1
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
2
|
Giua G, Pereira-Silva J, Caceres-Rodriguez A, Lassalle O, Chavis P, Manzoni OJ. Cell- and Pathway-Specific Disruptions in the Accumbens of Fragile X Mouse. J Neurosci 2024; 44:e1587232024. [PMID: 38830765 PMCID: PMC11270510 DOI: 10.1523/jneurosci.1587-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socioemotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPN pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of fragile X messenger ribonucleoprotein 1 (FMRP) led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.
Collapse
Affiliation(s)
- Gabriele Giua
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Jessica Pereira-Silva
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Alba Caceres-Rodriguez
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier Lassalle
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Pascale Chavis
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier J Manzoni
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| |
Collapse
|
3
|
Fonteneau M, Brugoux A, Jaccaz D, Donello JE, Banerjee P, Le Merrer J, Becker JA. The NMDA receptor modulator zelquistinel durably relieves behavioral deficits in three mouse models of autism spectrum disorder. Neuropharmacology 2024; 248:109889. [PMID: 38401792 DOI: 10.1016/j.neuropharm.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic β-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.
Collapse
Affiliation(s)
| | - Agathe Brugoux
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Déborah Jaccaz
- Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France; Unité Expérimentale de Physiologie Animale de l'Orfrasière, INRAE UE 0028, Nouzilly, France
| | | | | | - Julie Le Merrer
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Jérôme Aj Becker
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| |
Collapse
|
4
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
5
|
Longo F, Aryal S, Anastasiades PG, Maltese M, Baimel C, Albanese F, Tabor J, Zhu JD, Oliveira MM, Gastaldo D, Bagni C, Santini E, Tritsch NX, Carter AG, Klann E. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice. Cell Rep 2023; 42:112901. [PMID: 37505982 PMCID: PMC10552611 DOI: 10.1016/j.celrep.2023.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.
Collapse
Affiliation(s)
- Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA; Institute for Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Sameer Aryal
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Marta Maltese
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Corey Baimel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Federica Albanese
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Joanna Tabor
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jeffrey D Zhu
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Denise Gastaldo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Nicolas X Tritsch
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Adam G Carter
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Giua G, Lassalle O, Makrini-Maleville L, Valjent E, Chavis P, Manzoni OJJ. Investigating cell-specific effects of FMRP deficiency on spiny projection neurons in a mouse model of Fragile X syndrome. Front Cell Neurosci 2023; 17:1146647. [PMID: 37323585 PMCID: PMC10264852 DOI: 10.3389/fncel.2023.1146647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes. Methods We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes. Results Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS. Discussion Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Gabriele Giua
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | | | - Emmanuel Valjent
- IGF, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Olivier J. J. Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab “Cannabinoids Neuroscience Research International Associated Laboratory”, INSERM-Aix-Marseille University/Indiana University, Marseille, France
| |
Collapse
|
7
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
8
|
Schiavi S, Manduca A, Carbone E, Buzzelli V, Rava A, Feo A, Ascone F, Morena M, Campolongo P, Hill MN, Trezza V. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology 2023; 48:897-907. [PMID: 36114286 PMCID: PMC10156791 DOI: 10.1038/s41386-022-01454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Roma Tre University, Rome, Italy
| | - Antonia Manduca
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy.
| |
Collapse
|
9
|
Patthy Á, Hanics J, Zachar G, Kovács GG, Harkany T, Alpár A. Regional redistribution of CB1 cannabinoid receptors in human foetal brains with Down's syndrome and their functional modifications in Ts65Dn +/+ mice. Neuropathol Appl Neurobiol 2023; 49:e12887. [PMID: 36716771 DOI: 10.1111/nan.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
AIMS The endocannabinoid system with its type 1 cannabinoid receptor (CB1 R) expressed in postmitotic neuroblasts is a critical chemotropic guidance module with its actions cascading across neurogenic commitment, neuronal polarisation and synaptogenesis in vertebrates. Here, we present the systematic analysis of regional CB1 R expression in the developing human brain from gestational week 14 until birth. In parallel, we diagrammed differences in CB1 R development in Down syndrome foetuses and identified altered CB1 R signalling. METHODS Foetal brains with normal development or with Down's syndrome were analysed using standard immunohistochemistry, digitalised light microscopy and image analysis (NanoZoomer). CB1 R function was investigated by in vitro neuropharmacology from neonatal Ts65Dn transgenic mice brains carrying an additional copy of ~90 conserved protein-coding gene orthologues of the human chromosome 21. RESULTS We detected a meshwork of fine-calibre, often varicose processes between the subventricular and intermediate zones of the cortical plate in the late first trimester, when telencephalic fibre tracts develop. The density of CB1 Rs gradually decreased during the second and third trimesters in the neocortex. In contrast, CB1 R density was maintained, or even increased, in the hippocampus. We found the onset of CB1 R expression being delayed by ≥1 month in age-matched foetal brains with Down's syndrome. In vitro, CB1 R excitation induced excess microtubule stabilisation and, consequently, reduced neurite outgrowth. CONCLUSIONS We suggest that neuroarchitectural impairments in Down's syndrome brains involve the delayed development and errant functions of the endocannabinoid system, with a particular impact on endocannabinoids modulating axonal wiring.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Gábor G Kovács
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Krzisch MA, Wu H, Yuan B, Whitfield TW, Liu XS, Fu D, Garrett-Engele CM, Khalil AS, Lungjangwa T, Shih J, Chang AN, Warren S, Cacace A, Andrykovich KR, Rietjens RGJ, Wallace O, Sur M, Jain B, Jaenisch R. Fragile X Syndrome Patient-Derived Neurons Developing in the Mouse Brain Show FMR1-Dependent Phenotypes. Biol Psychiatry 2023; 93:71-81. [PMID: 36372569 DOI: 10.1016/j.biopsych.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.
Collapse
Affiliation(s)
- Marine A Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Hao Wu
- Full Circles Therapeutics, Inc., Cambridge, Massachusetts
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York
| | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jennifer Shih
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | | | - Stephen Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | - Bhav Jain
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
12
|
The role of the dorsal striatum in a mouse model for fragile X syndrome: Behavioral and dendritic spine assessment. Brain Res 2022; 1795:148060. [PMID: 36030973 DOI: 10.1016/j.brainres.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS), a leading monogenic cause of autism spectrum disorders (ASDs), typically occurs as the result of a mutation silencing the Fmr1 gene, preventing production of the fragile X messenger ribonucleoprotein (FMRP). FXS is characterized, in part, by hyperactivity, impaired behavioral flexibility, and the development of repetitive, or stereotyped, behaviors. While these phenotypes are influenced by striatal activity, few studies have examined FXS or FMRP in the context of striatal function. Here, we report enhanced repetitive behaviors in Fmr1 knockout (KO) compared to wild type (WT) mice according to multiple measures, including quantity and intensity of stereotypic behaviors in an open field and nose poking activity in an unbaited hole board test. However, using a baited version of the hole board assay, we see that KO mice do show some behavioral flexibility in that they make changes in their nose poking behavior following familiarization with an appetitive bait. By contrast, repeated exposure to cocaine (15 mg/kg) promotes repetitive behavior in both WT and KO mice, in a manner mostly independent of genotype. Branch length alterations in medium spiny neurons (MSNs) of the dorsolateral striatum (DLS) are similar between WT cocaine-treated and KO saline-treated mice, possibly suggesting shared synaptic mechanisms. Overall, we suggest that scoring open field behavior is a sensitive measure for repetitive sensory-motor behaviors in Fmr1 KO mice. In addition, our findings show that synaptic contacts onto MSNs in the DLS should be examined in conjunction with measures of stereotypical behavior.
Collapse
|
13
|
Huebschman JL, Davis MC, Tovar Pensa C, Guo Y, Smith LN. The fragile X mental retardation protein promotes adjustments in cocaine self-administration that preserve reinforcement level. Eur J Neurosci 2021; 54:4920-4933. [PMID: 34133054 DOI: 10.1111/ejn.15356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein, regulates cocaine-induced neuronal plasticity and is critical for the normal development of drug-induced locomotor sensitization, as well as reward-related learning in the conditioned place preference assay. However, it is unknown whether FMRP impacts behaviors that are used to more closely model substance use disorders. Utilizing a cocaine intravenous self-administration (IVSA) assay in Fmr1 knockout (KO) and wild-type (WT) littermate mice, we find that, despite normal acquisition and extinction learning, Fmr1 KO mice fail to make a normal upward shift in responding during dose-response testing. Later, when given access to the original acquisition dose under increasing fixed ratio (FR) schedules of reinforcement (FR1, FR3, and FR5), Fmr1 KO mice earn significantly fewer cocaine infusions than WT mice. Importantly, similar deficits are not present in operant conditioning using a palatable food reinforcer, indicating that our results do not represent broad learning or reward-related deficits in Fmr1 KO mice. Additionally, we find an FMRP target, the activity-regulated cytoskeleton-associated protein (Arc), to be significantly reduced in synaptic cellular fractions prepared from the nucleus accumbens of Fmr1 KO, compared with WT, mice following operant tasks reinforced with cocaine but not food. Overall, our findings suggest that FMRP facilitates adjustments in drug self-administration behavior that generally serve to preserve reinforcement level, and combined with our similar IVSA findings in Arc KO mice may implicate Arc, along with FMRP, in behavioral shifts that occur in drug taking when drug availability is altered.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Megan C Davis
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Catherina Tovar Pensa
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Arakawa H. From Multisensory Assessment to Functional Interpretation of Social Behavioral Phenotype in Transgenic Mouse Models for Autism Spectrum Disorders. Front Psychiatry 2020; 11:592408. [PMID: 33329141 PMCID: PMC7717939 DOI: 10.3389/fpsyt.2020.592408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common heterogeneous disorder, defined solely by the core behavioral characteristics, including impaired social interaction and restricted and repeated behavior. Although an increasing number of studies have been performed extensively, the neurobiological mechanisms underlying the core symptoms of ASD remain largely unknown. Transgenic mouse models provide a useful tool for evaluating genetic and neuronal mechanisms underlying ASD pathology, which are prerequisites for validating behavioral phenotypes that mimic the core symptoms of human ASD. The purpose of this review is to propose a better strategy for analyzing and interpreting social investigatory behaviors in transgenic mouse models of ASD. Mice are nocturnal, and employ multimodal processing mechanisms for social communicative behaviors, including those that involve olfactory and tactile senses. Most behavioral paradigms that have been developed for measuring a particular ASD-like behavior in mouse models, such as social recognition, preference, and discrimination tests, are based on the evaluation of distance-based investigatory behavior in response to social stimuli. This investigatory behavior in mice is regulated by multimodal processing involving with two different motives: first, an olfactory-based novelty assessment, and second, tactile-based social contact, in a temporally sequential manner. Accurate interpretation of investigatory behavior exhibited by test mice can be achieved by functional analysis of these multimodal, sequential behaviors, which will lead to a better understanding of the specific features of social deficits associated with ASD in transgenic mouse models, at high temporal and spatial resolutions.
Collapse
|
15
|
Huebschman JL, Corona KS, Guo Y, Smith LN. The Fragile X Mental Retardation Protein Regulates Striatal Medium Spiny Neuron Synapse Density and Dendritic Spine Morphology. Front Mol Neurosci 2020; 13:161. [PMID: 33013316 PMCID: PMC7511717 DOI: 10.3389/fnmol.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein that mediates the transport, stability, and translation of hundreds of brain RNAs, is critically involved in regulating synaptic function. Loss of FMRP, as in fragile X syndrome (FXS), is a leading monogenic cause of autism and results in altered structural and functional synaptic plasticity, widely described in the hippocampus and cortex. Though FXS is associated with hyperactivity, impaired social interaction, and the development of repetitive or stereotyped behaviors, all of which are influenced by striatal activity, few studies have investigated the function of FMRP here. Utilizing a cortical-striatal co-culture model, we find that striatal medium spiny neurons (MSNs) lacking FMRP fail to make normal increases in PSD95 expression over a short time period and have significant deficits in dendritic spine density and colocalized synaptic puncta at the later measured time point compared to wildtype (WT) MSNs. Acute expression of wtFMRP plasmid in Fmr1 KO co-cultures results in contrasting outcomes for these measures on MSNs at the more mature time point, reducing spine density across multiple spine types but making no significant changes in colocalized puncta. FMRP’s KH2 and RGG RNA-binding domains are required for normal elimination of PSD95, and interruption of these domains slightly favors elimination of immature spine types. Further, KH2 is required for normal levels of colocalized puncta. Our data are largely consistent with a basal role for FMRP and its RNA-binding domains in striatal synapse stabilization on developing MSNs, and in light of previous findings, suggest distinct regional and/or cell type-specific roles for FMRP in regulating synapse structure.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kitzia S Corona
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
Cell-Type- and Endocannabinoid-Specific Synapse Connectivity in the Adult Nucleus Accumbens Core. J Neurosci 2019; 40:1028-1041. [PMID: 31831522 DOI: 10.1523/jneurosci.1100-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens (NAc) is a mesocorticolimbic structure that integrates cognitive, emotional and motor functions. Although its role in psychiatric disorders is widely acknowledged, the understanding of its circuitry is not complete. Here, we combined optogenetic and whole-cell recordings to draw a functional portrait of excitatory disambiguated synapses onto D1 and D2 medium spiny neurons (MSNs) in the adult male mouse NAc core. Comparing synaptic properties of ventral hippocampus (vHipp), basolateral amygdala (BLA) and prefrontal cortex (PFC) inputs revealed a hierarchy of synaptic inputs that depends on the identity of the postsynaptic target MSN. Thus, the BLA is the dominant excitatory pathway onto D1 MSNs (BLA > PFC = vHipp) while PFC inputs dominate D2 MSNs (PFC > vHipp > BLA). We also tested the hypothesis that endocannabinoids endow excitatory circuits with pathway- and cell-specific plasticity. Thus, whereas CB1 receptors (CB1R) uniformly depress excitatory pathways regardless of MSNs identity, TRPV1 receptors (TRPV1R) bidirectionally control inputs onto the NAc core in a pathway-specific manner. Finally, we show that the interplay of TRPV1R/CB1R shapes plasticity at BLA-NAc synapses. Together these data shed new light on synapse and circuit specificity in the adult NAc core and illustrate how endocannabinoids contribute to pathway-specific synaptic plasticity.SIGNIFICANCE STATEMENT We examined the impact of connections from the ventral hippocampus (vHipp,) basolateral amygdala (BLA) and prefrontal cortex (PFC) onto identified medium spiny neurons (MSNs) in the adult accumbens core. We found BLA inputs were strongest at D1 MSNs while PFC inputs dominate D2 MSNs. Pathway- and cell-specific circuit control was also facilitated by endocannabinoids that endow bidirectional synaptic plasticity at identified BLA-NAc synapses. These data provide mechanistic insights on synapse and circuit specificity in the adult NAc core.
Collapse
|
17
|
Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019; 103:563-581. [DOI: 10.1016/j.neuron.2019.05.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
|
18
|
Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci 2019; 13:23. [PMID: 30890922 PMCID: PMC6411818 DOI: 10.3389/fnbeh.2019.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.
Collapse
Affiliation(s)
- Milene Borsoi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Antonia Manduca
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anissa Bara
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Olivier Lassalle
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Conception, Service de Psychiatrie, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J Manzoni
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| |
Collapse
|
19
|
Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chem Neurosci 2018; 9:2233-2240. [PMID: 29486555 DOI: 10.1021/acschemneuro.7b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated how metabotropic acetylcholine receptors control excitatory synaptic plasticity in the mouse nucleus accumbens core. Pharmacological and genetic approaches revealed that M1 mAChRs (muscarinic acetylcholine receptors) trigger multiple and interacting forms of synaptic plasticity. As previously described in the dorsal striatum, moderate pharmacological activation of M1 mAChR potentiated postsynaptic NMDARs. The M1-potentiation of NMDAR masked a previously unknown coincident TRPV1-mediated long-term depression (LTD). In addition, strong pharmacological activation of M1 mAChR induced canonical retrograde LTD, mediated by presynaptic CB1R. In the fmr1-/y mouse model of Fragile X, we found that CB1R but not TRPV1 M1-LTD was impaired. Finally, pharmacological blockade of the degradation of anandamide and 2-arachidonylglycerol, the two principal endocannabinoids restored fmr1-/y LTD to wild-type levels. These findings shed new light on the complex influence of acetylcholine on excitatory synapses in the nucleus accumbens core and identify new substrates of the synaptic deficits of Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Olivier Lassalle
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| | - Olivier J. Manzoni
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| |
Collapse
|
20
|
Urban BE, Xiao L, Dong B, Chen S, Kozorovitskiy Y, Zhang HF. Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700171. [PMID: 28976633 PMCID: PMC7313398 DOI: 10.1002/jbio.201700171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 05/11/2023]
Abstract
Visualizing fine neuronal structures deep inside strongly light-scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two-photon super-resolution patterned excitation reconstruction (2P-SuPER) microscopy for 3-dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P-SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P-SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta-burst stimulation of Schaffer collateral axons. 2P-SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.
Collapse
Affiliation(s)
- Ben E. Urban
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Hao F. Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Martínez-Rivera A, Hao J, Tropea TF, Giordano TP, Kosovsky M, Rice RC, Lee A, Huganir RL, Striessnig J, Addy NA, Han S, Rajadhyaksha AM. Enhancing VTA Ca v1.3 L-type Ca 2+ channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Mol Psychiatry 2017; 22:1735-1745. [PMID: 28194001 PMCID: PMC5555837 DOI: 10.1038/mp.2017.9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Genetic factors significantly influence susceptibility for substance abuse and mood disorders. Rodent studies have begun to elucidate a role of Cav1.3 L-type Ca2+ channels in neuropsychiatric-related behaviors, such as addictive and depressive-like behaviors. Human studies have also linked the CACNA1D gene, which codes for the Cav1.3 protein, with bipolar disorder. However, the neurocircuitry and the molecular mechanisms underlying the role of Cav1.3 in neuropsychiatric phenotypes are not well established. In the present study, we directly manipulated Cav1.3 channels in Cav1.2 dihydropyridine insensitive mutant mice and found that ventral tegmental area (VTA) Cav1.3 channels mediate cocaine-related and depressive-like behavior through a common nucleus accumbens (NAc) shell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) mechanism that requires GluA1 phosphorylation at S831. Selective activation of VTA Cav1.3 with (±)-BayK-8644 (BayK) enhanced cocaine conditioned place preference and cocaine psychomotor activity while inducing depressive-like behavior, an effect not observed in S831A phospho-mutant mice. Infusion of the CP-AMPAR-specific blocker Naspm into the NAc shell reversed the cocaine and depressive-like phenotypes. In addition, activation of VTA Cav1.3 channels resulted in social behavioral deficits. In contrast to the cocaine- and depression-related phenotypes, GluA1/A2 AMPARs in the NAc core mediated social deficits, independent of S831-GluA1 phosphorylation. Using a candidate gene analysis approach, we also identified single-nucleotide polymorphisms in the CACNA1D gene associated with cocaine dependence in human subjects. Together, our findings reveal novel, overlapping mechanisms through which VTA Cav1.3 mediates cocaine-related, depressive-like and social phenotypes, suggesting that Cav1.3 may serve as a target for the treatment of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Jin Hao
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas F. Tropea
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Thomas P. Giordano
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Maria Kosovsky
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Richard C. Rice
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Richard L. Huganir
- Department of Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joerg Striessnig
- Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria; Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Nii A. Addy
- Department of Psychiatry and Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Science, New Haven, CT, USA
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Anjali M. Rajadhyaksha
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
22
|
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017; 134:537-566. [PMID: 28584888 PMCID: PMC5693718 DOI: 10.1007/s00401-017-1736-4] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Collapse
Affiliation(s)
- Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Keshav
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Jacot-Descombes
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Unit of Psychiatry, Department of Children and Teenagers, University Hospitals and School of Medicine, Geneva, CH-1205, Switzerland
| | - Tahia Warda
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bridget Wicinski
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Amplification of mGlu 5-Endocannabinoid Signaling Rescues Behavioral and Synaptic Deficits in a Mouse Model of Adolescent and Adult Dietary Polyunsaturated Fatty Acid Imbalance. J Neurosci 2017. [PMID: 28630250 DOI: 10.1523/jneurosci.3516-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Energy-dense, yet nutritionally poor food is a high-risk factor for mental health disorders. This is of particular concern during adolescence, a period often associated with increased consumption of low nutritional content food and higher prevalence of mental health disorders. Indeed, there is an urgent need to understand the mechanisms linking unhealthy diet and mental disorders. Deficiency in n-3 polyunsaturated fatty acids (PUFAs) is a hallmark of poor nutrition and mood disorders. Here, we developed a mouse model of n-3 PUFA deficiency lasting from adolescence into adulthood. Starting nutritional deficits in dietary n-3 PUFAs during adolescence decreased n-3 PUFAs in both medial prefrontal cortex (mPFC) and nucleus accumbens, increased anxiety-like behavior, and decreased cognitive function in adulthood. Importantly, we discovered that endocannabinoid/mGlu5-mediated LTD in the mPFC and accumbens was abolished in adult n-3-deficient mice. Additionally, mPFC NMDAR-dependent LTP was also lacking in the n-3-deficient group. Pharmacological enhancement of the mGlu5/eCB signaling complex, by positive allosteric modulation of mGlu5 or inhibition of endocannabinoid 2-arachidonylglycerol degradation, fully restored synaptic plasticity and normalized emotional and cognitive behaviors in malnourished adult mice. Our data support a model where nutrition is a key environmental factor influencing the working synaptic range into adulthood, long after the end of the perinatal period. These findings have important implications for the identification of nutritional risk factors for disease and design of new treatments for the behavioral deficits associated with nutritional n-3 PUFA deficiency.SIGNIFICANCE STATEMENT In a mouse model mimicking n-3 PUFA dietary deficiency during adolescence and adulthood, we found strong increases in anxiety and anhedonia which lead to decreases in specific cognitive functions in adulthood. We found that endocannabinoid/mGlu5-mediated LTD and NMDAR-dependent LTP were lacking in adult n-3-deficient mice. Acute positive allosteric modulation of mGlu5 or inhibition of endocannabinoid degradation normalized behaviors and synaptic functions in n-3 PUFA-deficient adult mice. These findings have important implications for the identification of nutritional risk for disease and the design of new treatments for the behavioral deficits associated with nutritional n-3 PUFAs' imbalance.
Collapse
|
24
|
Choi H, Song J, Park G, Kim J. Modeling of Autism Using Organoid Technology. Mol Neurobiol 2016; 54:7789-7795. [DOI: 10.1007/s12035-016-0274-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
|
25
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
26
|
Borralleras C, Mato S, Amédée T, Matute C, Mulle C, Pérez-Jurado LA, Campuzano V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol Brain 2016; 9:76. [PMID: 27485321 PMCID: PMC4971717 DOI: 10.1186/s13041-016-0258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023] Open
Abstract
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Collapse
Affiliation(s)
- Cristina Borralleras
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Susana Mato
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Carlos Matute
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
27
|
Hullinger R, Li M, Wang J, Peng Y, Dowell JA, Bomba-Warczak E, Mitchell HA, Burger C, Chapman ER, Denu JM, Li L, Puglielli L. Increased expression of AT-1/SLC33A1 causes an autistic-like phenotype in mice by affecting dendritic branching and spine formation. J Exp Med 2016; 213:1267-84. [PMID: 27242167 PMCID: PMC4925020 DOI: 10.1084/jem.20151776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
The import of acetyl-CoA into the lumen of the endoplasmic reticulum (ER) by AT-1/SLC33A1 regulates Nε-lysine acetylation of ER-resident and -transiting proteins. Specifically, lysine acetylation within the ER appears to influence the efficiency of the secretory pathway by affecting ER-mediated quality control. Mutations or duplications in AT-1/SLC33A1 have been linked to diseases such as familial spastic paraplegia, developmental delay with premature death, and autism spectrum disorder with intellectual disability. In this study, we generated an AT-1 Tg mouse model that selectively overexpresses human AT-1 in neurons. These animals demonstrate cognitive deficits, autistic-like social behavior, aberrations in synaptic plasticity, an increased number of dendritic spines and branches, and widespread proteomic changes. We also found that AT-1 activity regulates acetyl-CoA flux, causing epigenetic modulation of the histone epitope H3K27 and mitochondrial adaptation. In conclusion, our results indicate that increased expression of AT-1 can cause an autistic-like phenotype by affecting key neuronal metabolic pathways.
Collapse
Affiliation(s)
- Rikki Hullinger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Mi Li
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Jingxin Wang
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705 School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - James A Dowell
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53705
| | - Ewa Bomba-Warczak
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705 Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53705
| | - Heather A Mitchell
- Rodent Models Core, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Corinna Burger
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705 Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53705
| | - John M Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53705
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705 Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705
| |
Collapse
|
28
|
Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl Psychiatry 2016; 6:e763. [PMID: 27003189 PMCID: PMC4872441 DOI: 10.1038/tp.2016.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.
Collapse
|
29
|
Rothwell PE. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders? Front Neurosci 2016; 10:20. [PMID: 26903789 PMCID: PMC4742554 DOI: 10.3389/fnins.2016.00020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/15/2016] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
30
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Wang H, Doering LC. Autism spectrum disorders: emerging mechanisms and mechanism-based treatment. Front Cell Neurosci 2015; 9:183. [PMID: 26029053 PMCID: PMC4428121 DOI: 10.3389/fncel.2015.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Laurie C Doering
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|