1
|
Arce MM, Umhoefer JM, Arang N, Kasinathan S, Freimer JW, Steinhart Z, Shen H, Pham MTN, Ota M, Wadhera A, Dajani R, Dorovskyi D, Chen YY, Liu Q, Zhou Y, Swaney DL, Obernier K, Shy BR, Carnevale J, Satpathy AT, Krogan NJ, Pritchard JK, Marson A. Central control of dynamic gene circuits governs T cell rest and activation. Nature 2025; 637:930-939. [PMID: 39663454 PMCID: PMC11754113 DOI: 10.1038/s41586-024-08314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
The ability of cells to maintain distinct identities and respond to transient environmental signals requires tightly controlled regulation of gene networks1-3. These dynamic regulatory circuits that respond to extracellular cues in primary human cells remain poorly defined. The need for context-dependent regulation is prominent in T cells, where distinct lineages must respond to diverse signals to mount effective immune responses and maintain homeostasis4-8. Here we performed CRISPR screens in multiple primary human CD4+ T cell contexts to identify regulators that control expression of IL-2Rα, a canonical marker of T cell activation transiently expressed by pro-inflammatory effector T cells and constitutively expressed by anti-inflammatory regulatory T cells where it is required for fitness9-11. Approximately 90% of identified regulators of IL-2Rα had effects that varied across cell types and/or stimulation states, including a subset that even had opposite effects across conditions. Using single-cell transcriptomics after pooled perturbation of context-specific screen hits, we characterized specific factors as regulators of overall rest or activation and constructed state-specific regulatory networks. MED12 - a component of the Mediator complex - serves as a dynamic orchestrator of key regulators, controlling expression of distinct sets of regulators in different T cell contexts. Immunoprecipitation-mass spectrometry revealed that MED12 interacts with the histone methylating COMPASS complex. MED12 was required for histone methylation and expression of genes encoding key context-specific regulators, including the rest maintenance factor KLF2 and the versatile regulator MYC. CRISPR ablation of MED12 blunted the cell-state transitions between rest and activation and protected from activation-induced cell death. Overall, this work leverages CRISPR screens performed across conditions to define dynamic gene circuits required to establish resting and activated T cell states.
Collapse
Affiliation(s)
- Maya M Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Jennifer M Umhoefer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Nadia Arang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
| | - Sivakanthan Kasinathan
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Haolin Shen
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Minh T N Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mineto Ota
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anika Wadhera
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Rama Dajani
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Dmytro Dorovskyi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Qi Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Opmeer Y, van Steenbeek FG, Rozendom C, Fieten H, Diaz Espineira MM, Stassen QEM, van Kooten PJ, Rutten VPMG, Hytönen MK, Lohi H, Mandigers PJJ, Leegwater PA. Polymyositis in Kooiker dogs is associated with a 39 kb deletion upstream of the canine IL21/IL2 locus. PLoS Genet 2025; 21:e1011538. [PMID: 39746095 PMCID: PMC11731761 DOI: 10.1371/journal.pgen.1011538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 01/14/2025] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Recently we characterized polymyositis in the Dutch Kooiker dog. The familial occurrence of the disease were suggestive of an inherited cause. Here we report the results of our molecular genetic investigation. A genome-wide association study of 33 cases and 106 controls indicated the involvement of a region on chromosome CFA19 (p = 4.7*10-10). Haplotype analysis indicated that the cases shared a 2.9 Mb region in the homozygous or the heterozygous state. Next Generation Sequencing of genomic DNA implicated a deletion of a 39 kb DNA fragment, located 10 kb upstream of the neighbouring interleukin genes IL21 and IL2. The frequency of the deletion allele was 0.81 in the available cases and 0.25 in a random sample of the Kooiker dog breed. Leukocytes of affected, untreated dogs that were homozygous for the deletion overexpress IL21 and IL2 upon stimulation with mitogens. We suggest that elements located 10-49 kb upstream of the IL21/IL2 locus play an important role in the regulation of the canine genes and that deletion of these elements is a risk factor for polymyositis in Kooiker dogs. Postulating causality, the penetrance of the disease phenotype was estimated at 10-20% for homozygous dogs and 0.5-2% for dogs that were heterozygous for the deletion. Our results suggest that distant variants upstream of IL21 could also be important for human autoimmune diseases that have been found to be associated with the IL21/IL2 chromosome region.
Collapse
Affiliation(s)
- Yvet Opmeer
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia Rozendom
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hille Fieten
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Montse M. Diaz Espineira
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Qurine E. M. Stassen
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter J. van Kooten
- Section Immunology, Div Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P. M. G. Rutten
- Section Immunology, Div Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Dept of Veterinary Tropical Diseases, Fac of Veterinary Science, University of Pretoria, Republic of South Africa
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Paul J. J. Mandigers
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter A. Leegwater
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Kim GR, Nam KH, Choi JM. Belatacept and regulatory T cells in transplantation: synergistic strategies for immune tolerance and graft survival. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:326-340. [PMID: 39690903 PMCID: PMC11732762 DOI: 10.4285/ctr.24.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Calcineurin inhibitors (CNIs) have been a cornerstone in solid organ transplantation for many years; however, their prolonged use is linked to significant adverse effects, most notably nephrotoxicity. Belatacept, a modified version of cytotoxic T lymphocyte antigen-4 immunoglobulin with increased binding affinity for its ligand, has emerged as a viable alternative to traditional CNIs due to its lower toxicity profile. Despite these benefits, belatacept is associated with a higher rate of acute rejection, which presents a challenge for long-term graft survival. This review reevaluates the limitations of belatacept in achieving long-term acceptance of transplants and highlights the importance of regulatory T (Treg) cells in maintaining immune tolerance and preventing graft rejection. Additionally, it discusses the potential benefits of combining therapies that boost Treg cells with belatacept to increase the effectiveness of immunosuppression and improve graft outcomes.
Collapse
Affiliation(s)
- Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
5
|
Alvarez F, Acuff NV, La Muraglia GM, Sabri N, Milla ME, Mooney JM, Mackey MF, Peakman M, Piccirillo CA. The IL-2 SYNTHORIN molecule promotes functionally adapted Tregs in a preclinical model of type 1 diabetes. JCI Insight 2024; 9:e182064. [PMID: 39704171 DOI: 10.1172/jci.insight.182064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024] Open
Abstract
Deficits in IL-2 signaling can precipitate autoimmunity by altering the function and survival of FoxP3+ regulatory T cells (Tregs) while high concentrations of IL-2 fuel inflammatory responses. Recently, we showed that the non-beta IL-2 SYNTHORIN molecule SAR444336 (SAR'336) can bypass the induction of autoimmune and inflammatory responses by increasing its reliance on IL-2 receptor α chain subunit (CD25) to provide a bona fide IL-2 signal selectively to Tregs, making it an attractive approach for the control of autoimmunity. In this report, we further demonstrate that SAR'336 can support non-beta IL-2 signaling in murine Tregs and limit NK and CD8+ T cells' proliferation and function. Using a murine model of spontaneous type 1 diabetes, we showed that the administration of SAR'336 slows the development of disease in mice by decreasing the degree of insulitis through the expansion of antigen-specific Tregs over Th1 cells in pancreatic islets. Specifically, SAR'336 promoted the differentiation of IL-33-responsive (ST2+), IL-10-producing GATA3+ Tregs over other Treg subsets in the pancreas, demonstrating the ability of this molecule to further orchestrate Treg adaptation. These results offer insight into the capacity of SAR'336 to generate highly specialized, tissue-localized Tregs that promote restoration of homeostasis during ongoing autoimmune disease.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| | | | | | - Nazila Sabri
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | - Jill M Mooney
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Reddy NR, Maachi H, Xiao Y, Simic MS, Yu W, Tonai Y, Cabanillas DA, Serrano-Wu E, Pauerstein PT, Tamaki W, Allen GM, Parent AV, Hebrok M, Lim WA. Engineering synthetic suppressor T cells that execute locally targeted immunoprotective programs. Science 2024; 386:eadl4793. [PMID: 39636990 DOI: 10.1126/science.adl4793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/22/2024] [Indexed: 12/07/2024]
Abstract
Immune homeostasis requires a balance of inflammatory and suppressive activities. To design cells potentially useful for local immune suppression, we engineered conventional CD4+ T cells with synthetic Notch (synNotch) receptors driving antigen-triggered production of anti-inflammatory payloads. Screening a diverse library of suppression programs, we observed the strongest suppression of cytotoxic T cell attack by the production of both anti-inflammatory factors (interleukin-10, transforming growth factor-β1, programmed death ligand 1) and sinks for proinflammatory cytokines (interleukin-2 receptor subunit CD25). Engineered cells with bespoke regulatory programs protected tissues from immune attack without systemic suppression. Synthetic suppressor T cells protected transplanted beta cell organoids from cytotoxic T cells. They also protected specific tissues from unwanted chimeric antigen receptor (CAR) T cell cross-reaction. Synthetic suppressor T cells are a customizable platform to potentially treat autoimmune diseases, organ rejection, and CAR T cell toxicities with spatial precision.
Collapse
Affiliation(s)
- Nishith R Reddy
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hasna Maachi
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yini Xiao
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Milos S Simic
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Yu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yurie Tonai
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniela A Cabanillas
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ella Serrano-Wu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Philip T Pauerstein
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Greg M Allen
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Blank M, Israeli D, Shoenfeld Y. Exercise, autoimmune diseases and T-regulatory cells. J Autoimmun 2024; 149:103317. [PMID: 39303372 DOI: 10.1016/j.jaut.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Diverse forms of physical activities contribute to improvement of autoimmune diseases and may prevent disease burst. T regulatory cells (Tregs) maintain tolerance in autoimmune condition. Physical activity is one of the key factors causing enhancement of Tregs number and functions, keeping homeostatic state by its secrotome. Muscles secrete myokines like IL-6, PGC1α (PPARγ coactivator-1 α), myostatin, transforming growth factor β (TGF-β) superfamily), IL-15, brain derived neurotrophic factor (BDNF) and others. The current concept points to the role of exercise in induction of highly functional and stable muscle Treg phenotype. The residing-Tregs require IL6Rα signaling to control muscle function and regeneration. Skeletal muscle Tregs IL-6Rα is a key target for muscle-Tregs cross-talk. Thus, interplay between the Tregs-skeletal muscle, following exercise, contribute to the balance of immune tolerance and autoimmunity. The cargo delivery, in the local environment and periphery, is performed by extracellular vesicles (EVs) secreted by muscle and Tregs, which deliver proteins, lipids and miRNA during persistent exercise protocols. It has been suggested that this ensemble induce protection against autoimmune diseases.
Collapse
Affiliation(s)
- Miri Blank
- Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Reichman University, Herzelia, Israel
| | | | - Yehuda Shoenfeld
- Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Reichman University, Herzelia, Israel.
| |
Collapse
|
8
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin gates nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. We demonstrate that mTregs are both necessary and sufficient to suppress mechanical pain sensitivity in female, but not male, mice, with this modulation reliant on sex hormones. These results uncover a fundamental sex-specific, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
9
|
Gompou A, Perrea DN, Karatzas T, Kastania A, Dimaki A, Xydias EM, Boletis I, Kostakis A. Evaluating Interleukin-2 and Its Receptors As Indicators of Acute Renal Graft Rejection. Cureus 2024; 16:e73185. [PMID: 39650936 PMCID: PMC11624487 DOI: 10.7759/cureus.73185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Interleukin-2 (IL-2) is a cytokine that exerts its actions via binding to a variety of interleukin-2 receptors (IL-2R), thereby stimulating T-cell response. Acute renal graft rejection (AR) is known to be mediated by CD8+ T-cells, through the IL-2 pathway. The aim of this study was to determine whether IL-2 and IL-2R could work as prognostic biomarkers of AR. Methods IL-2, IL-2R and Cystatin-C levels were measured in the serum of 50 patients who underwent a kidney transplant, once pre-operatively and at four different time points post-operatively (second, sixth, 14th day and third month). Of the total number of patients, ultimately 10 (20%) had an episode of AR. Results No statistically significant difference in IL-2 levels was found between those who experienced AR and those who did not, at any of the studied time points. On the other hand, measurement of IL-2R levels on the sixth and 14th day post-operatively showed that people with AR had a statistically significant increase in its value compared to patients who did not have an AR episode (p=0.027 and p=0.019, respectively). In addition, comparing the values of IL-2R with that of Cystatin-C in different time periods, it was found that there is a significant positive linear correlation on the second and sixth postoperative day between the values of the associated parameters (r=0.280, p=0.049 and r=0.372, p=0.008 respectively). Conclusion The measurement of IL-2R from the sixth to 14th postoperative day could be used as a reliable prognostic biomarker of AR, however additional studies and standardised diagnostic thresholds are required before the routine clinical application is feasible.
Collapse
Affiliation(s)
- Athina Gompou
- Department of Nephrology and Renal Dialysis, IASO Thessaly, Larissa, GRC
- Department of Nephrology, Transplantation Unit, Laiko General Hospital of Athens, Athens, GRC
| | - Despoina N Perrea
- Department of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Theodore Karatzas
- Department of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
- Department of Propaedeutic Surgery, Laiko General Hospital of Athens, Athens, GRC
| | - Anastasia Kastania
- Department of Informatics, School of Information Sciences and Technology, Athens University of Economics and Business, Athens, GRC
| | - Aikaterini Dimaki
- Department of Nephrology and Renal Dialysis, IASO Thessaly, Larissa, GRC
| | - Emmanouil M Xydias
- Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Ioannis Boletis
- Department of Nephrology, Transplantation Unit, Laiko General Hospital of Athens, Athens, GRC
| | - Alkiviadis Kostakis
- Department of Biostatistics, Biomedical Research Foundation Academy of Athens, Athens, GRC
| |
Collapse
|
10
|
Meng Z, Yang Y. Advances in the Treatment of Autoimmune Hepatitis. J Clin Transl Hepatol 2024; 12:878-885. [PMID: 39440223 PMCID: PMC11491506 DOI: 10.14218/jcth.2024.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic, progressive inflammatory liver disease caused by autoimmune reactions, with an unknown etiology. If left untreated, it can progress to cirrhosis, liver failure, or even death. While most patients respond well to first-line treatments, a significant number experience poor responses or intolerance, requiring the use of second- or third-line therapies. Ongoing research into the pathogenesis of AIH is leading to the development of novel therapeutic approaches. This review summarized recent advancements in the treatment of AIH both domestically and internationally.
Collapse
Affiliation(s)
- Zelu Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
12
|
Lian S, Su J, Fatima I, Zhang Y, Kuang T, Hu H, Qu D, Si H, Sun W. Revealing the exceptional antioxidant activity of phosphorylated polysaccharides from medicinal Abrus cantoniensis Hance. Int J Biol Macromol 2024; 278:134532. [PMID: 39142474 DOI: 10.1016/j.ijbiomac.2024.134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.
Collapse
Affiliation(s)
- Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Su
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China.
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin 537000, Guangxi, China.
| |
Collapse
|
13
|
Roser LA, Sommer C, Ortega Iannazzo S, Sakellariou C, Waibler Z, Gogesch P. Revival of recombinant IL-2 therapy - approaches from the past until today. J Immunotoxicol 2024; 21:S38-S47. [PMID: 39655498 DOI: 10.1080/1547691x.2024.2335219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 12/18/2024] Open
Abstract
Interleukin-2 (IL-2) was one of the first cytokines discovered and its central role in T cell function soon led to the notion that the cytokine could specifically activate immune cells to combat cancer cells. Recombinant human IL-2 (recIL-2) belonged to the first anti-cancer immunotherapeutics that received marketing authorization and while it mediated anti-tumor effects in some cancer entities, treatment was associated with severe and systemic side effects. RecIL-2 holds an exceptional therapeutic potential, which can either lead to stimulation of the immune system - favorable during cancer treatment - or immunosuppression - used for treatment of inflammatory diseases such as autoimmunity. Due to these pleiotropic immune effects, recIL-2 therapy is still a hot topic in research and modified recIL-2 drug candidates show ameliorated efficacy and safety in pre-clinical and clinical studies. The Immune Safety Avatar (imSAVAR) consortium aims to systemically assess mechanisms leading to adverse events provoked by recIL-2 immunotherapy as a use case in order to aid safety evaluation of future recIL-2-based therapies. Here, we summarize the historical use of recIL-2 therapy, associated side effects, and describe the molecular basis of the dual role of IL-2. Finally, an overview of new recIL-2 compounds and delivery systems, which are currently being developed, will be given, highlighting a possible comeback of recIL-2 therapy.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | | | - Zoe Waibler
- Paul-Ehrlich-Institut, Division of Immunology, Langen, Germany
| | | |
Collapse
|
14
|
Carmona JU, López C. Effects of Temperature and Time on the Denaturation of Transforming Growth Factor Beta-1 and Cytokines from Bovine Platelet-Rich Gel Supernatants. Gels 2024; 10:583. [PMID: 39330185 PMCID: PMC11431824 DOI: 10.3390/gels10090583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
There is a lack of information about transforming growth factor beta-1 (TGF-β1) and cytokines contained in pure platelet-rich plasma (P-PRP) and release from pure-platelet-rich gel supernatants (P-PRGS) might be affected by the temperature and time factors; P-PRP from 6 heifers was activated with calcium gluconate. Thereafter, P-PRG and their supernatants (P-PRGS) were maintained at -80, -20, 4, 21, and 37 °C and collected at 3, 6, 12, 24, 48, 96, 144, 192, 240, and 280 h for subsequent determination of TGF-β1, tumor necrosis factor alfa (TNF-α), interleukin (IL)-2, and IL-6; TGF-β1 concentrations were significantly (p < 0.05) higher in PRGS maintained at 21 and 37 °C when compared to PRGS maintained at 4, -20, and -80 °C; PRGS TNF-α concentrations were not influenced by temperature and time factors. However, PRGS maintained at 4 °C showed significantly (p < 0.05) higher concentrations when compared to PRGS maintained at -20, and -80 °C at 144, and 192 h. IL-6 concentrations were significantly (p < 0.05) higher in PRGS stored at -20, and -80 over the first 48 h and at 10 days when compared to PRGS stored at 4, 21, and 37 °C. These results could suggest that P-PRP/P-PRGS could be maintained and well preserved for at least 12 days at room temperature for clinical use in bovine therapeutic massive protocols.
Collapse
Affiliation(s)
- Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia
| | - Catalina López
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia
| |
Collapse
|
15
|
Raeber ME, Caspar DP, Zurbuchen Y, Guo N, Schmid J, Michler J, Martin AC, Steiner UC, Moor AE, Koning F, Boyman O. Interleukin-2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue-homing characteristics. Immunity 2024; 57:2232-2250.e10. [PMID: 39137779 DOI: 10.1016/j.immuni.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Due to its stimulatory potential for immunomodulatory CD4+ regulatory T (Treg) cells, low-dose interleukin-2 (IL-2) immunotherapy has gained considerable attention for the treatment of autoimmune diseases. In this investigator-initiated single-arm non-placebo-controlled phase-2 clinical trial of low-dose IL-2 immunotherapy in systemic lupus erythematosus (SLE) patients, we generated a comprehensive atlas of in vivo human immune responses to low-dose IL-2. We performed an in-depth study of circulating and cutaneous immune cells by imaging mass cytometry, high-parameter flow cytometry, transcriptomics, and targeted serum proteomics. Low-dose IL-2 stimulated various circulating immune cells, including Treg cells with a skin-homing phenotype that appeared in the skin of SLE patients in close interaction with endothelial cells. Analysis of surface proteins and transcriptomes revealed different IL-2-driven Treg cell activation programs, including gut-homing CD38+, skin-homing HLA-DR+, and highly proliferative inflammation-homing CD38+ HLA-DR+ Treg cells. Collectively, these data define the distinct human Treg cell subsets that are responsive to IL-2 immunotherapy.
Collapse
Affiliation(s)
- Miro E Raeber
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; Center of Human Immunology, University of Zurich, 8006 Zurich, Switzerland
| | - Dominic P Caspar
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Zurbuchen
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nannan Guo
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jonas Schmid
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Michler
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Alina C Martin
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs C Steiner
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; Center of Human Immunology, University of Zurich, 8006 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
17
|
Martin J, Hollowood Z, Chorlton J, Dyer C, Marelli-Berg F. Modulating regulatory T cell migration in the treatment of autoimmunity and autoinflammation. Curr Opin Pharmacol 2024; 77:102466. [PMID: 38906084 DOI: 10.1016/j.coph.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Treatment of autoimmunity and autoinflammation with regulatory T cells has received much attention in the last twenty years. Despite the well-documented clinical benefit of Treg therapy, a large-scale application has proven elusive, mainly due to the extensive culture facilities required and associated costs. A possible way to overcome these hurdles in part is to target Treg migration to inflammatory sites using a small molecule. Here we review recent advances in this strategy and introduce the new concept of pharmacologically enhanced delivery of endogenous Tregs to control inflammation, which has been recently validated in humans.
Collapse
Affiliation(s)
- John Martin
- Division of Medicine, University College London, London, WC1E 6JF, UK; St George Street Capital, London, EC4R 1BE, UK.
| | | | | | - Carlene Dyer
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
Fijałkowska A, Wojtania J, Woźniacka A, Robak E. Psoriasis and Lupus Erythematosus-Similarities and Differences between Two Autoimmune Diseases. J Clin Med 2024; 13:4361. [PMID: 39124628 PMCID: PMC11312967 DOI: 10.3390/jcm13154361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) and psoriasis (Ps) are two clinically distinct diseases with different pathogenesis. However, recent studies indicate some similarities in both clinical presentation and pathogenetic mechanisms. The coexistence of both entities is very uncommon and has not been fully elucidated. Thus, it remains a diagnostic and therapeutic challenge. In fact, drugs used in SLE can induce psoriatic lesions, whereas phototherapy effective in Ps is an important factor provoking skin lesions in patients with SLE. The aim of this work is to discuss in detail the common pathogenetic elements and the therapeutic options effective in both diseases.
Collapse
Affiliation(s)
| | | | | | - Ewa Robak
- Department of Dermatology and Venereology, Medical University of Lodz, Haller sq. 1, 90-647 Lodz, Poland; (A.F.); (J.W.); (A.W.)
| |
Collapse
|
19
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
20
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
21
|
Liu J, Qi B, Ye Y, Shen Y, Lin Y, Chen Y, Ding S, Ma J, Chen S. Low-dose IL-2 treatment confers anti-inflammatory effect against subarachnoid hemorrhage in mice. Heliyon 2024; 10:e30013. [PMID: 38742061 PMCID: PMC11089327 DOI: 10.1016/j.heliyon.2024.e30013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) was a stroke with high occurrence and mortality. At the early stage, SAH patients have severe cerebral injury which is contributed by inflammation. In this study, we aimed to explore the anti-inflammation effect of low-dose IL-2 in SAH mice. Methods The 12-week-old C57BL/6J male mice were conducted with SAH surgery (Internal carotid artery puncture method). Different dose of IL-2 was injected intraperitoneally for 1 h, 1 day, and 2 days after SAH. Single-cell suspension and flow cytometry were used for the test of regulatory T (Treg) cells. Immunofluorescence staining was used to investigate the phenotypic polarization of microglia and inflammation response around neurons. Enzyme-Linked Immuno-sorbent Assay (ELISA) was applied to detect the level of pro-inflammatory factors. Results Low-dose IL-2 could enrich the Treg cells and drive the microglia polarizing to M2. The level of pro-inflammatory factors, IL-1α, IL-6, and TNF-α decreased in the low-dose IL-2 group. The inflammation response around neurons was attenuated. Low-dose IL-2 could increase the number of Treg cells, which could exert a neuroprotective effect against inflammation after SAH. Conclusion Low-dose IL-2 had the potential to be an effective clinical method to inhibit inflammation after SAH.
Collapse
Affiliation(s)
- Jia Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Biao Qi
- Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yufu Lin
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yabo Chen
- Department of General Practice, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shan Ding
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jun Ma
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shaozhuang Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| |
Collapse
|
22
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Poletti S, Zanardi R, Mandelli A, Aggio V, Finardi A, Lorenzi C, Borsellino G, Carminati M, Manfredi E, Tomasi E, Spadini S, Colombo C, Drexhage HA, Furlan R, Benedetti F. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav Immun 2024; 118:52-68. [PMID: 38367846 DOI: 10.1016/j.bbi.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Immune-inflammatory mechanisms are promising targets for antidepressant pharmacology. Immune cell abnormalities have been reported in mood disorders showing a partial T cell defect. Following this line of reasoning we defined an antidepressant potentiation treatment with add-on low-dose interleukin 2 (IL-2). IL-2 is a T-cell growth factor which has proven anti-inflammatory efficacy in autoimmune conditions, increasing thymic production of naïve CD4 + T cells, and possibly correcting the partial T cell defect observed in mood disorders. We performed a single-center, randomised, double-blind, placebo-controlled phase II trial evaluating the safety, clinical efficacy and biological responses of low-dose IL-2 in depressed patients with major depressive (MDD) or bipolar disorder (BD). 36 consecutively recruited inpatients at the Mood Disorder Unit were randomised in a 2:1 ratio to receive either aldesleukin (12 MDD and 12 BD) or placebo (6 MDD and 6 BD). Active treatment significantly potentiated antidepressant response to ongoing SSRI/SNRI treatment in both diagnostic groups, and expanded the population of T regulatory, T helper 2, and percentage of Naive CD4+/CD8 + immune cells. Changes in cell frequences were rapidly induced in the first five days of treatment, and predicted the later improvement of depression severity. No serious adverse effect was observed. This is the first randomised control trial (RCT) evidence supporting the hypothesis that treatment to strengthen the T cell system could be a successful way to correct the immuno-inflammatory abnormalities associated with mood disorders, and potentiate antidepressant response.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy.
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | - Matteo Carminati
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Elena Manfredi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Enrico Tomasi
- Hospital Pharmacy, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Hemmo A Drexhage
- Coordinator EU consortium MoodStratification, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milano, Italy; Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
24
|
Hoprekstad GE, Skrede S, Bartz-Johannessen C, Joa I, Reitan SK, Steen VM, Torsvik A, Johnsen E, Kroken RA, Rettenbacher M. Association between cytokines and suicidality in patients with psychosis: A multicentre longitudinal analysis. Brain Behav Immun Health 2024; 37:100756. [PMID: 38549611 PMCID: PMC10973600 DOI: 10.1016/j.bbih.2024.100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 11/27/2024] Open
Abstract
Suicide is a common cause of death in all phases of schizophrenia spectrum disorder, particularly in the youngest patients. Clinical measures have demonstrated limited value in suicide prediction, spurring the search for potential biomarkers. The causes of suicidal behaviour are complex, but the immune system seems to be involved as it reflects or even causes mental suffering. We aimed to identify cytokines with associations to suicidality in a sample of patients with symptoms of active psychosis. Patients with schizophrenia spectrum disorder (N = 144) participating in a semi-randomized antipsychotic drug trial (the BeSt InTro study) were assessed with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS) at eight visits across 12 months. The Clinical Global Impression for Severity of Suicidality scale (CGI-SS) was used for assessing suicidality. Serum concentrations of tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, and IL-10 were measured using immunoassays. A logistic regression model was used to investigate the association between cytokine levels and suicidality. To enhance clinical significance, the CGI-SS scores were dichotomized into two groups before analyses: low (=1) and high (≥2) risk for suicidality. Both uni- and multi-variate analyses revealed an inverse correlation between IL-2 and IL-10 serum levels and suicidality, where lower cytokine concentrations of IL-2 and IL-10 were associated with higher suicidality scores. The results were consistent when adjusted for depression and substance use. These results indicate that inflammatory processes are linked to the risk of suicidality in patients with schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Gunnhild E. Hoprekstad
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Christoffer Bartz-Johannessen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Inge Joa
- TIPS, Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
- Department of Public Health, Faculty of Health Science, University of Stavanger, Stavanger, Norway
| | - Solveig K. Reitan
- St. Olav's University Hospital, Department of Mental Health, Nidelv DPS, Trondheim, Norway
- Norwegian University of Science and Technology, Department of Mental Health, Trondheim, Norway
| | - Vidar M. Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anja Torsvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Rune A. Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
25
|
Song MS, Nam JH, Noh KE, Lim DS. Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration. J Immunol Res 2024; 2024:7827246. [PMID: 38628676 PMCID: PMC11019573 DOI: 10.1155/2024/7827246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%-10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Collapse
Affiliation(s)
- Min-Seon Song
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Hee Nam
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Kyung-Eun Noh
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dae-Seog Lim
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
26
|
Radi H, Ferdosi-Shahandashti E, Kardar GA, Hafezi N. An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases. J Interferon Cytokine Res 2024; 44:143-157. [PMID: 38421721 DOI: 10.1089/jir.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.
Collapse
Affiliation(s)
- Hale Radi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Gholam Ali Kardar
- National Institute for Genetic Engineering and Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Huang L, Huang J, Tang N, Xue H, Lin S, Liu S, Chen Q, Lu Y, Liang Q, Wang Y, Zhu Q, Zheng G, Chen Y, Zhu C, Chen C. Insufficient phosphorylation of STAT5 in Tregs inhibits the expression of BLIMP-1 but not IRF4, reduction the proportion of Tregs in pediatric aplastic anemia. Heliyon 2024; 10:e26731. [PMID: 38486772 PMCID: PMC10938128 DOI: 10.1016/j.heliyon.2024.e26731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Deficiency in regulatory T cells (Tregs) is an important mechanism underlying the pathogenesis of pediatric aplastic anemia, but its specific mechanism is unclear. In our study, we aimed to investigate whether IL-2/STAT5 can regulate the proliferation of Tregs in aplastic anemia (AA) by regulating their expression of B lymphocyte-induced mature protein-1 (BLIMP-1) or interferon regulatory factor 4 (IRF4). Through clinical research and animal experiments, we found that poor activation of the IL-2/STAT5 signaling pathway may leads to low expression of BLIMP-1 in Tregs of children with AA, which leads to defects in the differentiation and proliferation of Tregs in AA. In AA model mice, treatment with IL-2c reversed the decrease in Treg proportions and reduction in Blimp-1 expression in Tregs by increasing the phosphorylation of Stat5 in Tregs. In AA, deficiency of IRF4 expression in Tregs is closely related to the deficiency of Tregs, but is not regulated by the IL-2/STAT5 pathway.
Collapse
Affiliation(s)
- Lifen Huang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Junbin Huang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Nannan Tang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Hongman Xue
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Shaofen Lin
- Department of Pediatric Hematopathy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510000, Guangzhou, Guangdong, China
| | - Su Liu
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qihui Chen
- Department of Pediatric Hematopathy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510000, Guangzhou, Guangdong, China
| | - Yinsi Lu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qian Liang
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Yun Wang
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qingqing Zhu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Guoxing Zheng
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Yun Chen
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Chengming Zhu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Chun Chen
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
30
|
Camirand G, Lakkis FG. Tipping the balance toward transplantation tolerance: in vivo therapy using a mutated IL-2. J Clin Invest 2024; 134:e178570. [PMID: 38426502 PMCID: PMC10904037 DOI: 10.1172/jci178570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Immune tolerance to allogenic transplanted tissues remains elusive, and therapeutics promoting CD4+FOXP3+ Tregs are required to achieve this ultimate goal. In this issue of the JCI, Efe and colleagues engineered an Fc domain fused to a human mutein IL-2 (mIL-2-Fc) bearing mutations that confer preferential binding to the high-affinity IL-2 receptor expressed on Tregs. In vivo mIL-2-Fc therapy effectively heightened mouse, monkey, and human Treg numbers, promoted tolerance to minor antigen mismatched skin grafts in mice, and synergized with immunosuppressive drugs used in the clinic. These findings warrant clinical trials that assess the efficacy of mIL-2-Fc in transplantation.
Collapse
|
31
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
32
|
Su Q, Wang X, Li Y, Zhang J, Bai C, Wang X, Yang L, Zhang J, Zhang SX. Efficacy, Safety and the Lymphocyte Subset Changes of Low-Dose IL-2 in Patients with Autoimmune Rheumatic Diseases: A Systematic Review and Meta-Analysis. Rheumatol Ther 2024; 11:79-96. [PMID: 37980696 PMCID: PMC10796881 DOI: 10.1007/s40744-023-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
INTRODUCTION Current therapies for autoimmune rheumatic diseases (ARDs) have limited efficacy in certain patients, highlighting the need for the development of novel treatment approaches. This meta-analysis aims to assess the efficacy and safety of low-dose interleukin-2 (LD-IL-2) and evaluate the alterations in lymphocyte subsets in various rheumatic diseases following administration of different dosages of LD-IL-2. METHODS A comprehensive search was conducted in PubMed, Web of Science, the Cochrane Library, Embase databases and CNKI to identify relevant studies. A total of 31 trials were included in this meta-analysis. The review protocols were registered on PROSPERO (CRD42022318916), and the study followed the PRISMA guidelines. RESULTS Following LD-IL-2 treatment, patients with ARDs exhibited a significant increase in the number of Th17 cells and Tregs compared to their pre-treatment levels [standardized mean difference (SMD) = 0.50, 95% confidence interval (CI) (0.33, 0.67), P < 0.001; SMD = 1.13, 95% CI (0.97, 1.29), P < 0.001]. Moreover, the Th17/Tregs ratio showed a significant decrease [SMD = - 0.54, 95% CI (- 0.64, - 0.45), P < 0.001]. In patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), LD-IL-2 injection led to a significant increase in Treg numbers, and the Th17/Tregs ratio and disease activity scores, including Disease Activity Score-28 joints (DAS28), Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), were all significantly reduced. No serious adverse events were reported in any of the included studies. Additionally, 54.8% of patients with lupus nephritis achieved distinct clinical remission following LD-IL-2 treatment. Injection site reactions and fever were the most common side effects of LD-IL-2, occurring in 33.1% and 14.4% of patients, respectively. CONCLUSION LD-IL-2 treatment showed promise and was well tolerated in the management of ARDs, as it effectively promoted the proliferation and functional recovery of Tregs. TRIAL REGISTRATION Retrospectively registered (CRD42022318916, 21/04/2022).
Collapse
Affiliation(s)
- Qinyi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382. Wuyi Road, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xinmiao Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yongzhi Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiexiang Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Cairui Bai
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xuechun Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Liu Yang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jingting Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382. Wuyi Road, Taiyuan, Shanxi, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
33
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
34
|
Fox RI, Fox CM, McCoy SS. Emerging treatment for Sjögren's disease: a review of recent phase II and III trials. Expert Opin Emerg Drugs 2023; 28:107-120. [PMID: 37127914 PMCID: PMC10330372 DOI: 10.1080/14728214.2023.2209720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Sjögren's Disease, SjD, is a systemic autoimmune disorder characterized by reduced function of the salivary and lacrimal glands. Patients suffer from dryness, fatigue, and pain and may present with or without extra-glandular organ involvement. Symptoms limit SjD patients' quality of life and are the most difficult to improve with therapy. SjD patients are heterogeneous and clustering them into biologically similar subgroups might improve the efficacy of therapies. The need for therapies that address both the symptoms and extra glandular organ involvement of SjD presents an unmet opportunity that has recently attracted a growing interest in the pharmaceutical industry. AREAS COVERED The goal of this report is to review recent phase II/III studies in SjD. To accomplish our goal, we performed a literature search for phase II/III studies and abstracts recently presented at conferences. EXPERT OPINION This review allows updates the reader on the multitude of recent phase II/III clinical trials. We speculate on how subtypes of SjD will drive future therapeutic targeting and inform pathogenesis.
Collapse
Affiliation(s)
- Robert I. Fox
- Scripps Memorial Hospital and Research Foundation, San Diego, California, United States
| | - Carla M. Fox
- Scripps Memorial Hospital and Research Foundation, San Diego, California, United States
| | - Sara S. McCoy
- University of Wisconsin-Madison Ringgold standard institution, Madison, United States
| |
Collapse
|
35
|
Qiao Z, Zhao W, Liu Y, Feng W, Ma Y, Jin H. Low-dose Interleukin-2 For Psoriasis Therapy Based on the Regulation of Th17/Treg Cell Balance in Peripheral Blood. Inflammation 2023; 46:2359-2373. [PMID: 37596509 PMCID: PMC10673739 DOI: 10.1007/s10753-023-01883-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
The imbalance between regulatory T (Treg) cells and efficient T cells plays an important role in psoriasis. Low-dose interleukin (IL)-2 can preferentially activate Treg cells and ameliorate the imbalance of Treg/efficient T cells. This study focused on the status of circulating CD4+ T subsets and the clinical efficacy of low-dose IL-2 therapies in psoriasis. This retrospective study included peripheral blood samples obtained from 45 psoriatic patients and 40 healthy controls. The 45 psoriatic patients received three cycles of subcutaneous low-dose IL-2 treatment (0.5 million IU/day for 2 weeks) combined with conventional therapies. Inflammatory indices, CD4+ T-lymphocyte subsets, and cytokines were measured in all patients before and after treatment. The percentage of Treg cells was dramatically decreased in the psoriasis group compared to the healthy group, and the percentage of Treg cells negatively correlated with the disease indices and the Psoriasis Area and Severity Index (PASI) (P < 0.001). The Th17/Treg ratio was significantly increased in the psoriasis group compared to the healthy group, and the Th17/Treg ratio positively correlated with disease indices and PASI (P < 0.001). Low-dose IL-2 treatment significantly amplified the percentage of Treg cells and restored the Th17 and Treg immune balance in psoriasis (P < 0.001). Low-dose IL-2 combination therapy effectively improved the clinical manifestations of psoriasis but decreased the inflammatory indicators of the disease activity, with no apparent side effects. Thus, low-dose IL-2 provides a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zusha Qiao
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Wenpeng Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Department of Cancer prevention and control office, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wenli Feng
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Ma
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
36
|
Lebel Y, Milo T, Bar A, Mayo A, Alon U. Excitable dynamics of flares and relapses in autoimmune diseases. iScience 2023; 26:108084. [PMID: 37915612 PMCID: PMC10616393 DOI: 10.1016/j.isci.2023.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Many autoimmune disorders exhibit flares in which symptoms erupt and then decline, as exemplified by multiple sclerosis (MS) in its relapsing-remitting form. Existing mathematical models of autoimmune flares often assume regular oscillations, failing to capture the stochastic and non-periodic nature of flare-ups. We suggest that autoimmune flares are driven by excitable dynamics triggered by stochastic events auch as stress, infection and other factors. Our minimal model, involving autoreactive and regulatory T-cells, demonstrates this concept. Autoimmune response initiates antigen-induced expansion through positive feedback, while regulatory cells counter the autoreactive cells through negative feedback. The model explains the decrease in MS relapses during pregnancy and the subsequent surge postpartum, based on lymphocyte dynamics. Additionally, it identifies potential therapeutic targets, predicting significant reduction in relapse rate from mild adjustments of regulatory T cell activity or production. These findings indicate that excitable dynamics may underlie flare-ups across various autoimmune disorders, potentially informing treatment strategies.
Collapse
Affiliation(s)
- Yael Lebel
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Tomer Milo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Alon Bar
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| |
Collapse
|
37
|
Odler B, Tieu J, Artinger K, Chen-Xu M, Arnaud L, Kitching RA, Terrier B, Thiel J, Cid MC, Rosenkranz AR, Kronbichler A, Jayne DRW. The plethora of immunomodulatory drugs: opportunities for immune-mediated kidney diseases. Nephrol Dial Transplant 2023; 38:ii19-ii28. [PMID: 37816674 DOI: 10.1093/ndt/gfad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/12/2023] Open
Abstract
In recent decades, insights into the molecular pathways involved in disease have revolutionized the treatment of autoimmune diseases. A plethora of targeted therapies have been identified and are at varying stages of clinical development in renal autoimmunity. Some of these agents, such as rituximab or avacopan, have been approved for the treatment of immune-mediated kidney disease, but kidney disease lags behind more common autoimmune disorders in new drug development. Evidence is accumulating as to the importance of adaptive immunity, including abnormalities in T-cell activation and signaling, and aberrant B-cell function. Furthermore, innate immunity, particularly the complement and myeloid systems, as well as pathologic responses in tissue repair and fibrosis, play a key role in disease. Collectively, these mechanistic studies in innate and adaptive immunity have provided new insights into mechanisms of glomerular injury in immune-mediated kidney diseases. In addition, inflammatory pathways common to several autoimmune conditions exist, suggesting that the repurposing of some existing drugs for the treatment of immune-mediated kidney diseases is a logical strategy. This new understanding challenges the clinical investigator to translate new knowledge into novel therapies leading to better disease outcomes. This review highlights promising immunomodulatory therapies tested for immune-mediated kidney diseases as a primary indication, details current clinical trials and discusses pathways that could be targeted in the future.
Collapse
Affiliation(s)
- Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johanna Tieu
- Faculty of Health and Medical Sciences, University of Adelaide; Adelaide, Australia
- Rheumatology Unit, The Queen Elizabeth Hospital, Adelaide, Australia
- Rheumatology Unit, Lyell McEwin Hospital, Adelaide, Australia
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Chen-Xu
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laurent Arnaud
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
| | - Richard A Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
- Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Jens Thiel
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - David R W Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Berentschot JC, Drexhage HA, Aynekulu Mersha DG, Wijkhuijs AJM, GeurtsvanKessel CH, Koopmans MPG, Voermans JJC, Hendriks RW, Nagtzaam NMA, de Bie M, Heijenbrok-Kal MH, Bek LM, Ribbers GM, van den Berg-Emons RJG, Aerts JGJV, Dik WA, Hellemons ME. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Front Immunol 2023; 14:1254899. [PMID: 37881427 PMCID: PMC10597688 DOI: 10.3389/fimmu.2023.1254899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Background Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.
Collapse
Affiliation(s)
- Julia C. Berentschot
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | | | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jolanda J. C. Voermans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M. A. Nagtzaam
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Majanka H. Heijenbrok-Kal
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | - L. Martine Bek
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | | | - Joachim G. J. V. Aerts
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
39
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Wang X, Tang Q, Bergquist R, Zhou X, Qin Z. The Cytokine Profile in Different Stages of Schistosomiasis Japonica. Pathogens 2023; 12:1201. [PMID: 37887717 PMCID: PMC10610117 DOI: 10.3390/pathogens12101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
To explore and profile the level of cytokines in the sera of patients infected with Schistosoma japonicum to explore the helper T-cell response of patients either at the chronic or advanced stage of the disease. We randomly selected 58 subjects from several areas endemic for schistosomiasis japonica in China and collected serum samples to be tested for 18 different cytokines secreted by (1) Th1/Th2 cells (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-10, IL-13, IL-18 and TNF-α) and (2) Th9/Th17/Th22/Treg cells (IL-9, IL-17A, IL-21, IL-22, IL-23 and IL-27). The Th1/Th2 cytokines in chronic patients were not significantly different from those in healthy people, while patients with advanced schistosomiasis had higher levels of IL-2, IL-23 and IL-27 and lower levels of IL-18 and IFN-γ. With respect to the Th9/Th17/Th22/Treg cell cytokines, there were higher levels of IL-23. Thus, a limited variation of the cytokine response between the three patient groups was evident, but only in those with advanced infection, while there was no difference between chronic schistosomiasis infection and healthy subjects in this respect. The cytokine expression should be followed in patients with advanced schistosomiasis who show a cytokine pattern of a weakened Th1 cell response and an increased Th17 response.
Collapse
Affiliation(s)
- Xi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | - Qi Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | | | - Xiaorong Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| |
Collapse
|
41
|
Ma S, So M, Ghelani A, Srivas R, Sahoo A, Hall R, Liu W, Wu H, Yu S, Lu S, Song E, Cariaga T, Soto M, Zhou H, Li CM, Chaudhry A, Luo X, Sohn SJ. Attenuated IL-2 muteins leverage the TCR signal to enhance regulatory T cell homeostasis and response in vivo. Front Immunol 2023; 14:1257652. [PMID: 37809101 PMCID: PMC10556740 DOI: 10.3389/fimmu.2023.1257652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Interleukin-2 (IL-2), along with T-cell receptor (TCR) signaling, are required to control regulatory T cell (Treg) homeostasis and function in vivo. Due to the heightened sensitivity to IL-2, Tregs retain the ability to respond to low-dose or attenuated forms of IL-2, as currently being developed for clinical use to treat inflammatory diseases. While attenuated IL-2 increases Treg selectivity, the question remains as to whether a weakened IL-2 signal sufficiently enhances Treg suppressive function(s) toward disease modification. To understand this question, we characterized the in vivo activity and transcriptomic profiles of two different attenuated IL-2 muteins in comparison with wildtype (WT) IL-2. Our study showed that, in addition to favoring Tregs, the attenuated muteins induced disproportionately robust effects on Treg activation and conversion to effector Treg (eTreg) phenotype. Our data furthermore suggested that Tregs activated by attenuated IL-2 muteins showed reduced dependence on TCR signal, at least in part due to the enhanced ability of IL-2 muteins to amplify the TCR signal in vivo. These results point to a new paradigm wherein IL-2 influences Tregs' sensitivity to antigenic signal, and that the combination effect may be leveraged for therapeutic use of attenuated IL-2 muteins.
Collapse
Affiliation(s)
- Shining Ma
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Michelle So
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Aazam Ghelani
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Rohith Srivas
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Anupama Sahoo
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Robyn Hall
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Wenjun Liu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hao Wu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sherman Yu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Shiping Lu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Elly Song
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Taryn Cariaga
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marcus Soto
- Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Hong Zhou
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Chi-Ming Li
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | | - Xin Luo
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sue J. Sohn
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
42
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
43
|
Louapre C, Rosenzwajg M, Golse M, Roux A, Pitoiset F, Adda L, Tchitchek N, Papeix C, Maillart E, Ungureanu A, Charbonnier-Beaupel F, Galanaud D, Corvol JC, Vicaut E, Lubetzki C, Klatzmann D. A randomized double-blind placebo-controlled trial of low-dose interleukin-2 in relapsing-remitting multiple sclerosis. J Neurol 2023; 270:4403-4414. [PMID: 37245191 DOI: 10.1007/s00415-023-11690-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is associated with regulatory T cells (Tregs) insufficiency while low-dose interleukin-2 (IL2LD) activates Tregs and reduces disease activity in autoimmune diseases. METHODS We aimed at addressing whether IL2LD improved Tregs from MS patients. MS-IL2 was a single-center double-blind phase-2 study. Thirty patients (mean [SD] age 36.8 years [8.3], 16 female) with relapsing-remitting MS with new MRI lesions within 6 months before inclusion were randomly assigned in a 1:1 ratio to placebo or IL-2 at 1 million IU, daily for 5 days and then fortnightly for 6 months. The primary endpoint was change in Tregs at day-5. RESULTS Unlike previous trials of IL2LD in more than 20 different autoimmune diseases, Tregs were not expanded at day-5 in IL2LD group, but only at day-15 (median [IQR] fold change from baseline: 1.26 [1.21-1.33] in IL2LD group; 1.01 [0.95-1.05] in placebo group, p < 0.001). At day-5, however, Tregs had acquired an activated phenotype (fold change of CD25 expression in Tregs: 2.17 [1.70-3.55] in IL2LD versus 0.97 [0.86-1.28] in placebo group, p < 0.0001). Regulator/effector T cells ratio remained elevated throughout treatment period in the IL2LD group (p < 0.001). Number of new active brain lesions and of relapses tended to be reduced in IL2LD treated patients, but the difference did not reach significance in this trial not powered to detect clinical efficacy. CONCLUSION The effect of IL2LD on Tregs in MS patients was modest and delayed, compared to other auto-immune diseases. This, together with findings that Tregs improve remyelination in MS models and recent reports of IL2LD efficacy in amyotrophic lateral sclerosis, warrants larger studies of IL2LD in MS, notably with increased dosages and/or modified modalities of administration. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov: NCT02424396; EU Clinical trials Register: 2014-000088-42.
Collapse
Affiliation(s)
- C Louapre
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - M Rosenzwajg
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - M Golse
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - A Roux
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - F Pitoiset
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - L Adda
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - N Tchitchek
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France
| | - C Papeix
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - E Maillart
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - A Ungureanu
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - F Charbonnier-Beaupel
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Pharmacie à Usage Intérieur, Reqpharm Unit, Paris, France
| | - D Galanaud
- Neuroradiology Department, Sorbonne University, Assistance Publique Hôpitaux de Paris, Paris, France
| | - J C Corvol
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - E Vicaut
- Assistance Publique Hôpitaux de Paris, Lariboisière Hospital, Clinical Trial Unit, Paris, France
| | - C Lubetzki
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Department of Neurology, CIC neurosciences, Paris, France
| | - D Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3)-UMRS_959, Sorbonne Université- INSERM, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France.
| |
Collapse
|
44
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
45
|
Lee M, Bell CJM, Rubio Garcia A, Godfrey L, Pekalski M, Wicker LS, Todd JA, Ferreira RC. CD56 bright natural killer cells preferentially kill proliferating CD4 + T cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad012. [PMID: 37649552 PMCID: PMC10465185 DOI: 10.1093/discim/kyad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Human CD56br natural killer (NK) cells represent a small subset of CD56+ NK cells in circulation and are largely tissue-resident. The frequency and number of CD56br NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4+ regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an in vitro co-culture assay with activated CD4+ T cells to measure NK cell killing efficiency. We show that CD56br and CD56dim NK cells show similar efficiency at killing activated CD4+ conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56dim cells, CD56br NK cells preferentially target highly proliferative cells. We hypothesize that CD56br NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4+ Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56br NK cells.
Collapse
Affiliation(s)
- Mercede Lee
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Charles J M Bell
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Arcadio Rubio Garcia
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Leila Godfrey
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Marcin Pekalski
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
47
|
Zhang X, Zhang J, Pan Z, Zhang Y, Xu X, Sheng Y, Zhu Z, Zhou F, Wen L. Transcriptome sequencing reveals novel molecular features of SLE severity. Front Genet 2023; 14:1121359. [PMID: 37554401 PMCID: PMC10406386 DOI: 10.3389/fgene.2023.1121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of autoantibodies, immune complex deposition, and tissue/organ damage. In this study, we aimed to identify molecular features and signaling pathways associated with SLE severity using RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and clinical parameters. Methods: We analyzed transcriptome profiles of 45 SLE patients, grouped into mild (mSLE, SLEDAI ≤ 9) and severe (sSLE, SLEDAI > 9) based on SLE Disease Activity Index (SLEDAI) scores. We also collected clinical data on anti-dsDNA, ANA, ESR, CRP, snRNP, AHA, and anti-Smith antibody status for each patient. Results: By comparing gene expression across groups, we identified 12 differentially expressed genes (DEGs), including 7 upregulated (CEACAM6, UCHL1, ARFGEF3, AMPH, SERPINB10, TACSTD2, and OTX1) and 5 downregulated (SORBS2, TRIM64B, SORCS3, DRAXIN, and PCDHGA10) DEGs in sSLE compared to mSLE. Furthermore, using the CIBERSORT algorithm, we found that Treg cells were significantly decreased in sSLE and negatively correlated with AMPH expression, which was mainly expressed in Treg cells from SLE patients according to public scRNA-seq data (GSE135779). Discussion: Overall, our findings shed light on the molecular mechanisms underlying SLE severity and provide insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Zhaobing Pan
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Yujun Sheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
48
|
Peng L, Chen L, Solt LA, Dominical VM, Shen Z. Editorial: Immunometabolism of T cells in skin infection, autoimmunity and cancer biology. Front Immunol 2023; 14:1237386. [PMID: 37457717 PMCID: PMC10349174 DOI: 10.3389/fimmu.2023.1237386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Lu Peng
- Department of Dermatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Laura A. Solt
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, The Scripps Research Institute, Jupiter, FL, United States
| | | | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Spadea M, Saglio F, Ceolin V, Barone M, Zucchetti G, Quarello P, Fagioli F. Immune-mediated cytopenias (IMCs) after HSCT for pediatric non-malignant disorders: epidemiology, risk factors, pathogenesis, and treatment. Eur J Pediatr 2023; 182:2471-2483. [PMID: 36967419 PMCID: PMC10257634 DOI: 10.1007/s00431-023-04912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/11/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) represents a curative option for pediatric patients affected by malignant and non-malignant disorders. Several complications may arise during the post-transplantation period, including immune-mediated disorders. Immune-mediated cytopenias (IMCs) account for up to 22% of pediatric HSCT complications, representing an important cause of morbidity and mortality post-HSCT. So far, their pathogenesis is not well-understood, and their management may be very challenging. Further, most patients are refractory to first-line treatment which is based on high-dose intravenous steroids, immunoglobulin, and the monoclonal anti-CD20 antibody - rituximab. No clear consensus has been reached for second- and third-line therapeutic options. CONCLUSION We reviewed the epidemiology, risk factors, pathogenesis, and treatment of IMCs, aiming to offer a deeper understanding of these complications as a guide to improving the management of these fragile patients and a cue for the design of tailored clinical trials. WHAT IS KNOWN • IMCs arising in the post-HSCT setting represent a rare but potentially life-threatening complication. Younger patients affected by non-malignant disorders are at the greatest risk of IMCs arising after HSCT. Corticosteroids, intravenous immunoglobulin, and rituximab represent the undiscussed first-line therapeutic approach. WHAT IS NEW • This review highlitghts how children present unique risk factors for post HSCT IMCs, which are the result of the complex relationship between the immaturity of their infantile immune system and all the perturbing agents and factors which characterize the post-HSCT setting. Future efforts are warranted to establish the best option for refractory patients, for whom a standard and validated approach is not currently available. Among new agents, ibrutinib or bortezomib and fostamatinib or low-dose IL-2 could represent a good therapeutic option for patients with graft-versus-host disease and hemolytic anemia or graft-versus-host disease and thrombocytopenia, respectively.
Collapse
Affiliation(s)
- Manuela Spadea
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
- University of Torino, Turin, Italy
| | - Francesco Saglio
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Valeria Ceolin
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
- Erasmus University MC-Sophia Childrens Hospital, Rotterdam, Netherlands
| | - Marta Barone
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Giulia Zucchetti
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Paola Quarello
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy.
- University of Torino, Turin, Italy.
| | - Franca Fagioli
- Stem Cell Transplantation and Cellular Therapy Department, Pediatric Onco-Hematology, Azienda Ospedaliera-Universitaria Città Della Salute E Della Scienza, Regina Margherita Children's Hospital, Turin, Italy
- University of Torino, Turin, Italy
| |
Collapse
|
50
|
Newman JRB, Concannon P, Ge Y. UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24108671. [PMID: 37240014 DOI: 10.3390/ijms24108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
UBASH3A is a negative regulator of T cell activation and IL-2 production and plays key roles in autoimmunity. Although previous studies revealed the individual effects of UBASH3A on risk for type 1 diabetes (T1D; a common autoimmune disease), the relationship of UBASH3A with other T1D risk factors remains largely unknown. Given that another well-known T1D risk factor, PTPN22, also inhibits T cell activation and IL-2 production, we investigated the relationship between UBASH3A and PTPN22. We found that UBASH3A, via its Src homology 3 (SH3) domain, physically interacts with PTPN22 in T cells, and that this interaction is not altered by the T1D risk coding variant rs2476601 in PTPN22. Furthermore, our analysis of RNA-seq data from T1D cases showed that the amounts of UBASH3A and PTPN22 transcripts exert a cooperative effect on IL2 expression in human primary CD8+ T cells. Finally, our genetic association analyses revealed that two independent T1D risk variants, rs11203203 in UBASH3A and rs2476601 in PTPN22, interact statistically, jointly affecting risk for T1D. In summary, our study reveals novel interactions, both biochemical and statistical, between two independent T1D risk loci, and suggests how these interactions may affect T cell function and increase risk for T1D.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yan Ge
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|