internal Medicine and Nephrology Department, Cairo University, Cairo, Egypt
| | - Shereen Abdelghaffar
- Department of Pediatrics, Pediatric Diabetes and Endocrinology Unit, Cairo University, Cairo, Egypt
| | - Atef Elbahry
- Cardiology Unit, Port Fouad Centre, Port Fouad, Egypt
| | - Nasser Taha
- Cardiology Department, Minia University, Minia, Egypt
| | - Nehal Hamdy Elsaid
- Internal Medicine and Diabetes Department, Cairo University, Cairo, Egypt
| | - Amr Gad
- Vascular Surgery Department, Cairo University, Cairo, Egypt
| | - Laila Hammouda
- Ophthalmology Department, Minia University, Minia, Egypt
| | | | | |
Collapse
|
17
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Manosroi W, Phimphilai M, Waisayanand N, Buranapin S, Deerochanawong C, Gunaparn S, Phrommintikul A, Wongcharoen W. Glycated hemoglobin variability and the risk of cardiovascular events in patients with prediabetes and type 2 diabetes mellitus: A post-hoc analysis of a prospective and multicenter study. J Diabetes Investig 2023; 14:1391-1400. [PMID: 37610280 PMCID: PMC10688133 DOI: 10.1111/jdi.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
AIMS/INTRODUCTION High glycated hemoglobin (HbA1c) variability has been reported to be linked with cardiovascular events in type 2 diabetes patients. Only a few studies have been carried out on Asian patients. This study aimed to investigate the association of prediabetes and type 2 diabetes in Asian patients by performing a post-hoc analysis of a multicenter, prospective, observational study. MATERIALS AND METHODS Data for prediabetes and type 2 diabetes patients were retrieved from a multicenter national registry entitled "CORE-Thailand study." The primary outcome was 4P-MACE (major adverse cardiovascular events, including non-fatal myocardial infarction, heart failure hospitalization, non-fatal stroke and all-cause death). Patients were stratified according to quartiles of HbA1c standard deviation. The Cox proportional hazards regression model was used to estimate the association of HbA1c variability with incident cardiovascular disease. RESULTS A total of 3,811 patients with prediabetes and type 2 diabetes were included. The median follow-up duration was 54 months. In the fully adjusted model, the highest quartile of HbA1c variability showed a statistically significant association with 4P-MACE (hazard ratio [HR] 2.77, 95% confidence interval [CI] 1.77-4.35), fatal and non-fatal myocardial infarction (HR 6.91, 95% CI 1.90-25.12), hospitalization for heart failure (HR 3.34, 95% CI 1.20-9.26) and all-cause death (HR 3.10, 95% CI 1.72-5.57). All these outcomes were statistically significantly different among four quartiles of HbA1c (log-rank P-value <0.05). Fatal and non-fatal stroke showed no statistically significant association with high HbA1c variability. CONCLUSION High HbA1c variability in the highest quartile showed a statistically significant association with multiple adverse cardiovascular events in an Asian population. Minimizing HbA1c fluctuation during long-term follow up should be another important objective for type 2 diabetes patients.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Faculty of Medicine, Center for Clinical Epidemiology and Clinical StatisticsChiang Mai UniversityChiang MaiThailand
| | - Mattabhorn Phimphilai
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nipawan Waisayanand
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Supawan Buranapin
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | | | - Siriluck Gunaparn
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | | |
Collapse
|
19
|
Liao X, Shen M, Li T, Feng L, Lin Z, Shi G, Pei G, Cai X. Combined Molybdenum Gelatine Methacrylate Injectable Nano-Hydrogel Effective Against Diabetic Bone Regeneration. Int J Nanomedicine 2023; 18:5925-5942. [PMID: 37881608 PMCID: PMC10596232 DOI: 10.2147/ijn.s428429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Bone defects in diabetes mellitus (DM) remain a major challenge for clinical treatment. Fluctuating glucose levels in DM patients lead to excessive production of reactive oxygen species (ROS), which disrupt bone repair homeostasis. Bone filler materials have been widely used in the clinical treatment of DM-related bone defects, but overall they lack efficacy in improving the bone microenvironment and inducing osteogenesis. We utilized a gelatine methacrylate (GelMA) hydrogel with excellent biological properties in combination with molybdenum (Mo)-based polyoxometalate nanoclusters (POM) to scavenge ROS and promote osteoblast proliferation and osteogenic differentiation through the slow-release effect of POM, providing a feasible strategy for the application of biologically useful bone fillers in bone regeneration. Methods We synthesized an injectable hydrogel by gelatine methacrylate (GelMA) and POM. The antioxidant capacity and biological properties of the synthesized GelMA/POM hydrogel were tested. Results In vitro, studies showed that hydrogels can inhibit excessive reactive oxygen species (ROS) and reduce oxidative stress in cells through the beneficial effects of pH-sensitive POM. Osteogenic differentiation assays showed that GelMA/POM had good osteogenic properties with upregulated expression of osteogenic genes (BMP2, RUNX2, Osterix, ALP). Furthermore, RNA-sequencing revealed that activation of the PI3K/Akt signalling pathway in MC3T3-E1 cells with GelMA/POM may be a potential mechanism to promote osteogenesis. In an in vivo study, radiological and histological analyses showed enhanced bone regeneration in diabetic mice, after the application of GelMA/POM. Conclusion In summary, GelMA/POM hydrogels can enhance bone regeneration by directly scavenging ROS and activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Xun Liao
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Mingkui Shen
- Henan Provincial Third People’s Hospital, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Tengbo Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Zhao Lin
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Guang Shi
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Xiyu Cai
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| |
Collapse
|
20
|
Belli M, Bellia A, Sergi D, Barone L, Lauro D, Barillà F. Glucose variability: a new risk factor for cardiovascular disease. Acta Diabetol 2023; 60:1291-1299. [PMID: 37341768 PMCID: PMC10442283 DOI: 10.1007/s00592-023-02097-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 06/22/2023]
Abstract
AIMS AND DATA SYNTHESIS Glucose variability (GV) is increasingly considered an additional index of glycemic control. Growing evidence indicates that GV is associated with diabetic vascular complications, thus being a relevant point to address in diabetes management. GV can be measured using various parameters, but to date, a gold standard has not been identified. This underscores the need for further studies in this field also to identify the optimal treatment. CONCLUSIONS We reviewed the definition of GV, the pathogenetic mechanisms of atherosclerosis, and its relationship with diabetic complications.
Collapse
Affiliation(s)
- Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Domenico Sergi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.
| |
Collapse
|
21
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Shi R, Feng L, Liu YM, Xu WB, Luo BB, Tang LT, Bi QY, Cao HY. Glycemic dispersion: a new index for screening high glycemic variability. Diabetol Metab Syndr 2023; 15:95. [PMID: 37158980 PMCID: PMC10169464 DOI: 10.1186/s13098-023-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE For patients with diabetes, high-frequency and -amplitude glycemic variability may be more harmful than continuous hyperglycemia; however, there is still a lack of screening indicators that can quickly and easily assess the level of glycemic variability. The aim of this study was to investigate whether the glycemic dispersion index is effective for screening high glycemic variability. METHODS A total of 170 diabetes patients hospitalized in the Sixth Affiliated Hospital of Kunming Medical University were included in this study. After admission, the fasting plasma glucose, 2-hour postprandial plasma glucose, and glycosylated hemoglobin A1c were measured. The peripheral capillary blood glucose was measured seven times in 24 h, before and after each of three meals and before bedtime. The standard deviation of the seven peripheral blood glucose values was calculated, and a standard deviation of > 2.0 was used as the threshold of high glycemic variability. The glycemic dispersion index was calculated and its diagnostic efficacy for high glycemic variability was determined by the Mann-Whitney U test, receiver operating characteristic (ROC) curve and, Pearson correlation analysis. RESULTS The glycemic dispersion index of patients with high glycemic variability was significantly higher than that of those with low glycemic variability (p < 0.01). The best cutoff value of the glycemic dispersion index for screening high glycemic variability was 4.21. The area under the curve (AUC) was 0.901 (95% CI: 0.856-0.945) and had a sensitivity of 0.781 and specificity of 0.905. It was correlated with the standard deviation of blood glucose values (r = 0.813, p < 0.01). CONCLUSIONS The glycemic dispersion index had good sensitivity and specificity for screening high glycemic variability. It was significantly associated with the standard deviation of blood glucose concentration and is simple and easy to calculate. It was an effective screening indicator of high glycemic variability.
Collapse
Affiliation(s)
- Rui Shi
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Lei Feng
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China.
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China.
| | - Yan-Mei Liu
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Wen-Bo Xu
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Bei-Bei Luo
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Ling-Tong Tang
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qian-Ye Bi
- Center Blood Station of Yuxi, Yuxi, China
| | - Hui-Ying Cao
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
23
|
Toma L, Sanda GM, Stancu CS, Niculescu LS, Raileanu M, Sima AV. Oscillating Glucose Induces the Increase in Inflammatory Stress through Ninjurin-1 Up-Regulation and Stimulation of Transport Proteins in Human Endothelial Cells. Biomolecules 2023; 13:biom13040626. [PMID: 37189375 DOI: 10.3390/biom13040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to decipher new molecular mechanisms involved. Cultured human ECs (EA.hy926 line and primary cells) were exposed to OG (5/25 mM alternatively at 3 h), constant HG (25 mM) or physiological concentration (5 mM, NG) for 72 h. Markers of inflammation (Ninj-1, MCP-1, RAGE, TNFR1, NF-kB, and p38 MAPK), oxidative stress (ROS, VPO1, and HO-1), and transendothelial transport proteins (SR-BI, caveolin-1, and VAMP-3) were assessed. Inhibitors of ROS (NAC), NF-kB (Bay 11-7085), and Ninj-1 silencing were used to identify the mechanisms of OG-induced EC dysfunction. The results revealed that OG determined an increased expression of Ninj-1, MCP-1, RAGE, TNFR1, SR-B1, and VAMP-3 andstimulated monocyte adhesion. All of these effects were induced bymechanisms involving ROS production or NF-kB activation. NINJ-1 silencing inhibited the upregulation of caveolin-1 and VAMP-3 induced by OG in EC. In conclusion, OG induces increased inflammatory stress, ROS production, and NF-kB activation and stimulates transendothelial transport. To this end, we propose a novel mechanism linking Ninj-1 up-regulation to increased expression of transendothelial transport proteins.
Collapse
|
24
|
Fan H, Sasaki Y, Zhou Q, Tang W, Nishina Y, Minami T. Non-enzymatic detection of glucose levels in human blood plasma by a graphene oxide-modified organic transistor sensor. Chem Commun (Camb) 2023; 59:2425-2428. [PMID: 36745444 DOI: 10.1039/d2cc07009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode.
Collapse
Affiliation(s)
- Haonan Fan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
25
|
Uskoković V. Supplementation of Polymeric Reservoirs with Redox-Responsive Metallic Nanoparticles as a New Concept for the Smart Delivery of Insulin in Diabetes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:786. [PMID: 36676521 PMCID: PMC9862131 DOI: 10.3390/ma16020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes is caused by the inability of the pancreatic beta cells to produce sufficient amounts of insulin, an anabolic hormone promoting the absorption of the blood glucose by various cells in the body, primarily hepatocytes and skeletal muscle cells. This form of impaired metabolism has been traditionally treated with subcutaneous insulin injections. However, because one such method of administration does not directly correspond to the glucose concentrations in the blood and may fail to reduce hyperglycemia or cause hypoglycemia, the delivery of insulin in a glucose-dependent manner has been researched intensely in the present and past. This study tested the novel idea that the supplementation of polymeric reservoirs containing insulin with metallic nanoparticle precursors responsive to the redox effect of glucose could be used to create triggers for the release of insulin in direct response to the concentration of glucose in the tissue. For that purpose, manganese oxide nanoparticles were dispersed inside a poly(ε-caprolactone) matrix loaded with an insulin proxy and the resulting composite was exposed to different concentrations of glucose. The release of the insulin proxy occurred in direct proportion to the concentration of glucose in the medium. Mechanistically, as per the central hypothesis of the study, glucose reduced the manganese cations contained within the metal oxide phase, forming finer and more dissipative zero-valent metallic nanoparticles, thus disrupting the polymeric network, opening up pores in the matrix and facilitating the release of the captured drug. The choice of manganese for this study over other metals was justified by its use as a supplement for protection against diabetes. Numerical analysis of the release mechanism revealed an increasingly nonlinear and anomalous release accompanied by a higher diffusion rate at the expense of chain rigidity as the glucose concentration increased. Future studies should focus on rendering the glucose-controlled release (i) feasible within the physiological pH range and (ii) sensitive to physiologically relevant glucose concentrations. These technical improvements of the fundamental new concept proven here may bring it closer to a real-life application for the mitigation of symptoms of hyperglycemia in patients with diabetes.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; or or
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
26
|
Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of diabetes in aortic abdominal aneurysm: Are antidiabetics the real effectors? Front Cardiovasc Med 2023; 10:1112430. [PMID: 37034348 PMCID: PMC10076877 DOI: 10.3389/fcvm.2023.1112430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second most prevalent aortic disease and represents an important cause of death worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion, pathologically associated with oxidative stress, proteolysis, vascular smooth muscle cell loss, immune-inflammation, and extracellular matrix remodeling and degradation. Most epidemiological studies have shown a potential protective role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The effect of DM on AAA might be explained mainly by two factors: hyperglycemia [or other DM-related factors such as insulin resistance (IR)] and/or by the effect of prescribed DM drugs, which may have a direct or indirect effect on the formation and progression of AAAs. However, recent studies further support that the protective role of DM in AAA may be attributable to antidiabetic therapies (i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature on the relationship between DM and the incidence, progression, and rupture of AAAs, and discusses the potential cellular and molecular pathways that may be involved in its vascular effects. Besides, we provide a summary of current antidiabetic therapies which use could be beneficial for AAA.
Collapse
Affiliation(s)
- Belén Picatoste
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedicine Department, Alfonso X El Sabio University, Madrid, Spain
- Correspondence: Belén Picatoste ,
| | - Isabel Cerro-Pardo
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Medicine Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
27
|
Dwivedi S, Gottipati A, Ganugula R, Arora M, Friend R, Osburne R, Rodrigues-Hoffman A, Basu R, Pan HL, Kumar MNVR. Oral Nanocurcumin Alone or in Combination with Insulin Alleviates STZ-Induced Diabetic Neuropathy in Rats. Mol Pharm 2022; 19:4612-4624. [PMID: 36106748 PMCID: PMC9972482 DOI: 10.1021/acs.molpharmaceut.2c00465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM), a multifaceted metabolic disorder if not managed properly leads to secondary complications. Diabetic peripheral neuropathy (DPN) is one such complication caused by nerve damage that cannot be reversed but can be delayed. Recently, diabetes patients are using dietary supplements, although there remains a general skepticism about this practice. Curcumin (CUR), one such supplement can help prevent underlying low-grade inflammation in diabetes, but it is plagued by poor oral bioavailability. To better understand the role of bioavailability in clinical outcomes, we have tested double-headed nanosystems containing curcumin (nCUR) on DPN. Because CUR does not influence glucose levels, we have also tested the effects of nCUR combined with long-acting subcutaneous insulin (INS). nCUR with or without INS alleviates DPN at two times lower dose than unformulated CUR, as indicated by qualitative and quantitative analysis of the hind paw, sciatic nerve, spleen, and L4-6 spinal cord. In addition, nCUR and nCUR+INS preserve hind paw nerve axons as evident by the Bielschowsky silver stain and intraepidermal nerve fibers (IENF) density measured by immunofluorescence. The mechanistic studies further corroborated the results, where nCUR or nCUR+INS showed a significant decrease in TUNEL positive cells, mRNA expression of NLRP3, IL-1β, and macrophage infiltration while preserving nestin and NF200 expression in the sciatic nerve. Together, the data confirms that CUR bioavailability is proportional to clinical outcomes and INS alone may not be one of the solutions for DM. This study highlights the potential of nCUR with or without INS in alleviating DPN and warrants further investigation.
Collapse
Affiliation(s)
- Subhash Dwivedi
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Anuhya Gottipati
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Raghu Ganugula
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Meenakshi Arora
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Robert Osburne
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
| | - Aline Rodrigues-Hoffman
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, Florida32611-7011, United States
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, Virginia22908, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas77030, United States
| | - M N V Ravi Kumar
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama35487-0166, United States
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas77843, United States
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35401, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama35401, United States
| |
Collapse
|
28
|
Nwabueze OP, Sharma M, Balachandran A, Gaurav A, Abdul Rani AN, Małgorzata J, Beata MM, Lavilla CA, Billacura MP. Comparative Studies of Palmatine with Metformin and Glimepiride on the Modulation of Insulin Dependent Signaling Pathway In Vitro, In Vivo & Ex Vivo. Pharmaceuticals (Basel) 2022; 15:1317. [PMID: 36355489 PMCID: PMC9695187 DOI: 10.3390/ph15111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
(1) Insulin resistance, a symptom of type 2 diabetes mellitus (T2DM), is caused by the inactivation of the insulin signaling pathway, which includes IRS-PI3K-IRS-1-PKC-AKT2 and GLUT4. Metformin (biguanide) and glimepiride (sulfonylurea) are both drugs that are derivatives of urea, and they are widely used as first-line drugs for the treatment of type 2 diabetes mellitus. Palmatine has been previously reported to possess antidiabetic and antioxidant properties. (2) The current study compared palmatine to metformin and glimepiride in a type 2 diabetes model for ADME and insulin resistance via the PI3K/Akt/GLUT4 signaling pathway: in vitro, in vivo, ex vivo, and in silico molecular docking. (3) Methods: Differentiated L6 skeletal muscle cells and soleus muscle tissue were incubated in standard tissue culture media supplemented with high insulin and high glucose as a cellular model of insulin resistance, whilst streptozotocin (STZ)-induced Sprague Dawley rats were used as the diabetic model. The cells/tissue/animals were treated with palmatine, while glimepiride and metformin were used as standard drugs. The differential gene expression of PI3K, IRS-1, PKC-α, AKT2, and GLUT4 was evaluated using qPCR. (4) Results: The results revealed that the genes IRS-PI3K-IRS-1-PKC-AKT2 were significantly down-regulated, whilst PKC-α was upregulated significantly in both insulin-resistant cells and tissue animals. Interestingly, palmatine-treated cells/tissue/animals were able to reverse these effects. (5) Conclusions: Palmatine appears to have rejuvenated the impaired insulin signaling pathway through upregulation of the gene expression of IRS-1, PI3K, AKT2, and GLUT4 and downregulation of PKC-expression, according to in vitro, in vivo, and ex vivo studies.
Collapse
Affiliation(s)
- Okechukwu Patrick Nwabueze
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Mridula Sharma
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anis Najwa Abdul Rani
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Jeleń Małgorzata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Morak-Młodawska Beata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Charlie A. Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Merell P. Billacura
- Department of Chemistry, College of Natural Sciences and Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Philippines
| |
Collapse
|
29
|
Branigan GL, Torrandell-Haro G, Vitali F, Brinton RD, Rodgers K. Age and sex differences on anti-hyperglycemic medication exposure and risk of newly diagnosed multiple sclerosis in propensity score matched type 2 diabetics. Heliyon 2022; 8:e11196. [PMID: 36325137 PMCID: PMC9618986 DOI: 10.1016/j.heliyon.2022.e11196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background The association between exposure to anti-hyperglycemic medications (A-HgM) for Type 2 Diabetes Mellitus (T2D) treatment and Multiple Sclerosis (MS) in T2D patients is unclear. Methods This retrospective cohort analysis used the Mariner claims database. Patient records were surveyed for a diagnosis of MS starting 12 months after diagnosis of T2D. Patients were required to be actively enrolled in the Mariner claims records for six months prior and at least three years after the diagnosis of T2D without a history of previous neurodegenerative disease. Survival analysis was used to determine the association between A-HgM exposure and diagnosis of MS. A propensity score approach was used to minimize measured and unmeasured selection bias. The analyses were conducted between January 1st and April 28th, 2021. Findings In T2D patients younger than 45, A-HgM exposure was associated with a reduced risk of developing MS (RR: 0.22, 95%CI: 0.17-0.29, p-value <0.001). In contrast, A-HgM exposure in patients older than 45 was associated with an increased risk of MS with women exhibiting greater risk (RR: 1.53, 95%CI: 1.39-1.69, p < 0.001) than men (RR: 1.17, 95%CI: 1.01-1.37, p = 0 · 04). Patients who developed MS had a higher incidence of baseline comorbidities. Mean follow-up was 6.2 years with a standard deviation of 1.8 years. Interpretation In this study, A-HgM exposure in patients with T2D was associated with reduced risk of MS in patients younger than 45 whereas in patients older than 45, exposure to A-HgM was associated with an increased risk of newly diagnosed MS, particularly in women.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
- MD-PhD Training Program; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Neurology; University of Arizona College of Medicine, Tucson, Arizona, USA
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Neurology; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Kathleen Rodgers
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
30
|
Zhao D, Shi W, Bi L, Qi Y, Hu S, Li C, Zhang Y, Zheng X. Effect of short-term acute moderate-intensity resistance exercise on blood glucose in older patients with type 2 diabetes mellitus and sarcopenia. Geriatr Gerontol Int 2022; 22:653-659. [PMID: 35841217 DOI: 10.1111/ggi.14437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effects of short-term acute moderate-intensity resistance exercise on blood glucose in older patients with type 2 diabetes mellitus and sarcopenia using ambulatory glucose monitoring technology. METHODS This is a prospective intervention of an own-controlled before-and-after cohort study. A total of 24 older type 2 diabetes mellitus patients who met the enrollment criteria were selected, including 12 cases in the sarcopenia and 12 in the non-sarcopenia groups. First, they wore ambulatory glucose monitoring devices (Medtronic, Ipro2) and retained baseline data. Then they wore Ipro2 again and carried out two sessions of resistance exercise on alternate days. Blood glucose level, blood glucose fluctuation, and time in target range on the contrast and exercise days were compared and analyzed in both groups. RESULTS The area under the curve of glucose level across 24 h and the mean blood glucose post exercise decreased (P < 0.05) in the sarcopenia group. On the exercise day, the coefficient of variation of glucose, the largest amplitude of glycemic excursions, amplitude of postprandial glucose excursions and low blood glucose index decreased, whereas the time in target range increased (P < 0.05). CONCLUSIONS Short-term acute moderate-intensity resistance exercise is an effective and safe exercise modality, which can reduce blood glucose levels, blood glucose fluctuations and the risk of hypoglycemia, as well as improve the time in target range for older patients with type 2 diabetes mellitus and sarcopenia. Geriatr Gerontol Int 2022; ••: ••-••.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenli Shi
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Lina Bi
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yanyan Qi
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Su Hu
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Chang Li
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yan Zhang
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Xin Zheng
- Department of Endocrinology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
31
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
32
|
Mounié M, Costa N, Gourdy P, Latorre C, Schirr-Bonnans S, Lagarrigue JM, Roussel H, Martini J, Buisson JC, Chauchard MC, Delaunay J, Taoui S, Poncet MF, Cosma V, Lablanche S, Coustols-Valat M, Chaillous L, Thivolet C, Sanz C, Penfornis A, Lepage B, Colineaux H, Hanaire H, Molinier L, Turnin MC. Cost-Effectiveness Evaluation of a Remote Monitoring Programme Including Lifestyle Education Software in Type 2 Diabetes: Results of the Educ@dom Study. Diabetes Ther 2022; 13:693-708. [PMID: 35133640 PMCID: PMC8991290 DOI: 10.1007/s13300-022-01207-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Telemedicine programs using health technological innovation to remotely monitor the lifestyles of patients with type 2 diabetes (T2D) can improve glycaemic control and thus reduce the incidence of complications as well as management costs. In this context, an assessment was made of the 1-year and 2-year cost-effectiveness of the EDUC@DOM telemonitoring and tele-education program. METHODS The EDUC@DOM study was a multicentre randomized controlled trial conducted between 2013 and 2017 that compared a telemonitoring group (TMG) to a control group (CG) merged with health insurance databases to extract economic data on resource consumption. Economic analysis was performed from the payer perspective, and direct costs and indirect costs were considered. The clinical outcome used was the intergroup change in glycated haemoglobin (HbA1c) levels from baseline. Missing economic data were imputed using multiple imputation, and fitted values from a generalized linear mixed model were used to calculate the incremental cost-effectiveness ratio (ICER). Bootstrapped 95% confidence ellipses were drawn in the cost-effectiveness plan. RESULTS The main analysis included data from 256 patients: 126 in the TMG and 130 in the CG. Incremental costs over 1 and 2 years were equal to €2129 and €5101, respectively, in favour of the TMG. Once imputed and adjusted for confounding factors, the TMG trends to a 21% cost decrease over 1 and 2 years of follow-up (0.79 [0.58; 1.08], p = 0.1452 and 0.79 [0.61; 1.03], p = 0.0879, respectively). The EDUC@DOM program led to a €1334 cost saving and a 0.17 decrease in HbA1c over 1 year and a €3144 cost saving and a 0.14 decrease in HbA1c over 2 years. According to the confidence ellipse, EDUC@DOM was a cost-effective strategy. CONCLUSION This study provides additional economic information on telemonitoring and tele-education programs to enhance their acceptance and promote their use. In the light of this work, the EDUC@DOM program is a cost-saving strategy in T2D management. TRIAL REGISTRATION This trial was registered in the Clinical Trials Database on 27 September 2013 under no. NCT01955031 and bears ID-RCB no. 2013-A00391-44.
Collapse
Affiliation(s)
- Michael Mounié
- Health-Economic Unit, Medical Information Department, University Hospital, Toulouse, France.
- CERPOP, INSERM - University Toulouse III Paul Sabatier, Toulouse, France.
| | - Nadège Costa
- Health-Economic Unit, Medical Information Department, University Hospital, Toulouse, France
- CERPOP, INSERM - University Toulouse III Paul Sabatier, Toulouse, France
| | - Pierre Gourdy
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 INSERM/UPS, Toulouse University, Toulouse, France
| | - Christelle Latorre
- Health-Economic Unit, Medical Information Department, University Hospital, Toulouse, France
| | - Solène Schirr-Bonnans
- Health-Economic Unit, Medical Information Department, University Hospital, Toulouse, France
| | | | - Henri Roussel
- CNAM, DRSM Occitanie, 2 rue Georges Vivent, 31082, Toulouse, France
| | - Jacques Martini
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
- DIAMIP Network, Toulouse, France
| | | | - Marie-Christine Chauchard
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
- DIAMIP Network, Toulouse, France
| | - Jacqueline Delaunay
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
| | - Soumia Taoui
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
| | | | | | | | | | | | | | | | - Alfred Penfornis
- Sud Francilien Hospital, Corbeil-Essonnes, and Paris-Saclay University, Corbeil-Essonnes, France
| | - Benoît Lepage
- Department of Epidemiology, University Hospital, Toulouse, France
- CERPOP, INSERM - University Toulouse III Paul Sabatier, Toulouse, France
| | - Hélène Colineaux
- Department of Epidemiology, University Hospital, Toulouse, France
- CERPOP, INSERM - University Toulouse III Paul Sabatier, Toulouse, France
| | - Hélène Hanaire
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 INSERM/UPS, Toulouse University, Toulouse, France
| | - Laurent Molinier
- Health-Economic Unit, Medical Information Department, University Hospital, Toulouse, France
- CERPOP, INSERM - University Toulouse III Paul Sabatier, Toulouse, France
| | - Marie-Christine Turnin
- Department of Diabetology, Metabolic Diseases and Nutrition, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
33
|
Hyperglycemia Promotes Endothelial Cell Senescence through AQR/PLAU Signaling Axis. Int J Mol Sci 2022; 23:ijms23052879. [PMID: 35270021 PMCID: PMC8911151 DOI: 10.3390/ijms23052879] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is reported to accelerate endothelial cell senescence that contributes to diabetic complications. The underlying mechanism, however, remains elusive. We previously demonstrated AQR as a susceptibility gene for type 2 diabetes mellitus (T2DM) and showed that it was increased in multiple tissues in models with T2DM or metabolic syndrome. This study aimed to investigate the role of AQR in hyperglycemia-induced senescence and its underlying mechanism. Here, we retrieved several datasets of the aging models and found the expression of AQR was increased by high glucose and by aging across species, including C. elegans (whole-body), rat (cardiac tissues), and monkey (blood). we validated the increased AQR expression in senescent human umbilical vein endothelial cells (HUVECs). When overexpressed, AQR promoted the endothelial cell senescence, confirmed by an increased number of cells stained with senescence-associated beta-galactosidase and upregulation of CDKN1A (P21) as well as the prohibited cellular colony formation and G2/M phase arrest. To explore the mechanism by which AQR regulated the cellular senescence, transcriptomic analyses of HUVECs with the overexpression and knockdown of the AQR were performed. We identified 52 co-expressed genes that were enriched, in the terms of plasminogen activation, innate immunity, immunity, and antiviral defense. Among co-expressed genes, PLAU was selected to evaluate its contribution to senescence for its highest strength in the enrichment of the biological process. We demonstrated that the knockdown of PLAU rescued senescence-related phenotypes, endothelial cell activation, and inflammation in models induced by AQR or TNF-α. These findings, for the first time, indicate that AQR/PLAU is a critical signaling axis in the modulation of endothelial cell senescence, revealing a novel link between hyperglycemia and vascular dysfunction. The study may have implications in the prevention of premature vascular aging associated with T2DM.
Collapse
|
34
|
Li D, Chen K, Tang H, Hu S, Xin L, Jing X, He Q, Wang S, Song J, Mei L, Cannon RD, Ji P, Wang H, Chen T. A Logic-Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108430. [PMID: 34921569 DOI: 10.1002/adma.202108430] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The regeneration of diabetic bone defects remains challenging as the innate healing process is impaired by glucose fluctuation, reactive oxygen species (ROS), and overexpression of proteinases (such as matrix metalloproteinases, MMPs). A "diagnostic" and therapeutic dual-logic-based hydrogel for diabetic bone regeneration is therefore developed through the design of a double-network hydrogel consisting of phenylboronic-acid-crosslinked poly(vinyl alcohol) and gelatin colloids. It exhibits a "diagnostic" logic to interpret pathological cues (glucose fluctuation, ROS, MMPs) and determines when to release drug in a diabetic microenvironment and a therapeutic logic to program different cargo release to match immune-osteo cascade for better tissue regeneration. The hydrogel is also shown to be mechanically adaptable to the local complexity at the bone defect. Furthermore, the underlying therapeutic mechanism is elucidated, whereby the logic-based cargo release enables the regulation of macrophage polarization by remodeling the mitochondria-related antioxidative system, resulting in enhanced osteogenesis in diabetic bone defects. This study provides critical insight into the design and biological mechanism of dual-logic-based tissue-engineering strategies for diabetic bone regeneration.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xuan Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Li Mei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| |
Collapse
|
35
|
Dong M, Liu W, Luo Y, Li J, Huang B, Zou Y, Liu F, Zhang G, Chen J, Jiang J, Duan L, Xiong D, Fu H, Yu K. Glycemic Variability Is Independently Associated With Poor Prognosis in Five Pediatric ICU Centers in Southwest China. Front Nutr 2022; 9:757982. [PMID: 35284444 PMCID: PMC8905539 DOI: 10.3389/fnut.2022.757982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Glucose variability (GV) is a common complication of dysglycemia in critically ill patients. However, there are few studies on the role of GV in the prognosis of pediatric patients, and there is no consensus on the appropriate method for GV measurement. The objective of this study was to determine the “optimal” index of GV in non-diabetic critically ill children in a prospective multicenter cohort observational study. Also, we aimed to confirm the potential association between GV and unfavorable outcomes and whether this association persists after controlling for hypoglycemia or hyperglycemia. Materials and Methods Blood glucose values were recorded for the first 72 h and were used to calculate the GV for each participant. Four different metrics [SD, glycemic lability index (GLI), mean absolute glucose (MAG), and absolute change of percentage (ACACP)] were considered and compared to identify the “best” GV index associated with poor prognosis in non-diabetic critically ill children. Among the four metrics, the SD was most commonly used in previous studies, while GLI- and MAG-integrated temporal information, that is the rate and magnitude of change and the time interval between glucose measurements. The fourth metric, the average consecutive ACACP, was introduced in our study, which can be used in real-time clinical decisions. The primary outcome of this study was the 28-day mortality. The receiver operating characteristic (ROC) curve analysis was conducted to compare the predictive power of different metrics of GV for the primary outcome. The GV index with the largest area under ROC curve (AUC) was chosen for subsequent multivariate analyses. Multivariate Cox regression analysis was performed to identify the potential predictors of the outcome. To compare the contribution in 28-day mortality prognosis between glycemic variability and hyper- or hypoglycemia, performance metrics were calculated, which included AUC, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results Among 780 participants, 12.4% (n = 97) died within 28 days after admission to the pediatric intensive care unit (PICU). Statistically significant differences were found between survivors and non-survivors in terms of four GV metrics (SD, GLI, MAG, and ACACP), in which MAG (AUC: 0.762, 95% CI: 0.705–0.819, p < 0.001) achieved the largest AUC and showed a strong independent association with ICU mortality. Subsequent addition of MAG to the multivariate Cox model for hyperglycemia resulted in further quantitative evolution of the model statistics (AUC = 0.651–0.681, p = 0.001; IDI: 0.017, p = 0.044; NRI: 0.224, p = 0.186). The impact of hyperglycemia (adjusted hazard ratio [aHR]: 1.419, 95% CI: 0.815–2.471, p = 0.216) on outcome was attenuated and no longer statistically relevant after adjustment for MAG (aHR: 2.455, 95% CI: 1.411–4.270, p = 0.001). Conclusions GV is strongly associated with poor prognosis independent of mean glucose level, demonstrating more predictive power compared with hypoglycemia and hyperglycemia after adjusting for confounding factors. GV metrics that contain information, such as time and rate of change, are the focus of future research; thus, the MAG may be a good choice. The findings of this study emphasize the crucial role of GVs in children in the PICU. Clinicians should pay more attention to GV for clinical glucose management.
Collapse
Affiliation(s)
- Milan Dong
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Pediatrics, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Wenjun Liu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yetao Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Institute of Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- *Correspondence: Jing Li
| | - Bo Huang
- Department of Pediatric Critical Care, The First People's Hospital of Zunyi, Zunyi, China
| | - Yingbo Zou
- Department of Pediatric Critical Care, The First People's Hospital of Zunyi, Zunyi, China
| | - Fuyan Liu
- Department of Pediatric Critical Care, The First People's Hospital of Zunyi, Zunyi, China
| | - Guoying Zhang
- Department of Pediatric Critical Care, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Ju Chen
- Department of Pediatric Critical Care, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Jianyu Jiang
- Department of Pediatrics, Chongqing Three Gorges Women and Children's Hospital, Chongqing, China
| | - Ling Duan
- Department of Pediatrics, Chongqing Three Gorges Women and Children's Hospital, Chongqing, China
| | - Daoxue Xiong
- Department of Pediatrics, Chongqing Three Gorges Women and Children's Hospital, Chongqing, China
| | - Hongmin Fu
- Department of Pediatric Critical Care, Kunming Children's Hospital, Kunming, China
| | - Kai Yu
- Department of Pediatric Critical Care, Kunming Children's Hospital, Kunming, China
| |
Collapse
|
36
|
Zhao L, Li Y, Xu T, Lv Q, Bi X, Liu X, Fu G, Zou Y, Ge J, Chen Z, Zhang W. Dendritic cell-mediated chronic low-grade inflammation is regulated by the RAGE-TLR4-PKCβ 1 signaling pathway in diabetic atherosclerosis. Mol Med 2022; 28:4. [PMID: 35062863 PMCID: PMC8780245 DOI: 10.1186/s10020-022-00431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background The unique mechanism of diabetic atherosclerosis has been a central research focus. Previous literature has reported that the inflammatory response mediated by dendritic cells (DCs) plays a vital role in the progression of atherosclerosis. The objective of the study was to explore the role of DCs in diabetes mellitus complicated by atherosclerosis. Methods ApoE−/− mice and bone marrow-derived DCs were used for in vivo and in vitro experiments, respectively. Masson’s staining and Oil-red-O staining were performed for atherosclerotic lesion assessment. The content of macrophages and DCs in plaque was visualized by immunohistochemistry. The expression of CD83 and CD86 were detected by flow cytometry. The fluctuations in the RNA levels of cytokines, chemokines, chemokine receptors and adhesions were analyzed by quantitative RT-PCR. The concentrations of IFN-γ and TNF-α were calculated using ELISA kits and the proteins were detected using western blot. Coimmunoprecipitation was used to detect protein–protein interactions. Results Compared with the ApoE−/− group, the volume of atherosclerotic plaques in the aortic root of diabetic ApoE−/− mice was significantly increased, numbers of macrophages and DCs were increased, and the collagen content in plaques decreased. The expression of CD83 and CD86 were significantly upregulated in splenic CD11c+ DCs derived from mice with hyperglycemia. Increased secretion of cytokines, chemokines, chemokine receptors, intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) also were observed. The stimulation of advanced glycation end products plus oxidized low-density lipoprotein, in cultured BMDCs, further activated toll-like receptor 4, protein kinase C and receptor of AGEs, and induced immune maturation of DCs through the RAGE-TLR4-PKCβ1 signaling pathway that was bound together by intrinsic structures on the cell membrane. Administering LY333531 significantly increased the body weight of diabetic ApoE−/− mice, inhibited the immune maturation of spleen DCs, and reduced atherosclerotic plaques in diabetic ApoE−/− mice. Furthermore, the number of DCs and macrophages in atherosclerotic plaques was significantly reduced in the LY333531 group, and the collagen content was increased. Conclusions Diabetes mellitus aggravates chronic inflammation, and promotes atherosclerotic plaques in conjunction with hyperlipidemia, which at least in part through inducing the immune maturation of DCs, and its possible mechanism of action is through the RAGE-TLR4-pPKCβ1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00431-6.
Collapse
Affiliation(s)
- Liding Zhao
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ya Li
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Tian Xu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Qingbo Lv
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xukun Bi
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xianglan Liu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Guosheng Fu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Zhaoyang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, 350001, People's Republic of China.
| | - Wenbin Zhang
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
37
|
Shi X, Liu W, Zhang L, Xiao F, Huang P, Yan B, Zhang Y, Su W, Jiang Q, Lin M, Liu W, Li X. Sex-Specific Associations Between Low Muscle Mass and Glucose Fluctuations in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:913207. [PMID: 35909561 PMCID: PMC9326160 DOI: 10.3389/fendo.2022.913207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Studies have shown that sex differences in lean mass, concentrations of sex hormones, and lifestyles influence cle health and glucose metabolism. We evaluated the sex-specific association between low muscle mass and glucose fluctuations in hospitalized patients with type 2 diabetes mellitus (T2DM) receiving continuous subcutaneous insulin infusion (CSII) therapy. METHODS A total of 1084 participants were included. Body composition was determined by dual-energy X-ray absorptiometry. Intraday blood glucose fluctuation was estimated by the Largest amplitude of glycemic excursions (LAGE) and standard deviation of blood glucose (SDBG). RESULTS The prevalence of low muscle mass was higher in males than in females (p<0.001). There was a significant sex-specific interaction between the status of low muscle mass and glucose fluctuations (LAGE and SDBG) (p for interaction=0.025 and 0.036 for SDBG and LAGE, respectively). Among males, low muscle mass was significantly associated with a higher LAGE and SDBG (difference in LAGE: 2.26 [95% CI: 1.01 to 3.51], p < 0.001; difference in SDBG: 0.45 [95% CI: 0.25 to 0.65], p < 0.001) after adjustment for HbA1c, diabetes duration, hyperlipidemia, diabetic peripheral neuropathy, diabetic nephropathy, and cardiovascular disease. These associations remained significant after further adjustment for age and C-peptide. Among females, low muscle mass was not associated with LAGE or SDBG after adjustment for all covariates. CONCLUSION The prevalence of low muscle mass was higher in males than in females. Low muscle mass was significantly associated with higher LAGE and SDBG among males, but not females.
Collapse
Affiliation(s)
- Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fouzhou, China
| | - Wenjuan Liu
- Department of Endocrine, Zhangzhou Hospital of Traditional Chinese Medicine, Zhangzhou, China
| | - Lulu Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fangsen Xiao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Peiying Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bing Yan
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiping Zhang
- The School of Clinical Medicine, Fujian Medical University, Fouzhou, China
| | - Weijuan Su
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiuhui Jiang
- The School of Clinical Medicine, Fujian Medical University, Fouzhou, China
| | - Mingzhu Lin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xuejun Li, ; Wei Liu,
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fouzhou, China
- *Correspondence: Xuejun Li, ; Wei Liu,
| |
Collapse
|
38
|
Nathiya D, Singh M, Suman S, Bareth H, Pal N, Jain A, Tomar BS. Albuminuria, glycemic variability and effect of flash glucose monitoring based decision making on short term glycemic variability in Indian type 2 diabetes patients: Indi-GlyVar study. Front Endocrinol (Lausanne) 2022; 13:1011411. [PMID: 36465630 PMCID: PMC9715732 DOI: 10.3389/fendo.2022.1011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
AIM AND SCOPE Glycemic variability (GV) denotes the fluctuations in the glucose values around the baseline. High glycemic variability is associated with a higher risk of diabetes-associated complications. In this study, we sought to determine the impact of therapeutic interventions based on flash glucose monitoring on rapid, short-term glycemic variability. We also studied the prevalent albuminuria in diabetic kidney disease and its effect on glycemic variability. METHODS In a 14-day, single-center, prospective intervention study, we measured the GV indices at baseline (days 1-4) and ten days after ambulatory glucose profile-based intervention using flash glucose monitoring (Abbott Libre Pro, Abbott Diabetes Care, Alameda, California, USA) in patients with type 2 diabetes. An EasyGV calculator was used to estimate the flash glucose monitoring (FGM)-derived measures of GV. The primary outcome was to assess the impact of FGMS-based therapeutic interventions on glycemic variability markers: SD, mean amplitude of glycemic excursion [MAGE], continuous overall net glycemic action [CONGA], absolute means of daily differences [MODD], M value, and coefficient of variance [%CV], AUC below 70 mg/dl, low blood glucose index, AUC above 180 mg/dl [AUC >180], high blood glucose index [HBGI], and J index. Time-related matrices (time in range (%), time above range (%), and time below range (%) were also calculated from the ambulatory glucose profile. Renal function parameters (serum creatinine, estimated glomerular filtration rate, urine albumin excretion) were calculated. The GV with regard to albumin excretion rate was compared. RESULTS Fifty-eight T2DM patients (63.8%, males) with a mean age of 51.5 ± 11.9 years were studied. When compared with baseline (days 1-4), on day 14, there was a significant improvement in mean sensor glucose (mg/dl) median (IQR) [155 (116-247) vs 131 (103-163) (p ≤0.001)], JINDEX [15,878 (7,706-28,298) vs 8,812 (5,545-14,130) (p ≤0.001)], HBGI [361 (304-492) vs 334 (280-379) (p ≤0.001)], MAGE (mg/dl) [112 (8-146) vs 82 (59-109) (p ≤0.001)], M-value [2,477 (1,883-3,848) vs 2,156 (1,667-2,656) (p ≤ 0.001)], MAG (mg/dl) [111 (88-132) vs 88 (69-102) (p ≤ 0.001)]. Patients with albuminuria at baseline had high mean sensor glucose (mg/dl) median (IQR) [190 (131-200) vs 131 (112-156) (p = 0.001)], CONGA (mg/dl) median (IQR) [155 (101-165) vs 108 (83-120) (p = 0.001)], JINDEX, HBGI, MAGE (mg/dl), and M-value are, median (IQR) [20,715 (10,970-26,217 vs 91,118 (6,504-15,445)) (p ≤ 0.01)], [415 (338-423) vs 328 (292-354) (p = 0.001)], [125 (102-196) vs 103 (74-143) (p ≤ 0.01)], [3,014 (2,233-3,080) vs 2,132 (1,788-2,402) (p ≤0.01)], respectively. CONCLUSION In type 2 diabetes, flash glucose monitoring-guided therapeutic interventions can reduce glycemic variability in a brief span (10 days) of time. Also, albuminuria in type 2 diabetes is associated with high glycemic variability. Reduced diabetes complications may ultimately result from this reduced glycemic variability.
Collapse
Affiliation(s)
- Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, Nims University, Rajasthan, Jaipur, India
- Department of Clinical Studies, Fourth Hospital of Yulin (Xingyuan), Yulin, Shaanxi, China
- Department of Clinical Sciences, Shenmu Hospital, Shenmu, Shaanxi, China
| | - Mahaveer Singh
- Department of Endocrinology, National Institute of Medical Sciences, Nims University Rajasthan, Jaipur, India
| | - Supriya Suman
- Department of Pharmacy Practice, Institute of Pharmacy, Nims University, Rajasthan, Jaipur, India
| | - Hemant Bareth
- Department of Pharmacy Practice, Institute of Pharmacy, Nims University, Rajasthan, Jaipur, India
| | - Nikita Pal
- Department of Pharmacy Practice, Institute of Pharmacy, Nims University, Rajasthan, Jaipur, India
- *Correspondence: Arjav Jain, ; Nikita Pal,
| | - Arjav Jain
- Department of Pharmacy Practice, Institute of Pharmacy, Nims University, Rajasthan, Jaipur, India
- *Correspondence: Arjav Jain, ; Nikita Pal,
| | - Balvir S. Tomar
- Department of Clinical Studies, Fourth Hospital of Yulin (Xingyuan), Yulin, Shaanxi, China
- Department of Clinical Sciences, Shenmu Hospital, Shenmu, Shaanxi, China
- Institute of Pediatric Gastroenterology and Hepatology, Nims University Rajasthan, Jaipur, India
| |
Collapse
|
39
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
40
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Yabe D, Iizuka K, Baxter M, Watanabe D, Kaneto H. iGlarLixi reduces residual hyperglycemia in Japanese patients with type 2 diabetes uncontrolled on basal insulin: A post-hoc analysis of the LixiLan JP-L trial. J Diabetes Investig 2021; 12:1992-2001. [PMID: 33945227 PMCID: PMC8565419 DOI: 10.1111/jdi.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Treatments for type 2 diabetes targeting baseline glucose levels but not postprandial glucose can result in normalized fasting blood glucose but suboptimal overall glycemic control (high glycated hemoglobin): residual hyperglycemia. In Japanese patients with type 2 diabetes the predominant pathophysiology is a lower insulin secretory capacity, and residual hyperglycemia is common with basal insulin treatment. Single-injection, fixed-ratio combinations of glucagon-like peptide-1 receptor agonists and basal insulin have been developed. iGlarLixi (insulin glargine 100 units/mL [iGlar]: lixisenatide ratio of 1 unit:1 µg) is for specific use in Japan. Post-hoc analysis of the LixiLan JP-L trial (NCT02752412) compared the effect of iGlarLixi with iGlar on this specific subpopulation with residual hyperglycemia. MATERIALS AND METHODS Outcomes at week 26 (based on the last observation carried forward) were assessed in patients in the modified intent-to-treat population with baseline residual hyperglycemia. RESULTS Overall, 83 (32.5%) patients in the iGlarLixi group and 79 (30.7%) patients in the iGlar group had baseline residual hyperglycemia. The proportion of patients with residual hyperglycemia at week 26 decreased to 15.7% in the iGlarLixi group, and increased to 36.9% in the iGlar group. Patients in the iGlarLixi group had significantly greater reductions in glycated hemoglobin compared with the iGlar group (-0.72% difference between groups; P < 0.0001). CONCLUSIONS New data from this post-hoc analysis of the JP-L trial show that treatment with the fixed-ratio combination iGlarLixi reduced the proportion of Japanese patients with residual hyperglycemia from baseline to week 26 and significantly reduced glycated hemoglobin vs similar doses of iGlar alone.
Collapse
Affiliation(s)
- Daisuke Yabe
- Department of Diabetes, Endocrinology and MetabolismGifu University Graduate School of MedicineGifuJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKobeJapan
- Division of Molecular and Metabolic MedicineKobe University Graduate School of MedicineKobeJapan
| | - Katsumi Iizuka
- Department of Diabetes, Endocrinology and MetabolismGifu University Graduate School of MedicineGifuJapan
- Center for Nutritional Support and Infection ControlGifu University HospitalGifuJapan
| | - Mike Baxter
- Medical AffairsSanofiReadingUK
- Department of Diabetes and EndocrinologyUniversity of SwanseaSwanseaUK
| | | | - Hideaki Kaneto
- Division of Diabetes, Metabolism and EndocrinologyKawasaki Medical SchoolKurashikiJapan
| |
Collapse
|
42
|
Ogura J, Sugiura H, Tanaka A, Ono S, Sato T, Sato T, Maekawa M, Yamaguchi H, Mano N. Glucose-induced oxidative stress leads to in S-nitrosylation of protein disulfide isomerase in neuroblastoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129998. [PMID: 34474117 DOI: 10.1016/j.bbagen.2021.129998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dementia places a significant burden on both patients and caregivers. Since diabetes is a risk factor for dementia, it is imperative to identify the relationship between diabetes and cognitive disorders. Protein disulfide isomerase (PDI) is an enzyme for oxidative protein folding. PDI S-nitrosylation is observed in the brain tissues of Alzheimer's disease patients. The aim of this study is to clarify the relationship between PDI S-nitrosylation and diabetes. METHODS We used SH-SY5Y cells cultured in high-glucose media. RESULTS S-nitrosylated PDI level increased at 7 days and remained high till 28 days in SH-SY5Y cells cultured in high-glucose media. Using PDI wild-type- or PDI C343S-expressing SH-SY5Y cells, PDI C343 was identified as the site of glucose-induced S-nitrosylation. IRE1α and PERK were phosphorylated at day 14 in the SH-SY5Y cells cultured in high-glucose media, and the phosphorylated status was maintained to day 28. To determine the effect of S-nitrosylated PDI on endoplasmic reticulum stress signaling, SH-SY5Y cells were treated with S-nitrosocystein (SNOC) for 30 min, following which the medium was replaced with SNOC-free media and the cells were cultured for 24 h. Only phosphorylated IRE1α treated with SNOC was associated with PDI S-nitrosylation. Neohesperidin, a flavonoid in citrus fruits, is a natural antioxidant. The treatment with neohesperidin in the final 7 days of glucose loading reversed PDI S-nitrosylation and improved cell proliferation. CONCLUSION Glucose loading leads to S-nitrosylation of PDI C343 and induces neurodegeneration via IRE1α phosphorylation. GENERAL SIGNIFICANCE The results may be useful for designing curative treatment strategies for dementia.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| | - Hiroki Sugiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Tanaka
- Research Institute of Medical Sciences, School of Medicine, Yamagata University, Yamagata, Japan
| | - Shinji Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiyuki Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Fadel MM, Abdel Ghaffar FR, Zwain SK, Ibrahim HM, badr EAE. Serum netrin and VCAM-1 as biomarker for Egyptian patients with type IΙ diabetes mellitus. Biochem Biophys Rep 2021; 27:101045. [PMID: 34179515 PMCID: PMC8209750 DOI: 10.1016/j.bbrep.2021.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the serum level of netrin and soluble vascular cell adhesion molecule 1 (VCAM-I) in patients with type IΙ diabetes mellitus (T2DM) and evaluate the association of their levels with the development of a diabetic complication. PATIENTS AND METHODS This study was carried out on type II diabetic patients with and without complications and healthy individuals served as controls. All subjects were submitted to the estimation of serum lipid profile, serum creatinine, urinary albumin/creatinine ratio (ACR), fasting blood glucose (FBG), glycated hemoglobin (HbA1c), visceral adiposity index (VAI), atherogenic index of plasma (AIP), lipid accumulation product (LAP) and detection of serum level of netrin1 and VCAM1. RESULTS Diabetic patients with complications had significantly higher serum levels of creatinine, ACR, cholesterol, Triglyceride, low-density lipoprotein, netrin1, and VCAM1 than diabetic patients without complications. Likewise, the level of VAI and LAP as markers of excessive body fat were significantly higher in diabetic patients with complications than diabetic patients without complications. The netrin1 and VCAM1 were a significant discriminator of T2DM renal complications with a sensitivity of 96%, 90%, and specificity of 82.7%, 91.3% respectively. CONCLUSION It can be concluded that serum netrin1 and VCAM1 correlated significantly with markers of excessive body fat, a renal complication in the patient with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maher M. Fadel
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Faten R. Abdel Ghaffar
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Shimaa K. Zwain
- Department of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine, Menoufia University, Egypt
| | - Hany M. Ibrahim
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Eman AE. badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
44
|
Alfieri V, Myasoedova VA, Vinci MC, Rondinelli M, Songia P, Massaiu I, Cosentino N, Moschetta D, Valerio V, Ciccarelli M, Marenzi G, Genovese S, Poggio P. The Role of Glycemic Variability in Cardiovascular Disorders. Int J Mol Sci 2021; 22:ijms22168393. [PMID: 34445099 PMCID: PMC8395057 DOI: 10.3390/ijms22168393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common and costly disorders that affect humans around the world. Recently, clinicians and scientists have focused their studies on the effects of glycemic variability (GV), which is especially associated with cardiovascular diseases. In healthy subjects, glycemia is a very stable parameter, while in poorly controlled DM patients, it oscillates greatly throughout the day and between days. Clinically, GV could be measured by different parameters, but there are no guidelines on standardized assessment. Nonetheless, DM patients with high GV experience worse cardiovascular disease outcomes. In vitro and in vivo studies showed that high GV causes several detrimental effects, such as increased oxidative stress, inflammation, and apoptosis linked to endothelial dysfunction. However, the evidence that treating GV is beneficial is still scanty. Clinical trials aiming to improve the diagnostic and prognostic accuracy of GV measurements correlated with cardiovascular outcomes are needed. The present review aims to evaluate the clinical link between high GV and cardiovascular diseases, taking into account the underlined biological mechanisms. A clear view of this challenge may be useful to standardize the clinical evaluation and to better identify treatments and strategies to counteract this DM aspect.
Collapse
Affiliation(s)
- Valentina Alfieri
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Maria Cristina Vinci
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Maurizio Rondinelli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milano, Italy
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Michele Ciccarelli
- Chirurgia ed Odontoiatria, Dipartimento di Medicina, Università degli Studi di Salerno, 84084 Salerno, Italy;
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Correspondence: ; Tel.: +39-025-800-2853
| |
Collapse
|
45
|
Lertpatipanpong P, Lee J, Kim I, Eling T, Oh SY, Seong JK, Baek SJ. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep 2021; 11:15027. [PMID: 34294853 PMCID: PMC8298384 DOI: 10.1038/s41598-021-94581-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) plays a role in various diseases. Here, the anti-diabetic effects of NAG-1 were evaluated using a high-fat diet/streptozotocin-induced diabetic mouse model. NAG-1-overexpressing transgenic (NAG-1 Tg) mice exhibited lower body weight, fasting blood glucose levels, and serum insulin levels than wild-type (WT) mice. The homeostatic model assessment of insulin resistance scores of NAG-1 Tg mice were lower than those of WT mice. Hematoxylin and eosin staining revealed a smaller lipid droplet size in the adipose tissues, lower lipid accumulation in the hepatocytes, and larger beta cell area in the pancreas of NAG-1 Tg mice than in those of WT mice. Immunohistochemical analysis revealed downregulated expression of cleaved caspase-3, an apoptosis marker, in the beta cells of NAG-1 Tg mice. Adiponectin and leptin mRNA levels were upregulated and downregulated in NAG-1 Tg mice, respectively. Additionally, the expression of IRS1/PI3K/AKT signaling pathway components, especially Foxo1, which regulates gluconeogenesis in the muscle and white adipose tissue, was downregulated in NAG-1 Tg mice. Furthermore, NAG-1 overexpression promoted the expression of As160 in both muscles and adipocytes, and the mRNA levels of the NLRP3 pathway members were downregulated in NAG-1 Tg mice. Our findings suggest that NAG-1 expression alleviates diabetes in mice.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaehak Lee
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ilju Kim
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Thomas Eling
- National Institute of Environmental Health Science, 111 TW Alexander Dr. Research Triangle Park, NC, 27709, USA
| | - Seung Yeon Oh
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
46
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:ijms22157783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Correspondence:
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|
47
|
Świderska E, Strycharz J, Wróblewski A, Czarny P, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Intermittent Hyperglycemia Modulates Expression of Key Molecules of PI3K/AKT Pathway in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22147712. [PMID: 34299331 PMCID: PMC8304829 DOI: 10.3390/ijms22147712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Due to its prominence in the regulation of metabolism and inflammation, adipose tissue is a major target to investigate alterations in insulin action. This hormone activates PI3K/AKT pathway which is essential for glucose homeostasis, cell differentiation, and proliferation in insulin-sensitive tissues, like adipose tissue. The aim of this work was to evaluate the impact of chronic and intermittent high glucose on the expression of biomolecules of insulin signaling pathway during the differentiation and maturation of human visceral preadipocytes. Methods: Human visceral preadipocytes (HPA-V) cells were treated with high glucose (30 mM)during the proliferation and/or differentiation and/or maturation stage. The level of mRNA (by Real-Time PCR) and protein (by Elisa tests) expression of IRS1, PI3K, PTEN, AKT2, and GLUT4 was examined after each culture stage. Furthermore, we investigated whether miR-29a-3p, miR-143-3p, miR-152-3p, miR-186-5p, miR-370-3p, and miR-374b-5p may affect the expression of biomolecules of the insulin signaling pathway. Results: Both chronic and intermittent hyperglycemia affects insulin signaling in visceral pre/adipocytes by upregulation of analyzed PI3K/AKT pathway molecules. Both mRNA and protein expression level is more dependent on stage-specific events than the length of the period of high glucose exposure. What is more, miRs expression changes seem to be involved in PI3K/AKT expression regulation in response to hyperglycemic stimulation.
Collapse
Affiliation(s)
- Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
- Correspondence: ; Tel.: +48-693-843-960
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Józef Drzewoski
- Central Hospital of Medical University, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
48
|
Viurcos-Sanabria R, Escobedo G. Immunometabolic bases of type 2 diabetes in the severity of COVID-19. World J Diabetes 2021; 12:1026-1041. [PMID: 34326952 PMCID: PMC8311488 DOI: 10.4239/wjd.v12.i7.1026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 and type 2 diabetes (T2D) have now merged into an ongoing global syndemic that is threatening the lives of millions of people around the globe. For this reason, there is a deep need to understand the immunometabolic bases of the main etiological factors of T2D that affect the severity of COVID-19. Here, we discuss how hyperglycemia contributes to the cytokine storm commonly associated with COVID-19 by stimulating monocytes and macrophages to produce interleukin IL-1β, IL-6, and TNF-α in the airway epithelium. The main mechanisms through which hyperglycemia promotes reactive oxygen species release, inhibition of T cell activation, and neutrophil extracellular traps in the lungs of patients with severe SARS-CoV-2 infection are also studied. We further examine the molecular mechanisms by which proinflammatory cytokines induce insulin resistance, and their deleterious effects on pancreatic β-cell exhaustion in T2D patients critically ill with COVID-19. We address the effect of excess glucose on advanced glycation end product (AGE) formation and the role of AGEs in perpetuating pneumonia and acute respiratory distress syndrome. Finally, we discuss the contribution of preexisting endothelial dysfunction secondary to diabetes in the development of neutrophil trafficking, vascular leaking, and thrombotic events in patients with severe SARS-CoV-2 infection. As we outline here, T2D acts in synergy with SARS-CoV-2 infection to increase the progression, severity, and mortality of COVID-19. We think a better understanding of the T2D-related immunometabolic factors that contribute to exacerbate the severity of COVID-19 will improve our ability to identify patients with high mortality risk and prevent adverse outcomes.
Collapse
Affiliation(s)
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| |
Collapse
|
49
|
Hu Z, Fang W, Liu Y, Liang H, Chen W, Wang H. Acute glucose fluctuation promotes RAGE expression via reactive oxygen species‑mediated NF‑κB activation in rat podocytes. Mol Med Rep 2021; 23:330. [PMID: 33760170 PMCID: PMC7974412 DOI: 10.3892/mmr.2021.11969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a common chronic complication of diabetes, for which acute glucose fluctuation (AGF) is a potential risk factor. Fluctuating hyperglycemia has been confirmed to induce more serious kidney damage than hyperglycemia in diabetic rats; however, the mechanism remains unknown. The purpose of this study was to explore the potential role of AGF in the progression of DN. Viability of rat podocytes following 72-h AGF treatment was detected using Cell Counting-Kit-8. The rates of apoptosis and the level of reactive oxygen species (ROS) in rat podocytes were assessed by flow cytometry. Western blotting and reverse transcription-quantitative PCR were performed to measure relative protein and mRNA expression levels, respectively. Transfection with an mRFP-GFP-LC3 adenoviral vector was used to track autophagic flux under confocal microscopy. The results indicated that AGF could inhibit cell proliferation, promote TNF-α, interleukin-1β (IL-1β), and reactive oxygen species (ROS) generation, and increase autophagy in rat podocytes. Moreover, AGF upregulated receptor for advanced glycation end products (RAGE) expression via activation of NF-κB/p65 and IκBα. Pretreatment with 5 mM N-Acetyl-L-cysteine or 10 µM pyrrolidine dithiocarbamate effectively reduced cellular damage and inhibited activation of the NF-κB/RAGE signaling pathway. Thus, AGF induces rat podocyte injury by aggravating oxidative stress, promoting the inflammatory response, and regulating ROS-mediated NF-κB/RAGE activation.
Collapse
Affiliation(s)
- Zhangjie Hu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Wenming Fang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yi Liu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Haowei Liang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Hui Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
50
|
Ravi R, Balasubramaniam V, Kuppusamy G, Ponnusankar S. Current concepts and clinical importance of glycemic variability. Diabetes Metab Syndr 2021; 15:627-636. [PMID: 33743360 DOI: 10.1016/j.dsx.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Evolving evidence indicate that variations in blood glucose levels are likely to be an important factor in developing diabetic complications. Monitoring glucose fluctuations in patients remains as a therapeutic challenge and more evidence needs to be created in order to bring GV into limelight. This review encapsulates the most important findings conducted and discusses on them to provide readers a better understanding on this emerging subject. METHODS Keyword-based comprehensive desktop search was conducted to gather the relevant literature. Triple-stage cascade type content analysis of the literature was conducted to draw relevant themes of discussions. RESULTS High glycemic variability is associated with an increased risk of development of diabetic complications especially in cardiac conditions. The widely used and accepted metrics to determine the variations in blood glucose are Standard deviation (SD), MAGE (Mean amplitude of glycemic excursions) and MODD (Mean of daily differences). Occurrence of blood glucose variations affects at a molecular level thereby causing more harm than the occurrence of hyperglycemia alone. CONCLUSION Available data suggest that Glycemic Variability should be used as an additional marker of glycemia. Additional research globally, and in India are required.
Collapse
Affiliation(s)
- Ramya Ravi
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - V Balasubramaniam
- Department of Surgery, Govt. Medical College Hospital, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|