1
|
Zhu L, Zhang Y, Li X, Zou X, Bing P, Qi M, He B. Vitamin D supplementation for managing COVID-19 in patients with vitamin D deficiency: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2025; 15:e091903. [PMID: 40139702 PMCID: PMC11950963 DOI: 10.1136/bmjopen-2024-091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES Vitamin D deficiency is prevalent among the population. Previous studies have shown that vitamin D supplementation might be useful for treating COVID-19 infection. Therefore, we performed a meta-analysis to explore vitamin D supplementation efficacy in treating COVID-19 patients with vitamin D deficiency. DESIGN Systematic review and meta-analysis DATA SOURCES: PubMed, Cochrane Library, Embase and Web of Science. ELIGIBILITY CRITERIA Randomised controlled trials exploring vitamin D supplementation for patients with COVID-19 and vitamin D deficiency. DATA EXTRACTION AND SYNTHESIS Two independent reviewers employed standardised methods to search, screen and code the included studies. The primary outcomes included mortality during follow-up, 28-day mortality, need for mechanical ventilation and intensive care unit (ICU). The secondary outcome included length of stay in hospital and ICU. The risk of bias was assessed using the Risk of Bias 2 tool. Depending on the level of heterogeneity, either a random-effects model or a fixed-effects model was applied. The findings were summarised using Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence profiles and synthesised qualitatively. RESULTS A total of nine studies, comprising 870 participants, were included in the analysis. The pooled results indicated that vitamin D supplementation was associated with a lower risk of mortality (risk ratio 0.76; 95% CI 0.60 to 0.97). However, this apparent benefit was not robust when examined through the leave-one-out method and trial sequential analysis. Regarding other outcomes, there was no statistically significant difference between vitamin D supplementation and no supplementation in terms of 28-day mortality, the need for mechanical ventilation and ICU admission. Vitamin D supplementation was associated with a 0.41 day shorter length of stay in the ICU (mean difference -0.41; 95% CI -1.09 to 0.28) and a 0.07 day shorter length of stay in the hospital (mean difference -0.07; 95% CI -0.61 to 0.46) compared with no supplementation; however, neither difference was statistically significant. CONCLUSION Based on evidence of low to moderate quality, vitamin D supplementation reduced the mortality rate during follow-up in COVID-19 patients with vitamin D deficiency. However, it did not improve 28-day mortality, nor did it reduce the need for mechanical ventilation and ICU admission, or the length of stay in the ICU and hospital. PROSPERO REGISTRATION NUMBER CRD42024573791.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- School of Public Health, Changsha Medical University, Changsha, 410219, China
| | - Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Xi Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- School of Public Health, Changsha Medical University, Changsha, 410219, China
| | - Xuemin Zou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- School of Public Health, Changsha Medical University, Changsha, 410219, China
| | - Pingping Bing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Mingxu Qi
- Department of Cardiovascular Medicine, University of South China, Hengyang, China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| |
Collapse
|
2
|
Han L, Xu S, Chen R, Zheng Z, Ding Y, Wu Z, Li S, He B, Bao M. Causal associations between HbA1c and multiple diseases unveiled through a Mendelian randomization phenome-wide association study in East Asian populations. Medicine (Baltimore) 2025; 104:e41861. [PMID: 40101035 PMCID: PMC11922474 DOI: 10.1097/md.0000000000041861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Most analyses of hemoglobin A1c (HbA1c) and multiple common diseases have focused on European populations, thus there is a need for Mendelian randomization phenome-wide association study (MR-PheWAS) in East Asian populations. We used MR-PheWAS to investigate the potential causal associations between HbA1c and 159 types of diseases in the Biobank Japan dataset, employing the inverse variance weighted as the primary statistical approach, supplemented by MR-Egger and weighted median analyses. Additionally, multiple sensitivity analyses were conducted to assess heterogeneity and pleiotropy. High HbA1c levels are associated with an increased risk of type 1 diabetes (odds ratio [OR] = 4.07; 95% confidence interval [CI]: 2.34~7.07), type 2 diabetes (OR = 4.76; 95% CI: 3.01~7.55), cataract (OR = 1.33; 95% CI: 1.18~1.51), diabetic nephropathy (OR = 5.70; 95% CI: 2.24~14.46), and peripheral arterial disease (OR = 1.62; 95% CI: 1.29~2.04). Conversely, elevated HbA1c levels are associated with a reduced risk of asthma (OR = 0.76; 95% CI: 0.67~0.86), breast cancer (OR = 0.75; 95% CI: 0.65~0.87), and cerebral aneurysm (OR = 0.71; 95% CI: 0.57~0.88). The results of the causal association between HbA1c and numerous diseases in East Asian populations provides insights for the region's specialized glycemic control and disease prevention programs, as well as new preventive and treatment options.
Collapse
Affiliation(s)
- Li Han
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwei Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| |
Collapse
|
3
|
Li R, Huang Z, Chen M. Long Non-Coding RNA EPB41L4A-AS1 Serves as a Diagnostic Marker for Chronic Periodontitis and Regulates Periodontal Ligament Injury and Osteogenic Differentiation by Targeting miR-214-3p/YAP1. J Inflamm Res 2025; 18:2483-2497. [PMID: 39991662 PMCID: PMC11847424 DOI: 10.2147/jir.s491724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
Background Several long non-coding RNAs (lncRNAs) are dysregulated in chronic periodontitis (CP). Purpose The study aimed to elucidate the molecular mechanisms and clinical significance of lncRNA EPB41L4A antisense RNA 1 (EPB41L4A-AS1) in CP. Patients and Methods This study enrolled 101 patients with CP and 90 subjects with healthy periodontal tissues. Patients with CP were categorized according to severity. The expression of EPB41L4A-AS1 and osteogenic markers in the lipopolysaccharide (LPS)-induced human periodontal ligament cells (hPDLCs) was assessed using real-time quantitative reverse transcription PCR (RT-qPCR). The diagnostic significance of EPB41L4A-AS1 was evaluated using receiver operating characteristic (ROC) analysis. The levels of inflammatory factors were measured using an enzyme-linked immunosorbent assay. Cell proliferation and apoptosis were analyzed using cell counting kit -8 and flow cytometry, respectively. The interaction between EPB41L4A-AS1 and microRNAs was verified using dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. Results EPB41L4A-AS1 was downregulated in the gingival sulcus fluid of patients with CP and LPS-induced hPDLCs. Additionally, EPB41L4A-AS1 could distinguish patients with CP from control subjects with sensitivity (88.12%) and specificity (81.11%). The expression of EPB41L4A-AS1 was downregulated in patients with severe CP. EPB41L4A-AS1 downregulation was directly correlated with severe clinical indicators and inversely correlated with inflammatory indicators. The overexpression of EPB41L4A-AS1 promoted the proliferation and osteogenic differentiation of hPDLCs and mitigated LPS-induced inflammation. Mechanistically, EPB41L4A-AS1 directly targets and downregulates miR-214-3p expression, resulting in the upregulation of Yes1-associated transcriptional regulator (YAP1) levels. The overexpression of miR-214-3p partially suppressed the effects of EPB41L4A-AS1 on LPS-induced hPDLC injury and osteogenic differentiation. Conclusion The overexpression of EPB41L4A-AS1 suppressed LPS-induced hPDLC injury and enhanced osteogenic differentiation through the miR-214-3p/YAP1 axis. Thus, EPB41L4A-AS1 is a novel diagnostic marker and a therapeutic target for CP.
Collapse
Affiliation(s)
- Rui Li
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Zhibin Huang
- Medical Room, Nantong College of Science and Technology, Nantong, People’s Republic of China
| | - Mengmeng Chen
- Department of Stomatology, The Fourth Hospital of Harbin, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Liu M, Chen R, Zheng Z, Xu S, Hou C, Ding Y, Zhang M, Bao M, He B, Li S. Mechanisms of inflammatory microenvironment formation in cardiometabolic diseases: molecular and cellular perspectives. Front Cardiovasc Med 2025; 11:1529903. [PMID: 39877020 PMCID: PMC11772298 DOI: 10.3389/fcvm.2024.1529903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening. Hypertension involves the activation of the renin-angiotensin system (RAS) alongside oxidative stress-induced endothelial dysfunction and local inflammation mediated by T cells. In diabetic cardiomyopathy, a high-glucose environment leads to the accumulation of advanced glycation end products (AGEs), activating the Receptor for Advanced Glycation Endproducts (RAGE) and triggering inflammatory responses that further damage cardiac and microvascular function. In summary, the inflammatory mechanisms in different types of metabolic cardiovascular diseases are complex and diverse; understanding these mechanisms deeply will aid in developing more effective individualized treatment strategies.
Collapse
Affiliation(s)
- Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwei Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Binsheng He
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Aslam S, Ullah S, Ullah H, Rehman AU, Khan N, Baqi A, Khan Y. Synthesis, in vitro anti-urease, In-silico molecular docking study and ADMET predictions of piperidine and piperazine Morita-Baylis-Hillman Adducts (MBHAs). Z NATURFORSCH C 2024:znc-2024-0175. [PMID: 39565962 DOI: 10.1515/znc-2024-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
The current work describes an efficient synthesis of Morita-Baylis-Hillman adducts (MBHAs) derived heterocycles (4, 5, 6, 7, 10, 11, 12, 13, 16 and 17) with the Michael addition of piperidine and piperazine heterocycles. The comparative studies of mono and di-hydrogen bond acceptors heterocycles, meta and para substituted nitro-phenyl rings and the isolated single diastereomer 16 through molecular docking coupled with in vivo bioactivities displayed very important results. The biological significances were observed against urease enzyme (IC50 = 3.95 ± 0.10 µM). Almost all the compounds displayed different ranges of inhibition potential whereas the di-hydrogen bond donor diastereomers 12 and 13 were found to be highly potent against the targeted enzyme while the remaining had shown comparable inhibitory activity. The diastereomers 12 and 13 were the most active having minimum inhibitory concentration (MIC) IC50 = 3.95 ± 0.10 µM. All the synthesized compounds were docked and their best poses were explored for enhanced biological properties. The molecular docking studies revealed better binding interactions of the ligand with the target enzyme. Furthermore, ADMET predictions were also observed which revealed drug like properties for all the novel MBHAs based piperidine and piperazine derivatives.
Collapse
Affiliation(s)
- Samina Aslam
- Depatment of Chemistry, 66954 University of Balochistan , Quetta, Pakistan
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta Balochistan, Pakistan
| | - Sami Ullah
- Depatment of Chemistry, 66954 University of Balochistan , Quetta, Pakistan
| | - Hamid Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Attiq Ur Rehman
- Depatment of Chemistry, 66954 University of Balochistan , Quetta, Pakistan
| | - Naqeebullah Khan
- Depatment of Chemistry, 66954 University of Balochistan , Quetta, Pakistan
| | - Abdul Baqi
- Depatment of Chemistry, 66954 University of Balochistan , Quetta, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad Campus, 45550, Islamabad, Pakistan
| |
Collapse
|
6
|
Wei Y, Xu S, Wu Z, Zhang M, Bao M, He B. Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine (Baltimore) 2024; 103:e40412. [PMID: 39560586 PMCID: PMC11576012 DOI: 10.1097/md.0000000000040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
While there is ample evidence indicating an increased occurrence of general neurological conditions among individuals with diabetes, there has been limited exploration into the cause-and-effect connection between type 2 diabetes (T2D) and specific neurological disorders, including conditions like carpal tunnel syndrome and Bell's palsy. We used Mendelian randomization (MR) approach to investigate the causal effects of T2D on 67 neurological diseases. We primarily utilized the inverse-variance weighted method for the analysis, and also employed the weighted median and MR-Egger methods in our study. To detect and correct potential outliers, MR-PRESSO analysis was used. Heterogeneity was assessed using Cochrane Q-values. The MR analyses found a possible relationship between T2D and a risk increase of 8 diseases at suggestive level of evidence (P < .05). Notably, among the positive findings that met the false discovery rate threshold, nerve, nerve root, and plexus disorders (odds ratio [OR] = 1.11; 95% confidence interval [CI] = 1.08-1.15); neurological diseases (OR = 1.05; 95% CI = 1.03-1.07) and carpal tunnel syndrome (OR = 1.10; 95% CI = 1.05-1.16) were identified. Our findings affirm a cause-and-effect association between T2D and certain neurological disorders.
Collapse
Affiliation(s)
- Yongfang Wei
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoquan Wu
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| |
Collapse
|
7
|
Lei X, Zou F, Tang X, He F, Wang J, Cheng S, Lei X. CD3D silencing alleviates diabetic nephropathy via inhibition of JAK/STAT pathway. FASEB J 2024; 38:e70169. [PMID: 39530557 DOI: 10.1096/fj.202401879r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes that poses a significant burden to global health. This investigation aims to illustrate the functional role of CD3D and its relevant mechanisms in DN progression. The pivotal genes between the GSE47183 and GSE30528 datasets were identified using bioinformatics methods. The effects of CD3D silencing on renal damage, inflammatory response, and lipid metabolism were validated in DN mice. Furthermore, the impacts of CD3D knockdown on cell viability, apoptotic rate, inflammation, and lipid levels were investigated in HK-2 cells under high glucose (HG) conditions. Additionally, RO8191 was employed to investigate the role of CD3D in the JAK/STAT pathway in HG-treated cells. A total of 5 focal genes were identified through bioinformatics and were found to be upregulated in renal tissues from DN mice. CD3D silencing mitigated pathological damage to kidneys, reduced inflammatory response, and decreased lipid accumulation in DN mice. HG stimulation restrained viability, increased apoptosis, promoted the release of inflammatory cytokines, and affected expressions of hallmarks related to lipid metabolism in HG-treated cells; these changes were partially abolished by CD3D knockdown. Mechanistically, CD3D downregulation ameliorated HG-induced injury in HK-2 cells by blocking the JAK/STAT pathway. This study underscores that CD3D silencing has significant potential as a promising candidate in the treatment of DN.
Collapse
Affiliation(s)
- Xianghong Lei
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Fangqin Zou
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xianhu Tang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Fengxia He
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Jiyang Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Shengyu Cheng
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiangxin Lei
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Qin X, Cui H, Guo L, Li X, Zhou Q. Theoretical Study of Gas Sensing toward Acetone by a Single-Atom Transition Metal (Sc, Ti, V, and Cr)-Doped InP 3 Monolayer. ACS OMEGA 2024; 9:45059-45067. [PMID: 39554418 PMCID: PMC11561593 DOI: 10.1021/acsomega.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Acetone (C3H6O) gas in the exhaled breath of diabetic patients can be used as an important biomarker for the painless and noninvasive diagnosis of diabetes mellitus. In this paper, based on the density functional theory (DFT), the adsorption behaviors of pristine and single-atom transition metal (X = Sc, Ti, V, and Cr)-doped InP3 surfaces (denoted as X-InP3) toward C3H6O molecule were examined to explore the potential of these two-dimensional (2D) materials as a sensitive sensor for acetone gas. The calculation results indicate the unfavorable detection property for the pristine 2D-InP3 surface upon acetone with an unsatisfied gas response (12.4%). The introduction of a single-atom transition metal (Sc, Ti, V, and Cr) into the InP3 layer has significantly improved the adsorption capacity toward the C3H6O molecule. Owing to the high gas response values (-98.0%, 393.3%, and 393.3%), the Ti-InP3, V-InP3, and Cr-InP3 layers show their superiority in C3H6O detection at room temperature, in which Ti-InP3 achieves recycle use through heating at 698 K. Sc-InP3 is unsuitable for C3H6O sensing with a poor response (8.1%). Our work first gives a theoretical predication about the adsorption and sensitive detection performance of pristine and single-atom transition metal (Sc, Ti, V, and Cr)-doped InP3 upon acetone, which may provide an emerging kind of sensing material for the noninvasive diagnosis of diabetes mellitus indicated by acetone gas.
Collapse
Affiliation(s)
- Xin Qin
- Hunan
Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural
Biogenomics, Hunan Provincial University Key Laboratory of the Fundamental
and Clinical Research on Functional Nucleic Acid, “The 14th
Five-Year Plan” Application Characteristic Discipline of Hunan
Province (Clinical Medicine), Changsha Medical
University, Changsha 410219, Hunan, China
| | - Hao Cui
- College
of Artificial Intelligence, Southwest University, Chongqing 400715, Chongqing, China
| | - Lijuan Guo
- School
of Basic Medicine, Changsha Medical University, Changsha 410219, Hunan, China
| | - Xin Li
- Hunan
Provincial Key Laboratory of the Research and Development of Novel
Pharmaceutical Preparations, “The 14th Five-Year Plan”
Application Characteristic Discipline of Hunan Province (Pharmaceutical
Science), College of Pharmacy, Changsha
Medical University, Changsha 410219, Hunan, China
| | - Qiulan Zhou
- Hunan
Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural
Biogenomics, Hunan Provincial University Key Laboratory of the Fundamental
and Clinical Research on Functional Nucleic Acid, “The 14th
Five-Year Plan” Application Characteristic Discipline of Hunan
Province (Clinical Medicine), Changsha Medical
University, Changsha 410219, Hunan, China
| |
Collapse
|
9
|
Bhat AA, Tandon N, Singh I. Pyrrolidine derivatives as α-amylase and α-glucosidase inhibitors: Design, synthesis, structure-activity relationship (SAR), docking studies and HSA binding. Heliyon 2024; 10:e39444. [PMID: 39502250 PMCID: PMC11535763 DOI: 10.1016/j.heliyon.2024.e39444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
In our pursuit of developing effective inhibitors for the enzymes α-amylase and α-glucosidase, which play a crucial role in carbohydrate metabolism related to type-2 diabetes, we synthesized compounds featuring a pyrrolidine ring. The synthesis involved coupling N-Boc-proline with various aromatic amines, resulting in the formation of distinct N-Boc proline amides. To investigate the influence of the Boc group on enzyme inhibition, the Boc group was subsequently removed. In vitro, testing against α-amylase and α-glucosidase, with metformin and acarbose as reference standards, revealed that the 4-methoxy analogue 3g showed noteworthy inhibitory activity, with IC50 values of 26.24 and 18.04 μg/mL, respectively. Compounds 3a with an IC50 value of 36.32 μg/mL and 3f with an IC50 value of 27.51 μg/mL displayed significant inhibitory activity against α-amylase and α-glucosidase, respectively. The results of molecular docking studies of the most potent pyrrolidine derivatives 3a and 3g with α-amylase and 3f and 3g with α-glucosidase showed good agreement with experimental data. Moreover, compound 3g showed strong binding interactions with HSA having binding constant values of 7.08 × 105 M-1 and 4.77 × 105 M-1 using UV-visible and fluorescence spectrophotometry, respectively.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
10
|
Yu G, Fu X, Mo X, Tan L, Yang S. Multi-target anti-diabetic styrylpyrones from Phellinus igniarius: Inhibition of α-glucosidase, protein glycation, and oxidative stress. Int J Biol Macromol 2024; 278:134854. [PMID: 39168223 DOI: 10.1016/j.ijbiomac.2024.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bioactivity screening revealed that the EtOAc extract from the culture broth of Phellinus igniarius SY489 exhibited remarkable α-glucosidase inhibitory activity, with an IC50 value of 1.92 μg/mL. Activity- and ultraviolet (UV) profile-guided isolation led to the discovery of four anti-diabetic styrylpyrones (1-4), including two novel compounds, phelignidins A (1) and B (2). Compounds 1 and 2 represent a rare structural type of styrylpyrone dimer, in which one of the pyrone moieties exists in an open-ring state. The absolute configurations of the new compounds 1 and 2, as well as the previously unresolved compound 3, were established. Compounds 1-4 were effective in α-glucosidase inhibition, anti-glycation, and antioxidant assays, surpassing or being comparable to the positive control drugs, with minimal cytotoxicity. Furthermore, studies on α-glucosidase inhibition mechanisms suggested that these compounds interact with α-glucosidase at a single binding site, causing secondary structure unfolding and exerting inhibitory activity via a mixed-type mechanism. These results provide an important basis for developing novel, low-toxicity, multi-target anti-diabetic drugs from edible and medicinal fungi.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiangji Fu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
11
|
Hamidullah, Alam A, Elhenawy AA, Ali M, Latif A, Khan A, Al-Harrasi A, Ahmad M. Novel benzimidazole-based azine derivatives as potent urease inhibitors: synthesis, in vitro and in silico approach. Future Med Chem 2024; 16:2337-2350. [PMID: 39311079 PMCID: PMC11622760 DOI: 10.1080/17568919.2024.2401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/02/2024] [Indexed: 12/08/2024] Open
Abstract
Aim: In light of various biological activities of benzimidazole and azines, this study focuses on reporting novel derivatives of benzimidazole nucleus.Methods: Twenty novel azines of benzimidazole were synthesized, characterized and tested for in vitro urease inhibitory activity.Results: All these derivatives showed excellent to good inhibition in the range of IC50 values 14.21 ± 1.87 to 76.11 ± 1.81 μM by comparing with standard thiourea 21.14 ± 0.42 μM. Docking studies were performed for the targeted benzimidazole derivatives to understand the binding mechanics. The results indicated higher binding efficacy compared with the reference inhibitor.Conclusion: This work identifies potential lead candidates for novel urease inhibitors, which with industrial support may be harnessed for the development of new drugs.
Collapse
Affiliation(s)
- Hamidullah
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
12
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Tan X, Xu S, Zeng Y, Qin Z, Yu F, Jiang H, Xu H, Li X, Wang X, Zhang G, Ma B, Zhang T, Fan J, Bo X, Kang P, Tang J, Fan H, Zhou Y. Identification of diagnostic signature and immune infiltration for ischemic cardiomyopathy based on cuproptosis-related genes through bioinformatics analysis and experimental validation. Int Immunopharmacol 2024; 138:112574. [PMID: 38971104 DOI: 10.1016/j.intimp.2024.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Ischemic cardiomyopathy (IC) is primarily due to long-term ischemia/hypoxia of the coronary arteries, leading to impaired cardiac contractile or diastolic function. A new form of cell death induced by copper, called "cuproptosis" is related to the development and progression of multiple diseases. The cuproptosis-related gene (CuGs) plays an important role in acute myocardial infarction, while the specific mechanisms of CuGs in ischemic cardiomyopathy remain unclear. METHODS The expressions of CuGs and their immune characteristics were analyzed with the IC datasets obtained from the Gene Expression Omnibus, namely GSE5406 and GSE57338, identifying core genes associated with IC development. By comparing RF, SVM, GLM and XGB models, the optimal machine learning model was selected. The expression of marker genes was validated based on the GSE57345, GSE48166 and GSE42955 datasets. Construct a CeRNA network based on core genes. Therapeutic chemiacals targeting core genes were acquired using the CTD database, and molecular docking was performed using Autodock vina software. By ligating the left anterior descending (LAD) coronary artery, an IC mouse model is established, and core genes were experimentally validated using Western blot (WB) and immunohistochemistry (IHC) methods. RESULTS We identified 14 CuGs closely associated with the onset of IC. The SVM model exhibited superior discriminative power (AUC = 0.914), with core genes being DLST, ATP7B, FDX1, SLC31A1 and DLAT. Core genes were validated on the GSE42955, GSE48166 and GSE57345 datasets, showing excellent performance (AUC = 0.943, AUC = 0.800, and AUC = 0.932). The CeRNA network consists of 218 nodes and 264 lines, including 5 core diagnostic genes, 52 miRNAs, and 161 lncRNAs. Chemicals predictions indicated 8 chemicals have therapeutic effects on the core diagnostic genes, with benzo(a)pyrene molecular docking showing the highest affinity (-11.3 kcal/mol). Compared to the normal group, the IC group,which was established by LAD ligation, showed a significant decrease in LVEF as indicated by cardiac ultrasound, and increased fibrosis as shown by MASSON staining, WB results suggest increased expression of DLST and ATP7B, and decreased expression of FDX1, SLC31A1 and DLAT in the myocardial ischemic area (p < 0.05), which was also confirmed by IHC in tissue sections. CONCLUSION In summary, this study comprehensively revealed that DLST, ATP7B, FDX1, SLC31A1 and DLAT could be identified as potential immunological biomarkers in IC, and validated through an IC mouse model, providing valuable insights for future research into the mechanisms of CuGs and its diagnostic value to IC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Shuai Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yiyao Zeng
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou 450052, China; Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou 450052, China
| | - Fengyi Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou 450052, China; Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou 450052, China
| | - Hezi Jiang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Hui Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Xian Li
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Xiangyu Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou 450052, China; Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou 450052, China
| | - Bin Ma
- Luoyang Central Hospital Affiliated of Zhengzhou University, Luoyang 471009, China
| | - Ting Zhang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Ahhui Medical University, Hefei 230011, China
| | - Jili Fan
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang 236600, China
| | - Xiaohong Bo
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang 236600, China
| | - Pinfang Kang
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou 450052, China; Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou 450052, China
| | - Huimin Fan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital to Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215028, China
| | - Yafeng Zhou
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215000, China; Institute for Hypertension, Soochow University, Suzhou 215000, China.
| |
Collapse
|
14
|
Bukhari HA, Afzal M, Al-Abbasi FA, Sheikh RA, Alqurashi MM, Bawadood AS, Alzarea SI, Alamri A, Sayyed N, Kazmi I. In vivo and computational investigation of butin against alloxan-induced diabetes via biochemical, histopathological, and molecular interactions. Sci Rep 2024; 14:20633. [PMID: 39232184 PMCID: PMC11374895 DOI: 10.1038/s41598-024-71577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Herbs have been used as medicines since antiquity, and it has been discovered that the human body responds well to herbal remedies. Research on the effect of butin was conducted in the current study in the alloxan-induced diabetic rat paradigm. A total of 30 Wistar rats were randomly assigned into the following groups (n = 6): I-Normal; II-Alloxan-induced (50 mg/kg); III-Alloxan + butin 25 mg/kg; IV-Alloxan + butin 50 mg/kg; V-Butin per se 50 mg/kg. Various diabetic parameters (blood glucose, insulin, HbA1c), lipid profile, inflammatory (TNF-α, IL-1β, IL-6 and NF-κB), antioxidant enzymes (CAT, SOD and GSH), oxidative stress indicators (MDA), apoptosis marker (caspase-3), hepatic markers (ALT and AST), and histopathological changes were assessed. Additionally, molecular docking and dynamics were performed to evaluate the interaction of butin with target proteins. Butin treatment, at both doses, significantly restored biochemical parameters and preserved pancreatic histopathology in diabetic rats. It effectively modulated blood parameters, lipid profiles, inflammatory markers, apoptosis, antioxidant enzyme activity, oxidative stress, and hepatic markers. Molecular docking revealed that butin binds to proteins such as caspase-3 (1NME), NF-κB (1SVC), and serum insulin (4IBM) with binding affinities of - 7.4, - 6.5, and - 8.2 kcal/mol, respectively. Molecular dynamics simulations further suggested that butin induces significant conformational changes in these proteins. Butin exhibits potential effects against alloxan-induced diabetic rats by restoring biochemical balance, reducing inflammation, and protecting pancreatic tissue. Its binding to key proteins involved in apoptosis and inflammation highlights its therapeutic potential in diabetes management.
Collapse
Affiliation(s)
- Hussam A Bukhari
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - May M Alqurashi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Azizah Salim Bawadood
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Sakaka, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Ur Rahman S, Alam A, Parveen Z, Zainab, Assad M, Adnan Ali Shah S, Rafiq H, Ayaz M, Latif A, Naveed Umar M, Ali M, Ahmad M. Novel acyl hydrazide derivatives of polyhydroquinoline as potent anti-diabetic and anti-glycating agents: Synthesis, in vitro α-amylase, α-glucosidase inhibition and anti-glycating activity with molecular docking insights. Bioorg Chem 2024; 150:107501. [PMID: 38865858 DOI: 10.1016/j.bioorg.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.
Collapse
Affiliation(s)
- Sajjad Ur Rahman
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mohammad Assad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Huma Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
16
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Guo Z, Zhang J, Li M, Xing Z, Li X, Qing J, Zhang Y, Zhu L, Qi M, Zou X. Mechanism of action of quercetin in regulating cellular autophagy in multiple organs of Goto-Kakizaki rats through the PI3K/Akt/mTOR pathway. Front Med (Lausanne) 2024; 11:1442071. [PMID: 39211336 PMCID: PMC11357923 DOI: 10.3389/fmed.2024.1442071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This experimental study investigated the protective function of quercetin on the liver, spleen, and kidneys of Goto-Kakizaki (GK) rats and explores its mechanism of action on autophagy-related factors and pathways. Materials and methods GK rats were randomly divided into three groups: DM, DM + L-Que, and DM + H-Que, with age-matched Wistar rats serving as the control group. The control and DM groups were gavaged with saline, and the quercetin-treated group was gavaged with quercetin for 8 weeks each. Weekly blood glucose levels were monitored. Upon conclusion of the experiment, blood samples were gathered for lipid and hepatic and renal function analyses. The histopathologic morphology and lipid deposition in rats were examined. Disease-related targets were identified using molecular docking methods and network pharmacology analysis. Subsequently, immunohistochemical analysis was performed, followed by Western blotting to evaluate the levels of autophagy-related proteins and proteins in the AKT/PI3K/mTOR pathway, as well as their phosphorylation levels. Results The results showed that, compared with the control group, the DM group exhibited significant increases in blood glucose, serum liver and kidney markers, liver fat vacuoles, and inflammatory cell infiltration. Immunohistochemistry (IHC) results indicated that quercetin reduced the extensive expression of AKT, P62, and mTOR in the liver and spleen of diabetic rats. The expression of autophagy and pathway-related proteins, such as P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR, was upregulated, while the expression of LC3A/LC3B, Beclin-1, Pink-1, and Parkin was downregulated. Conversely, the quercetin group showed a reduction in liver and kidney injury serum markers by decreasing lipid deposition and cell necrosis, indicating that quercetin has protective effects on the liver, spleen, and kidneys of GK rats. Additionally, in the quercetin group, the expression of autophagy and pathway-related proteins such as LC3A/LC3B, Beclin-1, Pink-1, and Parkin was upregulated, while the expression of P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR was downregulated, with statistically significant correlations. Conclusion Quercetin markedly ameliorates liver, spleen, and kidney damage in GK rats, potentially through the inhibition of the PI3K/Akt/mTOR pathway, promoting autophagy. This research offers a rationale to the therapeutic potential of quercetin in mitigating organ damage associated with diabetes.
Collapse
Affiliation(s)
- Zhiqun Guo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Jingyu Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Mianxin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Zengwei Xing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Xi Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Jiaqi Qing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Mingxu Qi
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Xuemin Zou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| |
Collapse
|
18
|
He K, Chen R, Xu S, Ding Y, Wu Z, Bao M, He B, Li S. Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1422752. [PMID: 39211449 PMCID: PMC11357934 DOI: 10.3389/fendo.2024.1422752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetes and its complications significantly affect individuals' quality of life. The etiology of diabetes mellitus and its associated complications is complex and not yet fully understood. There is an increasing emphasis on investigating the effects of endocrine disruptors on diabetes, as these substances can impact cellular processes, energy production, and utilization, ultimately leading to disturbances in energy homeostasis. Mitochondria play a crucial role in cellular energy generation, and any impairment in these organelles can increase susceptibility to diabetes. This review examines the most recent epidemiological and pathogenic evidence concerning the link between endocrine disruptors and diabetes, including its complications. The analysis suggests that endocrine disruptor-induced mitochondrial dysfunction-characterized by disruptions in the mitochondrial electron transport chain, dysregulation of calcium ions (Ca2+), overproduction of reactive oxygen species (ROS), and initiation of signaling pathways related to mitochondrial apoptosis-may be key mechanisms connecting endocrine disruptors to the development of diabetes and its complications.
Collapse
Affiliation(s)
- Kunhui He
- The 1 Affiliate Hospital of Changsha Medical University, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Singh G, Singh R, Monga V, Mehan S. Thiazolidine-2,4-dione hybrids as dual alpha-amylase and alpha-glucosidase inhibitors: design, synthesis, in vitro and in vivo anti-diabetic evaluation. RSC Med Chem 2024; 15:2826-2854. [PMID: 39149094 PMCID: PMC11324062 DOI: 10.1039/d4md00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Twelve 3,5-disubstituted-thiazolidine-2,4-dione (TZD) hybrids were synthesized using solution phase chemistry. Continuing our previous work, nine O-modified ethyl vanillin (8a-i) derivatives were synthesized and reacted with the TZD core via Knoevenagel condensation under primary reaction conditions to obtain final derivatives 9a-i. Additionally, three isatin-TZD hybrids (11a-c) were synthesized. The intermediates and final derivatives were characterized using 1H and 13C NMR spectroscopy, and the observed chemical shifts agreed with the proposed structures. The in vitro alpha-amylase and alpha-glucosidase inhibitory evaluation of newly synthesized derivatives revealed compounds 9F and 9G as the best dual inhibitors, with IC50 values of 9.8 ± 0.047 μM for alpha-glucosidase (9F) and 5.15 ± 0.0017 μM for alpha-glucosidase (9G), 17.10 ± 0.015 μM for alpha-amylase (9F), and 9.2 ± 0.092 μM for alpha-amylase (9G). The docking analysis of synthesized compounds indicated that compounds have a higher binding affinity for alpha-glucosidase as compared to alpha-amylase, as seen from docking scores ranging from -1.202 to -5.467 (for alpha-amylase) and -4.373 to -7.300 (for alpha-glucosidase). Further, the molecules possess a high LD50 value, typically ranging from 1000 to 1600 mg kg-1 of body weight, and exhibit non-toxic properties. The in vitro cytotoxicity assay results on PANC-1 and INS-1 cells demonstrated that the compounds were devoid of significant toxicity against the tested cells. Compounds 9F and 9G showed high oral absorption, i.e., oral absorption >96%, and their molecular dynamics simulation yielded results closely aligned with the observed docking outcomes. Finally, compounds 9F and 9G were evaluated for in vivo antidiabetic assessment by the induction of diabetes in Wistar rats using streptozotocin. Molecule 9G has been identified as the most effective anti-diabetic molecule due to its ability to modulate several biochemical markers in blood plasma and tissue homogenates. The results were further confirmed by histology investigations conducted on isolated pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga-142001 Punjab India
- Research Scholar, IK Gujral Punjab Technical University Kapurthala Punjab India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy GT Road, Ghal Kalan Moga Punjab India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab VPO-Ghudda Bathinda Punjab India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga Punjab India
| |
Collapse
|
20
|
Pan G, Jin J, Liu H, Zhong C, Xie J, Qin Y, Zhang S. Integrative analysis of the transcriptome and metabolome provides insights into polysaccharide accumulation in Polygonatum odoratum (Mill.) Druce rhizome. PeerJ 2024; 12:e17699. [PMID: 39006032 PMCID: PMC11243984 DOI: 10.7717/peerj.17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background Polygonatum odoratum (Mill.) Druce is a traditional Chinese herb that is widely cultivated in China. Polysaccharides are the major bioactive components in rhizome of P. odoratum and have many important biological functions. Methods To better understand the regulatory mechanisms of polysaccharide accumulation in P. odoratum rhizomes, the rhizomes of two P. odoratum cultivars 'Y10' and 'Y11' with distinct differences in polysaccharide content were used for transcriptome and metabolome analyses, and the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified. Results A total of 14,194 differentially expressed genes (DEGs) were identified, of which 6,689 DEGs were down-regulated in 'Y10' compared with those in 'Y11'. KEGG enrichment analysis of the down-regulated DEGs revealed a significant enrichment of 'starch and sucrose metabolism', and 'amino sugar and nucleotide sugar metabolism'. Meanwhile, 80 differentially accumulated metabolites (DAMs) were detected, of which 52 were significantly up-regulated in 'Y11' compared to those in 'Y10'. The up-regulated DAMs were significantly enriched in 'tropane, piperidine and pyridine alkaloid biosynthesis', 'pentose phosphate pathway' and 'ABC transporters'. The integrated metabolomic and transcriptomic analysis have revealed that four DAMs, glucose, beta-D-fructose 6-phosphate, maltose and 3-beta-D-galactosyl-sn-glycerol were significantly enriched for polysaccharide accumulation, which may be regulated by 17 DEGs, including UTP-glucose-1-phosphate uridylyltransferase (UGP2), hexokinase (HK), sucrose synthase (SUS), and UDP-glucose 6-dehydrogenase (UGDH). Furthermore, 8 DEGs (sacA, HK, scrK, GPI) were identified as candidate genes for the accumulation of glucose and beta-D-fructose 6-phosphate in the proposed polysaccharide biosynthetic pathways, and these two metabolites were significantly associated with the expression levels of 13 transcription factors including C3H, FAR1, bHLH and ERF. This study provided comprehensive information on polysaccharide accumulation and laid the foundation for elucidating the molecular mechanisms of medicinal quality formation in P. odoratum rhizomes.
Collapse
Affiliation(s)
- Gen Pan
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Colleges of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Yuhui Qin
- Colleges of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
21
|
Saleem M, Hussain A, Hanif M, Ahmad H, Khan SU, Haider S, Rafiq M, Paracha RN, Park SH. Synthesis, Invitro Cytotoxic Activity and Optical Analysis of Substituted Schiff Base Derivatives. J Fluoresc 2024:10.1007/s10895-024-03803-9. [PMID: 38913090 DOI: 10.1007/s10895-024-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
Fluorescent cytotoxic compounds with readout delivery are crucial in chemotherapy. The growing demands of these treatment strategies require the novel heterocyclic molecules with better selectivity alongside fluorescence marker potential. In this context, a series of nine isatin Schiff base derivatives 4a-i were synthesized, characterized and evaluated for UV-visible, fluorescence, thermal and bioanalysis in order to explore the effect of structure on their bioprofiles. The analogue 4d exhibited maximum cytotoxic activity on Hella cells with percentage inhibition of 83% at 50 µM and 100% at 150 µM concentrations while 4c showed minimum cytotoxic activity with the value of 19% at 50 µM and 22% at 150 µM concentrations. Meanwhile, 4g was found to exhibit maximum inhibition potential towards Vero Cells with the percentage inhibition values of 83 at 50 µM concentration. The overall SAR study showed that the para-fluoro-substituted isatin moieties exhibited the appreciable percentage inhibition while the least activity was delivered by the isatin derivatives with para-bromo substitution.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah, -31200, Pakistan
| | - Hufsa Ahmad
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, -6300, Pakistan
| | | | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
22
|
Huang C, Xu S, Chen R, Ding Y, Fu Q, He B, Jiang T, Zeng B, Bao M, Li S. Assessing causal associations of bile acids with obesity indicators: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38610. [PMID: 38905395 PMCID: PMC11191951 DOI: 10.1097/md.0000000000038610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Maintaining a balanced bile acids (BAs) metabolism is essential for lipid and cholesterol metabolism, as well as fat intake and absorption. The development of obesity may be intricately linked to BAs and their conjugated compounds. Our study aims to assess how BAs influence the obesity indicators by Mendelian randomization (MR) analysis. Instrumental variables of 5 BAs were obtained from public genome-wide association study databases, and 8 genome-wide association studies related to obesity indicators were used as outcomes. Causal inference analysis utilized inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analysis involved MR-PRESSO and leave-one-out techniques to detect pleiotropy and outliers. Horizontal pleiotropy and heterogeneity were assessed using the MR-Egger intercept and Cochran Q statistic, respectively. The IVW analysis revealed an odds ratio of 0.94 (95% confidence interval: 0.88, 1.00; P = .05) for the association between glycolithocholate (GLCA) and obesity, indicating a marginal negative causal association. Consistent direction of the estimates obtained from the weighted median and MR-Egger methods was observed in the analysis of the association between GLCA and obesity. Furthermore, the IVW analysis demonstrated a suggestive association between GLCA and trunk fat percentage, with a beta value of -0.014 (95% confidence interval: -0.027, -0.0004; P = .04). Our findings suggest a potential negative causal relationship between GLCA and both obesity and trunk fat percentage, although no association survived corrections for multiple comparisons. These results indicate a trend towards a possible association between BAs and obesity, emphasizing the need for future studies.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingming Fu
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Ting Jiang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Rahimlou M, Ahmadi AR, Cheraghian B, Baghdadi G, Ghalishourani SS, Nozarian S, Hashemi SJ, Rahimi Z, Jahromi NB, Hosseini SA. The association between dietary inflammatory index with some cardio-metabolic risk indices among the patients with type 2 diabetes from Hoveyzeh cohort study: a cross-sectional study. BMC Endocr Disord 2024; 24:91. [PMID: 38890603 PMCID: PMC11186237 DOI: 10.1186/s12902-024-01624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The dietary inflammatory index (DII) serves as a tool to assess the inflammatory impact of an individual's diet. This study aimed to investigate the association between DII and some cardio-metabolic risk indices among patients with T2DM. METHODS Data from the Hoveyzeh Cohort Study, encompassing 2045 adults with T2DM, were analyzed. DII scores were calculated based on food frequency questionnaires. Anthropometric measurements and biochemical tests were performed to assess cardio-metabolic risk factors. RESULTS Higher DII scores were positively associated with elevated triglyceride levels, triglyceride-glucose (TyG) index, lipid accumulation product (LAP), anthropometric indices including a body shape index (ABSI), body roundness index (BRI), body mass index (BMI), hip, waist circumferences (WC), and waist-to-height ratio (all Ptrend < 0.05). Notably, no significant association was observed between DII and fasting blood sugar (FBS) levels (Ptrend > 0.05). Additionally, dietary intake analysis revealed a negative correlation between DII scores and intake of fiber, fruits, vegetables, legumes, fish, seafood, dairy products, magnesium, and vitamins A, C, D, and E (all Ptrend < 0.05). Conversely, higher DII scores were associated with increased consumption of red meat, processed meat, refined cereals, potatoes, and soft drinks (all Ptrend < 0.05). CONCLUSION This study underscores the critical link between dietary inflammation, assessed by the DII score, and a multitude of cardio-metabolic risk factors in patients with T2DM. Notably, while the study did not find a significant association between DII and fasting blood sugar levels, it identified robust associations with novel anthropometric and biochemical indices indicative of cardio-metabolic risk. These findings highlight the potential of dietary interventions as a cornerstone strategy for managing T2DM and mitigating its associated complications.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Samira Sadat Ghalishourani
- Department of Physical Education and Sport Science, Science of Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Nozarian
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Alimentary Tract Research Center, Clinical Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Rahimi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Banaei Jahromi
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Kazmi I, Afzal M, Almalki WH, S RJ, Alzarea SI, Kumar A, Sinha A, Kukreti N, Ali H, Abida. From oncogenes to tumor suppressors: The dual role of ncRNAs in fibrosarcoma. Pathol Res Pract 2024; 258:155329. [PMID: 38692083 DOI: 10.1016/j.prp.2024.155329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
25
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
26
|
Xu K, Zhang L, Wang T, Yu T, Zhao X, Zhang Y. Transcriptomics reveals dynamic changes in the "gene profiles" of rat supraspinatus tendon at three different time points after diabetes induction. BMC Med Genomics 2024; 17:122. [PMID: 38711057 DOI: 10.1186/s12920-024-01899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE There is increasing evidence that type 2 diabetes mellitus (T2DM) is an independent risk factor for the occur of tendinopathy. Therefore, this study is the first to explore the dynamic changes of the "gene profile" of supraspinatus tendon in rats at different time points after T2DM induction through transcriptomics, providing potential molecular markers for exploring the pathogenesis of diabetic tendinopathy. METHODS A total of 40 Sprague-Dawley rats were randomly divided into normal (NG, n = 10) and T2DM groups (T2DM, n = 30) and subdivided into three groups according to the duration of diabetes: T2DM-4w, T2DM-8w, and T2DM-12w groups; the duration was calculated from the time point of T2DM rat model establishment. The three comparison groups were set up in this study, T2DM-4w group vs. NG, T2DM-8w group vs. NG, and T2DM-12w group vs. NG. Differentially expressed genes (DEGs) in 3 comparison groups were screened. The intersection of the three comparison groups' DEGs was defined as key genes that changed consistently in the supraspinatus tendon after diabetes induction. Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto encyclopedia of genes and genomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. RESULTS T2DM-4w group vs. NG, T2DM-8w group vs. NG, and T2DM-12w group vs. NG detected 519 (251 up-regulated and 268 down-regulated), 459 (342 up-regulated and 117 down-regulated) and 328 (255 up-regulated and 73 down-regulated) DEGs, respectively. 103 key genes of sustained changes in the supraspinatus tendon following induction of diabetes, which are the first identified biomarkers of the supraspinatus tendon as it progresses through the course of diabetes.The GO analysis results showed that the most significant enrichment in biological processes was calcium ion transmembrane import into cytosol (3 DEGs). The most significant enrichment in cellular component was extracellular matrix (9 DEGs). The most significant enrichment in molecular function was glutamate-gated calcium ion channel activity (3 DEGs). The results of KEGG pathway enrichment analysis showed that there were 17 major pathways (p < 0.05) that diabetes affected supratinusculus tendinopathy, including cAMP signaling pathway and Calcium signaling pathway. CONCLUSIONS Transcriptomics reveals dynamic changes in the"gene profiles"of rat supraspinatus tendon at three different time points after diabetes induction. The 103 DEGs identified in this study may provide potential molecular markers for exploring the pathogenesis of diabetic tendinopathy, and the 17 major pathways enriched in KEGG may provide new ideas for exploring the pathogenesis of diabetic tendinopathy.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
27
|
Alam A, Zainab, Elhenawy AA, Ur Rehman N, Shahidul Islam M, Dahlous KA, Talab F, Shah SAA, Ali M, Ahmad M. Synthesis of Flurbiprofen Based Amide Derivatives as Potential Leads for Diabetic Management: In Vitro α‐glucosidase Inhibition, Molecular Docking and DFT Simulation Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research is based on the synthesis, characterization and in vitro α‐glucosidase inhibitory activity of fourteen amides (2 a–2 n) of flurbiprofen drug. Seven compounds in the series displayed potent inhibitory activity having IC50 values (IC50=5.67±0.89 μM) to (IC50=17.87±2.39 μM) in comparison with acarbose standard (IC50=875.75±1.24 μM). The FMO of 2 a–2 n molecules was quantified by the DFT assay. The promising value for energygap explained the higher poteny agannist α‐glucosidase. MEP provides the insights into the distribution of electrostatic potential on the molecular surface of 2 a–2 n, showing that C=O group has the highest negative potential. The AIM investigation revealed minimal hydrogen bond energy and non‐covalent interactions. This suggests that these molecules may have limited hydrogen bonding and non‐covalent interactions, which could be relevant to their chemical behavior. Molecular docking and (MEP) showed the C=O group, with its high negative potential, is a key in recognizing the catalytic non‐polar regions of enzymes, such as TYR72, GLU277, and ARG442. Similarly, the hydrophobic regions of investigated compounds play a significant role in identifying essential amino acids like ASP352 and ARG442, which are vital for the ligand's proper orientation and subsequent biological activity.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | - Ahmed A. Elhenawy
- Department of Chemistry Al-Azhar University, Nasr City 11884 Cairo Egypt
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center University of Nizwa Nizwa 616 Oman
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Kholood A. Dahlous
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Faiz Talab
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam, Selangor D. E. Malaysia
| | - Mumtaz Ali
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
28
|
Ma J, Feng Y, Xu J, Li Z, Lai J, Guan H. Downregulation of lncRNA EPB41L4A-AS1 promotes gastric cancer cell proliferation, migration and invasion. BMC Gastroenterol 2024; 24:136. [PMID: 38627627 PMCID: PMC11020471 DOI: 10.1186/s12876-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The incidence of gastric cancer ranks the first among digestive tract tumors in China. However, there are no specific symptoms in the early stage of the tumor and the diagnosis process is complex, so more effective detection methods are very needed. In this study, a novel long noncoding RNA (lncRNA) was introduced as a diagnostic biomarker for gastric cancer, which brought new thinking to the exploration of its pathological mechanism and clinical prediction. METHODS The level of lncRNA EPB41L4A-AS1 (EPB41L4A-AS1) in gastric cancer serum and cells was verified via real-time quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve was performed based on the EPB41L4A-AS1 level, and the diagnostic possibility of EPB41L4A-AS was analyzed. The chi-square test evaluated the correlation between EPB41L4A-AS expression and clinical information. The cells were cultured and transfected in vitro, and the mediations of abnormal EPB41L4A-AS level on the viability and motility of gastric cancer cells were verified through cell counting kit-8 (CCK-8) and Transwell assay. Furthermore, luciferase activity assay was performed to confirm the sponge molecule microRNA-17-5p (miR-17-5p) of EPB41L4A-AS1. RESULTS EPB41L4A-AS1 was decreased in gastric cancer, and low EPB41L4A-AS1 level indicated resultful diagnostic value. Overexpression of EPB41L4A-AS1 inhibited the activity of gastric cancer cells, while knockdown of EPB41L4A-AS1 promoted tumor deterioration. EPB41L4A-AS1 directly targeted and regulated the expression ofmiR-17-5p. CONCLUSION This study elaborated that EPB41L4A-AS1 is lowly expressed in gastric cancer. Silencing EPB41L4A-AS1 was beneficial to cell proliferation, migration, and invasion. EPB41L4A-AS1 provides a new possibility for the diagnosis of gastric cancer patients by targeting miR-17-5p.
Collapse
Affiliation(s)
- Jiancang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Yingying Feng
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, 200433, Shanghai, China
| | - Jinkai Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Zongyu Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Jingyue Lai
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Hao Guan
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China.
| |
Collapse
|
29
|
Saleem M, Hussain A, Khan SU, Haider S, Lee KH, Park SH. Symmetrical Ligand's Fabricated Porous Silicon Surface Based Photoluminescence Sensor for Metal Detection and Entrapment. J Fluoresc 2024:10.1007/s10895-024-03697-7. [PMID: 38625572 DOI: 10.1007/s10895-024-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
This study was based on the development of surface-based photoluminescence sensor for metal detection, quantification, and sample purification employing the solid sensory chip having the capability of metal entrapment. The Co(II), Cu(II) and Hg(II) sensitive fluorescence sensor (TP) was first synthesized and characterized its sensing abilities towards tested metal ions by using fluorescence spectral investigation while the synthesis and complexation of the receptor was confirmed by the chromogenic, optical, spectroscopic and spectrometric analysis. Under optical investigation, the ligand solution exhibited substantial chromogenic changes as well as spectral variations upon reacting with copper, cobalt, and mercuric ions, while these behaviors were not seen for the rest of tested metallic ions i.e., Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, and Al3+. These colorimetric alterations and spectral shifting could potentially be employed to detect and quantify these specific metal ions. After the establishment of the ligand's selective complexation ability towards selected metals, it was fabricated over the substituted porous silicon surface (FPS) keeping in view of the development of surface-based photoluminescence sensor (TP-FPS) for the selected metal sensation and entrapment to purify the sample just be putting off the metal entrapped sensory solid chip. Surface characterization and ligand fabrication was inspected by plan and cross sectional electron microscopic investigations, vibrational and electronic spectral analysis. The sensitivity of the ligand (TP) in the solution phase metal discrimination was determined by employing the fluorescence titration analysis of the ligand solution after progressive induction of Co2+, Cu2+, and Hg2+, which afford the detection limit values of 2.14 × 10- 8, 3.47 × 10- 8 and 3.13 × 10- 3, respectively. Concurrently, photoluminescence titration of the surface fabricated sensor (TP-FPS) revealed detection limit values of 3.14 × 10- 9, 7.43 × 10- 9, and 8.21 × 10- 4, respectively, for the selected metal ions.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Ki Hwan Lee
- Kongju National University, Gongju, Chungnam, 314-701, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
30
|
Pan S, Yang L, Zhong W, Wang H, Lan Y, Chen Q, Yu S, Yang F, Yan P, Peng H, Liu X, Gao X, Song J. Integrated analyses revealed the potential role and immune link of mitochondrial dysfunction between periodontitis and type 2 diabetes mellitus. Int Immunopharmacol 2024; 130:111796. [PMID: 38452412 DOI: 10.1016/j.intimp.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - LanXin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Qiyue Chen
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Pingping Yan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Houli Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Liu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
31
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
32
|
Ahmad I, Parveen W, Noor S, Udin Z, Ali A, Ali I, Ullah R, Ali H. Design and synthesis of novel dihydropyridine- and benzylideneimine-based tyrosinase inhibitors. Front Pharmacol 2024; 15:1332184. [PMID: 38595924 PMCID: PMC11002185 DOI: 10.3389/fphar.2024.1332184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 04/11/2024] Open
Abstract
Tyrosinase (TYR) inhibitors are very significant as they inhibit enzyme tyrosinase activity, and its inhibition is vital for skin care, anticancer medication, and antibrowning of fruits and vegetables. This work presents a novel and economical route for the preparation of new synthetic tyrosinase inhibitors using amlodipine (4). The novel conjugates 6 (a-o) were designed, synthesized, and characterized by spectroscopic analyses, including Fourier transform infrared and low- and high-resolution mass spectroscopy. The purified compound 4 was refluxed with various aldehydes and ketones 5 (a-o) for 5-8 h in methanol at 60°C-90°C. This research modified the drug in a step-by-step manner to develop therapeutic properties as a tyrosinase inhibitor. The structures of synthesized ligands 6 (a-o) were established based on spectral and analytical data. The synthesized compounds 6 (a-o) were screened against tyrosinase enzyme. Kojic acid was taken as standard. All the prepared compounds 6 (a-o) have good inhibition potential against the enzyme tyrosinase. Compounds 6o, 6b, 6f, and 6k depicted excellent antityrosinase activity. Compound 6k, with an IC50 value of 5.34 ± 0.58 µM, is as potent as the standard kojic acid (IC50 6.04 ± 0.11 µM), standing out among all synthesized compounds 6 (a-o). The in silico studies of the conjugates 6 (a-o) were evaluated via PatchDock. Compound 6k showed a binding affinity score of 8,999 and an atomic contact energy (ACE) value of -219.66 kcal/mol. The structure-activity relationship illustrated that the presence of dihydropyridine nuclei and some activating groups at the ortho and para positions of the benzylideneimine moiety is the main factor for good tyrosinase activity. The compound 6k could be used as a lead compound for drug modification as a tyrosinase inhibitor for skin care, anticancer medication, and antibrowning for fruits and vegetables.
Collapse
Affiliation(s)
- Ifraz Ahmad
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Warda Parveen
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Shah Noor
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Zahoor Udin
- Chemistry Department, Gomal University, Dera Ismail Khan, Pakistan
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
33
|
Ullah N, Alam A, Zainab, Elhenawy AA, Naz S, Islam MS, Ahmad S, Shah SAA, Ahmad M. Investigating Novel Thiophene Carbaldehyde Based Thiazole Derivatives as Potential Hits for Diabetic Management: Synthesis, In Vitro and In Silico Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research work is based on synthesis of eleven novel thiazole derivatives (3 a‐k) of thiophene carbaldehyde. All the synthesized compounds were successfully synthesized, characterized by 1H‐NMR and EI‐MS spectroscopic techniques and finally subjected for their in vitro α‐glucosidase inhibitory activity. Seven derivatives 3 i (IC50=10.21±1.84 μM), 3 b (IC50=11.14±0.99 μM), 3 f (IC50=13.21±2.76 μM), 3 h (IC50=14.21±0.31 μM), 3 k (IC50=15.21±1.02 μM), 3 e (IC50=16.21±1.32 μM), and 3 c (IC50=18.21±1.89 μM), in the series displayed excellent inhibitory potential better than the standard acarbose. However, two compounds 3 g (IC50=33.21±1.99 μM) and 3 d (IC50=42.31±2.12 μM) showed significant activity while two compounds 3 j and 3 a were found less active with IC50 values of 82.31±0.31 and 88.36±1.21 μM respectively. Additional research revealed that the compounds are not exhibiting any cytotoxic effects. The molecular docking study of these derivatives showed their good binding potential for α‐glucosidase active site with excellent interactions and docking scores.
Collapse
Affiliation(s)
- Najeeb Ullah
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | | | - Saira Naz
- Department of Chemistry Bacha Khan University Charsadda Pakistan
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Shujaat Ahmad
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam Selangor D. E. Malaysia
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
34
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
35
|
Fu Q, Chen R, Xu S, Ding Y, Huang C, He B, Jiang T, Zeng B, Bao M, Li S. Assessment of potential risk factors associated with gestational diabetes mellitus: evidence from a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1276836. [PMID: 38260157 PMCID: PMC10801737 DOI: 10.3389/fendo.2023.1276836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Previous research on the association between risk factors and gestational diabetes mellitus (GDM) primarily comprises observational studies with inconclusive results. The objective of this study is to investigate the causal relationship between 108 traits and GDM by employing a two-sample Mendelian randomization (MR) analysis to identify potential risk factors of GDM. Methods We conducted MR analyses to explore the relationships between traits and GDM. The genome-wide association studies (GWAS) for traits were primarily based on data from the UK Biobank (UKBB), while the GWAS for GDM utilized data from FinnGen. We employed a false discovery rate (FDR) of 5% to account for multiple comparisons. Results The inverse-variance weighted (IVW) method indicated that the genetically predicted 24 risk factors were significantly associated with GDM, such as "Forced expiratory volume in 1-second (FEV1)" (OR=0.76; 95% CI: 0.63, 0.92), "Forced vital capacity (FVC)" (OR=0.74; 95% CI: 0.64, 0.87), "Usual walking pace" (OR=0.19; 95% CI: 0.09, 0.39), "Sex hormone-binding globulin (SHBG)" (OR=0.86; 95% CI: 0.78, 0.94). The sensitivity analyses with MR-Egger and weighted median methods indicated consistent results for most of the trats. Conclusion Our study has uncovered a significant causal relationship between 24 risk factors and GDM. These results offer a new theoretical foundation for preventing or mitigating the risks associated with GDM.
Collapse
Affiliation(s)
- Qingming Fu
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Ting Jiang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Farzia, Rehman S, Ikram M, Khan A, Khan R, Sinnokrot MO, Khan M, AlAsmari AF, Alasmari F, Alharbi M. Synthesis, characterization, Hirshfeld surface analysis, antioxidant and selective β-glucuronidase inhibitory studies of transition metal complexes of hydrazide based Schiff base ligand. Sci Rep 2024; 14:515. [PMID: 38177189 PMCID: PMC10766943 DOI: 10.1038/s41598-023-49893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
The synthesis of N'-[(4-hydroxy-3-methoxyphenyl)methylidene] 2-aminobenzohydrazide (H-AHMB) was performed by condensing O-vanillin with 2-aminobenzohydrazide and was characterized by FTIR, high resolution ESI(+) mass spectral analysis, 1H and 13C-NMR. The compound H-AHMB was crystallized in orthorhombic Pbca space group and studied for single crystal diffraction analysis. Hirshfeld surface analysis was also carried out for identifying short interatomic interactions. The major interactions H…H, O…H and C…H cover the Hirshfeld surface of H-AHMB. The metal complexes [M(AHMB)n] where M = Co(II), Ni(II), Cu(II) and Zn(II) were prepared from metal chlorides and H-AHMB ligand. The bonding was unambigously assigned using FTIR and UV/vis analysis. The synthesized ligand H-AHMB and its metal complexes were studied for β-glucuronidase enzyme inhibition. Surprisingly the metal complexes were found more active than the parent ligand and even the standard drug. Zn-AHMB shown IC50 = 17.3 ± 0.68 µM compared to IC50 = 45.75 ± 2.16 µM shown by D-saccharic acid-1,4-lactone used as standard. The better activity by Zn-AHMB implying zinc based metallodrug for the treatment of diseases associated with β-glucuronidase enzyme. The DPPH radical scavenging activities were also studied for all the synthesized compounds. The Co-AHMB complex with IC50 = 98.2 ± 1.78 µM was the only candidate to scavenge the DPPH free radicals.
Collapse
Affiliation(s)
- Farzia
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Adnan Khan
- School of Physics & the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mutasem Omar Sinnokrot
- College of Arts and Sciences, American University of Iraq-Baghdad, Airport Road Baghdad, Baghdad, Iraq
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Fu Q, Chen R, Ding Y, Xu S, Huang C, He B, Jiang T, Zeng B, Bao M, Li S. Sodium intake and the risk of various types of cardiovascular diseases: a Mendelian randomization study. Front Nutr 2023; 10:1250509. [PMID: 38188872 PMCID: PMC10771828 DOI: 10.3389/fnut.2023.1250509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background The existing literature on the link between sodium intake and cardiovascular disease (CVD) largely consists of observational studies that have yielded inconsistent conclusions. In this study, our objective is to assess the causal relationship between sodium intake and 50 CVDs using two-sample Mendelian randomization (MR) analysis. Methods MR analyses were performed to investigate the associations between urinary sodium/creatinine ratio (UNa/UCr), an indicator of sodium intake, and 50 CVDs. The genome-wide association study (GWAS) for UNa/UCr was from the UK Biobank (UKBB), and the GWASs for CVDs were from FinnGen. A false discovery rate (FDR) threshold of 5% was applied for multiple comparison correction. Results The inverse-variance weighted method indicated that the genetically predicted UNa/UCr was significantly associated with 7 of 50 CVDs, including "Coronary atherosclerosis" (OR = 2.01; 95% CI: 1.37, 2.95), "Diseases of arteries, arterioles and capillaries" (OR = 1.88; 95% CI: 1.20, 2.94), "Hard cardiovascular diseases" (OR = 1.71; 95% CI: 1.24, 2.35), "Ischemic heart diseases" (OR = 2.06; 95% CI: 1.46, 2.93), "Major coronary heart disease event" (OR = 1.99; 95% CI: 1.36, 2.91), "Myocardial infarction" (OR = 2.03; 95% CI: 1.29, 3.19), and "Peripheral artery disease" (OR = 2.50; 95% CI: 1.35, 4.63). Similar results were obtained with the MR-Egger and weighted median methods. No significant heterogeneity or horizontal pleiotropy was found in this analysis. Conclusion Our study has uncovered a significant positive causal relationship between UNa/UCr and various CVDs. These results offer a new theoretical foundation for advocating the restriction of sodium intake as a preventive measure against CVD.
Collapse
Affiliation(s)
- Qingming Fu
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- The Second Affiliated Hospital of Anhui Medical University, Heifei, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Ting Jiang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Zhou Y, Wu YM, Fan R, Ouyang J, Zhou XL, Li ZB, Janjua MU, Li HG, Bao MH, He BS. Transcriptome analysis unveils the mechanisms of lipid metabolism response to grayanotoxin I stress in Spodoptera litura. PeerJ 2023; 11:e16238. [PMID: 38077416 PMCID: PMC10710133 DOI: 10.7717/peerj.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.
Collapse
Affiliation(s)
- Yi Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Yong-mei Wu
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Rong Fan
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Jiang Ouyang
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Xiao-long Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Zi-bo Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Muhammad Usman Janjua
- Changsha Medical University, School of International Education, Changsha, Hunan, China
| | - Hai-gang Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Mei-hua Bao
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Bin-sheng He
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| |
Collapse
|
39
|
Rehman G, Umar M, Shah N, Hamayun M, Ali A, Khan W, Khan A, Ahmad S, Alrefaei AF, Almutairi MH, Moon YS, Ali S. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals (Basel) 2023; 16:1677. [PMID: 38139804 PMCID: PMC10748007 DOI: 10.3390/ph16121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.
Collapse
Affiliation(s)
- Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Muhammad Umar
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Arif Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Sajjad Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
40
|
Chamorro F, Otero P, Carpena M, Fraga-Corral M, Echave J, Seyyedi-Mansour S, Cassani L, Prieto MA. Health Benefits of Oily Fish: Illustrated with Blue Shark ( Prionace glauca), Shortfin Mako Shark ( Isurus oxyrinchus), and Swordfish ( Xiphias gladius). Nutrients 2023; 15:4919. [PMID: 38068777 PMCID: PMC10708079 DOI: 10.3390/nu15234919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Oily fish is a rich source of energy, proteins, essential amino acids, lipids, vitamins, and minerals. Among the macronutrients with the highest contribution are lipids, mainly long-chain omega 3 polyunsaturated fatty acids (ω-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Both EPA and DHA play a beneficial role in promoting health and preventing many diseases, including cardiovascular diseases, such as stroke and acute myocardial infarction. They also contribute to the prevention of neurological, metabolic, and immune-system-related diseases, as well as supporting body-weight control. Oily fish consumption is also important at different stages of human life, from conception to old age. For example, DHA plays an important role in brain and retina development during fetal development and in the first two years of life, as it positively influences neurodevelopment, such as visual acuity, and cognitive functions. In contrast with the possible health benefits of the intake of oily fish, the presence of certain chemical pollutants, for example, heavy metals, can be a risk for the health of consumers, mainly in sensitive population groups such as pregnant women and children under 2 years of age. The presence of these pollutants is influenced to a greater extent by fish species, their role in the trophic chain, and their size. However, various studies state that the benefits outweigh the risk of consuming certain species. This review will be focused on the health benefits of the intake of three oily fish species, namely blue shark (Prionace glauca), shortfin mako shark (Isurus oxyrinchus), and swordfish (Xiphias gladius).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (F.C.); (P.O.); (M.C.); (M.F.-C.); (J.E.); (S.S.-M.); (L.C.)
| |
Collapse
|
41
|
Chen R, Xu S, Ding Y, Li L, Huang C, Bao M, Li S, Wang Q. Dissecting causal associations of type 2 diabetes with 111 types of ocular conditions: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1307468. [PMID: 38075077 PMCID: PMC10703475 DOI: 10.3389/fendo.2023.1307468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background Despite the well-established findings of a higher incidence of retina-related eye diseases in patients with diabetes, there is less investigation into the causal relationship between diabetes and non-retinal eye conditions, such as age-related cataracts and glaucoma. Methods We performed Mendelian randomization (MR) analysis to examine the causal relationship between type 2 diabetes mellitus (T2DM) and 111 ocular diseases. We employed a set of 184 single nucleotide polymorphisms (SNPs) that reached genome-wide significance as instrumental variables (IVs). The primary analysis utilized the inverse variance-weighted (IVW) method, with MR-Egger and weighted median (WM) methods serving as supplementary analyses. Results The results revealed suggestive positive causal relationships between T2DM and various ocular conditions, including "Senile cataract" (OR= 1.07; 95% CI: 1.03, 1.11; P=7.77×10-4), "Glaucoma" (OR= 1.08; 95% CI: 1.02, 1.13; P=4.81×10-3), and "Disorders of optic nerve and visual pathways" (OR= 1.10; 95% CI: 0.99, 1.23; P=7.01×10-2). Conclusion Our evidence supports a causal relationship between T2DM and specific ocular disorders. This provides a basis for further research on the importance of T2DM management and prevention strategies in maintaining ocular health.
Collapse
Affiliation(s)
- Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Leyang Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wang Y, Jin J, Chen J, Chen P, Abdollahi SA. Impacts of morphology parameters on the risk of rupture in intracranial aneurysms: statistical and computational analyses. Sci Rep 2023; 13:18974. [PMID: 37923845 PMCID: PMC10624915 DOI: 10.1038/s41598-023-46211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023] Open
Abstract
The hemodynamic analysis of the blood stream inside the cerebral aneurysms reveals the risk of the aneurysm rupture. In addition, the high risk region prone to rupture would be determined by the hemodynamic analysis of the blood. In present article, computational fluid dynamic is used for the investigation of the hemodynamic effects on the aneurysm wall and risk of rupture. This study tries to find the connection between the risk of rupture with three geometrical features of aneurysm i.e., Ellipsoid Max semi-axis, Size ratio and Tortuosity. Statistical analysis is done over 30 different ruptured /unruptured ICA aneurysms to find meaningful relation between selected geometrical factors and rupture risk. The hemodynamic analysis is done over four distinct aneurysm models to attain more details on effects of chosen geometrical factors. The results of simulations indicate that the Ellipsoid Max semi-axis have meaningful impacts on the risk of rupture.
Collapse
Affiliation(s)
- Yujing Wang
- College of Health Informatics, Chongqing Medical University, No.1 Medial Road, 400010, Chongqing, China
| | - Jing Jin
- College of Health Informatics, Chongqing Medical University, No.1 Medial Road, 400010, Chongqing, China.
| | - Jie Chen
- Department of Neurosurgery, Chongqing University Cancer Hospital, 400000, Chongqing, China
| | - Peng Chen
- College of Health Informatics, Chongqing Medical University, No.1 Medial Road, 400010, Chongqing, China
| | | |
Collapse
|
43
|
Liu L, Li Y, Zhang X. LncRNA LINC01018 Screens Type 2 Diabetes Mellitus and Regulates β Cell Function Through Modulating miR-499a-5p. Horm Metab Res 2023; 55:642-648. [PMID: 37187181 DOI: 10.1055/a-2077-5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, which seriously endangers human health. The dysregulation of lncRNA LINC01018 in T2DM has been noticed in previous studies, but whether it served as a biomarker lacks validation. This study aimed to confirm the abnormal expression of LINC01018 in T2DM and reveals its specific function in regulating pancreatic β cell function. This study enrolled 77 T2DM patients and 41 healthy individuals and compared the plasma LINC01018 levels between two groups using PCR. The pancreatic β cell was induced with 25 mM glucose to mimic cell injury during T2DM. The effects of LINC01018 on β cell proliferation, dedifferentiation, and insulin production were evaluated by CCK8, western blotting, and ELISA. Moreover, the involvement of miR-499a-5p was also evaluated with luciferase reporter assay. Increased plasma LINC01018 was observed in T2DM patients compared with healthy individuals, which discriminates patients with high sensitivity and specificity. Upregulated LINC01018 was associated with patients' fasting blood glucose and weight loss. High glucose induced the increasing LINC01018 in pancreatic islet β cells and suppressed cell proliferation, insulin secretion, and promoted cell dedifferentiation. Silencing LINC01018 could alleviate the impaired function of β cells by high glucose, which was reversed by the knockdown by miR-499a-5p. Upregulated LINC01018 served as a potential diagnostic biomarker for T2DM and alleviated high glucose-induced β cell dysfunction via negatively modulating miR-499a-5p.
Collapse
Affiliation(s)
- Li Liu
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuan Li
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xiaoqian Zhang
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| |
Collapse
|
44
|
Peng YL, Zhang Y, Pang L, Dong YF, Li MY, Liao H, Li RS. Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic Nephropathy. Diabetes Metab Syndr Obes 2023; 16:1669-1684. [PMID: 37312900 PMCID: PMC10258044 DOI: 10.2147/dmso.s413569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Background Increasing evidence suggests that immune modulation contributes to the pathogenesis and progression of diabetic nephropathy (DN). However, the role of immune modulation in DN has not been elucidated. The purpose of this study was to search for potential immune-related therapeutic targets and molecular mechanisms of DN. Methods Gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. A total of 1793 immune-related genes were acquired from the Immunology Database and Analysis Portal (ImmPort). Weighted gene co-expression network analysis (WGCNA) was performed for GSE142025, and the red and turquoise co-expression modules were found to be key for DN progression. We utilized four machine learning algorithms, namely, random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), and k-nearest neighbor (KNN), to evaluate the diagnostic value of hub genes. Immune infiltration patterns were analyzed using the CIBERSORT algorithm, and the correlation between immune cell type abundance and hub gene expression was also investigated. Results A total of 77 immune-related genes of advanced DN were selected for subsequent analyzes. Functional enrichment analysis showed that the regulation of cytokine-cytokine receptor interactions and immune cell function play a corresponding role in the progression of DN. The final 10 hub genes were identified through multiple datasets. In addition, the expression levels of the identified hub genes were corroborated through a rat model. The RF model exhibited the highest AUC. CIBERSORT analysis and single-cell sequencing analysis revealed changes in immune infiltration patterns between control subjects and DN patients. Several potential drugs to reverse the altered hub genes were identified through the Drug-Gene Interaction database (DGIdb). Conclusion This pioneering work provided a novel immunological perspective on the progression of DN, identifying key immune-related genes and potential drug targets, thus stimulating future mechanistic research and therapeutic target identification for DN.
Collapse
Affiliation(s)
- Yue-Ling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Yan Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Lin Pang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ya-Fang Dong
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Mu-Ye Li
- Department of Ocular Fundus Diseases, Shanxi Eye Hospital, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| |
Collapse
|