1
|
Luo Y, Wang LJ, Wang CL. Advancing the understanding and management of blastic plasmacytoid dendritic cell neoplasm: Insights from recent case studies. World J Clin Cases 2024; 12:6441-6446. [PMID: 39507120 PMCID: PMC11438698 DOI: 10.12998/wjcc.v12.i31.6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
We specifically discuss the mechanisms of the pathogenesis, diagnosis, and management of blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare but aggressive haematologic malignancy characterized by frequent skin manifestations and systemic dissemination. The article enriches our understanding of BPDCN through detailed case reports showing the clinical, immunophenotypic, and histopathological features that are critical for diagnosing this disease. These cases highlight the essential role of pathologists in employing advanced immunophenotyping techniques to accurately identify the disease early in its course and guide treatment decisions. Furthermore, we explore the implications of these findings for management strategies, emphasizing the use of targeted therapies such as tagraxofusp and the potential of allogeneic haematopoietic stem cell transplantation in achieving remission. The editorial underscores the importance of interdisciplinary approaches in managing BPDCN, pointing towards a future where precision medicine could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Yan Luo
- Department of Stomatology, The People's Hospital of Dadukou District, Chongqing 400084, China
| | - Li-Juan Wang
- Department of Pathology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Cheng-Long Wang
- Department of Pathology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| |
Collapse
|
2
|
Beerepoot S, Wolf NI, van der Knaap MS, Nierkens S, Plantinga M. Heterozygous missense CSF1R variants hamper in vitro CD34+-derived dendritic cell generation but not in vivo dendritic cell development. Mol Immunol 2024; 174:41-46. [PMID: 39182279 DOI: 10.1016/j.molimm.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Colony stimulating factor 1 receptor (CSF1R) is an essential receptor for both colony stimulating factor 1 (CSF1) and interleukin (IL) 34 signaling expressed on monocyte precursors and myeloid cells, including monocytes, dendritic cells (DC), and microglia. In humans, dominant heterozygous pathogenic variants in CSF1R cause a neurological condition known as CSF1R-related disorder (CSF1R-RD), typically with late onset, previously referred to as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). CSF1R-RD is characterized by microglia reduction and altered monocyte function; however, the impact of pathogenic CSF1R variants on the human DC lineage remains largely unknown. We previously reported that cord blood CD34+ stem cell-derived DCs generated in vitro originate specifically from CSF1R expressing precursors. In this study, we examined the DC lineage of four unrelated patients with late-onset CSF1R-RD who carried heterozygous missense CSF1R variants (c.2330G>A, c.2375C>A, c.2329C>T, and c.2381T>C) affecting different amino acids in the protein tyrosine kinase domain of CSF1R. CD34+ stem cells and CD14+ monocytes were isolated from peripheral blood and subjected to an in vitro culture protocol to differentiate towards conventional DCs and monocyte-derived DCs, respectively. Flow cytometric analysis revealed that monocytes from patients with late-onset CSF1R-RD were still able to differentiate into monocyte-derived DCs in vitro, whereas the ability of CD34+ stem cells to differentiate into conventional DCs was impaired. Strikingly, the peripheral blood of patients contained all naturally occurring DC subsets. We conclude that the in vitro abrogation of DC-development in patients with heterozygous pathogenic missense CSF1R variants does not translate to an impairment in DC development in vivo and speculate that CSF1R signalling in vivo is compensated, which needs further study.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
4
|
Guak H, Weiland M, Ark AV, Zhai L, Lau K, Corrado M, Davidson P, Asiedu E, Mabvakure B, Compton S, DeCamp L, Scullion CA, Jones RG, Nowinski SM, Krawczyk CM. Transcriptional programming mediated by the histone demethylase KDM5C regulates dendritic cell population heterogeneity and function. Cell Rep 2024; 43:114506. [PMID: 39052479 PMCID: PMC11416765 DOI: 10.1016/j.celrep.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Weiland
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mario Corrado
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Internal Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paula Davidson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Asiedu
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA; Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Shelby Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Catherine A Scullion
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
5
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
6
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Roychowdhury S, Pant B, Cross E, Scheraga R, Vachharajani V. Effect of ethanol exposure on innate immune response in sepsis. J Leukoc Biol 2024; 115:1029-1041. [PMID: 38066660 PMCID: PMC11136611 DOI: 10.1093/jleuko/qiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Alcohol use disorder, reported by 1 in 8 critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death, kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyperinflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol exposure with sepsis, but targeted treatments have remained elusive. In this article, we outline the effects of ethanol exposure on various innate immune cell types in general and during sepsis.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Bishnu Pant
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| |
Collapse
|
9
|
Yoon SO. Pathologic characteristics of histiocytic and dendritic cell neoplasms. Blood Res 2024; 59:18. [PMID: 38713245 PMCID: PMC11076448 DOI: 10.1007/s44313-024-00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Histiocytic and dendritic cell neoplasms comprise diverse tumors originating from the mononuclear phagocytic system, which includes monocytes, macrophages, and dendritic cells. The 5th edition of the World Health Organization (WHO) classification updating the categorization of these tumors, reflecting a deeper understanding of their pathogenesis.In this updated classification system, tumors are categorized as Langerhans cell and other dendritic cell neoplasms, histiocyte/macrophage neoplasms, and plasmacytoid dendritic cell neoplasms. Follicular dendritic cell neoplasms are classified as mesenchymal dendritic cell neoplasms within the stroma-derived neoplasms of lymphoid tissues.Each subtype of histiocytic and dendritic cell neoplasms exhibits distinct morphological characteristics. They also show a characteristic immunophenotypic profile marked by various markers such as CD1a, CD207/langerin, S100, CD68, CD163, CD4, CD123, CD21, CD23, CD35, and ALK, and hematolymphoid markers such as CD45 and CD43. In situ hybridization for EBV-encoded small RNA (EBER) identifies a particular subtype. Immunoprofiling plays a critical role in determining the cell of origin and identifying the specific subtype of tumors. There are frequent genomic alterations in these neoplasms, especially in the mitogen-activated protein kinase pathway, including BRAF (notably BRAF V600E), MAP2K1, KRAS, and NRAS mutations, and ALK gene translocation.This review aims to offer a comprehensive and updated overview of histiocytic and dendritic cell neoplasms, focusing on their ontogeny, morphological aspects, immunophenotypic profiles, and molecular genetics. This comprehensive approach is essential for accurately differentiating and classifying neoplasms according to the updated WHO classification.
Collapse
Affiliation(s)
- Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
Ammons DT, Hopkins LS, Cronise KE, Kurihara J, Regan DP, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. Commun Biol 2024; 7:496. [PMID: 38658617 PMCID: PMC11043452 DOI: 10.1038/s42003-024-06182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Leone S Hopkins
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kathryn E Cronise
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
12
|
Puchner A, Simader E, Saferding V, Hofmann M, Kieler M, Brunner J, Pfeifle R, Niederreiter B, Krönke G, Schabbauer G, Georgel P, Diehl G, Steiner G, Hayer S, Redlich K, Smolen JS, Aletaha D, Blüml S. Bona fide dendritic cells are pivotal precursors for osteoclasts. Ann Rheum Dis 2024; 83:518-528. [PMID: 38071515 DOI: 10.1136/ard-2022-223817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
OBJECTIVES Osteoclasts (OCs) are myeloid-derived multinucleated cells uniquely able to degrade bone. However, the exact nature of their myeloid precursors is not yet defined. METHODS CD11c-diphtheria toxin receptor (CD11cDTR) transgenic mice were treated with diphtheria toxin (DT) or phosphate buffered saline (PBS) during serum transfer arthritis (STA) and human tumour necrosis factor transgenic (hTNFtg) arthritis and scored clinically and histologically. We measured cytokines in synovitis by quantitative polymerase chain reaction (qPCR). We performed ovariectomy in CD11cDTR mice treated with PBS or DT. We analysed CD11cDTR, CD11c-Cre/CX3CR1-STOP-DTR and Zbtb46-DTR-treated mice with DT using histomorphometry and OC of CD11c and Zbtb46 fate reporter mice by fluorescent imaging. We sorted murine and human OC precursors and stimulated them with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) to generate OCs. RESULTS Targeting CD11c+ cells in vivo in models of inflammatory arthritis (STA and hTNFtg) ameliorates arthritis by reducing inflammatory bone destruction and OC generation. Targeting CD11c-expressing cells in unchallenged mice removes all OCs in their long bones. OCs do not seem to be derived from CD11c+ cells expressing CX3CR1+, but from Zbtb46+conventional dendritic cells (cDCs) as all OCs in Zbtb46-Tomato fate reporter mice are Tomato+. In line, administration of DT in Zbtb46-DTR mice depletes all OCs in long bones. Finally, human CD1c-expressing cDCs readily differentiated into bone resorbing OCs. CONCLUSION Taken together, we identify DCs as important OC precursors in bone homeostasis and inflammation, which might open new avenues for therapeutic interventions in OC-mediated diseases.
Collapse
Affiliation(s)
- Antonia Puchner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Simader
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - René Pfeifle
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard Krönke
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Philippe Georgel
- Université de Strasbourg, Faculté de Médecine, INSERM UMR_S 1109, Strasbourg, France
| | - Gretchen Diehl
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guenter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Silvia Hayer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Alsaiari SK, Nadeef S, Daristotle JL, Rothwell W, Du B, Garcia J, Zhang L, Sarmadi M, Forster TA, Menon N, Lin SQ, Tostanoski LH, Hachmann N, Wang EY, Ventura JD, Barouch DH, Langer R, Jaklenec A. Zeolitic imidazolate frameworks activate endosomal Toll-like receptors and potentiate immunogenicity of SARS-CoV-2 spike protein trimer. SCIENCE ADVANCES 2024; 10:eadj6380. [PMID: 38446889 PMCID: PMC10917347 DOI: 10.1126/sciadv.adj6380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Nanomaterials offer unique opportunities to engineer immunomodulatory activity. In this work, we report the Toll-like receptor agonist activity of a nanoscale adjuvant zeolitic imidazolate framework-8 (ZIF-8). The accumulation of ZIF-8 in endosomes and the pH-responsive release of its subunits enable selective engagement with endosomal Toll-like receptors, minimizing the risk of off-target activation. The intrinsic adjuvant properties of ZIF-8, along with the efficient delivery and biomimetic presentation of a severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain trimer, primed rapid humoral and cell-mediated immunity in a dose-sparing manner. Our study offers insights for next-generation adjuvants that can potentially impact future vaccine development.
Collapse
Affiliation(s)
- Shahad K. Alsaiari
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seba Nadeef
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John L. Daristotle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William Rothwell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bujie Du
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johnny Garcia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linzixuan Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Morteza Sarmadi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy A. Forster
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nandita Menon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacey Qiaohui Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicole Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D. Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Reitsema RD, Kumawat AK, Hesselink BC, van Baarle D, van Sleen Y. Effects of ageing and frailty on circulating monocyte and dendritic cell subsets. NPJ AGING 2024; 10:17. [PMID: 38438383 PMCID: PMC10912203 DOI: 10.1038/s41514-024-00144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Ageing is associated with dysregulated immune responses, resulting in impaired resilience against infections and low-grade inflammation known as inflammageing. Frailty is a measurable condition in older adults characterized by decreased health and physical impairment. Dendritic cells (DCs) and monocytes play a crucial role in initiating and steering immune responses. To assess whether their frequencies and phenotypes in the blood are affected by ageing or frailty, we performed a flow cytometry study on monocyte and DC subsets in an immune ageing cohort. We included (n = 15 in each group) healthy young controls (HYC, median age 29 years), healthy older controls (HOC, 73 years) and Frail older controls (76 years). Monocyte subsets (classical, intermediate, non-classical) were identified by CD14 and CD16 expression, and DC subsets (conventional (c)DC1, cDC2, plasmacytoid (p)DC) by CD11c, CD1c, CD141 and CD303 expression. All subsets were checked for TLR2, TLR4, HLA-DR, CD86, PDL1, CCR7 and CD40 expression. We observed a lower proportion of pDCs in HOC compared to HYC. Additionally, we found higher expression of activation markers on classical and intermediate monocytes and on cDC2 in HOC compared to HYC. Frail participants had a higher expression of CD40 on classical and non-classical monocytes compared to the HOC group. We document a substantial effect of ageing on monocytes and DCs. Reduced pDCs in older people may underlie their impaired ability to counter viral infections, whereas enhanced expression of activation markers could indicate a state of inflammageing. Future studies could elucidate the functional consequences of CD40 upregulation with frailty.
Collapse
Affiliation(s)
- Rosanne D Reitsema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ashok K Kumawat
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bernd-Cornèl Hesselink
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Weng C, Yu F, Yang D, Poeschla M, Liggett LA, Jones MG, Qiu X, Wahlster L, Caulier A, Hussmann JA, Schnell A, Yost KE, Koblan LW, Martin-Rufino JD, Min J, Hammond A, Ssozi D, Bueno R, Mallidi H, Kreso A, Escabi J, Rideout WM, Jacks T, Hormoz S, van Galen P, Weissman JS, Sankaran VG. Deciphering cell states and genealogies of human haematopoiesis. Nature 2024; 627:389-398. [PMID: 38253266 PMCID: PMC10937407 DOI: 10.1038/s41586-024-07066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.
Collapse
Affiliation(s)
- Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Dian Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael Poeschla
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - L Alexander Liggett
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew G Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Genetics and Computer Science, BASE Research Initiative, Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeffrey A Hussmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke W Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alessandro Hammond
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raphael Bueno
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hari Mallidi
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Kreso
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Javier Escabi
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William M Rideout
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Tyler Jacks
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sahand Hormoz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
17
|
Okwuone DDD, Morgan D, Gan GN. Exploring the function of myeloid cells in promoting metastasis in head and neck cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:108-119. [PMID: 38468824 PMCID: PMC10925485 DOI: 10.37349/etat.2024.00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Head and neck cancer (HNC) is a challenging disease that lacks effective treatment, particularly in the cases that spread locoregionally and metastasize distantly, dramatically reducing patient survival rates. Expanding the understanding of the mechanisms of the metastatic cascade is critical for creating more effective therapeutics that improve outcomes for HNC patients. A true grasp of cancer metastasis requires the consideration of all cell types that contribute to the inflammatory HNC microenvironment as drivers of this process. More emphasis now is being placed on exploring the roles of the different immune cells in cancer control, tumorigenesis and metastasis. Myeloid cells are the most numerous immune cell types in the body, and they are actively recruited and reprogrammed by tumor cells to behave in a variety of ways. These cells are remarkably diverse in phenotype and function, and the part they play in tumor spread greatly differs based on the cell type. This review will focus on summarizing the roles of macrophages, neutrophils, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs) in driving HNC metastasis by examining the current knowledge base and offering potential new routes through which to target and treat this deadly process.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gregory N. Gan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
19
|
Wu KY, Kulbay M, Daigle P, Nguyen BH, Tran SD. Nonspecific Orbital Inflammation (NSOI): Unraveling the Molecular Pathogenesis, Diagnostic Modalities, and Therapeutic Interventions. Int J Mol Sci 2024; 25:1553. [PMID: 38338832 PMCID: PMC10855920 DOI: 10.3390/ijms25031553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Nonspecific orbital inflammation (NSOI), colloquially known as orbital pseudotumor, sometimes presents a diagnostic and therapeutic challenge in ophthalmology. This review aims to dissect NSOI through a molecular lens, offering a comprehensive overview of its pathogenesis, clinical presentation, diagnostic methods, and management strategies. The article delves into the underpinnings of NSOI, examining immunological and environmental factors alongside intricate molecular mechanisms involving signaling pathways, cytokines, and mediators. Special emphasis is placed on emerging molecular discoveries and approaches, highlighting the significance of understanding molecular mechanisms in NSOI for the development of novel diagnostic and therapeutic tools. Various diagnostic modalities are scrutinized for their utility and limitations. Therapeutic interventions encompass medical treatments with corticosteroids and immunomodulatory agents, all discussed in light of current molecular understanding. More importantly, this review offers a novel molecular perspective on NSOI, dissecting its pathogenesis and management with an emphasis on the latest molecular discoveries. It introduces an integrated approach combining advanced molecular diagnostics with current clinical assessments and explores emerging targeted therapies. By synthesizing these facets, the review aims to inform clinicians and researchers alike, paving the way for molecularly informed, precision-based strategies for managing NSOI.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada
| | - Patrick Daigle
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Bich H. Nguyen
- CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
20
|
Suo C, Polanski K, Dann E, Lindeboom RGH, Vilarrasa-Blasi R, Vento-Tormo R, Haniffa M, Meyer KB, Dratva LM, Tuong ZK, Clatworthy MR, Teichmann SA. Dandelion uses the single-cell adaptive immune receptor repertoire to explore lymphocyte developmental origins. Nat Biotechnol 2024; 42:40-51. [PMID: 37055623 PMCID: PMC10791579 DOI: 10.1038/s41587-023-01734-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .
Collapse
Affiliation(s)
- Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Paediatrics, Cambridge University Hospitals, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | | | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lisa M Dratva
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Webb S, Haniffa M. Large-scale single-cell RNA sequencing atlases of human immune cells across lifespan: Possibilities and challenges. Eur J Immunol 2023; 53:e2250222. [PMID: 36826421 DOI: 10.1002/eji.202250222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Single-cell RNA sequencing technologies have successfully been leveraged for immunological insights into human prenatal, pediatric, and adult tissues. These single-cell studies have led to breakthroughs in our understanding of stem, myeloid, and lymphoid cell function. Computational analysis of fetal hematopoietic tissues has uncovered trajectories for T- and B-cell differentiation across multiple organ sites, and how these trajectories might be dysregulated in fetal and pediatric health and disease. As we enter the age of large-scale, multiomic, and integrative single-cell meta-analysis, we assess the advances and challenges of large-scale data generation, analysis, and reanalysis, and data dissemination for a broad range of scientific and clinical communities. We discuss Findable, Accessible, Interoperable, and Reusable data sharing and unified cell ontology languages as strategic areas for progress of the field in the near future. We also reflect on the trend toward deployment of multiomic and spatial genomic platforms within single-cell RNA sequencing projects, and the crucial role these data types will assume in the immediate future toward creation of comprehensive and rich single-cell atlases. We demonstrate using our recent studies of human prenatal and adult hematopoietic tissues the importance of interdisciplinary and collaborative working in science to reveal biological insights in parallel with technological and computational innovations.
Collapse
Affiliation(s)
- Simone Webb
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
22
|
Fang Y, Shen B, Dai Q, Xie Q, Wu W, Wang M. Orbital inflammatory pseudotumor: new advances in diagnosis, pathogenesis, and treatment. Eur J Med Res 2023; 28:395. [PMID: 37794419 PMCID: PMC10548690 DOI: 10.1186/s40001-023-01330-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Orbital inflammatory pseudotumor (OIP) is a benign, non-specific inflammatory disorder that commonly occurs in middle-aged adults and is usually unilateral but can occur bilaterally. Its clinical manifestations have tremendous clinical heterogeneity and vary according to the site of infiltration and the degree of lesions, including orbital pain, swelling, diplopia, proptosis, restricted eye movement, and decreased visual acuity. Clinical features, Image characteristics and pathological examinations often need to be evaluated to confirm the diagnosis. Currently, there is no systematic research on the pathogenesis of OIP, which may be related to immunity or infection. The first-line treatment is glucocorticoids. Radiotherapy, immunosuppressants, and biologics can be considered for treatment-resistant, hormone-dependent, or intolerant patients. In this review, we aim to summarize and focus on new insights into OIP, including new diagnostic criteria, pathogenesis, and discoveries in new drugs and treatment strategies. In particular, we highlight the literature and find that T cell-mediated immune responses are closely related to the pathogenesis of OIP. Further exploration of the mechanism and signaling pathway of T cells in the immune process will help to identify their therapeutic targets and carry out targeted therapy to treat refractory OIP and reduce the side effects of traditional treatments.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Moekotte L, Kuiper JJW, Hiddingh S, Nguyen XTA, Boon CJF, van den Born LI, de Boer JH, van Genderen MM. CRB1-Associated Retinal Dystrophy Patients Have Expanded Lewis Glycoantigen-Positive T Cells. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37792335 PMCID: PMC10565706 DOI: 10.1167/iovs.64.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Eye inflammation may occur in patients with inherited retinal dystrophies (IRDs) and is seen frequently in IRDs associated with mutations in the CRB1 gene. The purpose of this study was to determine the types of inflammatory cells involved in IRDs, by deep profiling the composition of peripheral blood mononuclear cells of patients with a CRB1-associated IRD. Methods This study included 33 patients with an IRD with confirmed CRB1 mutations and 32 healthy controls. A 43-parameter flow cytometry analysis was performed on peripheral blood mononuclear cells isolated from venous blood. FlowSOM and manual Boolean combination gating were used to identify and quantify immune cell subsets. Results Comparing patients with controls revealed a significant increase in patients in the abundance of circulating CD4+ T cells and CD8+ T cells that express sialyl Lewis X antigen. Furthermore, we detected a decrease in plasmacytoid dendritic cells and an IgA+CD24+CD38+ transitional B-cell subset in patients with an IRD. Conclusions Patients with a CRB1-associated IRD show marked changes in blood leukocyte composition, affecting lymphocyte and dendritic cell populations. These results implicate inflammatory pathways in the disease manifestations of IRDs.
Collapse
Affiliation(s)
- Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Joke H. de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Bartiméus, Diagnostic Center for complex visual disorders, Zeist, the Netherlands
| |
Collapse
|
24
|
Seamons A, Staucean O, Snyder JM, Brabb T, Hsu CC, Paik J. ALDH1A Inhibition Suppresses Colitis and Alters α4β7 Integrin Expression on Activated T Cells in Mdr1a-/- Mice. Nutrients 2023; 15:3883. [PMID: 37764666 PMCID: PMC10536456 DOI: 10.3390/nu15183883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There are limited pharmacological treatment options for inflammatory bowel disease (IBD), and some of these options are expensive and administered by injection or infusion. Thus, new cheaper and easier (oral) treatment options are needed. ALDH1A enzymes produce retinoic acid that can affect intestinal diseases such as IBD by regulating immune cells in the gut. We previously demonstrated that an orally deliverable ALDH1A inhibitor, WIN 18,466, can suppress colitis in an acute mouse model of IBD. Here, we tested the efficacy of ALDH1A inhibition in a chronic mouse model of IBD. Mdr1a-/- mice were treated with a diet containing WIN 18,446 starting 1 week prior to inducing colitis by H. bilis inoculation. Treatment was continued until the study end point and colitis was monitored based on clinical symptoms and confirmed by histological analysis. Immune cell phenotypes in colon-draining lymph nodes (cMLN) were analyzed. WIN 18,446 treatment reduced clinical symptoms and improved histopathologic colitis scores. This was associated with decreased expression of the gut homing integrin, α4β7, on T cells in cMLN; increased expression of CD103, a protein associated with tissue-resident memory T cells; and changes in dendritic cells, plasmacytoid dendritic cells and B cells in inhibitor-treated mice. ALDH1A inhibition broadly influences immune cells during colitis and is a potential new target for IBD treatment. Future studies will be needed to determine the efficacy of ALDH1A inhibition on active colitis and to evaluate its relative efficacy in comparison to approved drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA; (A.S.); (O.S.); (J.M.S.); (T.B.); (C.C.H.)
| |
Collapse
|
25
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
26
|
Nguyen HO, Tiberio L, Facchinetti F, Ripari G, Violi V, Villetti G, Salvi V, Bosisio D. Modulation of Human Dendritic Cell Functions by Phosphodiesterase-4 Inhibitors: Potential Relevance for the Treatment of Respiratory Diseases. Pharmaceutics 2023; 15:2254. [PMID: 37765223 PMCID: PMC10535230 DOI: 10.3390/pharmaceutics15092254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Inhibitors of phosphodiesterase-4 (PDE4) are small-molecule drugs that, by increasing the intracellular levels of cAMP in immune cells, elicit a broad spectrum of anti-inflammatory effects. As such, PDE4 inhibitors are actively studied as therapeutic options in a variety of human diseases characterized by an underlying inflammatory pathogenesis. Dendritic cells (DCs) are checkpoints of the inflammatory and immune responses, being responsible for both activation and dampening depending on their activation status. This review shows evidence that PDE4 inhibitors modulate inflammatory DC activation by decreasing the secretion of inflammatory and Th1/Th17-polarizing cytokines, although preserving the expression of costimulatory molecules and the CD4+ T cell-activating potential. In addition, DCs activated in the presence of PDE4 inhibitors induce a preferential Th2 skewing of effector T cells, retain the secretion of Th2-attracting chemokines and increase the production of T cell regulatory mediators, such as IDO1, TSP-1, VEGF-A and Amphiregulin. Finally, PDE4 inhibitors selectively induce the expression of the surface molecule CD141/Thrombomodulin/BDCA-3. The result of such fine-tuning is immunomodulatory DCs that are distinct from those induced by classical anti-inflammatory drugs, such as corticosteroids. The possible implications for the treatment of respiratory disorders (such as COPD, asthma and COVID-19) by PDE4 inhibitors will be discussed.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, 33000 Bordeaux, France;
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy; (F.F.); (G.V.)
| | - Giulia Ripari
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Valentina Violi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy; (F.F.); (G.V.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| |
Collapse
|
27
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Sosa Cuevas E, Saas P, Aspord C. Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers (Basel) 2023; 15:cancers15082206. [PMID: 37190135 DOI: 10.3390/cancers15082206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Evasion from immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells shaping anti-tumor immune responses, but tumor cells exploit DC versatility to subvert their functions. Unveiling the puzzling role of DCs in the control of tumor development and mechanisms of tumor-induced DC hijacking is critical to optimize current therapies and to design future efficient immunotherapies for melanoma. Dendritic cells, crucially positioned at the center of anti-tumor immunity, represent attractive targets to develop new therapeutic approaches. Harnessing the potencies of each DC subset to trigger appropriate immune responses while avoiding their subversion is a challenging yet promising step to achieve tumor immune control. This review focuses on advances regarding the diversity of DC subsets, their pathophysiology and impact on clinical outcome in melanoma patients. We provide insights into the regulation mechanisms of DCs by the tumor, and overview DC-based therapeutic developments for melanoma. Further insights into DCs' diversity, features, networking, regulation and shaping by the tumor microenvironment will allow designing novel effective cancer therapies. The DCs deserve to be positioned in the current melanoma immunotherapeutic landscape. Recent discoveries strongly motivate exploitation of the exceptional potential of DCs to drive robust anti-tumor immunity, offering promising tracks for clinical successes.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Saas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Caroline Aspord
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
29
|
Liu Y, Suarez‐Arnedo A, Shetty S, Wu Y, Schneider M, Collier JH, Segura T. A Balance between Pro-Inflammatory and Pro-Reparative Macrophages is Observed in Regenerative D-MAPS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204882. [PMID: 36762570 PMCID: PMC10104668 DOI: 10.1002/advs.202204882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Microporous annealed particle scaffolds (MAPS) are a new class of granular materials generated through the interlinking of tunable microgels, which produce an interconnected network of void space. These microgel building blocks can be designed with different mechanical or bio-active parameters to facilitate cell infiltration and modulate host response. Previously, changing the chirality of the microgel crosslinking peptides from L- to D-amino acids led to significant tissue regeneration and functional recovery in D-MAPS-treated cutaneous wounds. In this study, the immunomodulatory effect of D-MAPS in a subcutaneous implantation model is investigated. How macrophages are the key antigen-presenting cells to uptake and present these biomaterials to the adaptive immune system is uncovered. A robust linker-specific IgG2b/IgG1 response to D-MAPS is detected as early as 14 days post-implantation. The fine balance between pro-regenerative and pro-inflammatory macrophage phenotypes is observed in D-MAPS as an indicator for regenerative scaffolds. The work offers valuable insights into the temporal cellular response to synthetic porous scaffolds and establishes a foundation for further optimization of immunomodulatory pro-regenerative outcomes.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
| | - Alejandra Suarez‐Arnedo
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
| | - Shamitha Shetty
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
| | - Yaoying Wu
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
| | | | - Joel H. Collier
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
| | - Tatiana Segura
- Department of Biomedical EngineeringDuke University101 Science Drive, Campus Box 90281DurhamNC27708‐0281USA
- Department of MedicineNeurologyDermatologyDuke UniversityBryan Research Building, Research DriveDurhamNC27710USA
| |
Collapse
|
30
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
31
|
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20:432-447. [PMID: 36949244 DOI: 10.1038/s41423-023-00990-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS Rozzano, Milano, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Soriani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Sozio
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
32
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
The Role of Toll-like Receptor 2 (TLR2) in the Development and Progression of Hashimoto’s Disease (HD): A Case Study on Female Patients in Poland. Int J Mol Sci 2023; 24:ijms24065344. [PMID: 36982416 PMCID: PMC10049147 DOI: 10.3390/ijms24065344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Chronic lymphocytic thyroiditis, commonly known as HD, is one of the most common thyroid disorders. Due to the diverse factors affecting the etiopathogenesis of this disease (hormonal disorders and genetic and environmental factors), as well as the direct involvement of the immune system, scientists are increasingly willing to undertake research aimed at explaining the impact of the loss of immune tolerance and reactivity of autoantigens on the development of the disease. One of the directions of research in recent years is the role of the innate immune response, particularly Toll-like receptors (TLRs), in the pathogenesis of HD. The purpose of this study was to determine the importance of Toll-like receptor 2 (TLR2) expression on selected populations of immune cells, namely, monocytes (MONs) and dendritic cells (DCs), in the course of HD. Particular attention was paid to the analysis of TLR2’s correlation with clinical parameters and the possibility its use as a potential biomarker molecule in the diagnostic process. Based on the obtained results, we found a statistically significant increase in the percentage of all analyzed populations of immune cells, i.e., mDC BDCA-1+CD19−, pDC BDCA-1+CD123, classical MONs CD14+CD16−, and non-classical MONs CD14+CD16+ showing on their surface TLR2 expression in patients diagnosed with HD compared to the healthy volunteers. Moreover, in the study group, we noted a more than 6-fold increase in the concentration of the soluble form of TLR2 in plasma compared to healthy patients. In addition, the correlation analysis showed significant positive correlations between the level of TLR2 expression on selected subpopulations of immune cells and biochemical indicators of thyroid function. Based on the obtained results, we can assume that TLR2 may be involved in the immunopathogenesis of HD.
Collapse
|
34
|
Specialized functions and sexual dimorphism explain the functional diversity of the myeloid populations during glioma progression. Cell Rep 2023; 42:111971. [PMID: 36640350 DOI: 10.1016/j.celrep.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macrophages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.
Collapse
|
35
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
36
|
Sakref C, Bendriss-Vermare N, Valladeau-Guilemond J. Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods Mol Biol 2023; 2618:17-35. [PMID: 36905506 DOI: 10.1007/978-1-0716-2938-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) play a key role in the antitumor immunity, as they are at the interface of innate and adaptive immunity. This important task can only be performed thanks to the broad range of mechanisms that DCs can perform to activate other immune cells. As DCs are well known for their outstanding capacity to prime and activate T cells through antigen presentation, DCs were intensively investigated during the past decades. Numerous studies have identified new DC subsets, leading to a large variety of subsets commonly separated into cDC1, cDC2, pDCs, mature DCs, Langerhans cells, monocyte-derived DCs, Axl-DCs, and several other subsets. Here, we review the specific phenotypes, functions, and localization within the tumor microenvironment (TME) of human DC subsets thanks to flow cytometry and immunofluorescence but also with the help of high-output technologies such as single-cell RNA sequencing and imaging mass cytometry (IMC).
Collapse
Affiliation(s)
- Candice Sakref
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
- LabEx DEVweCAN, Lyon, France.
| |
Collapse
|
37
|
Liu F, Liu C, Lee IXY, Lin MTY, Liu YC. Corneal dendritic cells in diabetes mellitus: A narrative review. Front Endocrinol (Lausanne) 2023; 14:1078660. [PMID: 36777336 PMCID: PMC9911453 DOI: 10.3389/fendo.2023.1078660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes mellitus is a global public health problem with both macrovascular and microvascular complications, such as diabetic corneal neuropathy (DCN). Using in-vivo confocal microscopy, corneal nerve changes in DCN patients can be examined. Additionally, changes in the morphology and quantity of corneal dendritic cells (DCs) in diabetic corneas have also been observed. DCs are bone marrow-derived antigen-presenting cells that serve both immunological and non-immunological roles in human corneas. However, the role and pathogenesis of corneal DC in diabetic corneas have not been well understood. In this article, we provide a comprehensive review of both animal and clinical studies that report changes in DCs, including the DC density, maturation stages, as well as relationships between the corneal DCs, corneal nerves, and corneal epithelium, in diabetic corneas. We have also discussed the associations between the changes in corneal DCs and various clinical or imaging parameters, including age, corneal nerve status, and blood metabolic parameters. Such information would provide valuable insight into the development of diagnostic, preventive, and therapeutic strategies for DM-associated ocular surface complications.
Collapse
Affiliation(s)
- Fengyi Liu
- University of Cambridge, Girton College, Cambridgeshire, United Kingdom
| | - Chang Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Isabelle Xin Yu Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Molly Tzu Yu Lin
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Yu-Chi Liu,
| |
Collapse
|
38
|
Wang SSY, Chng WJ, Liu H, de Mel S. Tumor-Associated Macrophages and Related Myelomonocytic Cells in the Tumor Microenvironment of Multiple Myeloma. Cancers (Basel) 2022; 14:5654. [PMID: 36428745 PMCID: PMC9688291 DOI: 10.3390/cancers14225654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is the second-most common hematologic malignancy and remains incurable despite potent plasma cell directed therapeutics. The tumor microenvironment (TME) is a key player in the pathogenesis and progression of MM and is an active focus of research with a view to targeting immune dysregulation. Tumor-associated macrophages (TAM), myeloid derived suppressor cells (MDSC), and dendritic cells (DC) are known to drive progression and treatment resistance in many cancers. They have also been shown to promote MM progression and immune suppression in vitro, and there is growing evidence of their impact on clinical outcomes. The heterogeneity and functional characteristics of myelomonocytic cells in MM are being unraveled through high-dimensional immune profiling techniques. We are also beginning to understand how they may affect and be modulated by current and future MM therapeutics. In this review, we provide an overview of the biology and clinical relevance of TAMs, MDSCs, and DCs in the MM TME. We also highlight key areas to be addressed in future research as well as our perspectives on how the myelomonocytic compartment of the TME may influence therapeutic strategies of the future.
Collapse
Affiliation(s)
- Samuel S. Y. Wang
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
- Cancer Science Institute, National University of Singapore, 14 Medical Dr, #12-01 Centre for Translational Medicine, Singapore 117599, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| |
Collapse
|
39
|
Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 2022; 10:1044729. [PMID: 36467420 PMCID: PMC9712790 DOI: 10.3389/fcell.2022.1044729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses via activation of T cells, and inducing tolerance under physiological conditions. While it is known that macrophages and dendritic cells respond to biochemical cues in the microenvironment, the role of extracellular mechanical stimuli is becoming increasingly apparent. Immune cell mechanotransduction is an emerging field, where accumulating evidence suggests a role for extracellular physical cues coming from tissue stiffness in promoting immune cell recruitment, activation, metabolism and inflammatory function. Additionally, many diseases such as pulmonary fibrosis, cardiovascular disease, cancer, and cirrhosis are associated with changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, topography, and mechanical forces on macrophage and dendritic cell behavior under steady-state and pathophysiological conditions. In addition, we will also provide insight on molecular mediators and signaling pathways important in macrophage and dendritic cell mechanotransduction.
Collapse
Affiliation(s)
- Megan Lee
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huixun Du
- Buck Institute for Research on Aging, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Xavier Clemente-Casares
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
41
|
Jha A, Ahad A, Mishra GP, Sen K, Smita S, Minz AP, Biswas VK, Tripathy A, Senapati S, Gupta B, Acha-Orbea H, Raghav SK. SMRT and NCoR1 fine-tune inflammatory versus tolerogenic balance in dendritic cells by differentially regulating STAT3 signaling. Front Immunol 2022; 13:910705. [PMID: 36238311 PMCID: PMC9552960 DOI: 10.3389/fimmu.2022.910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.
Collapse
Affiliation(s)
- Atimukta Jha
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Haryana, India
| | - Shuchi Smita
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Aliva Prity Minz
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Archana Tripathy
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shantibhushan Senapati
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry Center of Immunity and Infection Lausanne (CIIL), University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
- *Correspondence: Sunil Kumar Raghav, ;
| |
Collapse
|
42
|
The Role of T Cells in Systemic Sclerosis: An Update. IMMUNO 2022. [DOI: 10.3390/immuno2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by microvasculopathy, autoantibodies (autoAbs), and fibrosis. The pathogenesis of the disease is incompletely understood. Microvasculopathy and autoAbs appear very early in the disease process. AutoAbs, such as those directed against DNA topoisomerase I (Topo I), are disease specific and associated with disease manifestations, and indicate activation of the adaptive immune system. B cells are involved in fibrosis in SSc. T cells are also involved in disease pathogenesis. T cells show signs of antigen-induced activation; T cells of TH2 type are increased and produce profibrotic cytokines interleukin (IL)-4, IL-13, and IL-31; CD4+ cytotoxic T lymphocytes are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis; circulating T follicular helper (TFH) cells are increased in SSc produce IL-21 and promote plasmablast antibody production. On the other hand, regulatory T cells are impaired in SSc. These findings provide strong circumstantial evidence for T cell implication in SSc pathogenesis and encourage new T cell-directed therapeutic strategies for the disease.
Collapse
|
43
|
Saevarsdottir S, Stefansdottir L, Sulem P, Thorleifsson G, Ferkingstad E, Rutsdottir G, Glintborg B, Westerlind H, Grondal G, Loft IC, Sorensen SB, Lie BA, Brink M, Ärlestig L, Arnthorsson AO, Baecklund E, Banasik K, Bank S, Bjorkman LI, Ellingsen T, Erikstrup C, Frei O, Gjertsson I, Gudbjartsson DF, Gudjonsson SA, Halldorsson GH, Hendricks O, Hillert J, Hogdall E, Jacobsen S, Jensen DV, Jonsson H, Kastbom A, Kockum I, Kristensen S, Kristjansdottir H, Larsen MH, Linauskas A, Hauge EM, Loft AG, Ludviksson BR, Lund SH, Markusson T, Masson G, Melsted P, Moore KHS, Munk H, Nielsen KR, Norddahl GL, Oddsson A, Olafsdottir TA, Olason PI, Olsson T, Ostrowski SR, Hørslev-Petersen K, Rognvaldsson S, Sanner H, Silberberg GN, Stefansson H, Sørensen E, Sørensen IJ, Turesson C, Bergman T, Alfredsson L, Kvien TK, Brunak S, Steinsson K, Andersen V, Andreassen OA, Rantapää-Dahlqvist S, Hetland ML, Klareskog L, Askling J, Padyukov L, Pedersen OB, Thorsteinsdottir U, Jonsdottir I, Stefansson K. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann Rheum Dis 2022; 81:1085-1095. [PMID: 35470158 PMCID: PMC9279832 DOI: 10.1136/annrheumdis-2021-221754] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To find causal genes for rheumatoid arthritis (RA) and its seropositive (RF and/or ACPA positive) and seronegative subsets. METHODS We performed a genome-wide association study (GWAS) of 31 313 RA cases (68% seropositive) and ~1 million controls from Northwestern Europe. We searched for causal genes outside the HLA-locus through effect on coding, mRNA expression in several tissues and/or levels of plasma proteins (SomaScan) and did network analysis (Qiagen). RESULTS We found 25 sequence variants for RA overall, 33 for seropositive and 2 for seronegative RA, altogether 37 sequence variants at 34 non-HLA loci, of which 15 are novel. Genomic, transcriptomic and proteomic analysis of these yielded 25 causal genes in seropositive RA and additional two overall. Most encode proteins in the network of interferon-alpha/beta and IL-12/23 that signal through the JAK/STAT-pathway. Highlighting those with largest effect on seropositive RA, a rare missense variant in STAT4 (rs140675301-A) that is independent of reported non-coding STAT4-variants, increases the risk of seropositive RA 2.27-fold (p=2.1×10-9), more than the rs2476601-A missense variant in PTPN22 (OR=1.59, p=1.3×10-160). STAT4 rs140675301-A replaces hydrophilic glutamic acid with hydrophobic valine (Glu128Val) in a conserved, surface-exposed loop. A stop-mutation (rs76428106-C) in FLT3 increases seropositive RA risk (OR=1.35, p=6.6×10-11). Independent missense variants in TYK2 (rs34536443-C, rs12720356-C, rs35018800-A, latter two novel) associate with decreased risk of seropositive RA (ORs=0.63-0.87, p=10-9-10-27) and decreased plasma levels of interferon-alpha/beta receptor 1 that signals through TYK2/JAK1/STAT4. CONCLUSION Sequence variants pointing to causal genes in the JAK/STAT pathway have largest effect on seropositive RA, while associations with seronegative RA remain scarce.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland .,Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Bente Glintborg
- The DANBIO registry, the Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helga Westerlind
- Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gerdur Grondal
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.,Center for Rheumatology Research, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Isabella C Loft
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Signe Bek Sorensen
- Molecular Diagnostics and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Benedicte A Lie
- Department of Medical Genetics, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway
| | - Mikael Brink
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - Lisbeth Ärlestig
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | | | - Eva Baecklund
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Bank
- Molecular Diagnostics and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Lena I Bjorkman
- Department of Rheumatology and Inflammation research, University of Gothenburg, Gothenburg, Sweden
| | - Torkell Ellingsen
- OPEN Explorative Network, University of Southern Denmark, Odense, Denmark.,Rheumatology Research Unit, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Gothenburg University, Gothenburg, Sweden
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Oliver Hendricks
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jan Hillert
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Estrid Hogdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jacobsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Dorte Vendelbo Jensen
- Department of Rheumatology, Center for Rheumatology and Spine Diseases, Gentofte and Herlev Hospital, Rønne, Denmark
| | - Helgi Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Salome Kristensen
- Department of Rheumatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Helga Kristjansdottir
- Center for Rheumatology Research, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Margit H Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asta Linauskas
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Rheumatology, North Denmark Regional Hospital, Hjørring, Denmark
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne G Loft
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Thorsteinn Markusson
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Heidi Munk
- OPEN Explorative Network, University of Southern Denmark, Odense, Denmark.,Rheumatology Research Unit, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Hørslev-Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
| | | | - Helga Sanner
- Section of Rheumatology, Oslo University Hospital, Oslo, Norway.,Oslo New University College, Oslo, Norway
| | - Gilad N Silberberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Inge J Sørensen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Carl Turesson
- Rheumatology, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Thomas Bergman
- Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tore K Kvien
- University of Oslo, Oslo, Norway.,Diakonhjemmet Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristján Steinsson
- Center for Rheumatology Research, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Denmark, Aabenraa, Denmark.,OPEN Explorative Network, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Merete Lund Hetland
- The DANBIO registry, the Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Askling
- Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Bv Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | |
Collapse
|
44
|
Soekojo CY, Chng WJ. The Evolution Of Immune Dysfunction In Multiple Myeloma. Eur J Haematol 2022; 109:415-424. [PMID: 35880386 DOI: 10.1111/ejh.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This review discusses the role of immune dysfunction at the different stages of MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex disease and immune dysfunction has been known to play an important role in disease pathogenesis, progression, and drug resistance. MM is known to be preceded by asymptomatic precursor states and progression from the precursor states to MM is likely related to a progressive impairment of the immune system. CONCLUSIONS An understanding of the role of the immune system in the progression of MM is important to guide the development of immunotherapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
45
|
Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. Int J Mol Sci 2022; 23:ijms23148032. [PMID: 35887379 PMCID: PMC9323853 DOI: 10.3390/ijms23148032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells derived from the bone marrow that play an important role in the association between the innate and adaptive immune responses. The onset and development of chronic rhinosinusitis (CRS) involve a serious imbalance in immune regulation and mechanical dysfunction caused by an abnormal remodeling process. Recent studies have shown that an increase in DCs in CRS and their function of shaping the nasal mucosal immune response may play an important role in the pathogenesis of CRS. In this review, we discuss DC subsets in mice and humans, as well as the function of DCs in the nasal sinus mucosa. In addition, the mechanism by which DCs can be used as targets for therapeutic intervention for CRS and potential future research directions are also discussed.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Munsoo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
46
|
Connors J, Taramangalam B, Cusimano G, Bell MR, Matt SM, Runner K, Gaskill PJ, DeFilippis V, Nikolich-Žugich J, Kutzler MA, Haddad EK. Aging alters antiviral signaling pathways resulting in functional impairment in innate immunity in response to pattern recognition receptor agonists. GeroScience 2022; 44:2555-2572. [PMID: 35849213 PMCID: PMC9289086 DOI: 10.1007/s11357-022-00612-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/06/2023] Open
Abstract
The progressive impairment of immunity to pathogens and vaccines with aging is a significant public health problem as the world population shifts to an increased percentage of older adults (> 65). We have previously demonstrated that cells obtained from older volunteers have delayed and defective induction of type I interferons and T cell and B cell helper cytokines in response to TLR ligands when compared to those from adult subjects. However, the underlying intracellular mechanisms are not well described. Herein, we studied two critical pathways important in the production of type I interferon (IFN), the interferon response factor 7 (pIRF7), and TANK-binding kinase (pTBK-1). We show a decrease in pIRF7 and pTBK-1 in cross-priming dendritic cells (cDC1s), CD4+ T cell priming DCs (cDC2s), and CD14dimCD16+ vascular patrolling monocytes from older adults (n = 11) following stimulation with pathway-specific agonists in comparison with young individuals (n = 11). The decrease in these key antiviral pathway proteins correlates with decreased phagocytosis, suggesting impaired function in Overall, our findings describe molecular mechanisms which explain the innate functional impairment in older adults and thus could inform us of novel approaches to restore these defects.
Collapse
Affiliation(s)
- Jennifer Connors
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Bhavani Taramangalam
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Gina Cusimano
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Matthew R. Bell
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Stephanie M. Matt
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Kaitlyn Runner
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Peter J. Gaskill
- grid.166341.70000 0001 2181 3113Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Victor DeFilippis
- grid.5288.70000 0000 9758 5690Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR USA
| | - Janko Nikolich-Žugich
- grid.134563.60000 0001 2168 186XDepartment of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XArizona Center On Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ USA
| | - Michele A. Kutzler
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Elias K. Haddad
- grid.166341.70000 0001 2181 3113Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, PA USA ,grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| |
Collapse
|
47
|
Sosa Cuevas E, Bendriss-Vermare N, Mouret S, De Fraipont F, Charles J, Valladeau-Guilemond J, Chaperot L, Aspord C. Diversification of circulating and tumor-infiltrating plasmacytoid DCs towards the P3 (CD80 + PDL1 -)-pDC subset negatively correlated with clinical outcomes in melanoma patients. Clin Transl Immunology 2022; 11:e1382. [PMID: 35517992 PMCID: PMC9063720 DOI: 10.1002/cti2.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Nathalie Bendriss-Vermare
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Jenny Valladeau-Guilemond
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
48
|
Dill-McFarland KA, Schwartz JT, Zhao H, Shao B, Fulkerson PC, Altman MC, Gill MA. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol 2022; 150:666-675. [DOI: 10.1016/j.jaci.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
49
|
Swartz AM, Nair SK. The In Vitro Differentiation of Human CD141+CLEC9A+ Dendritic Cells from Mobilized Peripheral Blood CD34+ Hematopoietic Stem Cells. Curr Protoc 2022; 2:e410. [PMID: 35435334 DOI: 10.1002/cpz1.410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As shown in various preclinical studies, conventional type-1 dendritic cells, or cDC1s, play a critical role in the immunological rejection of tumors and in the defense against pathogens. This indispensability stems from their potent capacity to activate cytotoxic T cells, especially via the cross-presentation of exogenous antigens. For this reason, cDC1s have become an attractive target for immunotherapy. Here we report a simplified method for generating large numbers of cDC1-like cells in vitro from mobilized human peripheral blood CD34+ hematopoietic stem cells using FMS-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony-stimulating factor (GM-CSF). An important aspect of this Protocol is the growth of cells on a non-tissue culture-treated surface rather than on a tissue culture-treated surface since the latter suppresses cDC1-marker expression. The resulting CD11c+ DCs express high levels of cDC1-specific markers such as CD141, CLEC9A, TLR3, and several DC maturation markers. Compared to alternative differentiation methods, this method generates large numbers of cDC1-like cells without the need for immortalized feeder cells and should prove useful for studying cDC1 immunobiology and clinical applications of this DC subset. © 2022 Wiley Periodicals LLC. Basic Protocol: Generation of human CD141+CLEC9A+ dendritic cells from mobilized peripheral blood CD34+ hematopoietic stem cells Support Protocol: Flow cytometric immunophenotyping of CD141+ dendritic cells.
Collapse
Affiliation(s)
- Adam M Swartz
- Department of Surgery, Duke University, Durham, North Carolina
| | - Smita K Nair
- Department of Surgery, Department of Neurosurgery, Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
50
|
Stutte S, Ishikawa-Ankerhold H, Lynch L, Eickhoff S, Nasiscionyte S, Guo C, van den Heuvel D, Setzensack D, Colonna M, Maier-Begandt D, Weckbach L, Brocker T, Schulz C, Walzog B, von Andrian U. High-Fat Diet Rapidly Modifies Trafficking, Phenotype, and Function of Plasmacytoid Dendritic Cells in Adipose Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1445-1455. [PMID: 35181637 PMCID: PMC8919350 DOI: 10.4049/jimmunol.2100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) display an increased abundance in visceral adipose tissue (VAT) of humans with obesity. In the current study, we set out to decipher the molecular mechanisms of their recruitment to VAT and the functional relevance of this process. We observed increased pDC numbers in murine blood, liver, spleen, and VAT after feeding a high-fat diet (HFD) for 3 wk when compared with a standard diet. pDCs were enriched in fat-associated lymphoid clusters representing highly specific lymphoid regions within VAT. HFD led to an enlargement of fat-associated lymphoid clusters with an increased density and migratory speed of pDCs as shown by intravital multiphoton microscopy. For their recruitment into VAT, pDCs employed P-selectin with E-selectin and L-selectin being only critical in response to HFD, indicating that the molecular cues underlying pDC trafficking were dependent on the nutritional state. Subsequent recruitment steps required α4β1 and α4β7 integrins and engagement of CCR7. Application of fingolimod (FTY720) abrogated egress of pDCs from VAT, indicating the involvement of sphingosine-1-phosphate in this process. Furthermore, HFD altered pDC functions by promoting their activation and type 1 IFN expression. Blocking pDC infiltration into VAT prevented weight gain and improved glucose tolerance during HFD. In summary, a HFD fundamentally alters pDC biology by promoting their trafficking, retention, and activation in VAT, which in turn seems to regulate metabolism.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Hellen Ishikawa-Ankerhold
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lydia Lynch
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Simona Nasiscionyte
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chenglong Guo
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominic van den Heuvel
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Setzensack
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St. Louis, MO; and
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ludwig Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| |
Collapse
|