1
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
2
|
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol 2024; 96:e29887. [PMID: 39189651 DOI: 10.1002/jmv.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institute of Research on Cancerology of Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| | | |
Collapse
|
3
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024:10.1007/s12013-024-01424-4. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
4
|
Dos Ramos Almeida CJL, Veras FP, Paiva IM, Schneider AH, da Costa Silva J, Gomes GF, Costa VF, Silva BMS, Caetite DB, Silva CMS, Salina ACG, Martins R, Bonilha CS, Cunha LD, Jamur MC, da Silva LLP, Arruda E, Zamboni DS, Louzada-Junior P, de Oliveira RDR, Alves-Filho JC, Cunha TM, de Queiroz Cunha F. Neutrophil Virucidal Activity Against SARS-CoV-2 Is Mediated by Neutrophil Extracellular Traps. J Infect Dis 2024; 229:1352-1365. [PMID: 38015657 DOI: 10.1093/infdis/jiad526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Inflammation in the lungs and other vital organs in COVID-19 is characterized by the presence of neutrophils and a high concentration of neutrophil extracellular traps (NETs), which seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells and what the consequence of NETs degradation would be in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS Here, by immunofluorescence microscopy, we observed that viral particles colocalize with NETs in neutrophils isolated from patients with COVID-19 or healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 hours of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice, we observed a higher viral load in animals treated with DNase I. However, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSIONS Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.
Collapse
Affiliation(s)
| | - Flávio Protásio Veras
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Ayda Henriques Schneider
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Juliana da Costa Silva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Giovanni Freitas Gomes
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Victor Ferreira Costa
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Diego Brito Caetite
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | | | - Ronaldo Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Caio Santos Bonilha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Maria Célia Jamur
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
| | - Luís Lamberti Pinto da Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Eurico Arruda
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Paulo Louzada-Junior
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Fernando de Queiroz Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| |
Collapse
|
5
|
Marques RE, Shimizu JF, Nogueira ML, Vasilakis N. Current challenges in the discovery of treatments against Mayaro fever. Expert Opin Ther Targets 2024; 28:345-356. [PMID: 38714500 PMCID: PMC11189740 DOI: 10.1080/14728222.2024.2351504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São Jose do Rio Preto - FAMERP, São Jose do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nikos Vasilakis
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
6
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
7
|
Santos FM, Costa VRDM, de Araújo S, de Sousa CDF, Moreira TP, Gonçalves MR, dos Santos ACPM, Ferreira HAS, Costa PAC, Barrioni BR, Bargi-Souza P, Pereira MDM, Nogueira ML, Souza DDG, Guimarães PPG, Teixeira MM, Queiroz-Junior CM, Costa VV. Essential role of the CCL2-CCR2 axis in Mayaro virus-induced disease. J Virol 2024; 98:e0110223. [PMID: 38169294 PMCID: PMC10805060 DOI: 10.1128/jvi.01102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.
Collapse
Affiliation(s)
- Franciele Martins Santos
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victor Rodrigues de Melo Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone de Araújo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla Daiane Ferreira de Sousa
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Rodrigues Gonçalves
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Clara Paiva Menezes dos Santos
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Lacerda Nogueira
- Virology Research Laboratory, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Danielle da Glória Souza
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Liu X, Mao X, Liu Y, Chen W, Li W, Lin N, Zhang Y. Preclinical efficacy of TZG in myofascial pain syndrome by impairing PI3K-RAC2 signaling-mediated neutrophil extracellular traps. iScience 2023; 26:108074. [PMID: 37860777 PMCID: PMC10583084 DOI: 10.1016/j.isci.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Tianhe Zhuifeng Gao (TZG) shows a satisfying therapeutic efficacy in treating arthromyodynia, which shares similar etiology to myofascial pain syndrome (MPS). We herein aim to explore whether TZG could be a potential prescription for MPS therapy. An MPS rat model was successfully established presenting with reduced pain thresholds, abnormal local switch responses, etc., which was effectively reversed by TZG treatment externally. A transcriptome sequencing based on the active MTrPs samples of rats, combined with network analysis revealed that TZG might ameliorate the progression of MPS by impairing neutrophil extracellular traps (NETs) release through inhibiting PI3K-RAC2 signaling to reduce NADPH oxidase-originated ROS. Experimentally, the expression levels of inducers, biomarkers of NETs formation and vessel injury, and p-PI3K, p-P47, and RAC2 proteins were all significantly up-regulated in affected tissues, which were markedly reversed by TZG. Our results not only shed light into broadening the clinical indications of TZG, but benefit MPS therapy.
Collapse
Affiliation(s)
- Xueting Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yudong Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenjia Chen
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weijie Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
10
|
Perdomo J, Leung HHL. Immune Thrombosis: Exploring the Significance of Immune Complexes and NETosis. BIOLOGY 2023; 12:1332. [PMID: 37887042 PMCID: PMC10604267 DOI: 10.3390/biology12101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Neutrophil extracellular traps (NETs) are major contributors to inflammation and autoimmunity, playing a key role in the development of thrombotic disorders. NETs, composed of DNA, histones, and numerous other proteins serve as scaffolds for thrombus formation and promote platelet activation, coagulation, and endothelial dysfunction. Accumulating evidence indicates that NETs mediate thrombosis in autoimmune diseases, viral and bacterial infections, cancer, and cardiovascular disease. This article reviews the role and mechanisms of immune complexes in NETs formation and their contribution to the generation of a prothrombotic state. Immune complexes are formed by interactions between antigens and antibodies and can induce NETosis by the direct activation of neutrophils via Fc receptors, via platelet activation, and through endothelial inflammation. We discuss the mechanisms by which NETs induced by immune complexes contribute to immune thrombotic processes and consider the potential development of therapeutic strategies. Targeting immune complexes and NETosis hold promise for mitigating thrombotic events and reducing the burden of immune thrombosis.
Collapse
Affiliation(s)
- José Perdomo
- Haematology Research Group, Faculty Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Halina H. L. Leung
- Haematology Research Unit, St George & Sutherland Clinical Campuses, Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Kogarah, NSW 2217, Australia;
| |
Collapse
|
11
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
12
|
Bonilha CS, Veras FP, de Queiroz Cunha F. NET-targeted therapy: effects, limitations, and potential strategies to enhance treatment efficacy. Trends Pharmacol Sci 2023; 44:622-634. [PMID: 37468402 DOI: 10.1016/j.tips.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils during inflammatory responses. Due to their unique potential for causing tissue damage and modulating immune responses, there is increasing interest in studying these structures as potential targets for the treatment of infectious diseases, autoimmune diseases, and cancer. However, therapeutic targeting of NETs might trigger deleterious effects that may limit treatment efficacy. NET disruption may increase the microbial load in infection; in autoimmunity, NET targeting might impair peripheral tolerance, but it might reduce adaptive immune responses in cancer. In this review, we explore the therapeutic and deleterious effects of NET-targeted therapy while shedding light on novel strategies to overcome treatment-related limitations and enhance treatment efficacy.
Collapse
Affiliation(s)
- Caio Santos Bonilha
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | - Flavio Protasio Veras
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | |
Collapse
|
13
|
de Siqueira Santos R, Rochael NC, Mattos TRF, Fallett E Silva MF, Linhares-Lacerda L, de Oliveira LT, Cunha MS, Mohana-Borges R, Gomes TA, Barbosa-Silva MC, Maron-Gutierrez T, Foguel D, Saraiva EM. Peripheral nervous system is injured by neutrophil extracellular traps (NETs) elicited by nonstructural (NS) protein-1 from Zika virus. FASEB J 2023; 37:e23126. [PMID: 37594040 DOI: 10.1096/fj.202201904r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
The involvement of innate immune mediators to the Zika virus (ZIKV)-induced neuroinflammation is not yet well known. Here, we investigated whether neutrophil extracellular traps (NETs), which are scaffolds of DNA associated with proteins, have the potential to injure peripheral nervous. The tissue lesions were evaluated after adding NETs to dorsal root ganglia (DRG) explants and to DRG constituent cells or injecting them into mouse sciatic nerves. Identification of NET harmful components was achieved by pharmacological inhibition of NET constituents. We found that ZIKV inoculation into sciatic nerves recruited neutrophils and elicited the production of the cytokines CXCL1 and IL-1β, classical NET inducers, but did not trigger NET formation. ZIKV blocked PMA- and CXCL8-induced NET release, but, in contrast, the ZIKV nonstructural protein (NS)-1 induced NET formation. NET-enriched supernatants were toxic to DRG explants, decreasing neurite area, length, and arborization. NETs were toxic to DRG constituent cells and affected myelinating cells. Myeloperoxidase (MPO) and histones were identified as the harmful component of NETs. NS1 injection into mouse sciatic nerves recruited neutrophils and triggered NET release and caspase-3 activation, events that were also elicited by the injection of purified MPO. In summary, we found that ZIKV NS1 protein induces NET formation, which causes nervous tissue damages. Our findings reveal new mechanisms leading to neuroinflammation by ZIKV.
Collapse
Affiliation(s)
- Raphael de Siqueira Santos
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Natalia Cadaxo Rochael
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thayana Roberta F Mattos
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Matheus Felipe Fallett E Silva
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandra Linhares-Lacerda
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandro Teixeira de Oliveira
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcela Sabino Cunha
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tiago Araujo Gomes
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Maria Carolina Barbosa-Silva
- Laboratório de Imunofarmacologia - Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratório de Imunofarmacologia - Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Debora Foguel
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
15
|
Quiroga J, Alarcón P, Ramírez MF, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-induced ETosis in cattle polymorphonuclear leucocytes is dependent on the release of mitochondrial reactive oxygen species and the PI3K/Akt/HIF-1 and GSK-3β pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104728. [PMID: 37164278 DOI: 10.1016/j.dci.2023.104728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs). In the present study, the role of HIF-1 in ET formation induced by d-lactate was assessed. HIF-1α stabilization in PMNs was controlled by mitochondrial reactive oxygen species (mtROS) release. Furthermore, inhibition of mitochondrial complex I and scavenging of mtROS decreased d-lactate-triggered ETosis. d-lactate-enhanced HIF-1α accumulation was dependent on the PI3K/Akt pathway but independent of GSK-3β activity. Pharmacological blockade of the PI3K/Akt/HIF-1 and GSK-3β axes inhibited d-lactate-triggered ETosis and downregulated PDK1 and LDHA expression. However, only GSK-3β inhibition decreased the expression of glycogen metabolism enzymes and prevented the decline in glycogen stores induced by d-lactate exposure. The results of this study suggest that mtROS, PI3K/Akt/HIF-1 and GSK-3β axes regulate carbohydrate metabolism adaptations that support d-lactate-induced ET formation in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Fernanda Ramírez
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
16
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
17
|
de Vries F, Huckriede J, Wichapong K, Reutelingsperger C, Nicolaes GAF. The role of extracellular histones in COVID-19. J Intern Med 2023; 293:275-292. [PMID: 36382685 PMCID: PMC10108027 DOI: 10.1111/joim.13585] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had spread from China and, within 2 months, became a global pandemic. The infection from this disease can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage, and thrombosis. One of the host defense systems against coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies on this disease have revealed the presence of elevated levels of NET components, such as cell-free DNA, extracellular histones, neutrophil elastase, and myeloperoxidase, in plasma, serum, and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant as they represent promising biomarkers and drug targets, given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively underexplored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis, or NET formation and are then regarded as cytotoxic damage-associated molecular patterns that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby, this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 6 million deaths worldwide. COVID-19 is a respiratory disease characterized by pulmonary dysfunction leading to acute respiratory distress syndrome (ARDs), as well as disseminated coagulation, and multi-organ dysfunction. Neutrophils and neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of COVID-19. In this review, we highlight key gaps in knowledge, discuss the heterogeneity of neutrophils during the evolution of the disease, how they can contribute to COVID-19 pathogenesis, and potential therapeutic strategies that target neutrophil-mediated inflammatory responses.
Collapse
Affiliation(s)
- Fernanda V. S. Castanheira
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Microbiology, Immunology and InfectiousUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul Kubes
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Microbiology, Immunology and InfectiousUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
19
|
Duda E. How much (evil) intelligence can be encoded by 30 kb? Biol Futur 2023:10.1007/s42977-023-00153-8. [PMID: 36752964 PMCID: PMC9907195 DOI: 10.1007/s42977-023-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Genomes of most RNA viruses are rarely larger than the size of an average human gene (10-15 kb) and still code for a number of biologically active polypeptides that modify the immune system and metabolism of the host organism in an amazingly complex way. Prolonged coevolution developed tricks by which viruses can dodge many protective mechanisms of the host and lead to the formation of molecular mimicry patterns. Some viruses inhibit the interferon response, interfere with the membrane destroying effects of the activated complement cascade. They can replicate in cellular compartments formed by inner membranes of the cell hiding their characteristic features from diverse pattern recognition receptors. In many cases-and in this respect, the new coronavirus is a champion-they can exploit our own defensive mechanisms to cause serious harm, severe symptoms and frequently deadly disease.
Collapse
Affiliation(s)
- Ernő Duda
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| |
Collapse
|
20
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model. Respir Res 2023; 24:66. [PMID: 36864506 PMCID: PMC9978286 DOI: 10.1186/s12931-023-02336-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.
Collapse
|
22
|
Gardiman E, Bianchetto-Aguilera F, Gasperini S, Tiberio L, Scandola M, Lotti V, Gibellini D, Salvi V, Bosisio D, Cassatella MA, Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells 2022; 11:3785. [PMID: 36497044 PMCID: PMC9738506 DOI: 10.3390/cells11233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Elisa Gardiman
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Matteo Scandola
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
23
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-triggered extracellular trap formation in cattle polymorphonuclear leucocytes is glucose metabolism dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104492. [PMID: 35830898 DOI: 10.1016/j.dci.2022.104492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.
Collapse
Affiliation(s)
- John Quiroga
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
24
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
25
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
26
|
de Araújo S, de Melo Costa VR, Santos FM, de Sousa CDF, Moreira TP, Gonçalves MR, Félix FB, Queiroz-Junior CM, Campolina-Silva GH, Nogueira ML, Sugimoto MA, Bonilha CS, Perretti M, Souza DG, Costa VV, Teixeira MM. Annexin A1-FPR2/ALX Signaling Axis Regulates Acute Inflammation during Chikungunya Virus Infection. Cells 2022; 11:cells11172717. [PMID: 36078125 PMCID: PMC9454528 DOI: 10.3390/cells11172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2–26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.
Collapse
Affiliation(s)
- Simone de Araújo
- Graduate Program in Biological Sciences Physiology and Pharmacology, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Victor R. de Melo Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciele M. Santos
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carla D. Ferreira de Sousa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thaiane P. Moreira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Matheus R. Gonçalves
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciel B. Félix
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Celso M. Queiroz-Junior
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriel H. Campolina-Silva
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Obstetrics, Gynecology and Reproduction, CHU de Quebec Research Center (CHUL), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Maurício Lacerda Nogueira
- Department of Dermatological, Infections, and Parasitic Diseases, School of Medicine (FAMERP), São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Michelle A. Sugimoto
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Caio S. Bonilha
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research on Inflammatory Diseases, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mauro Perretti
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Danielle G. Souza
- Graduate Program in Microbiology, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian V. Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Graduate Program in Cell Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| | - Mauro M. Teixeira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| |
Collapse
|
27
|
Ma L, Willey J. The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. THROMBOSIS UPDATE 2022; 8:100117. [PMID: 38620713 PMCID: PMC9270234 DOI: 10.1016/j.tru.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can cause life-threatening pathology characterized by a dysregulated immune response and coagulopathy. While respiratory failure induced by inflammation is the most common cause of death, micro-and macrovascular thrombosis leading to multiple organ failure are also causes of mortality. Dysregulation of systemic inflammation observed in severe COVID-19 patients is manifested by cytokine release syndrome (CRS) - the aberrant release of high levels of proinflammatory cytokines, such as IL-6, IL-1, TNFα, MP-1, as well as complement. CRS is often accompanied by activation of endothelial cells and platelets, coupled with perturbation of the balance between the pro-and antithrombotic mechanisms, resulting in thrombosis. Inflammation and thrombosis form a vicious circle, contributing to morbidity and mortality. Treatment of hyperinflammation has been shown to decrease thrombosis, while anti-thrombotic treatment also downregulates cytokine release. This review highlights the relationship between COVID-19-mediated systemic inflammation and thrombosis, the molecular pathways involved, the therapies targeting these processes, and the challenges currently encountered.
Collapse
Affiliation(s)
- Li Ma
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Joanne Willey
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
28
|
Casting a wide NET: an update on uncontrolled NETosis in response to COVID-19 infection. Clin Sci (Lond) 2022; 136:1047-1052. [PMID: 35791847 PMCID: PMC9264284 DOI: 10.1042/cs20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Abstract
Dysregulation of neutrophil extracellular trap (NET) formation has been shown to mediate disease pathology in multiple viral infections, including SARS-CoV-2. At the beginning of COVID-19 pandemic, Thierry and Roch wrote a perspective on the mechanisms by which severe SARS-CoV-2 infection may lead to uncontrolled NET formation that leads to acute respiratory distress syndrome (ARDS), systemic vascular permeability, and end organ damage. In this commentary, the progress that has been made in regards to the ideas postulated by the perspective will be discussed, with a focus on the therapeutics that target NET formation.
Collapse
|
29
|
McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, O'Donnell JS, Ní Cheallaigh C, Hurley T, Stevenson NJ, Little MA, Molloy EJ. Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol 2022; 13:864387. [PMID: 35720378 PMCID: PMC9199383 DOI: 10.3389/fimmu.2022.864387] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Unusually for a viral infection, the immunological phenotype of severe COVID-19 is characterised by a depleted lymphocyte and elevated neutrophil count, with the neutrophil-to-lymphocyte ratio correlating with disease severity. Neutrophils are the most abundant immune cell in the bloodstream and comprise different subpopulations with pleiotropic actions that are vital for host immunity. Unique neutrophil subpopulations vary in their capacity to mount antimicrobial responses, including NETosis (the generation of neutrophil extracellular traps), degranulation and de novo production of cytokines and chemokines. These processes play a role in antiviral immunity, but may also contribute to the local and systemic tissue damage seen in acute SARS-CoV-2 infection. Neutrophils also contribute to complications of COVID-19 such as thrombosis, acute respiratory distress syndrome and multisystem inflammatory disease in children. In this Progress review, we discuss the anti-viral and pathological roles of neutrophils in SARS-CoV-2 infection, and potential therapeutic strategies for COVID-19 that target neutrophil-mediated inflammatory responses.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Johana M Isaza-Correa
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | - Aisling Ui Mhaonaigh
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James' Hospital, Trinity College Dublin, Dublin, Ireland
| | | | - Clíona Ní Cheallaigh
- Department of Clinical Medicine, Trinity Centre for Health Science, Trinity College Dublin, Dublin, Ireland.,Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland - Medical College of Bahrain, Al Muharraq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Dublin Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, Children's Hospital Ireland (CHI) at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
30
|
Aggio JB, Porto BN, Duarte dos Santos CN, Mosimann ALP, Wowk PF. Human Neutrophils Present Mild Activation by Zika Virus But Reduce the Infection of Susceptible Cells. Front Immunol 2022; 13:784443. [PMID: 35747137 PMCID: PMC9210994 DOI: 10.3389/fimmu.2022.784443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the Zika virus (ZIKV) has highlighted the need for a deeper understanding of virus-host interactions in order to pave the way for the development of antiviral therapies. The present work aimed to address the response of neutrophils during ZIKV infection. Neutrophils are important effector cells in innate immunity implicated in the host’s response to neurotropic arboviruses. Our results indicate that human neutrophils were not permissive to Asian or African ZIKV strain replication. In fact, after stimulation with ZIKV, neutrophils were mild primed against the virus as evaluated through CD11b and CD62L modulation, secretion of inflammatory cytokines and granule content, production of reactive oxygen species, and neutrophil extracellular traps formation. Overall, neutrophils did not affect ZIKV infectivity. Moreover, in vitro ZIKV infection of primary innate immune cells did not trigger neutrophil migration. However, neutrophils co-cultured with ZIKV susceptible cell lineages resulted in lower cell infection frequencies, possibly due to cell-to-cell contact. In vivo, neutrophil depletion in immunocompetent mice did not affect ZIKV spreading to the draining lymph nodes. The data suggest that human neutrophils do not play an antiviral role against ZIKV per se, but these cells might participate in an infected environment shaping the ZIKV infection in other target cells.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| |
Collapse
|
31
|
Morán G, Uberti B, Quiroga J. Role of Cellular Metabolism in the Formation of Neutrophil Extracellular Traps in Airway Diseases. Front Immunol 2022; 13:850416. [PMID: 35493475 PMCID: PMC9039247 DOI: 10.3389/fimmu.2022.850416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are a recently described mechanism of neutrophils that play an important role in health and disease. NETs are an innate defense mechanism that participate in clearance of pathogens, but they may also cause collateral damage in unrelated host tissues. Neutrophil dysregulation and NETosis occur in multiple lung diseases, such as pathogen-induced acute lung injury, pneumonia, chronic obstructive pulmonary disease (COPD), severe asthma, cystic fibrosis, and recently, the novel coronavirus SARS-CoV-2. More recently, research into immunometabolism has surged due to the possibility of reprogramming metabolism in order to modulate immune functions. The present review analyzes the different metabolic pathways associated with NETs formation, and how these impact on pathologies of the airways.
Collapse
Affiliation(s)
- Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.,Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
32
|
Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. J Clin Med 2022; 11:jcm11092460. [PMID: 35566589 PMCID: PMC9104617 DOI: 10.3390/jcm11092460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has resulted in significant mortality and burdening of healthcare resources. While initially noted as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic review aims to investigate the role of inflammatory pathways, highlighting several culprits including neutrophil extracellular traps (NETs) which have since been extensively investigated. Method: A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were considered for the processing of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without the SARS-CoV-2 Infection period and case reports were excluded. Results: A total of 47 studies were included in this study. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of the mechanisms of activation of these pathways have been highlighted in previous studies and are highlighted. Conclusion: NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity that has not been fully understood with long-term effects remaining uncertain and requiring ongoing monitoring and research.
Collapse
|
33
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
34
|
Huang SUS, O’Sullivan KM. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs. Int J Mol Sci 2022; 23:ijms23073793. [PMID: 35409152 PMCID: PMC8998317 DOI: 10.3390/ijms23073793] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.
Collapse
|
35
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
37
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GES. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104:108516. [PMID: 35032828 PMCID: PMC8733219 DOI: 10.1016/j.intimp.2021.108516] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1β loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | | | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Bagdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia; AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
38
|
de Sousa Palmeira PH, Gois BM, Guerra-Gomes IC, Peixoto RF, de Sousa Dias CN, Araújo JMG, Amaral IP, Keesen TSL. Downregulation of CD73 on CD4+ T cells from patients with chronic Chikungunya infection. Hum Immunol 2022; 83:306-318. [DOI: 10.1016/j.humimm.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
|
39
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Babatunde KA, Ayuso JM, Kerr SC, Huttenlocher A, Beebe DJ. Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Front Immunol 2021; 12:781535. [PMID: 34899746 PMCID: PMC8653704 DOI: 10.3389/fimmu.2021.781535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
During infection, neutrophils are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. Neutrophils are considered to be short-lived effector cells that undergo cell death at infection sites and in damaged tissues. However, recent in vitro and in vivo evidence suggests that neutrophil behavior is more complex and that they can migrate away from the inflammatory site back into the vasculature following the resolution of inflammation. Microfluidic devices have contributed to an improved understanding of the interaction and behavior of neutrophils ex vivo in 2D and 3D microenvironments. The role of reverse migration and its contribution to the resolution of inflammation remains unclear. In this review, we will provide a summary of the current applications of microfluidic devices to investigate neutrophil behavior and interactions with other immune cells with a focus on forward and reverse migration in neutrophils.
Collapse
Affiliation(s)
| | - Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
41
|
Martell EM, González-Garcia M, Ständker L, Otero-González AJ. Host defense peptides as immunomodulators: The other side of the coin. Peptides 2021; 146:170644. [PMID: 34464592 DOI: 10.1016/j.peptides.2021.170644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Host defense peptides (HDPs) exhibit a broad range of antimicrobial and immunomodulatory activities. In this sense, both functions are like different sides of the same coin. The direct antimicrobial side was discovered first, and widely studied for the development of anti-infective therapies. In contrast, the immunomodulatory side was recognized later and in the last 20 years the interest in this field has been continuously growing. Different to their antimicrobial activities, the immunomodulatory activities of host defense peptides are more effective in vivo. They offer a great opportunity for new therapeutic applications in the fields of anti-infective therapy, chronic inflammatory diseases treatment, novel vaccine adjuvants development and anticancer immunotherapy. These immune related functions of HDPs includes chemoattraction of leukocytes, modulation of inflammation, enhancement of antigen presentation and polarization of adaptive immune responses. Our attempt with this review is to make a careful evaluation of different aspects of the less explored, but attractive immunomodulatory side of the HDP functional coin.
Collapse
Affiliation(s)
- Ernesto M Martell
- Center for Protein Studies, Faculty of Biology, Havana University, Cuba
| | | | - Ludger Ständker
- Core Facility Functional Peptidomics (CFP), Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
42
|
Chen T, Li Y, Sun R, Hu H, Liu Y, Herrmann M, Zhao Y, Muñoz LE. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021; 12:775267. [PMID: 34804066 PMCID: PMC8600110 DOI: 10.3389/fimmu.2021.775267] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs), a web-like structures containing chromatin, have a significant role in assisting the capture and killing of microorganisms by neutrophils during infection. The specific engagement of cell-surface receptors by extracellular signaling molecules activates diverse intracellular signaling cascades and regulates neutrophil effector functions, including phagocytosis, reactive oxygen species release, degranulation, and NET formation. However, overproduction of NETs is closely related to the occurrence of inflammation, autoimmune disorders, non-canonical thrombosis and tumor metastasis. Therefore, it is necessary to understand neutrophil activation signals and the subsequent formation of NETs, as well as the related immune regulation. In this review, we provide an overview of the immunoreceptor-mediated regulation of NETosis. The pathways involved in the release of NETs during infection or stimulation by noninfectious substances are discussed in detail. The mechanisms by which neutrophils undergo NETosis help to refine our views on the roles of NETs in immune protection and autoimmune diseases, providing a theoretical basis for research on the immune regulation of NETs.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Jacob-Nascimento LC, Carvalho CX, Silva MMO, Kikuti M, Anjos RO, Fradico JRB, Campi-Azevedo AC, Tauro LB, Campos GS, Moreira PSDS, Portilho MM, Martins-Filho OA, Ribeiro GS, Reis MG. Acute-Phase Levels of CXCL8 as Risk Factor for Chronic Arthralgia Following Chikungunya Virus Infection. Front Immunol 2021; 12:744183. [PMID: 34659240 PMCID: PMC8517435 DOI: 10.3389/fimmu.2021.744183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The immunopathogenesis of chikungunya virus (CHIKV) infection and the role of acute-phase immune response on joint pain persistence is not fully understood. We investigated the profile of serum chemokine and cytokine in CHIKV-infected patients with acute disease, compared the levels of these biomarkers to those of patients with other acute febrile diseases (OAFD) and healthy controls (HC), and evaluated their role as predictors of chronic arthralgia development. Chemokines and cytokines were measured by flow Cytometric Bead Array. Patients with CHIKV infection were further categorized according to duration of arthralgia (≤ 3 months vs >3 months), presence of anti-CHIKV IgM at acute-phase sample, and number of days of symptoms at sample collection (1 vs 2-3 vs ≥4). Patients with acute CHIKV infection had significantly higher levels of CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1β, IL-6, IL-12, and IL-10 as compared to HC. CCL2, CCL5, and CXCL10 levels were also significantly higher in patients with CHIKV infection compared to patients with OAFD. Patients whose arthralgia lasted > 3 months had increased CXCL8 levels compared to patients whose arthralgia did not (p<0.05). Multivariable analyses further indicated that high levels of CXCL8 and female sex were associated with arthralgia lasting >3 months. Patients with chikungunya and OAFD had similar cytokine kinetics for IL-1β, IL-12, TNF, IFN-γ, IL-2, and IL-4, although the levels were lower for CHIKV patients. This study suggests that chemokines may have an important role in the immunopathogenesis of chronic chikungunya-related arthralgia.
Collapse
Affiliation(s)
| | | | | | - Mariana Kikuti
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Laura Beatriz Tauro
- Instituto de Biologia Subtropical, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Misiones, Puerto Iguazú, Argentina
| | - Gúbio Soares Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Mitermayer Galvão Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
44
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Sfikakis PP, Verrou KM, Ampatziadis-Michailidis G, Tsitsilonis O, Paraskevis D, Kastritis E, Lianidou E, Moutsatsou P, Terpos E, Trougakos I, Chini V, Manoloukos M, Moulos P, Pavlopoulos GA, Kollias G, Hatzis P, Dimopoulos MA. Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced Asymptomatic Versus Clinical Infection. Front Immunol 2021; 12:746203. [PMID: 34675930 PMCID: PMC8523987 DOI: 10.3389/fimmu.2021.746203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.
Collapse
Affiliation(s)
- Petros P. Sfikakis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleio-Maria Verrou
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Giannis Ampatziadis-Michailidis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, School of Medicine, University General Hospital Attikon, NKUA, Haidari, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Chini
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Menelaos Manoloukos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Moulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Georgios A. Pavlopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - George Kollias
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Pantelis Hatzis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Meletios A. Dimopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Gillot C, Favresse J, Mullier F, Lecompte T, Dogné JM, Douxfils J. NETosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Front Pharmacol 2021; 12:708302. [PMID: 34421600 PMCID: PMC8376580 DOI: 10.3389/fphar.2021.708302] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
NETosis is a form of neutrophil death leading to the release of extracellular chromatin and the assembling of proteins, including antiviral proteins, primed by an initial pathogenic stimulus. Under certain specific conditions, neutrophils can exhibit a double-edged activity. This event has been implicated in COVID-19 among other conditions. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of COVID-19 by promoting a pro-inflammatory and a procoagulant state leading to multiorgan failure. This particular form of host defense promoted by neutrophils is closely related to the well-known cytokine storm observed in severe COVID-19 patients. These two elements therefore represent possible targets for treatment of severe SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Constant Gillot
- Department of Pharmacy, University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Namur, Belgium
| | - Julien Favresse
- Department of Pharmacy, University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Namur, Belgium
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - François Mullier
- Laboratory Hematology, Université Catholique de Louvain, CHU UCL Namur, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Haemostasis Centre (NTHC), Yvoir, Belgium
| | - Thomas Lecompte
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Geneva, Switzerland
| | - Jean-Michel Dogné
- Department of Pharmacy, University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Namur, Belgium
- Qualiblood s.a., Namur, Belgium
| |
Collapse
|
47
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
48
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
49
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
50
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021; 79:91-104. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Beyond their well-known functions in the acute phases of the immune response, neutrophils play important roles in the various phases of tumor initiation and progression, through the release of their stored or newly synthesized mediators. In addition to reactive oxygen species, cytokines, chemokines, granule proteins and lipid mediators, neutrophil extracellular traps (NETs) can also be released upon neutrophil activation. NET formation can be achieved through a cell-death process or in association with the release of mitochondrial DNA from viable neutrophils. NETs are described as extracellular fibers of DNA and decorating proteins responsible for trapping and killing extracellular pathogens, playing a protective role in the antimicrobial defense. There is increasing evidence, however, that NETs play multiple roles in the scenario of cancer-related inflammation. For instance, NETs directly or indirectly promote tumor growth and progression, fostering tumor spread at distant sites and shielding cancer cells thus preventing the effects of cytotoxic lymphocytes. NETs can also promote tumor angiogenesis and cancer-associated thrombosis. On the other hand, there is some evidence that NETs may play anti-inflammatory and anti-tumorigenic roles. In this review, we focus on the main mechanisms underlying the emerging effects of NETs in cancer initiation and progression.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|