1
|
Fares N, Lavaud M, Zhang Z, Jha A, Amarouchene Y, Salez T. Observation of Brownian elastohydrodynamic forces acting on confined soft colloids. Proc Natl Acad Sci U S A 2024; 121:e2411956121. [PMID: 39365828 PMCID: PMC11494331 DOI: 10.1073/pnas.2411956121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 10/06/2024] Open
Abstract
Confined motions in complex environments are ubiquitous in microbiology. These situations invariably involve the intricate coupling between fluid flow, soft boundaries, surface forces, and fluctuations. In the present study, such a coupling is investigated using a method combining holographic microscopy and advanced statistical inference. Specifically, the Brownian motion of soft micrometric oil droplets near rigid walls is quantitatively analyzed. All the key statistical observables are reconstructed with high precision, allowing for nanoscale resolution of local mobilities and femtonewton inference of conservative or nonconservative forces. Strikingly, the analysis reveals the existence of a novel, transient, but large, soft Brownian force. The latter might be of crucial importance for microbiological and nanophysical transport, target finding, or chemical reactions in crowded environments, and hence the whole life machinery.
Collapse
Affiliation(s)
- Nicolas Fares
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, TalenceF-33400, France
| | - Maxime Lavaud
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, TalenceF-33400, France
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, PessacF-33600, France
| | - Zaicheng Zhang
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, TalenceF-33400, France
- School of Physics, Beihang University, Beijing100191, China
| | - Aditya Jha
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, TalenceF-33400, France
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, TalenceF-33400, France
| |
Collapse
|
2
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
3
|
Jang J, Joo S, Yeom J, Jo Y, Zhang J, Hong S, Park CB. Lateral Piezoelectricity of Alzheimer's Aβ Aggregates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406678. [PMID: 39159132 PMCID: PMC11497015 DOI: 10.1002/advs.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly aged over 65. The extracellular accumulation of beta-amyloid (Aβ) aggregates in the brain is considered as the major event worsening the AD symptoms, but its underlying reason has remained unclear. Here the piezoelectric characteristics of Aβ aggregates are revealed. The vector piezoresponse force microscopy (PFM) analysis results exhibit that Aβ fibrils have spiraling piezoelectric domains along the length and a lateral piezoelectric constant of 44.1 pC N-1. Also, the continuous sideband Kelvin probe force microscopy (KPFM) images display that the increment of charge-induced surface potential on a single Aβ fibril is allowed to reach above +1700 mV in response to applied forces. These findings shed light on the peculiar mechano-electrical surface properties of pathological Aβ fibrils that exceed those of normal body components.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
- Applied Science Research InstituteKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Soyun Joo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jiwon Yeom
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jingshu Zhang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| |
Collapse
|
4
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
5
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
6
|
Ikiz ED, Hascup ER, Bae C, Hascup KN. Microglial Piezo1 mechanosensitive channel as a therapeutic target in Alzheimer's disease. Front Cell Neurosci 2024; 18:1423410. [PMID: 38957539 PMCID: PMC11217546 DOI: 10.3389/fncel.2024.1423410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) that control brain development, maintain neural environments, respond to injuries, and regulate neuroinflammation. Despite their significant impact on various physiological and pathological processes across mammalian biology, there remains a notable gap in our understanding of how microglia perceive and transmit mechanical signals in both normal and diseased states. Recent studies have revealed that microglia possess the ability to detect changes in the mechanical properties of their environment, such as alterations in stiffness or pressure. These changes may occur during development, aging, or in pathological conditions such as trauma or neurodegenerative diseases. This review will discuss microglial Piezo1 mechanosensitive channels as potential therapeutic targets for Alzheimer's disease (AD). The structure, function, and modulation of Piezo1 will be discussed, as well as its role in facilitating microglial clearance of misfolded amyloid-β (Aβ) proteins implicated in the pathology of AD.
Collapse
Affiliation(s)
- Erol D. Ikiz
- Department of Chemistry, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL, United States
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chilman Bae
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University at Carbondale, Carbondale, IL, United States
| | - Kevin N. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
7
|
Li B, Zhao A, Tian T, Yang X. Mechanobiological insight into brain diseases based on mechanosensitive channels: Common mechanisms and clinical potential. CNS Neurosci Ther 2024; 30:e14809. [PMID: 38923822 PMCID: PMC11197048 DOI: 10.1111/cns.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.
Collapse
Affiliation(s)
- Bolong Li
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
| | - An‐ran Zhao
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| |
Collapse
|
8
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
9
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
10
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
11
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
12
|
Rybachuk O, Nesterenko Y, Pinet É, Medvediev V, Yaminsky Y, Tsymbaliuk V. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord. Exp Neurol 2023; 368:114497. [PMID: 37517459 DOI: 10.1016/j.expneurol.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Currently, several therapeutic methods of treating the effects of spinal cord injury (SCI) are being considered. On the one hand, transplantation of stem cells (SCs), in particular, neural stem/progenitor cells (NSPCs), is promising, as these cells have the potential to differentiate into nervous tissue cells, able to enhance endogenous regeneration and prevent the development of inflammatory processes. On the other hand, it is quite promising to replace the damaged nervous tissue with synthetic matrices, in particular hydrogels, which can create artificial conditions for the regenerative growth of injured nerve fibers through the spinal cord injury area, i.e. stimulate and support axonal regeneration and myelination. In this work, we combined both of these novel approaches by populating (injecting or rehydrating) a heteroporous pHPMA hydrogel (NeuroGel) with murine hippocampal NSPCs. Being inside the hydrogel (10 days of cultivation), NSPCs were more differentiated into neurons: 19.48% ± 1.71% (the NSPCs injection into the hydrogel) and 36.49% ± 4.20% (the hydrogel rehydration in the NSPCs suspension); in control cultures, the level of differentiation in neurons was only 2.40% ± 0.31%. Differentiation of NSPCs into glial cells, in particular into oligodendrocyte progenitor cells, was also observed - 8.89% ± 2.15% and 6.21% ± 0.80% for injection and rehydration variants, respectively; in control - 28.75% ± 2.08%. In the control NSPCs culture, there was a small number of astrocytes - 2.11% ± 0.43%. Inside the hydrogel, NSPCs differentiation in astrocytes was not observed. In vitro data showed that the hydrogel promotes the differentiation of NSPCs into neurons, and inhibits the differentiation into glial cells. And in vivo showed post-traumatic recovery of rat spinal cord tissue after injury followed by implantation of the hydrogel+NSPCs complex (approximately 7 months after SCI). The implant area was closely connected with the recipient tissue, and the recipient cells freely grew into the implant itself. Inside the implant, a formed dense neuronal network was visible. In summary, the results are primarily an experimental ground for further studies of implants based on pHPMA hydrogel with populated different origin SCs, and the data also indicate the feasibility and efficiency of using an integrated approach to reduce possible negative side effects and facilitate the rehabilitation process after a SCI.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; State Institution National Scientific Center the M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv 03680, Ukraine.
| | - Yuliia Nesterenko
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine
| | | | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; Bogomolets National Medical University, Kyiv 01601, Ukraine
| | - Yurii Yaminsky
- State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| | - Vitaliy Tsymbaliuk
- Bogomolets National Medical University, Kyiv 01601, Ukraine; State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| |
Collapse
|
13
|
Liu C, Xia Y, Fu S, Meng F, Feng B, Xu L, Li L, Zuo X. Inhibition of Piezo1 Ameliorates Intestinal Inflammation and Limits the Activation of Group 3 Innate Lymphoid Cells in Experimental Colitis. J Innate Immun 2023; 15:709-723. [PMID: 37725937 PMCID: PMC10601687 DOI: 10.1159/000533525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/04/2023] [Indexed: 09/21/2023] Open
Abstract
Piezo1, the mechanosensory ion channel, has attracted increasing attention for its essential roles in various inflammatory responses and immune-related diseases. Although most of the key immune cells in inflammatory bowel disease (IBD) have been reported to be regulated by Piezo1, the specific role of Piezo1 in colitis has yet to be intensively studied. The present study investigated the impact of pharmacological inhibition of Piezo1 on dextran sulfate sodium (DSS)-induced colitis and explored the role of Piezo1 in intestinal immune cells in the context of colitis. We observed upregulated expression of Piezo1 in the colon tissue of mice with DSS-induced colitis. Pharmacological inhibition of Piezo1 by GsMTx4 diminished the severity of colitis. Piezo1 inhibition downregulated the expression of pro-inflammatory mediators Il1b, Il6, and Ptgs2 in colonic tissue and suppressed the production of IL-6 from macrophages and dendritic cells without altering the balance of T helper (Th) cells. In particular, Piezo1 did not affect cell viability but regulated cell proliferation and production of IL-17A in group 3 innate lymphoid cells (ILC3s), which is dependent on the PI3K-Akt-mTOR signaling pathway. Our findings uncover Piezo1 as an effective regulator of gut inflammation. Targeting Piezo1 could be a promising strategy to modulate intestinal immunity in IBD.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China,
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China,
| | - Yanan Xia
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Shichen Fu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Fanyi Meng
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Leiqi Xu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
14
|
Choi MH, Li N, Popelka G, Butts Pauly K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul 2023; 16:1362-1370. [PMID: 37690602 DOI: 10.1016/j.brs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses. OBJECTIVE The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity. METHODS Ultrasound pulses with varying amplitudes, pulse repetition frequencies (PRFs), envelope smoothing profiles, and sinusoidal modulation frequencies were selected. Each pulse's time-varying frequency spectrum was differentiated across time, weighted by the mouse hearing sensitivity, then summed across frequencies. The resulting time-varying function, computationally predicting the ABR, was validated against experimental ABR in mice during TUS with the corresponding pulse. RESULTS There was a significant correlation between experimental ABRs and the computational predictions for 19 TUS signals (R2 = 0.97). CONCLUSIONS To reduce ABR in mice during in vivo TUS studies, 1) reduce the amplitude of a rectangular continuous wave envelope, 2) increase the rise/fall times of a smoothed continuous wave envelope, and/or 3) change the PRF and/or duty cycle of a rectangular or sinusoidal pulsed wave to reduce the gap between pulses and increase the rise/fall time of the overall envelope. This metric can aid researchers performing in vivo mouse studies in selecting TUS signal parameters that minimize unintended ABR. The methods for developing this metric can be adapted to other animal models.
Collapse
Affiliation(s)
- Mi Hyun Choi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald Popelka
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kim Butts Pauly
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
16
|
Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, Hua F. Mechanical properties of the brain: Focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav 2023; 13:e3136. [PMID: 37366640 PMCID: PMC10498085 DOI: 10.1002/brb3.3136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The brain is a highly mechanosensitive organ, and changes in the mechanical properties of brain tissue influence many physiological and pathological processes. Piezo type mechanosensitive ion channel component 1 (Piezo1), a protein found in metazoans, is highly expressed in the brain and involved in sensing changes of the mechanical microenvironment. Numerous studies have shown that Piezo1-mediated mechanotransduction is closely related to glial cell activation and neuronal function. However, the precise role of Piezo1 in the brain requires further elucidation. OBJECTIVE This review first discusses the roles of Piezo1-mediated mechanotransduction in regulating the functions of a variety of brain cells, and then briefly assesses the impact of Piezo1-mediated mechanotransduction on the progression of brain dysfunctional disorders. CONCLUSIONS Mechanical signaling contributes significantly to brain function. Piezo1-mediated mechanotransduction regulates processes such as neuronal differentiation, cell migration, axon guidance, neural regeneration, and oligodendrocyte axon myelination. Additionally, Piezo1-mediated mechanotransduction plays significant roles in normal aging and brain injury, as well as the development of various brain diseases, including demyelinating diseases, Alzheimer's disease, and brain tumors. Investigating the pathophysiological mechanisms through which Piezo1-mediated mechanotransduction affects brain function will give us a novel entry point for the diagnosis and treatment of numerous brain diseases.
Collapse
Affiliation(s)
- Qingcui Zheng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Hailin Liu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wen Yu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Yao Dong
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Lanqian Zhou
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wenze Deng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Fuzhou Hua
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| |
Collapse
|
17
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
18
|
Hall CM, Lasli S, Serwinski B, Djordjevic B, Sheridan GK, Moeendarbary E. Hippocampus of the APP NL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis. Front Aging Neurosci 2023; 15:1212212. [PMID: 37547743 PMCID: PMC10398960 DOI: 10.3389/fnagi.2023.1212212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APPNL-G-F mouse model. Several hippocampal regions in APPNL-G-F mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.
Collapse
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering, University College London, London, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Soufian Lasli
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Faculty of Social Sciences, Northeastern University London, London, United Kingdom
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Graham K. Sheridan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
19
|
Chu F, Tan R, Wang X, Zhou X, Ma R, Ma X, Li Y, Liu R, Zhang C, Liu X, Yin T, Liu Z. Transcranial Magneto-Acoustic Stimulation Attenuates Synaptic Plasticity Impairment through the Activation of Piezo1 in Alzheimer's Disease Mouse Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0130. [PMID: 37223482 PMCID: PMC10202414 DOI: 10.34133/research.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
The neuropathological features of Alzheimer's disease include amyloid plaques. Rapidly emerging evidence suggests that Piezo1, a mechanosensitive cation channel, plays a critical role in transforming ultrasound-related mechanical stimuli through its trimeric propeller-like structure, but the importance of Piezo1-mediated mechanotransduction in brain functions is less appreciated. However, apart from mechanical stimulation, Piezo1 channels are strongly modulated by voltage. We assume that Piezo1 may play a role in converting mechanical and electrical signals, which could induce the phagocytosis and degradation of Aβ, and the combined effect of mechanical and electrical stimulation is superior to single mechanical stimulation. Hence, we design a transcranial magneto-acoustic stimulation (TMAS) system, based on transcranial ultrasound stimulation (TUS) within a magnetic field that combines a magneto-acoustic coupling effect electric field and the mechanical force of ultrasound, and applied it to test the above hypothesis in 5xFAD mice. Behavioral tests, in vivo electrophysiological recordings, Golgi-Cox staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, RNA sequencing, and cerebral blood flow monitoring were used to assess whether TMAS can alleviate the symptoms of AD mouse model by activating Piezo1. TMAS treatment enhanced autophagy to promote the phagocytosis and degradation of β-amyloid through the activation of microglial Piezo1 and alleviated neuroinflammation, synaptic plasticity impairment, and neural oscillation abnormalities in 5xFAD mice, showing a stronger effect than ultrasound. However, inhibition of Piezo1 with an antagonist, GsMTx-4, prevented these beneficial effects of TMAS. This research indicates that Piezo1 can transform TMAS-related mechanical and electrical stimuli into biochemical signals and identifies that the favorable effects of TMAS on synaptic plasticity in 5xFAD mice are mediated by Piezo1.
Collapse
Affiliation(s)
- Fangxuan Chu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ruxin Tan
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ren Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxu Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ruixu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chunlan Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
20
|
Wan Y, Wang H, Fan X, Bao J, Wu S, Liu Q, Yan X, Zhang J, Jin ZB, Xiao B, Wang N. Mechanosensitive channel Piezo1 is an essential regulator in cell cycle progression of optic nerve head astrocytes. Glia 2023; 71:1233-1246. [PMID: 36598105 DOI: 10.1002/glia.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Optic nerve head (ONH) astrocytes provide structural and metabolic support to neuronal axons in developmental, physiological, and pathological progression. Mechanosensitive properties of astrocytes allow them to sense and respond to mechanical cues from the local environment. We confirmed that ONH astrocytes express the mechanosensitive ion channel Piezo1 in vivo. By manipulating Piezo1 knockdown or overexpression in vitro, we found that Piezo1 is necessary but insufficient for ONH astrocyte proliferation. Loss of Piezo1 can lead to cell cycle arrest at G0/G1 phase, a possible mechanism involving decreased yes-associated protein (YAP) nuclear localization and downregulation of YAP-target cell cycle-associated factors, including cyclin D1 and c-Myc. Gene ontology enrichment analysis of differential expression genes from RNA-seq data indicates that the absence of Piezo1 affects biological processes involving cell division. Our results demonstrate that Piezo1 is an essential regulator in cell cycle progression in ONH astrocytes.
Collapse
Affiliation(s)
- Yue Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Haiping Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaowei Fan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jiayu Bao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Wang Q, Liu T, Chang H, Li Z, Chen L, Mi X, Xing H, Wang X, Hong J, Liu K, Li Y, Han D, Li Y, Yang N, Li X, Li Y, Guo X. Low-Intensity Pulsed Ultrasound Attenuates Postoperative Neurocognitive Impairment and Salvages Hippocampal Synaptogenesis in Aged Mice. Brain Sci 2023; 13:brainsci13040657. [PMID: 37190622 DOI: 10.3390/brainsci13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Postoperative neurocognitive impairment is an urgent problem with global aging accelerating. The prevention and treatment of postoperative neurocognitive impairment have been widely investigated but lack effective strategies. Low-intensity pulsed ultrasound (LIPUS), a non-invasive tool, has shown an effect on neuroprotection, but whether it could attenuate the postoperative neurocognitive impairment and the underlying mechanisms remains unknown. An experimental setup for LIPUS stimulation of the hippocampus was well established. A laparotomy model in aged mice was applied, and a Morris water maze was used to assess cognitive function. RT-qPCR and western blotting were used to detect levels of Piezo1, synapse-associated proteins in the hippocampus, respectively. Immunofluorescent staining was also used to determine the neural activation and Piezo1 expression. The results showed that LIPUS increased synapse-related proteins of the hippocampus and attenuated cognitive impairment in aged mice. Meanwhile, LIPUS suppressed the overexpression of Piezo1 in the hippocampus. We further found that LIPUS promoted Calpain1 activity and increased extracellular regulated protein kinases (Erk) phosphorylation. Our results suggested that LIPUS could improve cognitive impairment and increase hippocampal synaptogenesis through the Piezo1-mediated Calpain1/ Erk pathway. LIPUS could be used as an effective physical intervention to alleviate postoperative cognitive dysfunction in the aged population.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Huixian Chang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066104, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 101300, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Huayi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066104, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
22
|
Malko P, Jia X, Wood I, Jiang LH. Piezo1 channel-mediated Ca 2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 2023; 71:848-865. [PMID: 36447422 DOI: 10.1002/glia.24311] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Microglial cells are crucial in maintaining central nervous system (CNS) homeostasis and mediating CNS disease pathogenesis. Increasing evidence supports that alterations in the mechanical properties of CNS microenvironments influence glial cell phenotypes, but the mechanisms regulating microglial cell function remain elusive. Here, we examined the mechanosensitive Piezo1 channel in microglial cells, particularly, how Piezo1 channel activation regulates pro-inflammatory activation and production of pro-inflammatory cytokines, using BV2 and primary microglial cells. Piezo1 expression in microglial cells was detected both at mRNA and protein levels. Application of Piezo1 channel activator Yoda1 induced Ca2+ flux to increase intracellular Ca2+ concentration that was reduced by treatment with ruthenium red, a Piezo1 inhibitor, or Piezo1-specific siRNA, supporting that Piezo1 functions as a cell surface Ca2+ -permeable channel. Priming with lipopolysaccharide (LPS) induced microglial cell activation and production of TNF-α and IL-6, which were inhibited by treatment with Yoda1. Furthermore, LPS priming induced the activation of ERK, p38 MAPKs, and NF-κB. LPS-induced activation of NF-κB, but not ERK and p38, was inhibited by treatment with Yoda1. Yoda1-induced inhibition was blunted by siRNA-mediated depletion of Piezo1 expression and, furthermore, treatment with BAPTA-AM to prevent intracellular Ca2+ increase. Collectively, our results support that Piezo1 channel activation downregulates the pro-inflammatory function of microglial cells, especially production of TNF-α and IL-6, by initiating intracellular Ca2+ signaling to inhibit the NF-κB inflammatory signaling pathway. These findings reveal Piezo1 channel activation as a previously unrecognized mechanism regulating microglial cell function, raising an interesting perspective on targeting this molecular mechanism to alleviate neuroinflammation and associated CNS pathologies.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaoling Jia
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ian Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Physiology and Pathophysiology, and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
23
|
PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers (Basel) 2023; 15:cancers15030883. [PMID: 36765838 PMCID: PMC9913778 DOI: 10.3390/cancers15030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
PIEZO1 is ubiquitously expressed in cells in different kinds of tissues throughout the body, which can sense physical or mechanical stimuli and translate them into intracellular electrochemical signals to regulate organism functions. In particular, PIEZO1 appears in complex interactive regulatory networks as a central node, governing normal and pathological functions in the body. However, the effect and mechanism of the activation or expression of PIEZO1 in diseases of the central nervous system (CNS) remain unclear. On one hand, in CNS diseases, pathophysiological processes in neurons and glial are often accompanied by variations in the mechanical properties of the cellular and extracellular matrix stiffness. The expression of PIEZO1 can therefore be upregulated, in responding to mechanical stimulation, to drive the biological process in cells, which in turns indirectly affects the cellular microenvironment, resulting in alterations of the cellular status. On the other hand, it may have contradictory effects with the change of active patterns and/or subcellular location. This review highlights the biological processes involved with PIEZO1 in CNS cells, with special emphasis on its multiple roles in glioma-associated phenotypes. In conclusion, PIEZO1 can be used as an indicator to assess the malignancy and prognosis of patients with gliomas, as well as a therapeutic target for clinical application following fully exploring the potential mechanism of PIEZO1 in CNS diseases.
Collapse
|
24
|
Zhu T, Guo J, Wu Y, Lei T, Zhu J, Chen H, Kala S, Wong KF, Cheung CP, Huang X, Zhao X, Yang M, Sun L. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience 2023; 26:105993. [PMID: 36798430 PMCID: PMC9926228 DOI: 10.1016/j.isci.2023.105993] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Microglia are the brain's resident immune cells, performing surveillance to promote homeostasis and healthy functioning. While microglial chemical signaling is well-studied, mechanical cues regulating their function are less well-understood. Here, we investigate the role of the mechanosensitive ion channel Piezo1 in microglia migration, pro-inflammatory cytokine production, and stiffness sensing. In Piezo1 knockout transgenic mice, we demonstrated the functional expression of Piezo1 in microglia and identified genes whose expression was consequently affected. Functional assays revealed that Piezo1 deficiency in microglia enhanced migration toward amyloid β-protein, and decreased levels of pro-inflammatory cytokines produced upon stimulation by lipopolysaccharide, both in vitro and in vivo. The phenomenon could be mimicked or reversed chemically using a Piezo1-specific agonist or antagonist. Finally, we also showed that Piezo1 mediated the effect of substrate stiffness-induced migration and cytokine expression. Altogether, we show that Piezo1 is an important molecular mediator for microglia, its activation modulating microglial migration and immune responses.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jinghui Guo
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Yong Wu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Ting Lei
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jiejun Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Hui Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shashwati Kala
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Kin Fung Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Chi Pong Cheung
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xiaohui Huang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xinyi Zhao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Minyi Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Lei Sun
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China,Corresponding author
| |
Collapse
|
25
|
Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, Shen H, Chai G, Zhang B, Chen S, Cai Z, Wu C, Hong F, Li H, Chen S, Xiao N, Wang ZX, Zhang X, Wang B, Zhang L, Mo W. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer's disease. Neuron 2023; 111:15-29.e8. [PMID: 36368316 DOI: 10.1016/j.neuron.2022.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/15/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
The pathology of Alzheimer's disease (AD) is featured with extracellular amyloid-β (Aβ) plaques, whose impact on the mechanical properties of the surrounding brain tissues is unclear. Microglia sense and integrate biochemical cues of the microenvironment. However, whether the microglial mechanosensing pathways influence AD pathogenesis is unknown. Here, we surveyed the elevated stiffness of Aβ-plaque-associated tissues and observed the selective upregulation of the mechanosensitive ion channel Piezo1 in Aβ-plaque-associated microglia. Piezo1 sensed the stiffness stimuli of Aβ fibrils and subsequently induced Ca2+ influx for microglial clustering, phagocytosis, and compacting of Aβ plaques. Microglia lacking Piezo1 led to the exacerbation of Aβ pathology and cognitive decline, whereas pharmacological activation of microglial Piezo1 ameliorated brain Aβ burden and cognitive impairment in 5 × FAD mice. Together, our results reveal that Piezo1, a mechanosensor of Aβ fibril stiffness in microglia, represents a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongrui Zhu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qihua Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huidan Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China; Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guolin Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Boxin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Shaoxuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zhiyu Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chongxin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongda Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Naian Xiao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhan-Xiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
26
|
Abstract
Classically, microglia recognize and internalize amyloid-β (Aβ) via it binding to cell surface receptors. In this issue of Neuron, Hu et al.1 report that microglia "feel" and internalize Aβ plaques using the stiffness-sensing channel Piezo1. This could allow new approaches to treating Alzheimer's disease.
Collapse
|
27
|
Bryniarska-Kubiak N, Kubiak A, Basta-Kaim A. Mechanotransductive Receptor Piezo1 as a Promising Target in the Treatment of Neurological Diseases. Curr Neuropharmacol 2023; 21:2030-2035. [PMID: 36173070 PMCID: PMC10556366 DOI: 10.2174/1570159x20666220927103454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events. Piezo1 is expressed in various central nervous system cells, while its expression may be affected in the course of various pathological conditions. Recently, thanks to the development of Piezo1 modulators (i.e. Yoda1, Jedi1/2 and Dooku2), it is possible to study the role of Piezo1 in the pathogenesis of various neurological diseases including ischemia, glioma, and age-related dementias. The results obtained in this field suggest that proper modulation of Piezo1 receptor might be beneficial in the course of various neurological diseases.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| |
Collapse
|
28
|
Völkner M, Wagner F, Steinheuer LM, Carido M, Kurth T, Yazbeck A, Schor J, Wieneke S, Ebner LJA, Del Toro Runzer C, Taborsky D, Zoschke K, Vogt M, Canzler S, Hermann A, Khattak S, Hackermüller J, Karl MO. HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids. Nat Commun 2022; 13:6183. [PMID: 36261438 PMCID: PMC9581928 DOI: 10.1038/s41467-022-33848-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.
Collapse
Affiliation(s)
- Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Ali Yazbeck
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jana Schor
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - David Taborsky
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Marlen Vogt
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Hermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Shahryar Khattak
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
30
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
31
|
Velasco-Estevez M, Koch N, Klejbor I, Caratis F, Rutkowska A. Mechanoreceptor Piezo1 Is Downregulated in Multiple Sclerosis Brain and Is Involved in the Maturation and Migration of Oligodendrocytes in vitro. Front Cell Neurosci 2022; 16:914985. [PMID: 35722613 PMCID: PMC9204635 DOI: 10.3389/fncel.2022.914985] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanical properties of the brain such as intracranial pressure or stiffness of the matrix play an important role in the brain’s normal physiology and pathophysiology. The physical properties are sensed by the cells through mechanoreceptors and translated into ion currents which activate multiple biochemical cascades allowing the cells to adapt and respond to changes in their microenvironment. Piezo1 is one of the first identified mechanoreceptors. It modulates various central nervous system functions such as axonal growth or activation of astrocytes. Piezo1 signaling was also shown to play a role in the pathophysiology of Alzheimer’s disease. Here, we explore the expression of the mechanoreceptor Piezo1 in human MO3.13 oligodendrocytes and human MS/non-MS patients’ brains and investigate its putative effects on oligodendrocyte proliferation, maturation, and migration. We found that Piezo1 is expressed in human oligodendrocytes and oligodendrocyte progenitor cells in the human brain and that its inhibition with GsMTx4 leads to an increment in proliferation and migration of MO3.13 oligodendrocytes. Activation of Piezo1 with Yoda-1 induced opposite effects. Further, we observed that expression of Piezo1 decreased with MO3.13 maturation in vitro. Differences in expression were also observed between healthy and multiple sclerosis brains. Remarkably, the data showed significantly lower expression of Piezo1 in the white matter in multiple sclerosis brains compared to its expression in the white matter in healthy controls. There were no differences in Piezo1 expression between the white matter plaque and healthy-appearing white matter in the multiple sclerosis brain. Taken together, we here show that Piezo1-induced signaling can be used to modulate oligodendrocyte function and that it may be an important player in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Nina Koch
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Aleksandra Rutkowska,
| |
Collapse
|
32
|
Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Res 2022; 50:e51. [PMID: 35100398 PMCID: PMC9122535 DOI: 10.1093/nar/gkac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
33
|
Li Z, Guo W, Zeng T, Yin J, Feng K, Huang T, Cai YD. Detecting Brain Structure-Specific Methylation Signatures and Rules for Alzheimer's Disease. Front Neurosci 2022; 16:895181. [PMID: 35585924 PMCID: PMC9108872 DOI: 10.3389/fnins.2022.895181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that leads to irreversible behavioral changes, erratic emotions, and loss of motor skills. These conditions make people with AD hard or almost impossible to take care of. Multiple internal and external pathological factors may affect or even trigger the initiation and progression of AD. DNA methylation is one of the most effective regulatory roles during AD pathogenesis, and pathological methylation alterations may be potentially different in the various brain structures of people with AD. Although multiple loci associated with AD initiation and progression have been identified, the spatial distribution patterns of AD-associated DNA methylation in the brain have not been clarified. According to the systematic methylation profiles on different structural brain regions, we applied multiple machine learning algorithms to investigate such profiles. First, the profile on each brain region was analyzed by the Boruta feature filtering method. Some important methylation features were extracted and further analyzed by the max-relevance and min-redundancy method, resulting in a feature list. Then, the incremental feature selection method, incorporating some classification algorithms, adopted such list to identify candidate AD-associated loci at methylation with structural specificity, establish a group of quantitative rules for revealing the effects of DNA methylation in various brain regions (i.e., four brain structures) on AD pathogenesis. Furthermore, some efficient classifiers based on essential methylation sites were proposed to identify AD samples. Results revealed that methylation alterations in different brain structures have different contributions to AD pathogenesis. This study further illustrates the complex pathological mechanisms of AD.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Yin
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sci 2022; 297:120470. [DOI: 10.1016/j.lfs.2022.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
|
35
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Understanding the Mechanobiology of Gliosis May Be the Key to Unlocking Sustained Chronic Performance of Bioelectronic Neural Interfaces. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Mechanosensing and the Hippo Pathway in Microglia: A Potential Link to Alzheimer's Disease Pathogenesis? Cells 2021; 10:cells10113144. [PMID: 34831369 PMCID: PMC8622675 DOI: 10.3390/cells10113144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The activation of microglia, the inflammatory cells of the central nervous system (CNS), has been linked to the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases. How microglia sense the changing brain environment, in order to respond appropriately, is still being elucidated. Microglia are able to sense and respond to the mechanical properties of their microenvironment, and the physical and molecular pathways underlying this mechanosensing/mechanotransduction in microglia have recently been investigated. The Hippo pathway functions through mechanosensing and subsequent protein kinase cascades, and is critical for neuronal development and many other cellular processes. In this review, we examine evidence for the potential involvement of Hippo pathway components specifically in microglia in the pathogenesis of Alzheimer’s disease. We suggest that the Hippo pathway is worth investigating as a mechanosensing pathway in microglia, and could be one potential therapeutic target pathway for preventing microglial-induced neurodegeneration in AD.
Collapse
|
38
|
Duncan J, Sridharan A, Kumar SS, Iradukunda D, Muthuswamy J. Biomechanical micromotion at the neural interface modulates intracellular membrane potentials in vivo. J Neural Eng 2021; 18. [PMID: 34111852 DOI: 10.1088/1741-2552/ac0a56] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 11/12/2022]
Abstract
Objective. Respiration and vascular pulsation cause relative micromotion of brain tissue against stationary implants resulting in repetitive displacements of 2-4µm (due to vascular pulsation) and 10-30µm (due to breathing) in rats. However, the direct functional impact of such tissue micromotion on the cells at the neural interface remains unknown. This study aims to test the hypothesis that micromotion in brain tissue causes changes in membrane potentials (MPs) through the activation of mechanosensitive ion channels.Approach. Intracellular MPs were recorded from Aplysia ganglion cells (n= 8) and cortical cells (n= 15)in vivoinn= 7 adult rats. Cyclic stresses between 0.2 and 4 kPa repeated at 1 Hz were tested in Aplysia ganglion cells. For thein vivoexperiments, 30μM of gadolinium chloride (Gd3+), a non-selective blocker of mechanosensitive ion channels, was used to assess the role of such ion channels.Main results. In Aplysia ganglion cells, there were no MP changes for <1.5 kPa, and action potentials were observed at >3.1 kPa. Drug studies utilizing 5-HT showed an 80% reduction in firing frequency from controls. Inin vivoexperiments, periodic pulsations (1-10 mV) were observed in the MPs of cells that corresponded to breathing and heart-rate. In response to the addition of 30µM Gd3+, we observed a significant reduction (0.5-3 mV) in the periodic pulsations in MP in all cortical cells across four different rats, suggesting the role of mechanosensitive ion channels in mediating MP fluctuations due to tissue micromotion at the neural interface.Significance.Under chronic conditions, the tissue at the interface stiffens due to scar tissue formation, which is expected to increase the likelihood of recruiting stretch-receptors due to tissue micromotion. It is speculated that such chronic sub-threshold pulsations in MPs might trigger the immune response at the neural interface.
Collapse
Affiliation(s)
- Jonathan Duncan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States of America
| | - Arati Sridharan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States of America
| | - Swathy Sampath Kumar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States of America
| | - Diane Iradukunda
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States of America
| | - Jit Muthuswamy
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
39
|
Abstract
Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.
Collapse
Affiliation(s)
- Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA;
| |
Collapse
|
40
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
41
|
Emig R, Knodt W, Krussig MJ, Zgierski-Johnston CM, Gorka O, Groß O, Kohl P, Ravens U, Peyronnet R. Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing. Cells 2021; 10:cells10030663. [PMID: 33809739 PMCID: PMC8002259 DOI: 10.3390/cells10030663] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
The mechanical environment of cardiac cells changes continuously and undergoes major alterations during diseases. Most cardiac diseases, including atrial fibrillation, are accompanied by fibrosis which can impair both electrical and mechanical function of the heart. A key characteristic of fibrotic tissue is excessive accumulation of extracellular matrix, leading to increased tissue stiffness. Cells are known to respond to changes in their mechanical environment, but the molecular mechanisms underlying this ability are incompletely understood. We used cell culture systems and hydrogels with tunable stiffness, combined with advanced biophysical and imaging techniques, to elucidate the roles of the stretch-activated channel Piezo1 in human atrial fibroblast mechano-sensing. Changing the expression level of Piezo1 revealed that this mechano-sensor contributes to the organization of the cytoskeleton, affecting mechanical properties of human embryonic kidney cells and human atrial fibroblasts. Our results suggest that this response is independent of Piezo1-mediated ion conduction at the plasma membrane, and mediated in part by components of the integrin pathway. Further, we show that Piezo1 is instrumental for fibroblast adaptation to changes in matrix stiffness, and that Piezo1-induced cell stiffening is transmitted in a paracrine manner to other cells by a signaling mechanism requiring interleukin-6. Piezo1 may be a new candidate for targeted interference with cardiac fibroblast function.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wiebke Knodt
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Mario J. Krussig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.G.); (O.G.)
| | - Olaf Groß
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.G.); (O.G.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- Correspondence:
| |
Collapse
|
42
|
Genome-wide analysis suggests the importance of vascular processes and neuroinflammation in late-life antidepressant response. Transl Psychiatry 2021; 11:127. [PMID: 33589590 PMCID: PMC7884410 DOI: 10.1038/s41398-021-01248-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Antidepressant outcomes in older adults with depression is poor, possibly because of comorbidities such as cerebrovascular disease. Therefore, we leveraged multiple genome-wide approaches to understand the genetic architecture of antidepressant response. Our sample included 307 older adults (≥60 years) with current major depression, treated with venlafaxine extended-release for 12 weeks. A standard genome-wide association study (GWAS) was conducted for post-treatment remission status, followed by in silico biological characterization of associated genes, as well as polygenic risk scoring for depression, neurodegenerative and cerebrovascular disease. The top-associated variants for remission status and percentage symptom improvement were PIEZO1 rs12597726 (OR = 0.33 [0.21, 0.51], p = 1.42 × 10-6) and intergenic rs6916777 (Beta = 14.03 [8.47, 19.59], p = 1.25 × 10-6), respectively. Pathway analysis revealed significant contributions from genes involved in the ubiquitin-proteasome system, which regulates intracellular protein degradation with has implications for inflammation, as well as atherosclerotic cardiovascular disease (n = 25 of 190 genes, p = 8.03 × 10-6, FDR-corrected p = 0.01). Given the polygenicity of complex outcomes such as antidepressant response, we also explored 11 polygenic risk scores associated with risk for Alzheimer's disease and stroke. Of the 11 scores, risk for cardioembolic stroke was the second-best predictor of non-remission, after being male (Accuracy = 0.70 [0.59, 0.79], Sensitivity = 0.72, Specificity = 0.67; p = 2.45 × 10-4). Although our findings did not reach genome-wide significance, they point to previously-implicated mechanisms and provide support for the roles of vascular and inflammatory pathways in LLD. Overall, significant enrichment of genes involved in protein degradation pathways that may be impaired, as well as the predictive capacity of risk for cardioembolic stroke, support a link between late-life depression remission and risk for vascular dysfunction.
Collapse
|
43
|
Dolgorukova A, Isaeva JE, Verbitskaya E, Lyubashina OA, Giniatullin RА, Sokolov AY. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol 2021; 339:113634. [PMID: 33549548 DOI: 10.1016/j.expneurol.2021.113634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
Migraine is associated with the activation and sensitisation of the trigeminovascular system and is often accompanied by mechanical hyperalgesia and allodynia. The mechanisms of mechanotransduction during a migraine attack are yet unknown. We have proposed that the ion channel Piezo1 may be involved, since it is expressed in endothelial cells as well as in trigeminal ganglion neurons, and thus, may contribute to the activation of both the vascular and neuronal component of the trigeminovascular system. We took advantage of extracellular recordings from the trigeminocervical complex - a key relay centre in the migraine pain pathway, to directly assess the impact of the differently applied Piezo1 agonist Yoda1 on the sensory processing at the spinal level. At a low dose, Yoda1 slightly facilitated the ongoing firing of central trigeminovascular neurons, however, at a high dose, this substance contributed to the suppression of their activity. Using intravital microscopy, we have revealed that Yoda1 at high dose can also induce the dilation of meningeal arteries innervated by trigeminal afferents. Collectively, here we have identified both neuronal and vascular modulation via selective activation of mechanosensitive Piezo1 channels, which provide new evidence in favour of the Piezo1 role in migraine pathogenesis. We propose several mechanisms that may underlie the revealed effects of Yoda1.
Collapse
Affiliation(s)
- Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia.
| | - Julia E Isaeva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Elena Verbitskaya
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Olga A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Rashid А Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
44
|
Fang XZ, Zhou T, Xu JQ, Wang YX, Sun MM, He YJ, Pan SW, Xiong W, Peng ZK, Gao XH, Shang Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci 2021; 11:13. [PMID: 33422128 PMCID: PMC7796548 DOI: 10.1186/s13578-020-00522-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao-Miao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hui Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Mampay M, Velasco-Estevez M, Rolle SO, Chaney AM, Boutin H, Dev KK, Moeendarbary E, Sheridan GK. Spatiotemporal immunolocalisation of REST in the brain of healthy ageing and Alzheimer's disease rats. FEBS Open Bio 2020; 11:146-163. [PMID: 33185010 PMCID: PMC7780110 DOI: 10.1002/2211-5463.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
In the brain, REST (Repressor Element‐1 Silencing Transcription factor) is a key regulator of neuron cell‐specific gene expression. Nuclear translocation of neuronal REST has been shown to be neuroprotective in a healthy ageing context. In contrast, inability to upregulate nuclear REST is thought to leave ageing neurons vulnerable to neurodegenerative stimuli, such as Alzheimer’s disease (AD) pathology. Hippocampal and cortical neurons are known to be particularly susceptible to AD‐associated neurodegeneration. However, REST expression has not been extensively characterised in the healthy ageing brain. Here, we examined the spatiotemporal immunolocalisation of REST in the brains of healthy ageing wild‐type Fischer‐344 and transgenic Alzheimer’s disease rats (TgF344‐AD). Nuclear expression of REST increased from 6 months to 18 months of age in the hippocampus, frontal cortex and subiculum of wild‐type rats, but not in TgF344‐AD rats. No changes in REST were measured in more posterior cortical regions or in the thalamus. Interestingly, levels of the presynaptic marker synaptophysin, a known gene target of REST, were lower in CA1 hippocampal neurons of 18‐month TgF344‐AD rats compared to 18‐month wild‐types, suggesting that elevated nuclear REST may protect against synapse loss in the CA1 of 18‐month wild‐type rats. High REST expression in ageing wild‐type rats did not, however, protect against axonal loss nor against astroglial reactivity in the hippocampus. Taken together, our data confirm that changes in nuclear REST expression are context‐, age‐ and brain region‐specific. Moreover, key brain structures involved in learning and memory display elevated REST expression in healthy ageing wild‐type rats but not TgF344‐AD rats.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - María Velasco-Estevez
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Sara O Rolle
- The Sainsbury Welcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - Aisling M Chaney
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | | | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
46
|
Caolo V, Debant M, Endesh N, Futers TS, Lichtenstein L, Bartoli F, Parsonage G, Jones EA, Beech DJ. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. eLife 2020; 9:50684. [PMID: 32484440 PMCID: PMC7295575 DOI: 10.7554/elife.50684] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.
Collapse
Affiliation(s)
- Vincenza Caolo
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Naima Endesh
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Laeticia Lichtenstein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Av Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
47
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
48
|
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmond, Virginiaand
| | - Laszlo Farkas
- College of MedicineThe Ohio State UniversityColumbus, Ohio
| |
Collapse
|
49
|
Ayata P, Schaefer A. Innate sensing of mechanical properties of brain tissue by microglia. Curr Opin Immunol 2020; 62:123-130. [PMID: 32058296 PMCID: PMC7067639 DOI: 10.1016/j.coi.2020.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
Abstract
External organic or inorganic objects (foreign bodies) that are inadvertently or purposefully placed in the human or animal tissues can trigger local tissue responses that aim at the elimination and/or segregation of foreign bodies from the tissue. The foreign body response (FBR) may have major implications for neurodegeneration associated with the formation of aberrant protein-based aggregates or plaques. The distinct physical features of the plaques, including high rigidity and varying surface properties, may trigger microglial mechanosensing of the plaque as a foreign body. The microglial FBR may have a dual function by promoting and/or suppressing the plaque driven neurodegeneration. Microglial contact with the plaque may trigger inflammatory activation of microglia and support microglia-driven neuronal damage. Conversely, persistent microglial activation may trigger the formation of a microglia-supported cell barrier that segregates and compacts the plaques thus preventing further plaque-induced damage to healthy neurons.
Collapse
Affiliation(s)
- Pinar Ayata
- Nash Family Department of Neuroscience, Center for Glial Biology, Ronald M. Loeb Center for Alzheimer’s Disease, Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Ronald M. Loeb Center for Alzheimer’s Disease, Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY,Corresponding author
| |
Collapse
|
50
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|