1
|
Khan AH, Mulfaul K. Choroidal macrophages in homeostasis, aging and age-related macular degeneration. Exp Eye Res 2025; 250:110159. [PMID: 39577606 DOI: 10.1016/j.exer.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
With increasing age, the optimal functioning of the choroid is essential for efficient removal of waste products formed from photoreceptor renewal. A decline in regulatory elements of the immune system, termed immunosenescence, and the failure of para-inflammation to restore tissue homeostasis can result in the progression of healthy aging to sight-threatening inflammation of the choroid. Macrophages are uniquely situated between the innate and adaptive immune systems, with a high capacity for phagocytosis, recognition of complement components, as well as antigen presentation. In this review, we provide an overview of macrophages and their properties in the healthy choroid and cover the impact of aging, immunosenescence and inflammaging on the function of choroidal macrophages. We will discuss the impact of age on macrophage phenotype and behaviour in the pathophysiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Adnan H Khan
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Covre LP, Fantecelle CH, Garcia de Moura R, Oliveira Lopes P, Sarmento IV, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL, da Fonsceca-Martins AM, de Carvalho LP, de Carvalho EM, Mosser DM, Falqueto A, Akbar AN, Gomes DCO. Lesional senescent CD4 + T cells mediate bystander cytolysis and contribute to the skin pathology of human cutaneous leishmaniasis. Front Immunol 2024; 15:1475146. [PMID: 39497830 PMCID: PMC11532160 DOI: 10.3389/fimmu.2024.1475146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4+ granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57. Notably, CD4+ T cells freshly isolated from CL lesions demonstrated remarkable capacity to mediate NL-like bystander cytolysis. Phenotypic analyses revealed that lesional CD4+ T cells are mainly composed of late-differentiated effector (CD27-CD45RA-) and terminally differentiated (senescent) TEMRA (CD27-CD45RA+) subsets. Interestingly, the TEMRA CD4+ T cells exhibited higher expression of granzyme B and CD107a. Collectively, our results provide the first evidence that senescent cytotoxic CD4+ T cells may support the skin pathology of human cutaneous leishmaniasis and, together with our previous findings, support the notion that multiple subsets of cytotoxic senescent cells may be involved in inducing the skin lesions in these patients.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Paola Oliveira Lopes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Debora Decote-Ricardo
- Departamento de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
3
|
Slaets H, Veeningen N, de Keizer PLJ, Hellings N, Hendrix S. Are immunosenescent T cells really senescent? Aging Cell 2024; 23:e14300. [PMID: 39113243 PMCID: PMC11464117 DOI: 10.1111/acel.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 10/11/2024] Open
Abstract
Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity. Another population of T cells known as exhausted T cells arises after chronic antigen stimulation and loses its effector functions, leading to a failure to combat malignancies and viral infections. A process called cellular senescence also increases during aging, and targeting this process has proven to be fruitful against a range of age-related pathologies in animal models. Cellular senescence occurs in cells that are irreparably damaged, limiting their proliferation and typically leading to chronic secretion of pro-inflammatory factors. To develop therapies against pathologies caused by defective T-cell function, it is important to understand the differences and similarities between immunosenescence and cellular senescence. Here, we review the hallmarks of cellular senescence versus senescent and exhausted T cells and provide considerations for the development of specific therapies against age-related diseases.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Naomi Veeningen
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Peter L. J. de Keizer
- Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niels Hellings
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Sven Hendrix
- Institute of Translational Medicine, Medical School HamburgHamburgGermany
| |
Collapse
|
4
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
5
|
Brunelli DT, Bonfante ILP, Boldrini VO, Scolfaro PG, Duft RG, Mateus K, Fatori RF, Chacon-Mikahil MPT, Farias AS, Teixeira AM, Cavaglieri CR. Combined Training Improves Gene Expression Related to Immunosenescence in Obese Type 2 Diabetic Individuals. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:730-739. [PMID: 38319611 DOI: 10.1080/02701367.2023.2299716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024]
Abstract
Purpose: The aim of this study was to investigate the effects of moderate combined training (CT) on both the gene expression of pro- and anti-inflammatory markers and senescence in the immune system in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) of obese middle-aged individuals with type 2 diabetes (T2D). Methods: Thirty obese individuals (50.2 ± 9.4 years; body mass index: 31.8 ± 2.3 kg/m²) with T2D underwent 16 weeks of a CT group [CT; aerobic (50-60% of VO2max) plus resistance (50-75% of 1RM) training; 3 times/week, 70 min/session; n = 16)] or a control group (CG, n = 14). Nutritional patterns, muscle strength (1RM), cardiorespiratory fitness (VO2max), waist circumference (WC), body composition (Air Displacement Plethysmograph) and blood collections for biochemical (serum leptin, IL-2, IL-4, IL-6, IL-10, TNF-α and anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27 in PBMCs and SAT) analyses were assessed before (Pre) and after (Post) the 16 weeks of the experimental period. Results: Significant decreases were observed in WC and IL4, TNF-α, PD-1 and CD27 expression in PBMCs for CT. Furthermore, significant increases were observed in 1RM and VO2max for CT after the experimental period. Conclusion: Moderate CT contributed to a reduction in the gene expression of markers associated to chronic inflammation and immunosenescence in PBMCs of obese middle-aged individuals with T2D.
Collapse
|
6
|
Xu Q, Fan S, Wang L, Zheng J, Wan Y, Tian R, Xia J, Zhao Z. Circulating/cerebrospinal T lymphocytes as indicators of clinical prognosis in intracerebral hemorrhage: A prospective study. Medicine (Baltimore) 2024; 103:e35827. [PMID: 39029024 PMCID: PMC11398761 DOI: 10.1097/md.0000000000035827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/06/2023] [Indexed: 07/21/2024] Open
Abstract
Secondary injury of cerebral hemorrhage is induced by systemic inflammatory cascades, which are related to perihematomal brain edema, cellular apoptosis, and the disruption of the blood-brain barrier. This study was to specifically elaborate the relationship of circulating/cerebrospinal T lymphocytes and Glasgow Coma Scale (GCS) score at 6 months after intracerebral hemorrhage (ICH). The enrolled patients were divided into 2 groups based on GCS score: the favorable prognosis group (GCS > 12) and unfavorable prognosis group (GCS ≤ 12). T lymphocyte subpopulations were analyzed by flow cytometry. A total of 30 samples of peripheral blood and 17 samples of cerebrospinal fluid were collected and analyzed, including 19 cases and 12 cases in the favorable prognosis group (GCS > 12) respectively. Both CD3+ and CD3+CD4+ T lymphocyte counts on Day 1 after ICH were lower in the peripheral blood of patients with unfavorable prognosis (GCS ≤ 12) (P = .025 and .022, respectively). There were correlation trends between the GCS scores and CD3+ T lymphocyte count (P = .0144), and CD3+CD4+ T lymphocyte count (P = .0135). In cerebrospinal fluid, there was a close correlation between the GCS scores and CD3+CD4+ percentage, CD4+/CD8+ ratio, CD3+ and CD3+CD4+ T lymphocyte counts. The area under the curve of CD4+/CD8+ T lymphocyte ratio was the largest among them (P = .000 and area under the curve = 0.917), with a significantly high specificity and sensitivity (0.917 and 1.000). Based on cerebrospinal fluid samples, the CD4+/CD8+ T lymphocyte ratio on Day 1 after ICH may be a more significant indicator to predict the short-term prognosis at 6 months after ICH.
Collapse
Affiliation(s)
- Qian Xu
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Shuangbo Fan
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Liang Wang
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Ji Zheng
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Yulin Wan
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Rudong Tian
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Jia Xia
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Zhenping Zhao
- Department of Neurosurgery, Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
9
|
Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol 2023; 14:1298004. [PMID: 37942323 PMCID: PMC10628127 DOI: 10.3389/fimmu.2023.1298004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. This mini-review navigates through the complex landscape of age-associated immune changes, chronic inflammation, age-related autoimmune tendencies, and their potential links with immunopathology of Long COVID. Immunosenescence serves as an introductory departure point, elucidating alterations in immune cell profiles and their functional dynamics, changes in T-cell receptor signaling, cytokine network dysregulation, and compromised regulatory T-cell function. Subsequent scrutiny of chronic inflammation, or "inflammaging," highlights its roles in age-related autoimmune susceptibilities and its potential as a mediator of the immune perturbations observed in Long COVID patients. The introduction of epigenetic facets further amplifies the potential interconnections. In this compact review, we consider the dynamic interactions between immunosenescence, inflammation, and autoimmunity. We aim to explore the multifaceted relationships that link these processes and shed light on the underlying mechanisms that drive their interconnectedness. With a focus on understanding the immunological changes in the context of aging, we seek to provide insights into how immunosenescence and inflammation contribute to the emergence and progression of autoimmune disorders in the elderly and may serve as potential mediator for Long COVID disturbances.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
10
|
Cheng Z, Zheng Y, Yang W, Sun H, Zhou F, Huang C, Zhang S, Song Y, Liang Q, Yang N, Li M, Liu B, Feng L, Wang L. Pathogenic bacteria exploit transferrin receptor transcytosis to penetrate the blood-brain barrier. Proc Natl Acad Sci U S A 2023; 120:e2307899120. [PMID: 37733740 PMCID: PMC10523449 DOI: 10.1073/pnas.2307899120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.
Collapse
Affiliation(s)
- Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yangyang Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Fangyu Zhou
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Chuangjie Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Shuwen Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Yingying Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Qi’an Liang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Nan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Meifang Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| |
Collapse
|
11
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Slaets H, Fonteyn L, Eijnde BO, Hellings N. Train your T cells: How skeletal muscles and T cells keep each other fit during aging. Brain Behav Immun 2023; 110:237-244. [PMID: 36893922 DOI: 10.1016/j.bbi.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Frailty and a failing immune system lead to significant morbidities in the final years of life and bring along a significant burden on healthcare systems. The good news is that regular exercise provides an effective countermeasure for losing muscle tissue when we age while supporting proper immune system functioning. For a long time, it was assumed that exercise-induced immune responses are predominantly mediated by myeloid cells, but it has become evident that they receive important help from T lymphocytes. Skeletal muscles and T cells interact, not only in muscle pathology but also during exercise. In this review article, we provide an overview of the most important aspects of T cell senescence and discuss how these are modulated by exercise. In addition, we describe how T cells are involved in muscle regeneration and growth. A better understanding of the complex interactions between myocytes and T cells throughout all stages of life provides important insights needed to design strategies that effectively combat the wave of age-related diseases the world is currently faced with.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lena Fonteyn
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; UMSC - University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.
| |
Collapse
|
15
|
Almeida JS, Casanova JM, Santos-Rosa M, Tarazona R, Solana R, Rodrigues-Santos P. Natural Killer T-like Cells: Immunobiology and Role in Disease. Int J Mol Sci 2023; 24:ijms24032743. [PMID: 36769064 PMCID: PMC9917533 DOI: 10.3390/ijms24032743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
CD56+ T cells are generally recognized as a distinct population of T cells and are categorized as NKT-like cells. Although our understanding of NKT-like cells is far from satisfactory, it has been shown that aging and a number of disease situations have impacted these cells. To construct an overview of what is currently known, we reviewed the literature on human NKT-like cells. NKT-like cells are highly differentiated T cells with "CD1d-independent" antigen recognition and MHC-unrestricted cell killing. The genesis of NKT-like cells is unclear; however, it is proposed that the acquisition of innate characteristics by T cells could represent a remodeling process leading to successful aging. Additionally, it has been shown that NKT-like cells may play a significant role in several pathological conditions, making it necessary to comprehend whether these cells might function as prognostic markers. The quantification and characterization of these cells might serve as a cutting-edge indicator of individual immune health. Additionally, exploring the mechanisms that can control their killing activity in different contexts may therefore result in innovative therapeutic alternatives in a wide range of disease settings.
Collapse
Affiliation(s)
- Jani-Sofia Almeida
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - José Manuel Casanova
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- University Clinic of Orthopedics, Orthopedics Service, Tumor Unit of the Locomotor Apparatus (UTAL), Coimbra Hospital and Universitary Center (CHUC), 3000-075 Coimbra, Portugal
| | - Manuel Santos-Rosa
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain
| | - Rafael Solana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, 14004 Córdoba, Spain
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14071 Córdoba, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
16
|
Zhu C, Li W, Zhang Y, Qianqian Li, Wang H. Association of cerebrospinal fluid CD4+/CD8+Ratio with 60-day functional outcome after intracerebral hemorrhage. Int J Immunopathol Pharmacol 2023; 37:3946320231207350. [PMID: 37853743 PMCID: PMC10588406 DOI: 10.1177/03946320231207350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023] Open
Abstract
Background: The immune inflammatory reaction has vital function in pathologic mechanism of critical intracerebral hemorrhage. It recently has been reported that CD4/CD8 ratio may represent a novel composite immune inflammatory marker to predict prognosis of critical intracerebral hemorrhage (ICH). Nevertheless, as for considering the effects of surgical evacuation upon initiation of immune inflammatory reactions, the association between cerebrospinal fluid (CSF) CD4/CD8 ratio and 60-day functional outcome of patients with critical ICH after surgery has not been investigated. Present study aimed to evaluate the predictive value concerning postoperative complement system and immunoglobulin, paired cerebrospinal fluid and peripheral blood lymphocyte subsets, as well as inflammation index before and after the operations upon the 60-day prognosis of patients with ICH.Methods: In total, 69 patients with acute critical ICH admitted in First Central Hospital of Baoding City from January to July in 2022 were prospectively enrolled. We recorded and analyzed the relevant clinical data. Laboratory parameters included postoperative lymphocyte subsets in paired cerebrospinal fluid and peripheral blood, inflammation index before and after operation. The associations between 60-day outcome and laboratory biomarkers were assessed by multivariable logistic regression analysis. Comparisons of predictive value regarding independent predictors was evaluated by receiver operating characteristic (ROC) curves.Results: In total, 51 patients with critical ICH exhibited poor outcomes at 60 days, which was associated with fever after surgery, hernia before surgery, SAH and lower Glasgow Coma Scale (GCS) at admission and large hematoma volume, greater CD3T%CSF, greater CD4T%CSF, and greater CD4/CD8 ratioCSF. CD4/CD8ratio CSF showcased significant predictive power by comparing with other laboratorial variables (AUC = 0.6808; cut-off = 1.61; sensitivity = 80.39%; specificity = 61.11%; 95% CI: 0.5232-0.8385; p = .0233), which was found to correlated linearly with postoperative fever, first CSF test time, CD3T% CSF, CD4T% CSF, CD8T% CSF, NKCSF, CD3T%PB, CD8T%PB, CD4/CD8 ratioPB, and glucoseCSF. Poor outcome at 60 days linearly correlated with CD4/CD8ratioCSF after adjustments. In 3-5 days after surgery tested CSF lymphocyte subsets, CD4/CD8ratioCSF ≥1.61 was associated with a higher risk for 60-day poor outcome comparing with corresponding subgroups.Conclusions: In association of critical ICH patient prognosis, CSF CD4/CD8 ratio, especially in 3-5 days after surgery, exhibited potential independent predictive ability for 60-day functional outcomes of patients with critical ICH.
Collapse
Affiliation(s)
- Chunying Zhu
- Department of Neuroscience Intensive Care Unit, The First Central Hospital of Baoding, Baoding, China
| | - Wei Li
- Department of Neuroscience Intensive Care Unit, The First Central Hospital of Baoding, Baoding, China
| | - Yingfu Zhang
- Endoscopic Diagnosis and Treatment Center, The First Central Hospital of Baoding, Baoding, China
| | - Qianqian Li
- Department of Neuroscience Intensive Care Unit, The First Central Hospital of Baoding, Baoding, China
| | - Huan Wang
- Department of Neuroscience Intensive Care Unit, The First Central Hospital of Baoding, Baoding, China
| |
Collapse
|
17
|
Chawla DG, Cappuccio A, Tamminga A, Sealfon SC, Zaslavsky E, Kleinstein SH. Benchmarking transcriptional host response signatures for infection diagnosis. Cell Syst 2022; 13:974-988.e7. [PMID: 36549274 PMCID: PMC9768893 DOI: 10.1016/j.cels.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/04/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Identification of host transcriptional response signatures has emerged as a new paradigm for infection diagnosis. For clinical applications, signatures must robustly detect the pathogen of interest without cross-reacting with unintended conditions. To evaluate the performance of infectious disease signatures, we developed a framework that includes a compendium of 17,105 transcriptional profiles capturing infectious and non-infectious conditions and a standardized methodology to assess robustness and cross-reactivity. Applied to 30 published signatures of infection, the analysis showed that signatures were generally robust in detecting viral and bacterial infections in independent data. Asymptomatic and chronic infections were also detectable, albeit with decreased performance. However, many signatures were cross-reactive with unintended infections and aging. In general, we found robustness and cross-reactivity to be conflicting objectives, and we identified signature properties associated with this trade-off. The data compendium and evaluation framework developed here provide a foundation for the development of signatures for clinical application. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Daniel G Chawla
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Tamminga
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Steven H Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
19
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Choi YJ, Lee H, Kim JH, Kim SY, Koh JY, Sa M, Park SH, Shin EC. CD5 Suppresses IL-15–Induced Proliferation of Human Memory CD8+ T Cells by Inhibiting mTOR Pathways. THE JOURNAL OF IMMUNOLOGY 2022; 209:1108-1117. [DOI: 10.4049/jimmunol.2100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
Abstract
IL-15 induces the proliferation of memory CD8+ T cells as well as NK cells. The expression of CD5 inversely correlates with the IL-15 responsiveness of human memory CD8+ T cells. However, whether CD5 directly regulates IL-15–induced proliferation of human memory CD8+ T cells is unknown. In the current study, we demonstrate that human memory CD8+ T cells in advanced stages of differentiation respond to IL-15 better than human memory CD8+ T cells in stages of less differentiation. We also found that the expression level of CD5 is the best correlate for IL-15 hyporesponsiveness among human memory CD8+ T cells. Importantly, we found that IL-15–induced proliferation of human memory CD8+ T cells is significantly enhanced by blocking CD5 with Abs or knocking down CD5 expression using small interfering RNA, indicating that CD5 directly suppresses the IL-15–induced proliferation of human memory CD8+ T cells. We also found that CD5 inhibits activation of the mTOR pathway, which is required for IL-15–induced proliferation of human memory CD8+ T cells. Taken together, the results indicate that CD5 is not just a correlative marker for IL-15 hyporesponsiveness, but it also directly suppresses IL-15–induced proliferation of human memory CD8+ T cells by inhibiting mTOR pathways.
Collapse
Affiliation(s)
- Young Joon Choi
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- †Department of Ophthalmology, Ajou University School of Medicine, Suwon, Korea
| | - Hoyoung Lee
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- ‡The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea; and
| | - Jong Hoon Kim
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- §Department of Dermatology, Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So-Young Kim
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - June-Young Koh
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moa Sa
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- ‡The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea; and
| |
Collapse
|
21
|
Durso DF, Silveira-Nunes G, Coelho MM, Camatta GC, Ventura LH, Nascimento LS, Caixeta F, Cunha EHM, Castelo-Branco A, Fonseca DM, Maioli TU, Teixeira-Carvalho A, Sala C, Bacalini MJ, Garagnani P, Nardini C, Franceschi C, Faria AMC. Living in endemic area for infectious diseases accelerates epigenetic age. Mech Ageing Dev 2022; 207:111713. [PMID: 35931241 DOI: 10.1016/j.mad.2022.111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammaging is a low-grade inflammatory state generated by the aging process that can contribute to frailty and age-related diseases in the elderly. However, it can have distinct effects in the elderly living in endemic areas for infectious diseases. An increased inflammatory response may confer protection against infectious agents in these areas, although this advantage can cause accelerating epigenetic aging. In this study, we evaluated the inflammatory profile and the epigenetic age of infected and noninfected individuals from an endemic area in Brazil. The profile of cytokines, chemokines and growth factors analyzed in the sera of the two groups of individuals showed similarities, although infected individuals had a higher concentration of these mediators. A significant increase in IL-1ra, CXCL8, CCL2, CCL3 and CCL4 production was associated with leprosy infection. Notably, elderly individuals displayed distinct immune responses associated with their infection status when compared to adults suggesting an adaptive remodelling of their immune responses. Epigenetic analysis also showed that there was no difference in epigenetic age between the two groups of individuals. However, individuals from the endemic area had a significant accelerated aging when compared to individuals from São Paulo, a non-endemic area in Brazil. Moreover, the latter cohort was also epigenetically aged in relation to an Italian cohort. Our data shows that living in endemic areas for chronic infectious diseases results in remodelling of inflammaging and acceleration of epigenetic aging in individuals regardless of their infectious status. It also highlights that geographical, genetic and environmental factors influence aging and immunosenescence in their pace and profile.
Collapse
Affiliation(s)
- D F Durso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - G Silveira-Nunes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - M M Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - G C Camatta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L H Ventura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L S Nascimento
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - F Caixeta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - E H M Cunha
- Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | - A Castelo-Branco
- Centro de Referência em Doenças Endêmicas e Programas Especiais, Governador Valadares, Brazil
| | - D M Fonseca
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - T U Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A Teixeira-Carvalho
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - C Sala
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - M J Bacalini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - P Garagnani
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - C Nardini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - C Franceschi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy; Research Laboratory of System Medicine for Healthy Ageing, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A M C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
22
|
Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z, Kuball J. γ9δ2 T-Cell Expansion and Phenotypic Profile Are Reflected in the CDR3δ Repertoire of Healthy Adults. Front Immunol 2022; 13:915366. [PMID: 35874769 PMCID: PMC9301380 DOI: 10.3389/fimmu.2022.915366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
γ9δ2T cells fill a distinct niche in human immunity due to the unique physiology of the phosphoantigen-reactive γ9δ2TCR. Here, we highlight reproducible TCRδ complementarity-determining region 3 (CDR3δ) repertoire patterns associated with γ9δ2T cell proliferation and phenotype, thus providing evidence for the role of the CDR3δ in modulating in vivo T-cell responses. Features that determine γ9δ2TCR binding affinity and reactivity to the phosphoantigen-induced ligand in vitro appear to similarly underpin in vivo clonotypic expansion and differentiation. Likewise, we identify a CDR3δ bias in the γ9δ2T cell natural killer receptor (NKR) landscape. While expression of the inhibitory receptor CD94/NKG2A is skewed toward cells bearing putative high-affinity TCRs, the activating receptor NKG2D is expressed independently of the phosphoantigen-sensing determinants, suggesting a higher net NKR activating signal in T cells with TCRs of low affinity. This study establishes consistent repertoire–phenotype associations and justifies stratification for the T-cell phenotype in future research on γ9δ2TCR repertoire dynamics.
Collapse
Affiliation(s)
- Anna Vyborova
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anke Janssen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lucrezia Gatti
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Austin Yonika
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper Sanders
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Jürgen Kuball,
| |
Collapse
|
23
|
Bukhbinder AS, Ling Y, Hasan O, Jiang X, Kim Y, Phelps KN, Schmandt RE, Amran A, Coburn R, Ramesh S, Xiao Q, Schulz PE. Risk of Alzheimer's Disease Following Influenza Vaccination: A Claims-Based Cohort Study Using Propensity Score Matching. J Alzheimers Dis 2022; 88:1061-1074. [PMID: 35723106 PMCID: PMC9484126 DOI: 10.3233/jad-220361] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Prior studies have found a reduced risk of dementia of any etiology following influenza vaccination in selected populations, including veterans and patients with serious chronic health conditions. However, the effect of influenza vaccination on Alzheimer’s disease (AD) risk in a general cohort of older US adults has not been characterized. Objective: To compare the risk of incident AD between patients with and without prior influenza vaccination in a large US claims database. Methods: Deidentified claims data spanning September 1, 2009 through August 31, 2019 were used. Eligible patients were free of dementia during the 6-year look-back period and≥65 years old by the start of follow-up. Propensity-score matching (PSM) was used to create flu-vaccinated and flu-unvaccinated cohorts with similar baseline demographics, medication usage, and comorbidities. Relative risk (RR) and absolute risk reduction (ARR) were estimated to assess the effect of influenza vaccination on AD risk during the 4-year follow-up. Results: From the unmatched sample of eligible patients (n = 2,356,479), PSM produced a sample of 935,887 flu–vaccinated-unvaccinated matched pairs. The matched sample was 73.7 (SD, 8.7) years of age and 56.9% female, with median follow-up of 46 (IQR, 29–48) months; 5.1% (n = 47,889) of the flu-vaccinated patients and 8.5% (n = 79,630) of the flu-unvaccinated patients developed AD during follow-up. The RR was 0.60 (95% CI, 0.59–0.61) and ARR was 0.034 (95% CI, 0.033–0.035), corresponding to a number needed to treat of 29.4. Conclusion: This study demonstrates that influenza vaccination is associated with reduced AD risk in a nationwide sample of US adults aged 65 and older.
Collapse
Affiliation(s)
- Avram S Bukhbinder
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| | - Yaobin Ling
- UTHealth School of Biomedical Informatics, Houston, TX, USA
| | | | - Xiaoqian Jiang
- UTHealth School of Biomedical Informatics, Houston, TX, USA
| | - Yejin Kim
- UTHealth School of Biomedical Informatics, Houston, TX, USA
| | - Kamal N Phelps
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| | | | - Albert Amran
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| | - Ryan Coburn
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| | - Srivathsan Ramesh
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| | - Qian Xiao
- UTHealth School of Public Health, Houston, TX, USA
| | - Paul E Schulz
- John P. and Katherine G. McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
24
|
Drillet G, Pastoret C, Moignet A, Lamy T, Marchand T. Toward a Better Classification System for NK-LGL Disorders. Front Oncol 2022; 12:821382. [PMID: 35178350 PMCID: PMC8843930 DOI: 10.3389/fonc.2022.821382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by a clonal expansion of T-lineage lymphocyte or natural killer (NK) cells in 85 and 15% of cases respectively. T and NK large granular leukemia share common pathophysiology, clinical and biological presentation. The disease is characterized by cytopenia and a frequent association with autoimmune manifestations. Despite an indolent course allowing a watch and wait attitude in the majority of patients at diagnosis, two third of the patient will eventually need a treatment during the course of the disease. Unlike T lymphocyte, NK cells do not express T cell receptor making the proof of clonality difficult. Indeed, the distinction between clonal and reactive NK-cell expansion observed in several situations such as autoimmune diseases and viral infections is challenging. Advances in our understanding of the pathogenesis with the recent identification of recurrent mutations provide new tools to prove the clonality. In this review, we will discuss the pathophysiology of NK large granular leukemia, the recent advances in the diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Gaëlle Drillet
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Cédric Pastoret
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Aline Moignet
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Thierry Lamy
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Faculté de Médecine, Université Rennes 1, Rennes, France.,CIC 1414, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1236, Rennes, France
| | - Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Faculté de Médecine, Université Rennes 1, Rennes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1236, Rennes, France
| |
Collapse
|
25
|
Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson's Disease with CMV Infection Background. Int J Mol Sci 2021; 22:ijms222313119. [PMID: 34884936 PMCID: PMC8658620 DOI: 10.3390/ijms222313119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson’s disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56− T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56− T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.
Collapse
|
26
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
27
|
Fantecelle CH, Covre LP, Garcia de Moura R, Guedes HLDM, Amorim CF, Scott P, Mosser D, Falqueto A, Akbar AN, Gomes DCO. Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 + T cell immunosenescence signature linked to immunopathology. Immunology 2021; 164:754-765. [PMID: 34432883 DOI: 10.1111/imm.13410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions. The senescence-associated signature was characterized by marked expression of key genes such as ATM, Sestrin 2, p16, p21 and p38. The cell type identification from deconvolution of bulk sequencing data showed that the senescence signature was linked with CD8+ effector memory and TEMRA subsets and also senescent NK cells. A key observation was that the senescence markers in the skin lesions are age-independent of patients and were correlated with lesion size. Moreover, a striking expression of the senescence-associated secretory phenotype (SASP), pro-inflammatory cytokine and chemokines genes was found within lesions that were most strongly associated with the senescent CD8 TEMRA subset. Collectively, our results confirm that there is a senescence transcriptomic signature in CL lesions and supports the hypothesis that lesional senescent cells have a major role in mediating immunopathology of the disease.
Collapse
Affiliation(s)
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil.,Division of Medicine, University College London, London, UK
| | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil.,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil
| |
Collapse
|
28
|
Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, Barbarin A. Allotransplantation Is Associated With Exacerbation of CD8 T-Cell Senescence: The Particular Place of the Innate CD8 T-Cell Component. Front Immunol 2021; 12:674016. [PMID: 34367138 PMCID: PMC8334557 DOI: 10.3389/fimmu.2021.674016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.
Collapse
Affiliation(s)
- Lauren Daniel
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Marion Tassery
- Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - Clara Lateur
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Antoine Thierry
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| |
Collapse
|
29
|
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021; 20:102893. [PMID: 34237417 DOI: 10.1016/j.autrev.2021.102893] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa M Villar
- Red Española de Esclerosis Múltiple (REEM), Spain; Servicio de Inmunología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
30
|
Weyand CM, Goronzy JJ. T cell aging in hypertension. Cardiovasc Res 2021; 117:21-23. [PMID: 32609335 DOI: 10.1093/cvr/cvaa185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, School of Medicine, Stanford University, Bld. Rm. 2225, 269 Campus Drive West, Stanford, CA, 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, School of Medicine, Stanford University, Bld. Rm. 2225, 269 Campus Drive West, Stanford, CA, 94305, USA
| |
Collapse
|
31
|
Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nat Commun 2021; 12:2715. [PMID: 33976157 PMCID: PMC8113513 DOI: 10.1038/s41467-021-22954-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing. Asymmetrical cell division helps to maintain cellular heterogeneity in the T cell compartment. Here the authors examine the differential immune responses built by naive and virtual memory T cells from young and aged individuals, and explore the effect of mTOR inhibition on asymmetrical cell division and memory formation.
Collapse
|
32
|
El Costa H, Gouilly J, Abravanel F, Bahraoui E, Peron JM, Kamar N, Jabrane-Ferrat N, Izopet J. Effector memory CD8 T cell response elicits Hepatitis E Virus genotype 3 pathogenesis in the elderly. PLoS Pathog 2021; 17:e1009367. [PMID: 33617602 PMCID: PMC7932504 DOI: 10.1371/journal.ppat.1009367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Genotype 3 Hepatitis E virus (HEV-3) is an emerging threat for aging population. More than one third of older infected patients develops clinical symptoms with severe liver damage, while others remain asymptomatic. The origin of this discrepancy is still elusive although HEV-3 pathogenesis appears to be immune-mediated. Therefore, we investigated the role of CD8 T cells in the outcome of the infection in immunocompetent elderly subjects. We enrolled twenty two HEV-3-infected patients displaying similar viral determinants and fifteen healthy donors. Among the infected group, sixteen patients experienced clinical symptoms related to liver disease while six remained asymptomatic. Here we report that symptomatic infection is characterized by an expansion of highly activated effector memory CD8 T (EM) cells, regardless of antigen specificity. This robust activation is associated with key features of early T cell exhaustion including a loss in polyfunctional type-1 cytokine production and partial commitment to type-2 cells. In addition, we show that bystander activation of EM cells seems to be dependent on the inflammatory cytokines IL-15 and IL-18, and is supported by an upregulation of the activating receptor NKG2D and an exuberant expression of T-Bet and T-Bet-regulated genes including granzyme B and CXCR3. We also show that the inflammatory chemokines CXCL9-10 are increased in symptomatic patients thereby fostering the recruitment of highly cytotoxic EM cells into the liver in a CXCR3-dependent manner. Finally, we find that the EM-biased immune response returns to homeostasis following viral clearance and disease resolution, further linking the EM cells response to viral burden. Conversely, asymptomatic patients are endowed with low-to-moderate EM cell response. In summary, our findings define immune correlates that contribute to HEV-3 pathogenesis and emphasize the central role of EM cells in governing the outcome of the infection. The outcome of Genotype 3 Hepatitis E virus (HEV-3) infection differs among the elderly. Some patients develop severe forms of Hepatitis E while others remain asymptomatic. Nonetheless, parameters which can lead to severe versus silent infection are largely unknown. Therefore, we investigated immunological features of CD8 T cells in infected patients (aged ≥55) with similar viral determinants but distinct clinical outcomes. We show that drastic phenotypic changes were specifically observed within the effector memory (EM) compartment. Compared to asymptomatic patients, symptomatic ones display a strong activation of both HEV-3-specific and -nonspecific EM CD8 T cells associated with qualitative and quantitative alterations in cytokine production. In addition, EM cells are endowed with high cytotoxic capacity and have the ability to rapidly migrate to the liver. Finally, we report that the inflammatory response to HEV-3 infection shape EM cell activation and function in symptomatic elderly patients. In summary, our results present the first report demonstrating that the nature and the magnitude of EM CD8 T cell response play an important role in the outcome of HEV-3 infection in the elderly.
Collapse
Affiliation(s)
- Hicham El Costa
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
- * E-mail:
| | - Jordi Gouilly
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
| | - Florence Abravanel
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| | | | - Jean-Marie Peron
- Département de Gastroentérologie, CHU Toulouse, Toulouse, France
| | - Nassim Kamar
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
| | | | - Jacques Izopet
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| |
Collapse
|
33
|
Cao L, Ali S, Queen NJ. Hypothalamic gene transfer of BDNF promotes healthy aging. VITAMINS AND HORMONES 2021; 115:39-66. [PMID: 33706955 DOI: 10.1016/bs.vh.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process and age-related diseases all involve metabolic decline and impaired ability to cope with adversity. Environmental enrichment (EE)-a housing environment which recapitulates aspects of active lifestyle-exerts a wide range of health benefits in laboratory rodents. Brain-derived neurotrophic factor (BDNF) in the hypothalamus orchestrates autonomic and neuroendocrine processes, serving as one key brain mediator of EE-induced resistance to obesity, cancer, and autoimmunity. Recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. One recent study by our lab demonstrates the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression, mimicking the body's natural feedback systems in middle-age mice. Twelve-month old mice were treated with autoregulatory BDNF vector and monitored for 7months. BDNF gene transfer prevented age-associated metabolic decline by: reducing adiposity, preventing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Furthermore, BDNF treatment reduced anxiety-like and depression-like behaviors. This chapter summarizes this work and discusses potential roles that hypothalamic BDNF might play in promoting healthy aging.
Collapse
Affiliation(s)
- Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
34
|
Rodriguez IJ, Lalinde Ruiz N, Llano León M, Martínez Enríquez L, Montilla Velásquez MDP, Ortiz Aguirre JP, Rodríguez Bohórquez OM, Velandia Vargas EA, Hernández ED, Parra López CA. Immunosenescence Study of T Cells: A Systematic Review. Front Immunol 2021; 11:604591. [PMID: 33519813 PMCID: PMC7843425 DOI: 10.3389/fimmu.2020.604591] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Aging is accompanied by alterations in immune response which leads to increased susceptibility to infectious diseases, cancer, autoimmunity, and inflammatory disorders. This decline in immune function is termed as immunosenescence; however, the mechanisms are not fully elucidated. Experimental approaches of adaptive immunity, particularly for T cells, have been the main focus of immunosenescence research. This systematic review evaluates and discusses T cell markers implicated in immunosenescence. Objective To determine the best flow cytometry markers of circulating T cells associated with immunosenescence. Methods We systematically queried PubMed, MEDLINE, EBSCO, and BVS databases for original articles focused on two age groups of healthy humans: 18–44 (young adults) and >60 (older adults) years. In accordance with the Cochrane methodology, we synthesized data through qualitative descriptions and quantitative random effects meta-analysis due to extensive heterogeneity. Results A total of 36 studies conducted in the last 20 years were included for the qualitative analysis and four out of these studies were used to perform the meta-analysis. A significant decrease in naïve T cell subset was observed in older adults compared to young adults. Primary markers used to identify senescent cells were loss of CD28 and increased expression of CD57 and KLRG1 in terminally-differentiated memory T cell subset in older adults. Moreover, we observed an increase in proinflammatory cytokines and decrease in telomere length in old adult T cells. It was not possible to perform quantitative synthesis on cell markers, cytokines, and telomere length because of the significant variations between the groups, which is attributed to differences in protocols and unreported measurements, thus generating a high risk of bias. Conclusions Heterogeneity among studies in terms of data report, measurement techniques and high risk of bias were major impediments for performing a robust statistical analysis that could aid the identification of eligible flow cytometry markers of immunosenescence phenotype in T cells.
Collapse
Affiliation(s)
- Ivon Johanna Rodriguez
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia.,Departamento de Movimiento Corporal Humano, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nicolás Lalinde Ruiz
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Llano León
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura Martínez Enríquez
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Juan Pablo Ortiz Aguirre
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Esteban Alejandro Velandia Vargas
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Edgar Debray Hernández
- Departamento de Movimiento Corporal Humano, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Parra López
- Laboratorio de Inmunología y medicina traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
35
|
Esgalhado AJ, Reste-Ferreira D, Albino SE, Sousa A, Amaral AP, Martinho A, Oliveira IT, Verde I, Lourenço O, Fonseca AM, Cardoso EM, Arosa FA. CD45RA, CD8β, and IFNγ Are Potential Immune Biomarkers of Human Cognitive Function. Front Immunol 2020; 11:592656. [PMID: 33324408 PMCID: PMC7723833 DOI: 10.3389/fimmu.2020.592656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
There is increasing evidence that in humans the adaptive immunological system can influence cognitive functions of the brain. We have undertaken a comprehensive immunological analysis of lymphocyte and monocyte populations as well as of HLA molecules expression in a cohort of elderly volunteers (age range, 64–101) differing in their cognitive status. Hereby, we report on the identification of a novel signature in cognitively impaired elderly characterized by: (1) elevated percentages of CD8+ T effector-memory cells expressing high levels of the CD45RA phosphate receptor (Temrahi); (2) high percentages of CD8+ T cells expressing high levels of the CD8β chain (CD8βhi); (3) augmented production of IFNγ by in vitro activated CD4+ T cells. Noteworthy, CD3+CD8+ Temrahi and CD3+CD8βhi cells were associated with impaired cognition. Cytomegalovirus seroprevalence showed that all volunteers studied but one were CMV positive. Finally, we show that some of these phenotypic and functional features are associated with an increased frequency of the HLA-B8 serotype, which belongs to the ancestral haplotype HLA-A1, Cw7, B8, DR3, DQ2, among cognitively impaired volunteers. To our knowledge, this is the first proof in humans linking the amount of cell surface CD45RA and CD8β chain expressed by CD8+ Temra cells, and the amount of IFNγ produced by in vitro activated CD4+ T cells, with impaired cognitive function in the elderly.
Collapse
Affiliation(s)
- André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Débora Reste-Ferreira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Stephanie E Albino
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Adriana Sousa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Paula Amaral
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - António Martinho
- Molecular Genetics Laboratory, Coimbra Blood and Transplantation Center, Coimbra, Portugal
| | - Isabel T Oliveira
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Olga Lourenço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana M Fonseca
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elsa M Cardoso
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,IPG, Guarda Polytechnic Institute, Guarda, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
36
|
Metcalf CJE, Grenfell BT, Graham AL. Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathog 2020; 16:e1009105. [PMID: 33306746 PMCID: PMC7732095 DOI: 10.1371/journal.ppat.1009105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Health outcomes following infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are remarkably variable. The way the virus spreads inside hosts, and how this spread interacts with host immunity and physiology, is likely to determine variation in health outcomes. Decades of data and dynamical analyses of how other viruses spread and interact with host cells could shed light on SARS-CoV-2 within-host trajectories. We review how common axes of variation in within-host dynamics and emergent pathology (such as age and sex) might be combined with ecological principles to understand the case of SARS-CoV-2. We highlight pitfalls in application of existing theoretical frameworks relevant to the complexity of the within-host context and frame the discussion in terms of growing knowledge of the biology of SARS-CoV-2. Viewing health outcomes for SARS-CoV-2 through the lens of ecological models underscores the value of repeated measures on individuals, especially since many lines of evidence suggest important contingence on trajectory.
Collapse
Affiliation(s)
- C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton School of Public and International Affairs, Princeton University, New Jersey, United States of America
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton School of Public and International Affairs, Princeton University, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
37
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
38
|
Moro F, Fania L, Sinagra JLM, Salemme A, Di Zenzo G. Bullous Pemphigoid: Trigger and Predisposing Factors. Biomolecules 2020; 10:E1432. [PMID: 33050407 PMCID: PMC7600534 DOI: 10.3390/biom10101432] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bullous pemphigoid (BP) is the most frequent autoimmune subepidermal blistering disease provoked by autoantibodies directed against two hemidesmosomal proteins: BP180 and BP230. Its pathogenesis depends on the interaction between predisposing factors, such as human leukocyte antigen (HLA) genes, comorbidities, aging, and trigger factors. Several trigger factors, such as drugs, thermal or electrical burns, surgical procedures, trauma, ultraviolet irradiation, radiotherapy, chemical preparations, transplants, and infections may induce or exacerbate BP disease. Identification of predisposing and trigger factors can increase the understanding of BP pathogenesis. Furthermore, an accurate anamnesis focused on the recognition of a possible trigger factor can improve prognosis by promptly removing it.
Collapse
Affiliation(s)
- Francesco Moro
- Correspondence: (F.M.); (L.F.); Tel.: +39-(342)-802-0004 (F.M.)
| | - Luca Fania
- Correspondence: (F.M.); (L.F.); Tel.: +39-(342)-802-0004 (F.M.)
| | | | | | | |
Collapse
|
39
|
Queen NJ, Hassan QN, Cao L. Improvements to Healthspan Through Environmental Enrichment and Lifestyle Interventions: Where Are We Now? Front Neurosci 2020; 14:605. [PMID: 32655354 PMCID: PMC7325954 DOI: 10.3389/fnins.2020.00605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental enrichment (EE) is an experimental paradigm that is used to explore how a complex, stimulating environment can impact overall health. In laboratory animal experiments, EE housing conditions typically include larger-than-standard cages, abundant bedding, running wheels, mazes, toys, and shelters which are rearranged regularly to further increase stimulation. EE has been shown to improve multiple aspects of health, including but not limited to metabolism, learning and cognition, anxiety and depression, and immunocompetence. Recent advances in lifespan have led some researchers to consider aging as a risk factor for disease. As such, there is a pressing need to understand the processes by which healthspan can be increased. The natural and predictable changes during aging can be reversed or decreased through EE and its underlying mechanisms. Here, we review the use of EE in laboratory animals to understand mechanisms involved in aging, and comment on relative areas of strength and weakness in the current literature. We additionally address current efforts toward applying EE-like lifestyle interventions to human health to extend healthspan. Although increasing lifespan is a clear goal of medical research, improving the quality of this added time also deserves significant attention. Despite hurdles in translating experimental results toward clinical application, we argue there is great potential in using features of EE toward improving human healthy life expectancy or healthspan, especially in the context of increased global longevity.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Quais N. Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
40
|
Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY) 2020; 12:10004-10021. [PMID: 32534452 PMCID: PMC7346074 DOI: 10.18632/aging.103493] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
COVID-19 is not deadly early in life, but mortality increases exponentially with age, which is the strongest predictor of mortality. Mortality is higher in men than in women, because men age faster, and it is especially high in patients with age-related diseases, such as diabetes and hypertension, because these diseases are manifestations of aging and a measure of biological age. At its deepest level, aging (a program-like continuation of developmental growth) is driven by inappropriately high cellular functioning. The hyperfunction theory of quasi-programmed aging explains why COVID-19 vulnerability (lethality) is an age-dependent syndrome, linking it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation, hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19 vulnerability.
Collapse
|
41
|
Quinn KM, Linterman MA. Senescence blurs the line between innate and adaptive immune cells. Immunol Cell Biol 2020; 98:431-433. [PMID: 32406096 DOI: 10.1111/imcb.12341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023]
Abstract
In Covre et al. and Pereira et al., the authors demonstrate the parallels between senescent NK cells and senescent CD8 T cells, and formalise the mechanism by which senescent CD8 T cells become more NK cell-like, through the action of sestrins.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | |
Collapse
|
42
|
Vijapur SM, Yang Z, Barton DJ, Vaughan L, Awan N, Kumar RG, Oh BM, Berga SL, Wang KK, Wagner AK. Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. J Neurotrauma 2020; 37:1609-1626. [PMID: 32111134 DOI: 10.1089/neu.2019.6780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and can lead to persistent hypogonadotropic hypogonadism (PHH) and poor outcomes. We hypothesized that autoimmune and inflammatory mechanisms contribute to PHH pathogenesis. Men with moderate-to-severe TBI (n = 143) were compared with healthy men (n = 39). The TBI group provided blood samples 1-12 months post-injury (n = 1225). TBI and healthy control (n = 39) samples were assayed for testosterone (T) and luteinizing hormone (LH) to adjudicate PHH status. TBI samples 1-6 months post-injury and control samples were assayed for immunoglobulin M (IgM)/immunoglobulin G (IgG) anti-pituitary autoantibodies (APA) and anti-hypothalamus autoantibodies (AHA). Tissue antigen specificity for APA and AHA was confirmed via immunohistochemistry (IHC). IgM and IgG autoantibodies for glial fibrillary acid protein (GFAP) (AGA) were evaluated to gauge APA and AHA production as a generalized autoimmune response to TBI and to evaluate the specificity of APA and AHA to PHH status. An inflammatory marker panel was used to assess relationships to autoantibody profiles and PHH status. Fifty-one men with TBI (36%) had PHH. An age-related decline in T levels by both TBI and PHH status were observed. Injured men had higher APA IgM, APA IgG, AHA IgM, AHA IgG, AGA IgM, and AGA IgG than controls (p < 0.0001 all comparisons). However, only APA IgM (p = 0.03) and AHA IgM (p = 0.03) levels were lower in the PHH than in the non-PHH group in multivariate analysis. There were no differences in IgG levels by PHH status. Multiple inflammatory markers were positively correlated with IgM autoantibody production. PHH was associated with higher soluble tumor-necrosis-factor receptors I/II, (sTNFRI, sTNFRII), regulated on activation, normal T-cell expressed and secreted (RANTES) and soluble interleukin-2-receptor-alpha (sIL-2Rα) levels. Higher IgM APA, and AHA, but not AGA, in the absence of PHH may suggest a beneficial or reparative role for neuroendocrine tissue-specific IgM autoantibody production against PHH development post-TBI.
Collapse
Affiliation(s)
- Sushupta M Vijapur
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida / South Georgia Veterans Health System, Gainesville, Florida, USA.,Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - David J Barton
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leah Vaughan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj G Kumar
- Mount Sinai, Icahn School of Medicine, New York, New York, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, South Korea
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kevin K Wang
- Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA.,Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Covre LP, Devine OP, Garcia de Moura R, Vukmanovic-Stejic M, Dietze R, Ribeiro-Rodrigues R, Guedes HLDM, Lubiana Zanotti R, Falqueto A, Akbar AN, Gomes DCO. Compartmentalized cytotoxic immune response leads to distinct pathogenic roles of natural killer and senescent CD8 + T cells in human cutaneous leishmaniasis. Immunology 2020; 159:429-440. [PMID: 31925782 DOI: 10.1111/imm.13173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic activity mediated by CD8+ T cells is the main signature of the immunopathogenesis of cutaneous leishmaniasis (CL). Here, we performed a broad evaluation of natural killer (NK) cell phenotypic and functional features during cutaneous leishmaniasis. We demonstrate for the first time that CL patients present the accumulation of circulating NK cells with multiple features of replicative senescence including low proliferative capacity and shorter telomeres, elevated expression of CD57, KLRG1 but diminished CD27 stimulatory receptor expression. Moreover, they exhibited higher cytotoxic and inflammatory potential than age-matched controls. The accumulation of circulating senescent NK cells (CD56dim CD57bright ) correlated positively with skin lesion size in the same patients, suggesting that they, like circulating senescent CD8+ T cells, may contribute to the immunopathology of CL. However, this senescent population had lower cutaneous lymphocyte antigen expression and so had diminished skin-homing potential compared with total or senescent CD8+ T cells. This was confirmed in CL skin lesions where we found a predominance of CD8+ T cells (both senescent and non-senescent) that correlated with the severity of the disease. Although there was also a correlation between the proportions of senescent NK cells (CD56+ CD57+ ) in the skin and lesion size, this was less evident. Collectively our results demonstrate first-hand that senescent cytotoxic cells may mediate skin pathology during human cutaneous leishmaniasis. However, as senescent cytotoxic CD8+ T cells predominate in the skin lesions, they may have a greater role than NK cells in mediating the non-specific skin damage in CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | | | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | | | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil.,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil.,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| |
Collapse
|
44
|
Kim C, Hu B, Jadhav RR, Jin J, Zhang H, Cavanagh MM, Akondy RS, Ahmed R, Weyand CM, Goronzy JJ. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep 2019; 25:2148-2162.e5. [PMID: 30463012 PMCID: PMC6371971 DOI: 10.1016/j.celrep.2018.10.074] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Induction of protective vaccine responses, governed by the successful generation of antigen-specific anti-bodies and long-lived memory T cells, is increasingly impaired with age. Regulation of the T cell proteome by a dynamic network of microRNAs is crucial to T cell responses. Here, we show that activation-induced upregulation of miR-21 biases the transcrip-tome of differentiating T cells away from memory T cells and toward inflammatory effector T cells. Such a transcriptome bias is also characteristic of T cell responses in older individuals who have increased miR-21 expression and is reversed by antagonizing miR-21. miR-21 targets negative feedback circuits in several signaling pathways. The concerted, sustained activity of these signaling path-ways in miR-21high T cells disfavors the induction of transcription factor networks involved in memory cell differentiation. Our data suggest that curbing miR-21 upregulation or activity in older individuals may improve their ability to mount effective vaccine responses. A hallmark of the aging immune system is its failure to induce long-lived memory. Kim et al. report that increased expression of miR-21 in naive T cells from older individuals sustains signaling in the MAPK and AKT-mTORC pathways, disfavoring induction of transcription factor networks involved in memory cell generation.
Collapse
Affiliation(s)
- Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Rohit R Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jun Jin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Rama S Akondy
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Abstract
T cell ageing has a pivotal role in rendering older individuals vulnerable to infections and cancer and in impairing the response to vaccination. Easy accessibility to peripheral human T cells as well as an expanding array of tools to examine T cell biology have provided opportunities to examine major ageing pathways and their consequences for T cell function. Here, we review emerging concepts of how the body attempts to maintain a functional T cell compartment with advancing age, focusing on three fundamental domains of the ageing process, namely self-renewal, control of cellular quiescence and cellular senescence. Understanding these critical elements in successful T cell ageing will allow the design of interventions to prevent or reverse ageing-related T cell failure.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA.
| | - Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- The Department of Medicine, Palo Alto Veteran Administration Health Care System, Palo Alto, CA, USA
| |
Collapse
|
46
|
Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol 2019; 144:144-156. [DOI: 10.1016/j.jaci.2019.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/31/2022]
|
47
|
Müller L, Di Benedetto S, Pawelec G. The Immune System and Its Dysregulation with Aging. Subcell Biochem 2019; 91:21-43. [PMID: 30888648 DOI: 10.1007/978-981-13-3681-2_2] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging leads to numerous changes that affect all physiological systems of the body including the immune system, causing greater susceptibility to infectious disease and contributing to the cardiovascular, metabolic, autoimmune, and neurodegenerative diseases of aging. The immune system is itself also influenced by age-associated changes occurring in such physiological systems as the endocrine, nervous, digestive, cardio-vascular and muscle-skeletal systems. This chapter describes the multidimensional effects of aging on the most important components of the immune system. It considers the age-related changes in immune cells and molecules of innate and adaptive immunity and consequent impairments in their ability to communicate with each other and with their aged environment. The contribution of age-related dysregulation of hematopoiesis, required for continuous replenishment of immune cells throughout life, is discussed in this context, as is the developmentally-programmed phenomenon of thymic involution that limits the output of naïve T cells and markedly contributes to differences between younger and older people in the distribution of peripheral blood T-cell types. How all these changes may contribute to low-grade inflammation, sometimes dubbed "inflammaging", is considered. Due to findings implicating elevated inflammatory immuno-mediators in age-associated chronic autoimmune and neurodegenerative processes, evidence for their possible contribution to neuroinflammation is reviewed.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Berlin, Germany.
| | - Svetlana Di Benedetto
- Max Planck Institute for Human Development, Berlin, Germany.,Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
48
|
Chronic Benign CD8+ Proliferation: A Rare Affection that Can Mimic a Lymphoma Relapse. Case Rep Hematol 2019; 2019:4932616. [PMID: 30949370 PMCID: PMC6425407 DOI: 10.1155/2019/4932616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic benign CD8+ proliferation is a rare syndrome that can take the form of a variety of other diseases. Peripheral adenopathy, cytopenia, and infiltration of the liver, kidneys, bowels, or other organs are the most common clinical presentations of the syndrome. CD8+ expansion can be clonal and nonclonal. It generally occurs in patients with innate or acquired immunodeficiency (HIV+) or in patients receiving immunosuppressive therapy. It has been found repeatedly in patients who developed severe hypogammaglobulinemia after treatment with rituximab. Diagnosis of the disease can be difficult because it can mimic relapse of a lymphoma, and a common biopsy examination cannot identify the problem at first. The authors describe a case of a patient pretreated with rituximab who developed agammaglobulinemia and peripheral adenopathy. Biopsy of an enlarged lymph node showed "reactive lymphadenitis." Additionally, a flow-cytometric examination revealed a pathological population of CD8+ lymphocytes. The treatment, which differed from treatments of lymphoma relapse, consisted of corticosteroids and IVIG substitutions and has led to a regression of clinical symptoms. With more frequent usage of rituximab, one can expect increased occurrence of a very rare CD8+ expansion that can reliably emulate the relapse of a lymphoma.
Collapse
|
49
|
Warren-Gash C, Forbes HJ, Williamson E, Breuer J, Hayward AC, Mavrodaris A, Ridha BH, Rossor MN, Thomas SL, Smeeth L. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep 2019; 9:4743. [PMID: 30894595 PMCID: PMC6426940 DOI: 10.1038/s41598-019-41218-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Interest is growing in the role of infectious agents in the pathogenesis of dementia, but current evidence is limited. We conducted a systematic review and meta-analysis to investigate the effect of any of eight human herpesviruses on development of dementia or mild cognitive impairment (MCI). We searched the Cochrane Library, Embase, Global Health, Medline, PsycINFO, Scopus, Web of Science, clinical trials registers and grey literature sources from inception to December 2017 for observational studies with cohort, case control or self-controlled designs, or randomised controlled trials of interventions against herpesviruses. Pooled effect estimates and 95% confidence intervals (CIs) were generated through random effects meta-analyses across studies with the same design, outcome, and virus type, method and site of measurement. We included 57 studies across various geographic settings. Past infection with herpesviruses, measured by IgG seropositivity, was generally not associated with dementia risk. A single cohort study rated moderate quality showed an association between varicella zoster virus reactivation (ophthalmic zoster) and incident dementia (HR 2.97; 95%CI, 1.89 to 4.66). Recent infection with, or reactivation of, herpes simplex virus type 1 or type 1/2 unspecified, cytomegalovirus and human herpes virus-6 measured by serum IgM, high titre IgG or clinical disease may be associated with dementia or MCI, though results were inconsistent across studies and overall evidence rated very low quality. Longitudinal population studies with robust repeated virus measurements taken sufficiently proximal to dementia onset are needed to establish whether, when and among whom herpesviruses affect dementia risk.
Collapse
Affiliation(s)
- Charlotte Warren-Gash
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| | - Harriet J Forbes
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Elizabeth Williamson
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Judith Breuer
- Division of Infection & Immunity, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew C Hayward
- Institute of Epidemiology and Healthcare, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angelique Mavrodaris
- Cambridge Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge, CB2 0SR, United Kingdom
| | - Basil H Ridha
- NIHR University College London Hospitals Biomedical Research Centre, Maple House, Tottenham Court Road, London, W1T 7DN, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
| | - Martin N Rossor
- NIHR University College London Hospitals Biomedical Research Centre, Maple House, Tottenham Court Road, London, W1T 7DN, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
| | - Sara L Thomas
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Liam Smeeth
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| |
Collapse
|
50
|
Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. Aging Cell 2019; 18:e12878. [PMID: 30488545 PMCID: PMC6351880 DOI: 10.1111/acel.12878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age-related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low-grade chronic inflammation, termed "inflamm-aging," which further perpetuates immune dysfunction. While many of these age-related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|