1
|
Lock SK, Kappel DB, Owen MJ, Walters JTR, O'Donovan MC, Pardiñas AF, Legge SE. Antipsychotic and pharmacogenomic effects on cross-sectional symptom severity and cognitive ability in schizophrenia. EBioMedicine 2025; 116:105745. [PMID: 40347835 PMCID: PMC12139436 DOI: 10.1016/j.ebiom.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND People with schizophrenia differ in the type and severity of symptoms experienced, as well as their response to medication. A better understanding of the factors that influence this heterogeneity is necessary for the development of individualised patient care. Here, we sought to investigate the relationships between phenotypic severity and both medication and pharmacogenomic variables in a cross-sectional sample of people with schizophrenia or schizoaffective disorder depressed type. METHODS Confirmatory factor analysis derived five dimensions relating to current symptom severity (positive symptoms, negative symptoms of diminished expressivity, negative symptoms of reduced motivation and pleasure, depression and suicide) and cognitive ability in participants prescribed with antipsychotic medication. Linear models were fit to test for associations between medication and pharmacogenomic variables with dimension scores in the full sample (N = 585), and in a sub-sample of participants prescribed clozapine (N = 215). FINDINGS Lower cognitive ability was associated with higher chlorpromazine-equivalent daily antipsychotic dose (β = -0.12; 95% CI, -0.19 to -0.05; p = 0.001) and with the prescription of clozapine (β = -0.498; 95% CI, -0.65 to -0.35; p = 3 × 10-10) and anticholinergic medication (β = -0.345; 95% CI, -0.55 to -0.14; p = 8 × 10-4). We also found associations between pharmacogenomics-inferred cytochrome P450 (CYP) enzyme activity and symptom dimensions. Increased genotype-predicted CYP2C19 and CYP3A5 activity were associated with reduced severity of the positive (β = -0.108; 95% CI, -0.19 to -0.03; p = 0.009) and both negative symptom dimensions (β = -0.113; 95% CI, -0.19 to -0.03; p = 0.007; β = -0.106; 95% CI, -0.19 to -0.02; p = 0.012), respectively. Faster predicted CYP1A2 activity was associated with higher cognitive dimension scores in people taking clozapine (β = 0.17; 95% CI, 0.05-0.29; p = 0.005). INTERPRETATION Our results confirm the importance of taking account of medication history (and particularly antipsychotic type and dose) in assessing potential correlates of cognitive impairment or poor functioning in patients with schizophrenia. We also highlight the potential for pharmacogenomic variation to be a useful tool to help guide drug prescription, although these findings require further validation. FUNDING Medical Research Council (MR/Y004094/1) and The National Center for Mental Health, funded by the Welsh Government through Health and Care Research Wales. SKL was funded by a PhD studentship from Mental Health Research UK (MHRUK). DBK, JTRW, MCOD and AFP were supported by the European Union's Horizon 2020 research and innovation programme under grant agreement 964874.
Collapse
Affiliation(s)
- Siobhan K Lock
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Djenifer B Kappel
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom.
| |
Collapse
|
2
|
Johansson B, Rönnbäck L. The Brain Fatigue Syndrome-Symptoms, Probable Definition, and Pathophysiological Mechanisms. J Clin Med 2025; 14:3271. [PMID: 40429267 PMCID: PMC12111823 DOI: 10.3390/jcm14103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Fatigue is a common consequence of traumatic brain injury, neurological diseases or developmental disorders, and systemic inflammatory diseases, including autoimmune conditions that affect the brain. This condition is characterized by reduced endurance for cognitive tasks, diminished quality of life, and impaired work capacity. In addition to cognitive difficulties, individuals often experience disproportionately long recovery times after demanding tasks, emotional instability, stress sensitivity, sensory sensitivity, impaired ability to initiate activities, and sleep disturbances. Tension headaches frequently occur when the brain is excessively activated by mental activity. In this paper, we propose the term "Brain Fatigue Syndrome" (BFS) as a collective name for the symptoms closely associated with this pathological fatigue resulting from brain impact. BFS can be identified through interviews and measured using the self-assessment instrument, the Mental Fatigue Scale (MFS). We suggest potential underlying mechanisms at the cellular level for the BFS symptom complex, including astrocyte dysfunction with impaired glutamate signaling and glucose uptake, mitochondrial dysfunction, blood-brain barrier dysfunction, and the activation of microglia and mast cells. In conclusion, BFS suggests a general brain impact. The symptoms associated with BFS typically resolve when the injury or disease heals. However, in some individuals, BFS persists even after the injury or illness has ostensibly healed.
Collapse
Affiliation(s)
- Birgitta Johansson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden;
| | | |
Collapse
|
3
|
Castellote-Caballero Y, Beltrán-Arranz A, Aibar-Almazán A, Carcelén-Fraile MDC, Rivas-Campo Y, López-Ríos L, Vega-Morales T, González-Martín AM. Acute Supplementation of Soluble Mango Leaf Extract (Zynamite ® S) Improves Mental Performance and Mood: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Pharmaceuticals (Basel) 2025; 18:571. [PMID: 40284006 PMCID: PMC12030201 DOI: 10.3390/ph18040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: A mango (Mangifera indica) leaf extract (Zynamite®), rich in the polyphenol mangiferin, has been demonstrated to modulate brain activity, boost cognitive function, and reduce mental fatigue. Research evidence supports that improving the solubility of this extract could significantly enhance its efficacy as an active ingredient. This study examined the effects of a soluble version of Zynamite®, Zynamite® S (Zyn-S), on cognitive function and mood in young adults at low doses. Methods: A total of 119 university students were enrolled in the study. Participants were randomly assigned to receive either 100 mg, 150 mg, or placebo in a double-blind crossover design. Short- and long-term memory were evaluated using the Rey Auditory Verbal Learning Test (RAVLT), executive functions with the Trail Making Test (TMT), processing speed with the Digit Symbol Substitution Test (DSST), and selective attention with the Stroop Color and Word Test. Additionally, mood was assessed using the Spanish short version of the Profile of Mood States (POMS). All these assessments were conducted before taking the product and at 30 min, 3 h, and 5 h post-intake. Results: The results demonstrated that participants who received Zynamite® S experienced significant improvements in reduced tension, depression, and confusion, suggesting an enhancement in mental clarity and overall emotional well-being. Both interventions also improved processing speed and cognitive flexibility. However, no significant differences were observed in short- and long-term verbal memory. Conclusions: In summary, these findings support Zynamite® S as a natural nootropic capable of acutely improving key cognitive functions and emotional balance at low doses in young adults, with sustained efficacy for at least five hours.
Collapse
Affiliation(s)
- Yolanda Castellote-Caballero
- Department of Health Sciences, Faculty of Health Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Ana Beltrán-Arranz
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain; (A.B.-A.); (T.V.-M.)
| | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - María del Carmen Carcelén-Fraile
- Department of Educational Sciences, Faculty of Social Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Yulieth Rivas-Campo
- Faculty of Human and Social Sciences, University of San Buenaventura-Cali, Santiago de Cali 760045, Colombia
| | - Laura López-Ríos
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain; (A.B.-A.); (T.V.-M.)
| | - Tanausú Vega-Morales
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain; (A.B.-A.); (T.V.-M.)
| | - Ana María González-Martín
- Department of Psychology, Faculty of Health Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
- Department of Psychology, Higher Education Center for Teaching and Educational Research, 28014 Madrid, Spain
| |
Collapse
|
4
|
Tong S, Wang R, Li H, Tong Z, Geng D, Zhang X, Ren C. Executive dysfunction in Parkinson's disease: From neurochemistry to circuits, genetics and neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111272. [PMID: 39880275 DOI: 10.1016/j.pnpbp.2025.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Cognitive decline is one of the most significant non-motor symptoms of Parkinson's disease (PD), with executive dysfunction (EDF) being the most prominent characteristic of PD-associated cognitive deficits. Currently, lack of uniformity in the conceptualization and assessment scales for executive functions impedes the early and accurate diagnosis of EDF in PD. The neurobiological mechanisms of EDF in PD remain poorly understood. Moreover, the treatment of cognitive impairment in PD has progressed slowly and with limited efficacy. Thus, this review explores the characteristics and potential mechanisms of EDF in PD from multiple perspectives, including the concept of executive function, commonly used neuropsychological tests, neurobiochemistry, genetics, electroencephalographic activity and neuroimaging. The available evidence indicates that degeneration of the frontal-striatal circuit, along with mutations in the Catechol-O-methyltransferase (COMT) gene and Leucine-rich repeat kinase 2 (LRRK2) gene, may contribute to EDF in patients with PD. The increase in theta and delta waves, along with the decrease in alpha waves, offers potential biomarkers for the early identification and monitoring of EDF, as well as the development of dementia in patients with PD. The PD cognition-related pattern (PDCP) pattern may serve as a tool for monitoring and assessing cognitive function progression in these patients and is anticipated to become a biomarker for cognitive disorders associated with PD. The aim is to provide new insights for the early and precise diagnosis and treatment of EDF in PD.
Collapse
Affiliation(s)
- Shuyan Tong
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruiwen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Huihua Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, China
| | - Zhu Tong
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
5
|
Simmatis LE, Russo EE, Steininger T, Riddell H, Chen E, Chiu Q, Lin M, Oh D, Taheri P, Harmsen IE, Samuel N. EEG biomarkers for Alzheimer's disease: A novel automated pipeline for detecting and monitoring disease progression. J Alzheimers Dis 2025:13872877251327754. [PMID: 40101271 DOI: 10.1177/13872877251327754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder that profoundly alters brain function and organization. Currently, there is a lack of validated functional biomarkers to aid in diagnosing and classifying AD. Therefore, there is a pressing need for early, accurate, non-invasive, and accessible methods to detect and characterize disease progression. Electroencephalography (EEG) has emerged as a minimally invasive technique to quantify functional changes in neural activity associated with AD. However, challenges such as poor signal-to-noise ratio-particularly for resting-state (rsEEG) recordings-and issues with standardization have hindered its broader application.ObjectiveTo conduct a pilot analysis of our custom automated preprocessing and feature extraction pipeline to identify indicators of AD and correlates of disease progression.MethodsWe analyzed data from 36 individuals with AD and 29 healthy participants recorded using a standard 19-channel EEG and features were processed using our custom end-t-end pipeline. Various features encompassing amplitude, power, connectivity, complexity, and microstates were extracted. Unsupervised machine learning (uniform manifold approximation and projection) and supervised learning (random forest classifiers with nested cross-validation) were used to characterize the dataset and identify differences between AD and healthy groups.ResultsOur pipeline successfully detected several new and previously established EEG-based measures indicative of AD status and progression, demonstrating strong external validity.ConclusionsOur findings suggest that this automated approach provides a promising initial framework for implementing EEG biomarkers in the AD patient population, paving the way for improved diagnostic and monitoring strategies.
Collapse
Affiliation(s)
- Leif Er Simmatis
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | | | | | - Evelyn Chen
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Queenny Chiu
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Michelle Lin
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Donghun Oh
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | | | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cove Neurosciences Inc., Toronto, Ontario, Canada
| |
Collapse
|
6
|
Chang L, He Y, Li B. Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress. Psychoneuroendocrinology 2025; 172:107275. [PMID: 39787865 DOI: 10.1016/j.psyneuen.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified. The medial septum (MS) is a crucial brain region in regulating anxiety and expresses neurotensin receptor 1 (NTS1). In the current study, we examined the role of NT/NTS1 in the MS on the anxiety-like behaviors of rats in non-stress and acute stress conditions. We reported that intra-MS infusion of NT produced remarkable anxiogenic effect in behavioral tests. The anxiogenic effect could be blocked by NTS1 antagonist SR48692 pretreatment. Microinjection of NTS1 antagonist to block endogenously released NT in the MS had no effect on anxiety-like behaviors in non-stressed rats, but significantly reduced anxiety in acute restraint stressed rats. Moreover, molecular knockdown of NTS1 in the MS ameliorated anxiety induced by acute restraint stress, also confirming the pharmacological results. Our study implicates NT and its receptors as potential targets for therapeutic interventions of psychiatric diseases, such as anxiety.
Collapse
MESH Headings
- Animals
- Receptors, Neurotensin/metabolism
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/physiology
- Receptors, Neurotensin/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Rats
- Male
- Neurotensin/metabolism
- Neurotensin/pharmacology
- Rats, Sprague-Dawley
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Septal Nuclei/metabolism
- Septal Nuclei/drug effects
- Pyrazoles/pharmacology
- Quinolines/pharmacology
- Restraint, Physical
- Disease Models, Animal
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Harvey PD. Muscarinic M1 and M4 agents as treatments for schizophrenia: what do they do and who do they do it for? Expert Opin Emerg Drugs 2025:1-5. [PMID: 39841159 DOI: 10.1080/14728214.2025.2458053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Affiliation(s)
- Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Saral S, Mercantepe T, Topçu A, Kaya AK, Öztürk A. Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway. Life (Basel) 2024; 14:1672. [PMID: 39768379 PMCID: PMC11728090 DOI: 10.3390/life14121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Dexmedetomidine (DEX) is a selective alpha-2 adrenergic receptor agonist with sedative and anxiolytic properties. Increasing evidence reports that DEX has a neuroprotective effect. In this study, we investigated the potential effects of DEX on learning and memory functions in rats with experimental cognitive impairment. In the study, 21 adult male rats were used. The rats were divided into three groups, namely control, Scopolamine (SCOP) and SCOP + DEX. Cognitive impairment was induced with 1 mg/kg SCOP daily for 21 days. DEX was administered at a dose of 10 µg/kg between days 14 and 21 of the experiment. Following the injections, a spatial memory test was performed with a Morris Water Maze (MWM). At the end of the experiment, the hippocampus was dissected. The brain-derived neurotrophic factor (BDNF), acetylcholine (ACh) and acetylcholinesterase (AChE) levels were determined by ELISA. The tropomyosin receptor kinase B (TrkB) and Cyclic AMP-Response Element-Binding Protein (CREB) levels were measured by immunohistochemistry. DEX treatment improved the learning performance of rats compared to SCOP for 5 days. However, it did not significantly change memory performance. DEX increased the BDNF and ACh levels in the hippocampus while decreasing the AChE levels. Similarly, DEX treatment significantly increased CREB phosphorylation. No significant difference was observed between the TrkB receptor levels of the groups. This study demonstrated that the role of DEX in reducing SCOP-induced cognitive impairment is partially mediated by the increase in BDNF/TrkB/CREB signaling pathway activity.
Collapse
Affiliation(s)
- Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Atilla Topçu
- Department of Medical Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, 43020 Kütahya, Türkiye;
| | - Aykut Öztürk
- Department of Pharmacology, Ministry of Health, Derince Education and Research Hospital, 41100 Kocaeli, Türkiye;
| |
Collapse
|
9
|
Suzuki H, Tagai K, Ono M, Shimizu H, Endo H, Matsumoto H, Kubota M, Kataoka Y, Moriguchi S, Kurose S, Ichihashi M, Shinotoh H, Matsuoka K, Kokubo N, Tatebe H, Matsuura S, Yamamoto Y, Momota Y, Kawamura K, Zhang MR, Takado Y, Shimada H, Tokuda T, Onaya M, Mimura M, Kakita A, Sahara N, Uchida H, Higuchi M, Takahata K. Distinct tau pathologies in the nucleus basalis of Meynert between early-onset and late-onset Alzheimer's disease patients revealed by positron emission tomography. J Alzheimers Dis 2024; 102:1271-1285. [PMID: 39529384 DOI: 10.1177/13872877241297382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Tau accumulation in the nucleus basalis of Meynert (nbM) has been documented in Alzheimer's disease (AD), but its relationship to neuropathological changes in other brain regions and cognitive deficits remains unclear, particularly between early-onset AD (EOAD) and late-onset AD (LOAD). OBJECTIVE To evaluate tau accumulation patterns in the nbM and other brain regions in EOAD and LOAD using 18F-florzolotau PET and examine correlations with cognitive function. METHODS Thirty-eight amyloid-positive AD patients (15 EOAD, 23 LOAD) and 46 healthy controls underwent 18F-florzolotau PET. Tau levels were quantified in the nbM and Braak-staging regions. Postmortem brain samples were examined to assess 18F-florzolotau binding to tau deposits. RESULTS EOAD showed a higher overall tau burden, including in the nbM, compared with LOAD. However, nbM tau levels correlated more strongly with cognitive decline in LOAD than EOAD. The relationship between nbM tau and neocortical tau differed between EOAD and LOAD. Histopathology revealed abundant 18F-florzolotau labeling of neurofibrillary tangles (NFTs) and ghost tangles in AD nbM samples. CONCLUSIONS This study provides the first in vivo PET evidence of differential nbM tau pathology between EOAD and LOAD, with higher accumulation but weaker correlation to cognition in EOAD. The distinct relationships between nbM and cortical tau in EOAD and LOAD suggest divergent pathological trajectories. 18F-florzolotau PET successfully visualized NFTs and extracellular ghost tangles in the nbM across AD stages. These findings highlight the importance of considering age of onset when evaluating tau pathology and its clinical correlates in AD.
Collapse
Affiliation(s)
- Hisaomi Suzuki
- National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, Chiba, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Department of Neuropsychiatry, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Maiko Ono
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hideki Matsumoto
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Manabu Kubota
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Sho Moriguchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shin Kurose
- National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, Chiba, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masanori Ichihashi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Harutsugu Tatebe
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Sayo Matsuura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yasuharu Yamamoto
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yuki Momota
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takahiko Tokuda
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Mitsumoto Onaya
- National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Center for Preventive Medicine, Keio University, Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hiroyuki Uchida
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Neuropychiatry, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
10
|
Moyano P, Flores A, San Juan J, García J, Anadón MJ, Plaza JC, Naval MV, Fernández MDLC, Guerra-Menéndez L, Del Pino J. Imidacloprid unique and repeated treatment produces cholinergic transmission disruption and apoptotic cell death in SN56 cells. Food Chem Toxicol 2024; 193:114988. [PMID: 39251036 DOI: 10.1016/j.fct.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function. Most cholinergic neuronal bodies are present in the basal forebrain (BF), regulating memory and learning process, and their dysfunction or loss produces cognition decline. BF SN56 cholinergic wild-type or acetylcholinesterase (AChE), β-amyloid-precursor-protein (βAPP), Tau, glycogen-synthase-kinase-3-beta (GSK3β), beta-site-amyloid-precursor-protein-cleaving enzyme 1 (BACE1), and/or nuclear-factor-erythroid-2-related-factor-2 (NRF2) silenced cells were treated for 1 and 14 days with IMI (1 μM-800 μM) with or without recombinant heat-shock-protein-70 (rHSP70), recombinant proteasome 20S (rP20S) and with or without N-acetyl-cysteine (NAC) to determine the possible mechanisms that mediate this effect. IMI treatment for 1 and 14 days altered cholinergic transmission through AChE inhibition, and triggered cell death partially through oxidative stress generation, AChE-S overexpression, HSP70 downregulation, P20S inhibition, and Aβ and Tau peptides accumulation. IMI produced oxidative stress through reactive oxygen species production and antioxidant NRF2 pathway downregulation, and induced Aβ and Tau accumulation through BACE1, GSK3β, HSP70, and P20S dysfunction. These results may assist in determining the mechanisms that produce cognitive dysfunction observed following IMI exposure and provide new therapeutic tools.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier San Juan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadón
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Jose Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María de la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucía Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Yohn SE, Harvey PD, Brannan SK, Horan WP. The potential of muscarinic M 1 and M 4 receptor activators for the treatment of cognitive impairment associated with schizophrenia. Front Psychiatry 2024; 15:1421554. [PMID: 39483736 PMCID: PMC11525114 DOI: 10.3389/fpsyt.2024.1421554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cognitive impairment is a core symptom of schizophrenia and a major determinant of poor long-term functional outcomes. Despite considerable efforts, we do not yet have any approved pharmacological treatments for cognitive impairment associated with schizophrenia (CIAS). A combination of advances in pre-clinical research and recent clinical trial findings have led to a resurgence of interest in the cognition-enhancing potential of novel muscarinic acetylcholine receptor (mAChR) agonists in schizophrenia. This article provides an overview of the scientific rationale for targeting M1 and M4 mAChRs. We describe the evolution of neuroscience research on these receptors since early drug discovery efforts focused on the mAChR agonist xanomeline. This work has revealed that M1 and M4 mAChRs are highly expressed in brain regions that are implicated in cognition. The functional significance of M1 and M4 mAChRs has been extensively characterized in animal models via use of selective receptor subtype compounds through neuronal and non-neuronal mechanisms. Recent clinical trials of a dual M1/M4 mAChR agonist show promising, replicable evidence of potential pro-cognitive effects in schizophrenia, with several other mAChR agonists in clinical development.
Collapse
Affiliation(s)
| | - Phillip D. Harvey
- Division of Psychology, University of Miami, Miami, FL, United States
| | | | - William P. Horan
- Bristol Myers Squibb, Princeton, NJ, United States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
13
|
Nam Y, Kim S, Park YH, Kim B, Shin SJ, Leem SH, Park HH, Jung G, Lee J, Kim H, Yoo D, Kim HS, Moon M. Investigating the impact of environmental enrichment on proteome and neurotransmitter-related profiles in an animal model of Alzheimer's disease. Aging Cell 2024; 23:e14231. [PMID: 38952076 PMCID: PMC11488327 DOI: 10.1111/acel.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aβ accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Sujin Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Yong Ho Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Byeong‐Hyeon Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | | | | | | | - Doo‐Han Yoo
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
- Department of Occupational TherapyKonyang UniversityDaejeonSouth Korea
| | - Hak Su Kim
- Veterans Medical Research InstituteVeterans Health Service Medical CenterSeoulSouth Korea
| | - Minho Moon
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| |
Collapse
|
14
|
Martínez-Cao C, García-Fernández A, González-Blanco L, Sáiz PA, Bobes J, García-Portilla MP. Anticholinergic load: A commonly neglected and preventable risk to cognition during schizophrenia treatment? Schizophr Res Cogn 2024; 37:100317. [PMID: 38745931 PMCID: PMC11092394 DOI: 10.1016/j.scog.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Background Cognitive impairment is a widespread feature of schizophrenia, affecting nearly 80 % of patients. Prior research has linked the anticholinergic burden of psychiatric medications to these cognitive deficits. However, the impact of the anticholinergic burden from medications for physical morbidity remains underexplored. This study aimed to evaluate the anticholinergic burden of psychiatric and physical medications in patients with schizophrenia and assess its impact on cognitive function. Methods A total of 178 patients with schizophrenia were recruited. The assessments included an ad hoc questionnaire for collecting demographic and clinical data. Anticholinergic burden was evaluated using the cumulative Drug Burden Index (cDBI) for each participant, and cognitive function was assessed using MATRICS. Psychopathology was measured using the PANSS, CDSS, CAINS, and the CGI-S. Statistical analysis included Student's t-tests, ANOVA, Pearson correlations, and multiple linear regressions. Results The average cDBI was 1.3 (SD = 0.9). The model developed explained 40.80 % of the variance. The variable with the greatest weight was the cDBI (B = -11.148, p = 0.010). Negative-expression (B = -2.740, p = 0.011) and negative-experiential (B = -1.175, p = 0.030) symptoms were also associated with lower global cognitive score. However, more years of education (B = 5.140, p < 0.001) and cigarettes per day (B = 1.331, p < 0.001) predicted a better global cognitive score. Conclusion This study identified specific predictors of global cognition in schizophrenia, with anticholinergic burden emerging as the strongest factor. Our findings underscore the importance of considering the anticholinergic burden of treatments, in addition to negative symptoms, when designing interventions to optimize or maintain cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Clara Martínez-Cao
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ainoa García-Fernández
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Spain
| | - Pilar A. Sáiz
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Spain
| | - Julio Bobes
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Spain
| | - María Paz García-Portilla
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Spain
| |
Collapse
|
15
|
Cui L, Zhou H, Hao Y, Yang X, Li Z, Gao Y, Zhang Z, Ren L, Ji L, Sun R, Wang Y, Wang X. Effect of ferric citrate on hippocampal iron accumulation and widespread molecular alterations associated with cognitive disorder in an ovariectomized mice model. CNS Neurosci Ther 2024; 30:e70018. [PMID: 39252474 PMCID: PMC11386256 DOI: 10.1111/cns.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Nowadays, the prevalence of cognitive impairment in women has gradually increased, especially in postmenopausal women. There were few studies on the mechanistic effects of iron exposure on neurotoxicity in postmenopausal women. The aim of this study is to investigate the effect of iron accumulation on cognitive ability in ovariectomized mice and its possible mechanism and to provide a scientific basis for the prevention of cognitive dysfunction in postmenopausal women. METHODS Female C57BL/6N ovariectomized model mice were induced with ferric citrate (FAC). The mice were randomly divided into 5 groups: control, sham, ovariectomized (Ovx), Ovx + 50 mg/kg FAC (Ovx + l), and Ovx + 100 mg/kg FAC (Ovx + h). The impact of motor and cognitive function was verified by a series of behavioral tests. The levels of serum iron parameters, malondialdehyde, and superoxide dismutase were measured. The ultrastructure of mice hippocampal microglia was imaged by transmission electron microscopy. The differential expression of hippocampal proteins was analyzed by Tandem Mass Tag labeling. RESULTS Movement and cognitive function in Ovx + l/Ovx + h mice were significantly decreased compared to control and Sham mice. Then, iron exposure caused histopathological changes in the hippocampus of mice. In addition, proteomic analysis revealed that 29/27/41 proteins were differentially expressed in the hippocampus when compared by Ovx vs. Sham, Ovx + l vs. Ovx, as well as Ovx + h vs. Ovx + l groups, respectively. Moreover, transferrin receptor protein (TFR1) and divalent metal transporter 1 (DMT1) protein expression were significantly increased in the iron accumulation mice model with ovariectomy. CONCLUSION Iron exposure could cause histopathological damage in the hippocampus of ovariectomised mice and, by altering hippocampal proteomics, particularly the expression of hippocampal iron metabolism-related proteins, could further influence cognitive impairment in ovariectomized mice.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Huijun Zhou
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yudan Hao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoli Yang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhiqian Li
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yuting Gao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhengya Zhang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Lina Ren
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Linpu Ji
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Ruijie Sun
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yibo Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xian Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
16
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
17
|
Demirel G, Sanajou S, Yirün A, Çakır DA, Özyurt AB, Berkkan A, Baydar T, Erkekoğlu P. Walnut oil: a promising nutraceutical in reducing oxidative stress and improving cholinergic activity in an in vitro Alzheimer's disease model. Toxicol Res (Camb) 2024; 13:tfae097. [PMID: 38957781 PMCID: PMC11215158 DOI: 10.1093/toxres/tfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Improving the quality of life in elderly patients and finding new treatment options for neurological diseases such as Alzheimer's has become one of the priorities in the scientific world. In recent years, the beneficial effects and therapeutic properties of natural foods on neurological health have become a very remarkable issue. Walnut oil (WO) is a promising nutraceutical, with many phytochemicals and polyunsaturated fatty acids and is thought to be promising in the treatment of many neurological diseases and cognitive deficits, such as Alzheimer's disease (AD). Polyphenolic compounds found in WO enhance intraneuronal signaling and neurogenesis and improve the sequestration of insoluble toxic protein aggregates. The objective of this study was to investigate the potential protective and therapeutic effects of WO in a model of AD induced by retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). In order to achieve this, the experimental groups were formed as follows: Control group, WO group, Alzheimer's disease (AD) group, AD + WO applied group (AD + WO). WO supplementation almost significantly reduced oxidative stress in the ad model, providing 2-fold protection against protein oxidation. Additionally, WO showed a significant reduction in tau protein levels (2-fold), increased acetylcholine (ACh) levels (12%), and decreased acetylcholine esterase (AChE) activity (~50%). Since it has been known for centuries that WO does show any adverse effects on human health and has neuroprotective properties, it may be used in the treatment of AD as an additional nutraceutical to drug treatments.
Collapse
Affiliation(s)
- Göksun Demirel
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Institute of Addiction and Forensic Sciences, Department of Forensic Sciences, Çukurova University 01330, Adana, Turkey
| | - Sonia Sanajou
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Aydin University, Istanbul 34320, Türkiye
| | - Anıl Yirün
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Deniz Arca Çakır
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| | - Aylin Balcı Özyurt
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Faculty of Pharmacy, Department of Toxicology, Bahçeşehir University, Istanbul 34353, Turkey
| | - Aysel Berkkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, Ankara 06500, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Pınar Erkekoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
18
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
19
|
Taylor NL, Whyte CJ, Munn BR, Chang C, Lizier JT, Leopold DA, Turchi JN, Zaborszky L, Műller EJ, Shine JM. Causal evidence for cholinergic stabilization of attractor landscape dynamics. Cell Rep 2024; 43:114359. [PMID: 38870015 PMCID: PMC11255396 DOI: 10.1016/j.celrep.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.
Collapse
Affiliation(s)
- Natasha L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Christopher J Whyte
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Catie Chang
- Vanderbilt School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, Washington DC, USA; Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Janita N Turchi
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Laszlo Zaborszky
- Centre for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Eli J Műller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
21
|
Cassity S, Choi IJ, Gregory BH, Igbasanmi AM, Bickford SC, Moore Kiara Tyanni, Seraiah AE, Layfield D, Newman EL. Cholinergic modulation of rearing in rats performing a spatial memory task. Eur J Neurosci 2024; 59:2240-2255. [PMID: 38258622 PMCID: PMC11076174 DOI: 10.1111/ejn.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
Spatial memory encoding depends in part on cholinergic modulation. How acetylcholine supports spatial memory encoding is not well understood. Prior studies indicate that acetylcholine release is correlated with exploration, including epochs of rearing onto hind legs. Here, to test whether elevated cholinergic tone increases the probability of rearing, we tracked rearing frequency and duration while optogenetically modulating the activity of choline acetyltransferase containing (i.e., acetylcholine producing) neurons of the medial septum in rats performing a spatial working memory task (n = 17 rats). The cholinergic neurons were optogenetically inhibited using halorhodopsin for the duration that rats occupied two of the four open arms during the study phase of an 8-arm radial arm maze win-shift task. Comparing rats' behaviour in the two arm types showed that rearing frequency was not changed, but the average duration of rearing epochs became significantly longer. This effect on rearing was observed during optogenetic inhibition but not during sham inhibition or in rats that received infusions of a fluorescent reporter virus (i.e., without halorhodopsin; n = 6 rats). Optogenetic inhibition of cholinergic neurons during the pretrial waiting phase had no significant effect on rearing, indicating a context-specificity of the observed effects. These results are significant in that they indicate that cholinergic neuron activity in the medial septum is correlated with rearing not because it motivates an exploratory state but because it contributes to the processing of information acquired while rearing.
Collapse
Affiliation(s)
- Skylar Cassity
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Irene Jungyeon Choi
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Billy Howard Gregory
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Adeleke Malik Igbasanmi
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Sarah Cristi Bickford
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Moore Kiara Tyanni
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Anna Elisabeth Seraiah
- – Intelligent Systems Engineering, Luddy School of Informatics Computing and Engineering, University Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Dylan Layfield
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
- – Program in Neuroscience, College of Arts and Sciences, Indiana University Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- – Department of Psychological and Brain Sciences, College of Arts and Sciences, IndianaUniversity Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
- – Program in Neuroscience, College of Arts and Sciences, Indiana University Bloomington, 1101 E 10 St., Bloomington, IN, 47405, USA
| |
Collapse
|
22
|
Kimchi EY, Burgos-Robles A, Matthews GA, Chakoma T, Patarino M, Weddington JC, Siciliano C, Yang W, Foutch S, Simons R, Fong MF, Jing M, Li Y, Polley DB, Tye KM. Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife 2024; 12:RP89093. [PMID: 38376907 PMCID: PMC10942609 DOI: 10.7554/elife.89093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.
Collapse
Affiliation(s)
- Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Anthony Burgos-Robles
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- The Department of Neuroscience, Developmental, and Regenerative Biology, Neuroscience Institute & Brain Health Consortium, University of Texas at San AntonioSan AntonioUnited States
| | - Gillian A Matthews
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tatenda Chakoma
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Makenzie Patarino
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Javier C Weddington
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Cody Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Wannan Yang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shaun Foutch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Renee Simons
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Coulter Department of Biomedical Engineering, Georgia Tech & Emory UniversityAtlantaUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKUIDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and EarBostonUnited States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- HHMI Investigator, Member of the Kavli Institute for Brain and Mind, and Wylie Vale Professor at the Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
23
|
Zhang R, Rolls ET, Cheng W, Feng J. Different cortical connectivities in human females and males relate to differences in strength and body composition, reward and emotional systems, and memory. Brain Struct Funct 2024; 229:47-61. [PMID: 37861743 PMCID: PMC10827883 DOI: 10.1007/s00429-023-02720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Sex differences in human brain structure and function are important, partly because they are likely to be relevant to the male-female differences in behavior and in mental health. To analyse sex differences in cortical function, functional connectivity was measured in 36,531 participants (53% female) in the UK Biobank (mean age 69) using the Human Connectome Project multimodal parcellation atlas with 360 well-specified cortical regions. Most of the functional connectivities were lower in females (Bonferroni corrected), with the mean Cohen's d = - 0.18. Removing these as covariates reduced the difference of functional connectivities for females-males from d = - 0.18 to - 0.06. The lower functional connectivities in females were especially of somatosensory/premotor regions including the insula, opercular cortex, paracentral lobule and mid-cingulate cortex, and were correlated with lower maximum workload (r = 0.17), and with higher whole body fat mass (r = - 0.17). But some functional connectivities were higher in females, involving especially the ventromedial prefrontal cortex and posterior cingulate cortex, and these were correlated with higher liking for some rewards such as sweet foods, higher happiness/subjective well-being, and with better memory-related functions. The main findings were replicated in 1000 individuals (532 females, mean age 29) from the Human Connectome Project. This investigation shows the cortical systems with different functional connectivity between females and males, and also provides for the first time a foundation for understanding the implications for behavior of these differences between females and males.
Collapse
Affiliation(s)
- Ruohan Zhang
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
24
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
25
|
Selvaggi P, Fazio L, Toro VD, Mucci A, Rocca P, Martinotti G, Cascino G, Siracusano A, Zeppegno P, Pergola G, Bertolino A, Blasi G, Galderisi S. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr Res 2023; 260:76-84. [PMID: 37633126 DOI: 10.1016/j.schres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Leonardo Fazio
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Veronica Debora Toro
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Poskanzer C, Aly M. Switching between External and Internal Attention in Hippocampal Networks. J Neurosci 2023; 43:6538-6552. [PMID: 37607818 PMCID: PMC10513067 DOI: 10.1523/jneurosci.0029-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN-hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN-hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.SIGNIFICANCE STATEMENT How does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.
Collapse
Affiliation(s)
- Craig Poskanzer
- Department of Psychology, Columbia University, New York, New York 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
27
|
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. Int J Mol Sci 2023; 24:12352. [PMID: 37569727 PMCID: PMC10418487 DOI: 10.3390/ijms241512352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.
Collapse
Affiliation(s)
| | - Steffen Mayerl
- Department of Endocrinology Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
28
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
29
|
Zhu F, Elnozahy S, Lawlor J, Kuchibhotla KV. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat Neurosci 2023; 26:810-819. [PMID: 36973512 PMCID: PMC10625791 DOI: 10.1038/s41593-023-01289-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Cholinergic basal forebrain (CBF) signaling exhibits multiple timescales of activity with classic slow signals related to brain and behavioral states and fast, phasic signals reflecting behavioral events, including movement, reinforcement and sensory-evoked responses. However, it remains unknown whether sensory cholinergic signals target the sensory cortex and how they relate to local functional topography. Here we used simultaneous two-channel, two-photon imaging of CBF axons and auditory cortical neurons to reveal that CBF axons send a robust, nonhabituating and stimulus-specific sensory signal to the auditory cortex. Individual axon segments exhibited heterogeneous but stable tuning to auditory stimuli allowing stimulus identity to be decoded from population activity. However, CBF axons displayed no tonotopy and their frequency tuning was uncoupled from that of nearby cortical neurons. Chemogenetic suppression revealed the auditory thalamus as a major source of auditory information to the CBF. Finally, slow fluctuations in cholinergic activity modulated the fast, sensory-evoked signals in the same axons, suggesting that a multiplexed combination of fast and slow signals is projected from the CBF to the auditory cortex. Taken together, our work demonstrates a noncanonical function of the CBF as a parallel channel for state-dependent sensory signaling to the sensory cortex that provides repeated representations of a broad range of sound stimuli at all points on the tonotopic map.
Collapse
Affiliation(s)
- Fangchen Zhu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Tan C, Nawaz H, Lageman SK, Cloud LJ, Amara AW, Newman BT, Druzgal TJ, Berman BD, Mukhopadhyay N, Barrett MJ. Cholinergic Nucleus 4 Degeneration and Cognitive Impairment in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2023; 38:474-479. [PMID: 36598142 PMCID: PMC10033349 DOI: 10.1002/mds.29306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cholinergic nucleus 4 (Ch4) degeneration is associated with cognitive impairment in Parkinson's disease and dementia with Lewy bodies, but it is unknown if Ch4 degeneration is also present in isolated rapid eye movement sleep behavior disorder (iRBD). OBJECTIVE The aim was to determine if there is evidence of Ch4 degeneration in patients with iRBD and if it is associated with cognitive impairment. METHODS We analyzed the clinical and neuropsychological data of 35 iRBD patients and 35 age- and sex-matched healthy controls. Regional gray matter density (GMD) was calculated for Ch4 using probabilistic maps applied to brain magnetic resonance imaging (MRI). RESULTS Ch4 GMD was significantly lower in the iRBD group compared to controls (0.417 vs. 0.441, P = 0.02). Ch4 GMD was also found to be a significant predictor of letter number sequencing (β-coefficient = 58.31, P = 0.026, 95% confidence interval [7.47, 109.15]), a measure of working memory. CONCLUSIONS iRBD is associated with Ch4 degeneration, and Ch4 degeneration in iRBD is associated with impairment in working memory. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher Tan
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Huma Nawaz
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah K. Lageman
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Leslie J. Cloud
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy W. Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Brian D. Berman
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nitai Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Matthew J. Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Lee LH, Wu SC, Ho CF, Liang WL, Liu YC, Chou CJ. White matter hyperintensities in cholinergic pathways may predict poorer responsiveness to acetylcholinesterase inhibitor treatment for Alzheimer's disease. PLoS One 2023; 18:e0283790. [PMID: 37000849 PMCID: PMC10065432 DOI: 10.1371/journal.pone.0283790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Acetylcholinesterase inhibitor (AChEI) drug regimens are the mainstay treatment options for patients with Alzheimer's disease (AD). Herein, We examined the association between clinical response to AChEI and white matter hyperintensities on magnetic resonance imaging (MRI) scan at baseline. METHODS Between 2020 and 2021, we recruited 101 individuals with a clinical diagnosis of probable AD. Each participant underwent complete neuropsychological testing and 3T (Telsa) brain magnetic resonance imaging. Responsiveness to AChEI, as assessed after 12 months, was designated as less than two points of regression in Mini-Mental State Examination scores (MMSE) and stable clinical dementia rating scale. We also evaluated MRI images by examining scores on the Cholinergic Pathways Hyperintensities Scale (CHIPS), Fazekas scale, and medial temporal atrophy (MTA) scale. RESULTS In our cohort, 52 patients (51.4%) were classified as responders. We observed significantly higher CHIPS scores in the nonresponder group (21.1 ± 12.9 vs. 14.9 ± 9.2, P = 0.007). Age at baseline, education level, sex, Clinical Dementia Rating sum of boxes scores, and three neuroimaging parameters were tested in regression models. Only CHIPS scores predicted clinical response to AChEI treatment. CONCLUSION WMHs in the cholinergic pathways, not diffuse white matter lesions or hippocampal atrophy, correlated with poorer responsiveness to AChEI treatment. Therefore, further investigation into the role of the cholinergic pathway in AD is warranted.
Collapse
Affiliation(s)
- Li-Hua Lee
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Shu-Ching Wu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Cheng-Feng Ho
- Department of Radiology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Wan-Lin Liang
- Department of Medical Research, Far Eastern Hospital, New Taipei City, Taipei, Taiwan
| | - Yi-Chien Liu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
- Department of Education and Research, Medical school of Fu-Jen University, New Taipei City, Taipei, Taiwan
- Geriatric Behavioral Neurology Project, Tohoku University New Industry Hatchery Center (NICHe), Sendai, Japan
- * E-mail:
| | - Chia-Ju Chou
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| |
Collapse
|
33
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
34
|
Rolls ET, Deco G, Huang CC, Feng J. Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Prog Neurobiol 2023; 220:102385. [PMID: 36442728 DOI: 10.1016/j.pneurobio.2022.102385] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The amygdala and orbitofrontal cortex have been implicated in emotion. To understand these regions better in humans, their effective connectivity with 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography. The human amygdala has effective connectivity from few cortical regions compared to the orbitofrontal cortex: primarily from auditory cortex A5 and the related superior temporal gyrus and temporal pole regions; the piriform (olfactory) cortex; the lateral orbitofrontal cortex 47m; somatosensory cortex; the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal TF; and from the cholinergic nucleus basalis. The amygdala has effective connectivity to the hippocampus, entorhinal and perirhinal cortex; to the temporal pole; and to the lateral orbitofrontal cortex. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory and pole cortex, and to the pregenual anterior and posterior cingulate cortex, hippocampal system, and prefrontal cortex, and provides for rewards and punishers to be used in reported emotions, and memory and navigation to goals. Given the paucity of amygdalo-neocortical connectivity in humans, it is proposed that the human amygdala is involved primarily in autonomic and conditioned responses via brainstem connectivity, rather than in reported (declarative) emotion.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Rolls ET, Deco G, Huang CC, Feng J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cereb Cortex 2022; 33:330-356. [PMID: 35233615 DOI: 10.1093/cercor/bhac070] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The human orbitofrontal cortex, ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex are involved in reward processing and thereby in emotion but are also implicated in episodic memory. To understand these regions better, the effective connectivity between 360 cortical regions and 24 subcortical regions was measured in 172 humans from the Human Connectome Project and complemented with functional connectivity and diffusion tractography. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory, and pole cortical areas. The orbitofrontal cortex has connectivity to the pregenual anterior and posterior cingulate cortex and hippocampal system and provides for rewards to be used in memory and navigation to goals. The orbitofrontal and pregenual anterior cortex have connectivity to the supracallosal anterior cingulate cortex, which projects to midcingulate and other premotor cortical areas and provides for action-outcome learning including limb withdrawal or flight or fight to aversive and nonreward stimuli. The lateral orbitofrontal cortex has outputs to language systems in the inferior frontal gyrus. The medial orbitofrontal cortex connects to the nucleus basalis of Meynert and the pregenual cingulate to the septum, and damage to these cortical regions may contribute to memory impairments by disrupting cholinergic influences on the neocortex and hippocampus.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Cognition, Pompeu Fabra University, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Anxiolytic-like effects and impact on memory of Hydrocotyle umbellata L. spray-dried extract in mice and toxicological assessment. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Wattanathorn J, Somboonporn W, Thukham-Mee W, Sungkamnee S. Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Foods 2022; 11:foods11172678. [PMID: 36076862 PMCID: PMC9455773 DOI: 10.3390/foods11172678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Due to great demand for memory enhancers, the memory-enhancing effects and the possible underlying mechanisms of the functional ingredients derived from the combined extract of Polygonum odoratum and Morus alba were investigated. A total of 45 participants randomly received either a placebo or the developed herbal supplement at a dose of 50 or 1500 mg/day. The consumption was done once daily for 8 weeks. Working memory was assessed via both an event-related potential and computerized battery tests at baseline and at the end of the 8-week study period. Acetylcholinesterase (AChE) and monoamine oxidase type A and type B (MAO-A, MAO-B) levels were also measured at the end of the study. The subjects who consumed the supplement containing a developed functional ingredient at a dose of 1500 mg/day showed reduced latencies but increased amplitudes of N100 and P300. An improvement in working memory and the suppression of AChE, MAO-A, and MAO-B activities were also observed. Therefore, this study clearly demonstrates the cognitive enhancing effect of the developed herbal congee, which may be associated with the suppressions of AChE and both types of MAO.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Research Institute of High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-81-8721809
| | - Woraluck Somboonporn
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Research Institute of High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sudarat Sungkamnee
- Department of Physiology, Faculty of Medicine, Research Institute of High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
38
|
Walnut Prevents Cognitive Impairment by Regulating the Synaptic and Mitochondrial Dysfunction via JNK Signaling and Apoptosis Pathway in High-Fat Diet-Induced C57BL/6 Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165316. [PMID: 36014555 PMCID: PMC9414791 DOI: 10.3390/molecules27165316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
This study was conducted to evaluate the protective effect of Juglans regia (walnut, Gimcheon 1ho cultivar, GC) on high-fat diet (HFD)-induced cognitive dysfunction in C57BL/6 mice. The main physiological compounds of GC were identified as pedunculagin/casuariin isomer, strictinin, tellimagrandin I, ellagic acid-O-pentoside, and ellagic acid were identified using UPLC Q-TOF/MS analysis. To evaluate the neuro-protective effect of GC, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2′,7′-dichlorodihydrofluorecein diacetate (DCF-DA) analysis were conducted in H2O2 and high glucose-induced neuronal PC12 cells and hippocampal HT22 cells. GC presented significant cell viability and inhibition of reactive oxygen species (ROS) production. GC ameliorated behavioral and memory dysfunction through Y-maze, passive avoidance, and Morris water maze tests. In addition, GC reduced white adipose tissue (WAT), liver fat mass, and serum dyslipidemia. To assess the inhibitory effect of antioxidant system deficit, lipid peroxidation, ferric reducing antioxidant power (FRAP), and advanced glycation end products (AGEs) were conducted. Administration of GC protected the antioxidant damage against HFD-induced diabetic oxidative stress. To estimate the ameliorating effect of GC, acetylcholine (ACh) level, acetylcholinesterase (AChE) activity, and expression of AChE and choline acetyltransferase (ChAT) were conducted, and the supplements of GC suppressed the cholinergic system impairment. Furthermore, GC restored mitochondrial dysfunction by regulating the mitochondrial ROS production and mitochondrial membrane potential (MMP) levels in cerebral tissues. Finally, GC ameliorated cerebral damage by synergically regulating the protein expression of the JNK signaling and apoptosis pathway. These findings suggest that GC could provide a potential functional food source to improve diabetic cognitive deficits and neuronal impairments.
Collapse
|
39
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
40
|
Pilloni G, Charvet LE, Bikson M, Palekar N, Kim MJ. Potential of Transcranial Direct Current Stimulation in Alzheimer's Disease: Optimizing Trials Toward Clinical Use. J Clin Neurol 2022; 18:391-400. [PMID: 35796264 PMCID: PMC9262447 DOI: 10.3988/jcn.2022.18.4.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive method for stimulating the brain that is rapidly developing into a treatment method for various neurological and psychiatric conditions. In particular, there is growing evidence of a therapeutic role for tDCS in ameliorating or delaying the cognitive decline in Alzheimer's disease (AD). We provide a brief overview of the current development and application status of tDCS as a nonpharmacological therapeutic method for AD and mild cognitive impairment (MCI), summarize the levels of evidence, and identify the improvements needed for clinical applications. We also suggest future directions for large-scale controlled clinical trials of tDCS in AD and MCI, and emphasize the necessity of identifying the mechanistic targets to facilitate clinical applications.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Leigh E Charvet
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, NY, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Min-Jeong Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
41
|
Gerlach LB, Myra Kim H, Ignacio RV, Strominger J, Maust DT. Use of Benzodiazepines and Risk of Incident Dementia: A Retrospective Cohort Study. J Gerontol A Biol Sci Med Sci 2022; 77:1035-1041. [PMID: 34410381 PMCID: PMC9071459 DOI: 10.1093/gerona/glab241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous findings regarding the association between benzodiazepine exposure and dementia have conflicted, though many have not accounted for anticholinergic exposure. The goal of this study was to evaluate the association of benzodiazepine exposure with the risk of developing dementia, accounting for the anticholinergic burden. METHODS Using a retrospective cohort design, we identified veterans 65 or older without dementia during a 10-year baseline period and then followed participants for 5 years to evaluate the risk of dementia diagnosis. The primary exposure was cumulative benzodiazepine exposure. Cox proportional hazards survival model was used to examine the association between benzodiazepine exposure and dementia, adjusting for anticholinergic burden and other demographic and clinical characteristics associated with increased dementia risk. RESULTS Of the 528 006 veterans in the study cohort, 28.5% had at least one fill for a benzodiazepine. Overall, 7.9% developed a diagnosis of dementia during the observation period. Compared to veterans with no exposure to benzodiazepines, the adjusted hazard ratios for dementia risk were 1.06 (95% confidence interval [CI] 1.02-1.10) for low benzodiazepine exposure, 1.05 (95% CI 1.01-1.09) for medium benzodiazepine exposure, and 1.05 (95% CI 1.02-1.09) for high benzodiazepine exposure. CONCLUSIONS Cumulative benzodiazepine exposure was minimally associated with increased dementia risk when compared with nonuse but did not increase in a dose-dependent fashion with higher exposure. Veterans with low benzodiazepine exposure had essentially the equivalent risk of developing dementia as veterans with high exposure. While benzodiazepines are associated with many side effects for older adults, higher cumulative use does not appear to increase dementia risk.
Collapse
Affiliation(s)
- Lauren B Gerlach
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, USA
| | - Hyungjin Myra Kim
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, USA
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, Michigan, USA
| | - Rosalinda V Ignacio
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Julie Strominger
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, Michigan, USA
| | - Donovan T Maust
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, Michigan, USA
| |
Collapse
|
42
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
43
|
Curcumin Suppresses Lead-Induced Inflammation and Memory Loss in Mouse Model and In Silico Molecular Docking. Foods 2022; 11:foods11060856. [PMID: 35327278 PMCID: PMC8954391 DOI: 10.3390/foods11060856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the efficacy of curcumin (Cur) against lead (Pb)-induced oxidative damage, inflammation, and cholinergic dysfunction. Institute for Cancer Research (ICR) mice received Pb (II) acetate in drinking water (1%) with or without Cur via oral gavage. Blood and brain tissues were collected for investigation. Pb increased the inflammatory markers and oxidative parameters, which were ameliorated by Cur administration. Cur treatment also improved memory loss, learning deficit, and cholinergic dysfunction via elevating acetylcholinesterase (AChE) enzymatic activity and protein expression. In silico molecular docking supported the results; Cur had a potent binding affinity for AChE receptors, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), phosphorylations of IκB kinase (IKK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38). According to the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, Cur could serve as a potential candidate for Pb detoxication substance via exerting antioxidant activity. Taken together, our results suggest that Cur is a natural compound that could be used for the treatment of neurodegenerative disorders via suppressing lead-induced neurotoxicity.
Collapse
|
44
|
Animal models of action control and cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:227-255. [PMID: 35248196 DOI: 10.1016/bs.pbr.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) has historically been considered a motor disorder induced by a loss of dopaminergic neurons in the substantia nigra pars compacta. More recently, it has been recognized to have significant non-motor symptoms, most prominently cognitive symptoms associated with a dysexecutive syndrome. It is common in the literature to see motor and cognitive symptoms treated separately and, indeed, there has been a general call for specialized treatment of the latter, particularly in the more severe cases of PD with mild cognitive impairment and dementia. Animal studies have similarly been developed to model the motor or non-motor symptoms. Nevertheless, considerable research has established that segregating consideration of cognition from the precursors to motor movement, particularly movement associated with goal-directed action, is difficult if not impossible. Indeed, on some contemporary views cognition is embodied in action control, something that is particularly prevalent in theory and evidence relating to the integration of goal-directed and habitual control processes. The current paper addresses these issues within the literature detailing animal models of cognitive dysfunction in PD and their neural and neurochemical bases. Generally, studies using animal models of PD provide some of the clearest evidence for the integration of these action control processes at multiple levels of analysis and imply that consideration of this integrative process may have significant benefits for developing new approaches to the treatment of PD.
Collapse
|
45
|
Ahnaou A, Chave L, Manyakov NV, Drinkenburg WHIM. Odour Retrieval Processing in Mice: Cholinergic Modulation of Oscillatory Coupling in Olfactory Bulb-Piriform Networks. Neuropsychobiology 2022; 80:374-392. [PMID: 33588406 DOI: 10.1159/000513511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Olfactory dysfunction can provide valuable insight into early pathophysiological processes of brain disorders. Olfactory processing of chemosensory and odour sensitivity relies on segregating salient odours from background odours cues. Odour-evoked fast oscillations in the olfactory bulb (OB) are hypothesized to be an important index of odour quality coding. The present preclinical work aimed at better understanding connectivity associated with odour coding and behavioural odour discrimination. METHODS Network oscillations and functional connectivity (FC) were measured in C57BL/6 mice performing the olfactory associative odour learning (OL) test, using multichannel local field potential recordings in key olfactory networks. Cholinergic modulation of odour processing was investigated using the muscarinic antagonist scopolamine. RESULTS At the behavioural level, olfactory memory, which refers to the acquisition and recollection of a reference odour by reduced exploration time, was observed in animals that correctly learned the task. Significant decrease in mean investigation and retrieval time of the associated odour-food reward was observed between trials. At the network level, the associated odour during sniffing behaviour was associated with enhanced coherence in the β and γ frequency oscillations across the olfactory pathway, with marked changes observed between the OB and anterior piriform cortex (PC). The enhanced phase-amplitude cross-frequency coupling in the OB and the weak coupling index in the hippocampal CA1 suggests a role of the OB network in olfaction encoding and processing. Scopolamine impaired behavioural and FC underlying recall and retrieval of the associated odour. CONCLUSION The results suggest that the acquisition and formation of odour reference memory rely primarily on FC at the OB-PC network and confirm the role of muscarinic receptors in olfactory retrieval processing.
Collapse
Affiliation(s)
- Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium,
| | - Lucile Chave
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
46
|
Fisher VL, Ortiz LS, Powers AR. A computational lens on menopause-associated psychosis. Front Psychiatry 2022; 13:906796. [PMID: 35990063 PMCID: PMC9381820 DOI: 10.3389/fpsyt.2022.906796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Psychotic episodes are debilitating disease states that can cause extreme distress and impair functioning. There are sex differences that drive the onset of these episodes. One difference is that, in addition to a risk period in adolescence and early adulthood, women approaching the menopause transition experience a second period of risk for new-onset psychosis. One leading hypothesis explaining this menopause-associated psychosis (MAP) is that estrogen decline in menopause removes a protective factor against processes that contribute to psychotic symptoms. However, the neural mechanisms connecting estrogen decline to these symptoms are still not well understood. Using the tools of computational psychiatry, links have been proposed between symptom presentation and potential algorithmic and biological correlates. These models connect changes in signaling with symptom formation by evaluating changes in information processing that are not easily observable (latent states). In this manuscript, we contextualize the observed effects of estrogen (decline) on neural pathways implicated in psychosis. We then propose how estrogen could drive changes in latent states giving rise to cognitive and psychotic symptoms associated with psychosis. Using computational frameworks to inform research in MAP may provide a systematic method for identifying patient-specific pathways driving symptoms and simultaneously refine models describing the pathogenesis of psychosis across all age groups.
Collapse
Affiliation(s)
- Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Liara S Ortiz
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
47
|
Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sci 2021; 12:brainsci12010059. [PMID: 35053804 PMCID: PMC8782421 DOI: 10.3390/brainsci12010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
With growing concerns about COVID-19’s hyperinflammatory condition and its potentially damaging impact on the neurovascular system, there is a need to consider potential treatment options for managing short- and long-term effects on neurological complications, especially cognitive function. While maintaining adequate structure and function of phospholipid in brain cells, citicoline, identical to the natural metabolite phospholipid phosphatidylcholine precursor, can contribute to a variety of neurological diseases and hypothetically toward post-COVID-19 cognitive effects. In this review, we comprehensively describe in detail the potential citicoline mechanisms as adjunctive therapy and prevention of COVID-19-related cognitive decline and other neurologic complications through citicoline properties of anti-inflammation, anti-viral, neuroprotection, neurorestorative, and acetylcholine neurotransmitter synthesis, and provide a recommendation for future clinical trials.
Collapse
|
48
|
Khodabakhsh P, Bazrgar M, Dargahi L, Mohagheghi F, Asgari Taei A, Parvardeh S, Ahmadiani A. Does Alzheimer's disease stem in the gastrointestinal system? Life Sci 2021; 287:120088. [PMID: 34715145 DOI: 10.1016/j.lfs.2021.120088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, our knowledge of the key pathogenic mechanisms of Alzheimer's disease (AD) has dramatically improved. Regarding the limitation of current therapeutic strategies for the treatment of multifactorial diseases, such as AD, to be translated into the clinic, there is a growing trend in research to identify risk factors associated with the onset and progression of AD. Here, we review the current literature with a focus on the relationship between gastrointestinal (GI)/liver diseases during the lifespan and the incidence of AD, and discuss the possible mechanisms underlying the link between the diseases. We also aim to review studies evaluating the possible link between the chronic use of the most common GI medications and the future risk of AD development.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Sola E, Pelayo A, Del Pino J. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75 NTR signaling disruption. Food Chem Toxicol 2021; 157:112614. [PMID: 34655688 DOI: 10.1016/j.fct.2021.112614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities. However, no studies were performed in BFCN. We treated wild type or histone deacetylase (HDAC2), P75NTR or acetylcholinesterase (AChE) silenced SN56 cholinergic cells from BF with BPA (0.001 μM-100 μM) with or without recombinant nerve growth factor (NGF) and with or without acetylcholine (ACh) for one- and fourteen days in order to elucidate the mechanisms underlying these effects. BPA induced cholinergic neurotransmission disruption through reduction of ChAT activity, and produced apoptotic cell death, mediated partially through AChE-S overexpression and NGF/TrkA/P75NTR signaling dysfunction, independently of cholinergic neurotransmission disruption, following one- and fourteen days of treatment. BPA mediates these alterations, in part, through HDAC2 overexpression. These data are relevant since they may help to elucidate the neurotoxic mechanisms that trigger the cognitive disabilities induced by BPA exposure, providing a new therapeutic approach.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
50
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|