1
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH, Bukrinsky MI. Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance 2025; 8:e202402879. [PMID: 39532531 PMCID: PMC11557684 DOI: 10.26508/lsa.202402879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The introduction of antiretroviral therapy has markedly improved the management of HIV-associated neurocognitive disorders (HAND). However, HAND still affects nearly half of HIV-infected individuals, presenting significant challenges to their well-being. This highlights the critical need for a deeper understanding of HAND mechanisms. Among HIV viral proteins, Nef is notable for its multifaceted role in HIV pathogenesis, though its specific involvement in HAND remains unclear. To investigate this, we used a murine model infected with Nef-expressing (EcoHIV) and Nef-deficient (EcoHIVΔNef) murine HIV. Comparative analyses revealed increased neuroinflammation and reduced myelin and neuronal integrity in EcoHIV-infected brains compared with those with EcoHIVΔNef. Both viruses induced astrogliosis, with stronger GFAP activation in Nef-deficient infections. These findings suggest that Nef contributes to neuroinflammation, primarily through microglial targeting and demyelination, although other factors may regulate astrogliosis. Our results indicate that Nef may significantly contribute to neuronal injury in EcoHIV-infected mice, offering insights into Nef-induced neuropathology in HAND and guiding future research.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yongsen Wang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Sutley-Koury SN, Anderson A, Taitano-Johnson C, Ajayi M, Kulinich AO, Contreras K, Regalado J, Tiwari-Woodruff SK, Ethell IM. Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination. ASN Neuro 2024; 16:2401753. [PMID: 39437409 DOI: 10.1080/17590914.2024.2401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Astrocytes have been implicated in oligodendrocyte development and myelination, however, the mechanisms by which astrocytes regulate oligodendrocytes remain unclear. Our findings suggest a new mechanism that regulates astrocyte-mediated oligodendrocyte development through ephrin-B1 signaling in astrocytes. Using a mouse model, we examined the role of astrocytic ephrin-B1 signaling in oligodendrocyte development by deleting ephrin-B1 specifically in astrocytes during the postnatal days (P)14-P28 period and used mRNA analysis, immunohistochemistry, and mouse behaviors to study its effects on oligodendrocytes and myelination. We found that deletion of astrocytic ephrin-B1 downregulated many genes associated with oligodendrocyte development, myelination, and lipid metabolism in the hippocampus and the corpus callosum. Additionally, we observed a reduced number of oligodendrocytes and impaired myelination in the corpus callosum of astrocyte-specific ephrin-B1 KO mice. Finally, our data show reduced motor strength in these mice exhibiting clasping phenotype and impaired performance in the rotarod test most likely due to impaired myelination. Our studies provide new evidence that astrocytic ephrin-B1 positively regulates oligodendrocyte development and myelination, potentially through astrocyte-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Samantha N Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Alyssa Anderson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Moyinoluwa Ajayi
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Anna O Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kimberly Contreras
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jasmin Regalado
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| |
Collapse
|
4
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Mireles-Ramírez MA, Pacheco-Moises FP, González-Usigli HA, Sánchez-Rosales NA, Hernández-Preciado MR, Delgado-Lara DLC, Hernández-Cruz JJ, Ortiz GG. Neuromyelitis optica spectrum disorder: pathophysiological approach. Int J Neurosci 2024; 134:826-838. [PMID: 36453541 DOI: 10.1080/00207454.2022.2153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Aim: To review the main pathological findings of Neuromyelitis Optica Spectrum Disorder (NMOSD) associated with the presence of autoantibodies to aquaporin-4 (AQP4) as well as the mechanisms of astrocyte dysfunction and demyelination. Methods: An comprehensive search of the literature in the field was carried out using the database of The National Center for Biotechnology Information from . Systematic searches were performed until July 2022. Results: NMOSD is an inflammatory and demyelinating disease of the central nervous system mainly in the areas of the optic nerves and spinal cord, thus explaining mostly the clinical findings. Other areas affected in NMOSD are the brainstem, hypothalamus, and periventricular regions. Relapses in NMOSD are generally severe and patients only partially recover. NMOSD includes clinical conditions where autoantibodies to aquaporin-4 (AQP4-IgG) of astrocytes are detected as well as similar clinical conditions where such antibodies are not detected. AQP4 are channel-forming integral membrane proteins of which AQ4 isoforms are able to aggregate in supramolecular assemblies termed orthogonal arrays of particles (OAP) and are essential in the regulation of water homeostasis and the adequate modulation of neuronal activity and circuitry. AQP4 assembly in orthogonal arrays of particles is essential for AQP4-IgG pathogenicity since AQP4 autoantibodies bind to OAPs with higher affinity than for AQP4 tetramers. NMOSD has a complex background with prominent roles for genes encoding cytokines and cytokine receptors. AQP4 autoantibodies activate the complement-mediated inflammatory demyelination and the ensuing damage to AQP4 water channels, leading to water influx, necrosis and axonal loss. Conclusions: NMOSD as an astrocytopathy is a nosological entity different from multiple sclerosis with its own serological marker: immunoglobulin G-type autoantibodies against the AQP4 protein which elicits a complement-dependent cytotoxicity and neuroinflammation. Some patients with typical manifestations of NMSOD are AQP4 seronegative and myelin oligodendrocyte glycoprotein positive. Thus, the detection of autoantibodies against AQP4 or other autoantibodies is crucial for the correct treatment of the disease and immunosuppressant therapy is the first choice.
Collapse
Affiliation(s)
- Mario A Mireles-Ramírez
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Fermín P Pacheco-Moises
- Department of Chemistry, University Center of Exact Sciences and Engineering; University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Héctor A González-Usigli
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Nayeli A Sánchez-Rosales
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Martha R Hernández-Preciado
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | | | - José J Hernández-Cruz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Genaro Gabriel Ortiz
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Adams Waldorf KM, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun 2024; 15:5173. [PMID: 38890352 PMCID: PMC11189406 DOI: 10.1038/s41467-024-49524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Schenck JK, Karl MT, Clarkson-Paredes C, Bastin A, Pushkarsky T, Brichacek B, Miller RH, Bukrinsky MI. Extracellular vesicles produced by HIV-1 Nef-expressing cells induce myelin impairment and oligodendrocyte damage in the mouse central nervous system. J Neuroinflammation 2024; 21:127. [PMID: 38741181 PMCID: PMC11090814 DOI: 10.1186/s12974-024-03124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive impairments that continue to affect approximately half of all HIV-positive individuals despite effective viral suppression through antiretroviral therapy (ART). White matter pathologies have persisted in the ART era, and the degree of white matter damage correlates with the degree of neurocognitive impairment in patients with HAND. The HIV protein Nef has been implicated in HAND pathogenesis, but its effect on white matter damage has not been well characterized. Here, utilizing in vivo, ex vivo, and in vitro methods, we demonstrate that Nef-containing extracellular vesicles (Nef EVs) disrupt myelin sheaths and inflict damage upon oligodendrocytes within the murine central nervous system. Intracranial injection of Nef EVs leads to reduced myelin basic protein (MBP) staining and a decreased number of CC1 + oligodendrocytes in the corpus callosum. Moreover, cerebellar slice cultures treated with Nef EVs exhibit diminished MBP expression and increased presence of unmyelinated axons. Primary mixed brain cultures and enriched oligodendrocyte precursor cell cultures exposed to Nef EVs display a decreased number of O4 + cells, indicative of oligodendrocyte impairment. These findings underscore the potential contribution of Nef EV-mediated damage to oligodendrocytes and myelin maintenance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Molly T Karl
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Ashley Bastin
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Beda Brichacek
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA.
| |
Collapse
|
8
|
Gigliotta A, Mingardi J, Cummings S, Alikhani V, Trontti K, Barbon A, Kothary R, Hovatta I. Genetic background modulates the effect of glucocorticoids on proliferation, differentiation and myelin formation of oligodendrocyte lineage cells. Eur J Neurosci 2024; 59:2276-2292. [PMID: 38385867 DOI: 10.1111/ejn.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.
Collapse
Affiliation(s)
- Adrien Gigliotta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jessica Mingardi
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Vida Alikhani
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
10
|
Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol 2024; 7:457. [PMID: 38615103 PMCID: PMC11016080 DOI: 10.1038/s42003-024-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Visceral hypersensitivity, a common clinical manifestation of irritable bowel syndrome, may contribute to the development of chronic visceral pain, which is a major challenge for both patients and health providers. Neural circuits in the brain encode, store, and transfer pain information across brain regions. In this review, we focus on the anterior cingulate cortex and paraventricular nucleus of the hypothalamus to highlight the progress in identifying the neural circuits involved in visceral pain. We also discuss several neural circuit mechanisms and emphasize the importance of cross-species, multiangle approaches and the identification of specific neurons in determining the neural circuits that control visceral pain.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiyan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Dufour BD, Bartley T, McBride E, Allen E, McLennan YA, Hagerman RJ, Martínez-Cerdeño V. FXTAS Neuropathology Includes Widespread Reactive Astrogliosis and White Matter Specific Astrocyte Degeneration. Ann Neurol 2024; 95:558-575. [PMID: 38069470 PMCID: PMC10922917 DOI: 10.1002/ana.26851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.
Collapse
Affiliation(s)
- Brett D. Dufour
- Department of Psychiatry & Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Trevor Bartley
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Erin McBride
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Erik Allen
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana A. McLennan
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi J. Hagerman
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
13
|
Escalada P, Ezkurdia A, Ramírez MJ, Solas M. Essential Role of Astrocytes in Learning and Memory. Int J Mol Sci 2024; 25:1899. [PMID: 38339177 PMCID: PMC10856373 DOI: 10.3390/ijms25031899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons. Changes in the strength of synaptic connections are indeed thought to be the cellular basis of learning and memory. Importantly, astrocytes have been demonstrated to tightly regulate these processes via the release of several gliotransmitters linked to astrocytic calcium activity as well as astrocyte-neuron metabolic coupling. Therefore, astrocytes seem to be integrators of and actors upon learning- and memory-relevant information. In this review, we focus on the role of astrocytes in learning and memory processes. We delineate the recognized inputs and outputs of astrocytes and explore the influence of manipulating astrocytes on behaviour across diverse learning paradigms. We conclude that astrocytes influence learning and memory in various manners. Appropriate astrocytic Ca2+ dynamics are being increasingly identified as central contributors to memory formation and retrieval. In addition, astrocytes regulate brain rhythms essential for cognition, and astrocyte-neuron metabolic cooperation is required for memory consolidation.
Collapse
Affiliation(s)
- Paula Escalada
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
| | - Amaia Ezkurdia
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
14
|
Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in Multiple Sclerosis. Curr Opin Cell Biol 2024; 86:102307. [PMID: 38145604 PMCID: PMC10922437 DOI: 10.1016/j.ceb.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Multiple Sclerosis (MS) is a common cause of impairment in working-aged adults. MS is characterized by neuroinflammation and infiltration of peripheral immune cells to the brain, which cause myelin loss and death of oligodendrocytes and neurons. Many studies on MS have focused on the peripheral immune sources of demyelination and repair. However, recent studies revealed that a glial cell type, the astrocytes, undergo robust morphological and transcriptomic changes that contribute significantly to demyelination and myelin repair. Here, we discuss recent findings elucidating signaling modalities that astrocytes acquire or lose in MS and how these changes alter the interactions of astrocytes with other nervous system cell types.
Collapse
Affiliation(s)
- Crystal Colón Ortiz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Heller DT, Kolson DR, Brandebura AN, Amick EM, Wan J, Ramadan J, Holcomb PS, Liu S, Deerinck TJ, Ellisman MH, Qian J, Mathers PH, Spirou GA. Astrocyte ensheathment of calyx-forming axons of the auditory brainstem precedes accelerated expression of myelin genes and myelination by oligodendrocytes. J Comp Neurol 2024; 532:e25552. [PMID: 37916792 PMCID: PMC10922096 DOI: 10.1002/cne.25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Early postnatal brain development involves complex interactions among maturing neurons and glial cells that drive tissue organization. We previously analyzed gene expression in tissue from the mouse medial nucleus of the trapezoid body (MNTB) during the first postnatal week to study changes that surround rapid growth of the large calyx of Held (CH) nerve terminal. Here, we present genes that show significant changes in gene expression level during the second postnatal week, a developmental timeframe that brackets the onset of airborne sound stimulation and the early stages of myelination. Gene Ontology analysis revealed that many of these genes are related to the myelination process. Further investigation of these genes using a previously published cell type-specific bulk RNA-Seq data set in cortex and our own single-cell RNA-Seq data set in the MNTB revealed enrichment of these genes in the oligodendrocyte lineage (OL) cells. Combining the postnatal day (P)6-P14 microarray gene expression data with the previously published P0-P6 data provided fine temporal resolution to investigate the initiation and subsequent waves of gene expression related to OL cell maturation and the process of myelination. Many genes showed increasing expression levels between P2 and P6 in patterns that reflect OL cell maturation. Correspondingly, the first myelin proteins were detected by P4. Using a complementary, developmental series of electron microscopy 3D image volumes, we analyzed the temporal progression of axon wrapping and myelination in the MNTB. By employing a combination of established ultrastructural criteria to classify reconstructed early postnatal glial cells in the 3D volumes, we demonstrated for the first time that astrocytes within the mouse MNTB extensively wrap the axons of the growing CH terminal prior to OL cell wrapping and compaction of myelin. Our data revealed significant expression of several myelin genes and enrichment of multiple genes associated with lipid metabolism in astrocytes, which may subserve axon wrapping in addition to myelin formation. The transition from axon wrapping by astrocytes to OL cells occurs rapidly between P4 and P9 and identifies a potential new role of astrocytes in priming calyceal axons for subsequent myelination.
Collapse
Affiliation(s)
| | - Douglas R. Kolson
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
| | - Ashley N. Brandebura
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | - Emily M. Amick
- Medical Engineering, University of South Florida, Tampa, FL
| | - Jun Wan
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jad Ramadan
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
| | - Paul S. Holcomb
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
| | - Sheng Liu
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. Deerinck
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA
- Department of Neuroscience, University of California, San Diego, CA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA
- Department of Neuroscience, University of California, San Diego, CA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter H. Mathers
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
- Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | | |
Collapse
|
16
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison ER, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, an inhibitor of oligodendrocyte differentiation and FTY720 responses. Proc Natl Acad Sci U S A 2024; 121:e2306816121. [PMID: 38266047 PMCID: PMC10835138 DOI: 10.1073/pnas.2306816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Cory M. Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Antoine Menoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Anthony Sacino
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Arend. H. Sikkema
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Kyaw K. Win
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - David K. Han
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - William Church
- Department of Chemistry and Neuroscience Program, Trinity College, Hartford, CT06106
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| |
Collapse
|
17
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Waldorf KA, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a pigtail macaque model of congenital Zika infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561759. [PMID: 37873381 PMCID: PMC10592731 DOI: 10.1101/2023.10.11.561759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle Washington, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Cheli VT, Sekhar M, Santiago González DA, Angeliu CG, Denaroso GE, Smith Z, Wang C, Paez PM. The expression of ceruloplasmin in astrocytes is essential for postnatal myelination and myelin maintenance in the adult brain. Glia 2023; 71:2323-2342. [PMID: 37269227 PMCID: PMC10599212 DOI: 10.1002/glia.24424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Ceruloplasmin (Cp) is a ferroxidase enzyme that is essential for cell iron efflux. The absence of this protein in humans and rodents produces progressive neurodegeneration with brain iron accumulation. Astrocytes express high levels of Cp and iron efflux from these cells has been shown to be central for oligodendrocyte maturation and myelination. To explore the role of astrocytic Cp in brain development and aging we generated a specific conditional KO mouse for Cp in astrocytes (Cp cKO). Deletion of Cp in astrocytes during the first postnatal week induced hypomyelination and a significant delay in oligodendrocyte maturation. This abnormal myelin synthesis was exacerbated throughout the first two postnatal months and accompanied by a reduction in oligodendrocyte iron content, as well as an increase in brain oxidative stress. In contrast to young animals, deletion of astrocytic Cp at 8 months of age engendered iron accumulation in several brain areas and neurodegeneration in cortical regions. Aged Cp cKO mice also showed myelin loss and oxidative stress in oligodendrocytes and neurons, and at 18 months of age, developed abnormal behavioral profiles, including deficits in locomotion and short-term memory. In summary, our results demonstrate that iron efflux-mediated by astrocytic Cp-is essential for both early oligodendrocyte maturation and myelin integrity in the mature brain. Additionally, our data suggest that astrocytic Cp activity is central to prevent iron accumulation and iron-induced oxidative stress in the aging CNS.
Collapse
Affiliation(s)
- V T Cheli
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - M Sekhar
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - D A Santiago González
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C G Angeliu
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - G E Denaroso
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Z Smith
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C Wang
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - P M Paez
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Pantoja IEM, Ding L, Leite PEC, Marques SA, Romero JC, Din DMAE, Zack DJ, Chamling X, Smirnova L. A novel approach to increase glial cell populations in brain microphysiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557775. [PMID: 37745321 PMCID: PMC10515937 DOI: 10.1101/2023.09.14.557775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain. Most of the models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), we present an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS. An important finding is that astrocytes not only increased in number but also changed in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. We demonstrate oligodendrocyte and astrocyte enrichment in GEM bMPS using a variety of complementary methods. We found that GEM bMPS are electro-chemically active and showed different patterns of Ca +2 staining and flux. Synaptic vesicles and terminals observed by electron microscopy were also present. No significant changes in neuronal differentiation were observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different iPSC lines. Our results have the potential to significantly improve in vivo-like functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
Collapse
|
20
|
Tan R, Hong R, Sui C, Yang D, Tian H, Zhu T, Yang Y. The role and potential therapeutic targets of astrocytes in central nervous system demyelinating diseases. Front Cell Neurosci 2023; 17:1233762. [PMID: 37720543 PMCID: PMC10502347 DOI: 10.3389/fncel.2023.1233762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes play vital roles in the central nervous system, contributing significantly to both its normal functioning and pathological conditions. While their involvement in various diseases is increasingly recognized, their exact role in demyelinating lesions remains uncertain. Astrocytes have the potential to influence demyelination positively or negatively. They can produce and release inflammatory molecules that modulate the activation and movement of other immune cells. Moreover, they can aid in the clearance of myelin debris through phagocytosis and facilitate the recruitment and differentiation of oligodendrocyte precursor cells, thereby promoting axonal remyelination. However, excessive or prolonged astrocyte phagocytosis can exacerbate demyelination and lead to neurological impairments. This review provides an overview of the involvement of astrocytes in various demyelinating diseases, emphasizing the underlying mechanisms that contribute to demyelination. Additionally, we discuss the interactions between oligodendrocytes, oligodendrocyte precursor cells and astrocytes as therapeutic options to support myelin regeneration. Furthermore, we explore the role of astrocytes in repairing synaptic dysfunction, which is also a crucial pathological process in these disorders.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Hong
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Ferreira RS, Ribeiro PR, Silva JHCE, Hoppe JB, de Almeida MMA, de Lima Ferreira BC, Andrade GB, de Souza SB, Ferdandez LG, de Fátima Dias Costa M, Salbego CG, Rivera AD, Longoni A, de Assis AM, Pieropan F, Moreira JCF, Costa SL, Butt AM, da Silva VDA. Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia. BMC Complement Med Ther 2023; 23:154. [PMID: 37170258 PMCID: PMC10173544 DOI: 10.1186/s12906-023-03959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.
Collapse
Affiliation(s)
- Rafael Short Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Juliana Helena Castro E Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Juliana Bender Hoppe
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Monique Marylin Alves de Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Beatriz Correia de Lima Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Gustavo Borges Andrade
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Suzana Braga de Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Luzimar Gonzaga Ferdandez
- Biochemistry, Biotechnology and Bioproducts Laboratory, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Christianne Gazzana Salbego
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Andrea Domenico Rivera
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Aline Longoni
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Adriano Martimbianco de Assis
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
22
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
23
|
Delgado L, Navarrete M. Shining the Light on Astrocytic Ensembles. Cells 2023; 12:1253. [PMID: 37174653 PMCID: PMC10177371 DOI: 10.3390/cells12091253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
While neurons have traditionally been considered the primary players in information processing, the role of astrocytes in this mechanism has largely been overlooked due to experimental constraints. In this review, we propose that astrocytic ensembles are active working groups that contribute significantly to animal conduct and suggest that studying the maps of these ensembles in conjunction with neurons is crucial for a more comprehensive understanding of behavior. We also discuss available methods for studying astrocytes and argue that these ensembles, complementarily with neurons, code and integrate complex behaviors, potentially specializing in concrete functions.
Collapse
Affiliation(s)
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| |
Collapse
|
24
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
25
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison E, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, a novel inhibitor of oligodendrocyte differentiation and FTY720 responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529003. [PMID: 36824834 PMCID: PMC9949145 DOI: 10.1101/2023.02.17.529003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.
Collapse
|
26
|
Hasan M, Lei Z, Akter M, Iqbal Z, Usaila F, Ramkrishnan AS, Li Y. Chemogenetic activation of astrocytes promotes remyelination and restores cognitive deficits in visceral hypersensitive rats. iScience 2023; 26:105840. [PMID: 36619970 PMCID: PMC9812719 DOI: 10.1016/j.isci.2022.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Using a well-established chronic visceral hypersensitivity (VH) rat model, we characterized the decrease of myelin basic protein, reduced number of mature oligodendrocytes (OLs), and hypomyelination in the anterior cingulate cortex (ACC). The results of rat gambling test showed impaired decision-making, and the results of electrophysiological studies showed desynchronization in the ACC to basolateral amygdala (BLA) neural circuitry. Astrocytes release various factors that modulate oligodendrocyte progenitor cell proliferation and myelination. Astrocytic Gq-modulation through expression of hM3Dq facilitated oligodendrocyte progenitor cell proliferation and OL differentiation, and enhanced ACC myelination in VH rats. Activating astrocytic Gq rescued impaired decision-making and desynchronization in ACC-BLA. These data indicate that ACC hypomyelination is an important component of impaired decision-making and network desynchronization in VH. Astrocytic Gq activity plays a significant role in oligodendrocyte myelination and decision-making behavior in VH. Insights from these studies have potential for interventions in myelin-related diseases such as chronic pain-associated cognitive disorders.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Faeeqa Usaila
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Duncan GJ, Emery B. End of the road: Astrocyte endfeet regulate OPC migration and myelination. Neuron 2023; 111:139-141. [PMID: 36657394 DOI: 10.1016/j.neuron.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) use the vasculature as a scaffold for their migration. In this issue of Neuron, Su et al. determine that astrocytic ensheathment of the vasculature mediates OPC detachment from blood vessels via the secretion of semaphorins, regulating the timing of oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Greg J Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Su Y, Wang X, Yang Y, Chen L, Xia W, Hoi KK, Li H, Wang Q, Yu G, Chen X, Wang S, Wang Y, Xiao L, Verkhratsky A, Fancy SPJ, Yi C, Niu J. Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development. Neuron 2023; 111:190-201.e8. [PMID: 36384142 PMCID: PMC9922530 DOI: 10.1016/j.neuron.2022.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) undergo an extensive and coordinated migration in the developing CNS, using the pre-formed scaffold of developed blood vessels as their physical substrate for migration. While OPC association with vasculature is critical for dispersal, equally important for permitting differentiation and proper myelination of target axons is their appropriate and timely detachment, but regulation of this process remains unclear. Here we demonstrate a correlation between the developmental formation of astrocytic endfeet on vessels and the termination of OPC perivascular migration. Ex vivo and in vivo live imaging shows that astrocyte endfeet physically displace OPCs from vasculature, and genetic abrogation of endfoot formation hinders both OPC detachment from vessels and subsequent differentiation. Astrocyte-derived semaphorins 3a and 6a act to repel OPCs from blood vessels at the cessation of their perivascular migration and, in so doing, permit subsequent OPC differentiation by insulating them from a maturation inhibitory endothelial niche.
Collapse
Affiliation(s)
- Yixun Su
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yujian Yang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing 400042, China
| | - Liang Chen
- Department of Orthopedics, Army Specialty Medical Center, Third Military Medical University, Chongqing 400042, China
| | - Wenlong Xia
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Kimberly K Hoi
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hui Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qi Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Guangdan Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Shouyu Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yuxin Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139PL, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
| | - Stephen P J Fancy
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
29
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
30
|
Miguel-Hidalgo JJ. Role of stress-related glucocorticoid changes in astrocyte-oligodendrocyte interactions that regulate myelin production and maintenance. Histol Histopathol 2023; 38:1-8. [PMID: 35652516 PMCID: PMC9843868 DOI: 10.14670/hh-18-476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Repeated activation of stress responses and elevated corticosteroids result in alterations of neuronal physiology and metabolism, and lead to disturbances of normal connectivity between neurons in various brain regions. In addition, stress responses are also associated with anomalies in the function of glial cells, particularly astrocytes and oligodendrocytes, which in turn may further contribute to the mechanisms of neuronal dysfunction. The actions of corticosteroids on astrocytes are very likely mediated by the presence of intracellular and cell membrane-bound CORT receptors. Although apparently less abundant than in astrocytes, activation of CORT receptors in oligodendrocytes also leads to structural changes that are reflected in myelin maintenance and plasticity. The close interactions between astrocytes and oligodendrocytes through extracellular matrix molecules, soluble factors and astrocyte-oligodendrocyte gap junctions very likely mediate part of the disturbances in myelin structure, leading to plastic myelin adaptations or pathological myelin disruptions that may significantly influence brain connectivity. Likewise, the intimate association of the tips of some astrocytes processes with a majority of nodes of Ranvier in the white matter suggest that stress and overexposure to corticosteroids may lead to remodeling of node of Ranvier and their specific extracellular milieu.
Collapse
|
31
|
Silva Oliveira Junior M, Schira-Heinen J, Reiche L, Han S, de Amorim VCM, Lewen I, Gruchot J, Göttle P, Akkermann R, Azim K, Küry P. Myelin repair is fostered by the corticosteroid medrysone specifically acting on astroglial subpopulations. EBioMedicine 2022; 83:104204. [PMID: 35952494 PMCID: PMC9385547 DOI: 10.1016/j.ebiom.2022.104204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background Multiple sclerosis is characterised by inflammation, oligodendrocyte loss and axonal demyelination and shows an additional impact on astrocytes, and their polarization. Although a certain degree of spontaneous myelin repair can be observed, disease progression, and aging impair regeneration efforts highlighting the need to better understand glial cell dynamics to establish specific regenerative treatments. Methods Applying a chronic demyelination model, we here analysed demyelination and remyelination related effects on astrocytes and stem cell niches and studied the consequences of medrysone application on myelin repair, and astrocyte polarization. Findings Medrysone induced recovery of mature oligodendrocytes, myelin expression and node formation. In addition, C3d/S100a10 co-expression in astrocytes was enhanced. Moreover, Timp1 expression in C3d positive astrocytes revealed another astrocytic phenotype with a myelination promoting character. Interpretation Based on these findings, specific astrocyte subpopulations are suggested to act in a myelin regenerative way and manner the regulation of which can be positively modulated by this corticosteroid. Funding This work was supported by the Jürgen Manchot Stiftung, the Research Commission of the medical faculty of the Heinrich-Heine-University of Düsseldorf, the Christiane and Claudia Hempel Foundation for clinical stem cell research and the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung.
Collapse
|
32
|
Woo A, Botta A, Shi SSW, Paus T, Pausova Z. Obesity-Related Neuroinflammation: Magnetic Resonance and Microscopy Imaging of the Brain. Int J Mol Sci 2022; 23:8790. [PMID: 35955925 PMCID: PMC9368789 DOI: 10.3390/ijms23158790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a major risk factor of Alzheimer's disease and related dementias. The principal feature of dementia is a loss of neurons and brain atrophy. The mechanistic links between obesity and the neurodegenerative processes of dementias are not fully understood, but recent research suggests that obesity-related systemic inflammation and subsequent neuroinflammation may be involved. Adipose tissues release multiple proinflammatory molecules (fatty acids and cytokines) that impact blood and vessel cells, inducing low-grade systemic inflammation that can transition to tissues, including the brain. Inflammation in the brain-neuroinflammation-is one of key elements of the pathobiology of neurodegenerative disorders; it is characterized by the activation of microglia, the resident immune cells in the brain, and by the structural and functional changes of other cells forming the brain parenchyma, including neurons. Such cellular changes have been shown in animal models with direct methods, such as confocal microscopy. In humans, cellular changes are less tangible, as only indirect methods such as magnetic resonance (MR) imaging are usually used. In these studies, obesity and low-grade systemic inflammation have been associated with lower volumes of the cerebral gray matter, cortex, and hippocampus, as well as altered tissue MR properties (suggesting microstructural variations in cellular and molecular composition). How these structural variations in the human brain observed using MR imaging relate to the cellular variations in the animal brain seen with microscopy is not well understood. This review describes the current understanding of neuroinflammation in the context of obesity-induced systemic inflammation, and it highlights need for the bridge between animal microscopy and human MR imaging studies.
Collapse
Affiliation(s)
- Anita Woo
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amy Botta
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sammy S. W. Shi
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Departments of Psychiatry of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| |
Collapse
|
33
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
34
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
35
|
Ahn JJ, Islam Y, Miller RH. Cell type specific isolation of primary astrocytes and microglia from adult mouse spinal cord. J Neurosci Methods 2022; 375:109599. [PMID: 35460698 DOI: 10.1016/j.jneumeth.2022.109599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Astrocytes and microglia are essential cellular elements of the CNS that are critical for normal development, function, and injury responses. Both cell types are highly pleiotropic and respond rapidly to environmental changes, making them challenging to characterize. One approach is to develop efficient isolation paradigms of distinct cell populations, allowing for characterization of their roles in distinct CNS regions and in pathological states. NEW METHOD We have developed an efficient and reliable protocol for isolation of astrocytes and microglia from the adult mouse spinal cord, which can be easily manipulated for immediate or future analyses. This method involves (1) rapid tissue dissociation; (2) cell release after myelin debris removal; (3) magnetic-activated cell sorting; and (4) optional downstream molecular and functional analyses. RESULTS High levels of viability and purity of the cells were confirmed after isolation. More importantly, characterization of cells verified their ability to proliferate and respond to external stimuli for potential use in downstream molecular and functional assays. COMPARISON WITH EXISTING METHOD(S) Long-term culture of cells isolated from neonatal animals and cell type specific isolation from the brain have been successful; however, isolation of spinal cord cells from adult mice has been challenging due to the large amount of myelin and limited size of the tissue compared to the brain. Our method allows for efficient isolation of astrocytes and microglia from spinal cord alone and includes simple modifications to allow for various downstream applications. CONCLUSIONS This technique will be a valuable tool to better understand the functions of astrocytes and microglia in spinal cord function and pathology.
Collapse
Affiliation(s)
- Julie J Ahn
- Department of Anatomy and Cell Biology, George Washington University, 2300 I Street NW, Ross Hall 736, Washington, DC 20037, USA.
| | - Yusra Islam
- Department of Anatomy and Cell Biology, George Washington University, 2300 I Street NW, Ross Hall 736, Washington, DC 20037, USA.
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University, 2300 I Street NW, Ross Hall 736, Washington, DC 20037, USA.
| |
Collapse
|
36
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
37
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
38
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Sherafat A, Pfeiffer F, Nishiyama A. Shaping of Regional Differences in Oligodendrocyte Dynamics by Regional Heterogeneity of the Pericellular Microenvironment. Front Cell Neurosci 2021; 15:721376. [PMID: 34690700 PMCID: PMC8531270 DOI: 10.3389/fncel.2021.721376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into mature oligodendrocytes (OLs) to generate new myelin sheaths. While OPCs are distributed uniformly throughout the gray and white matter in the developing and adult brain, those in white matter proliferate and differentiate into oligodendrocytes at a greater rate than those in gray matter. There is currently lack of evidence to suggest that OPCs comprise genetically and transcriptionally distinct subtypes. Rather, the emerging view is that they exist in different cell and functional states, depending on their location and age. Contrary to the normal brain, demyelinated lesions in the gray matter of multiple sclerosis brains contain more OPCs and OLs and are remyelinated more robustly than those in white matter. The differences in the dynamic behavior of OL lineage cells are likely to be influenced by their microenvironment. There are regional differences in astrocytes, microglia, the vasculature, and the composition of the extracellular matrix (ECM). We will discuss how the regional differences in these elements surrounding OPCs might shape their phenotypic variability in normal and demyelinated states.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States.,The Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
40
|
Dicer Deletion in Astrocytes Inhibits Oligodendroglial Differentiation and Myelination. Neurosci Bull 2021; 37:1135-1146. [PMID: 34106403 PMCID: PMC8353046 DOI: 10.1007/s12264-021-00705-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has shown that astrocytes are implicated in regulating oligodendrocyte myelination, but the underlying mechanisms remain largely unknown. To understand whether microRNAs in astrocytes function in regulating oligodendroglial differentiation and myelination in the developing and adult CNS, we generated inducible astrocyte-specific Dicer conditional knockout mice (hGFAP-CreERT; Dicer fl/fl). By using a reporter mouse line (mT/mG), we confirmed that hGFAP-CreERT drives an efficient and astrocyte-specific recombination in the developing CNS, upon tamoxifen treatment from postnatal day 3 (P3) to P7. The Dicer deletion in astrocytes resulted in inhibited oligodendroglial differentiation and myelination in the developing CNS of Dicer cKO mice at P10 and P14, and did not alter the densities of neurons or axons, indicating that Dicer in astrocytes is required for oligodendrocyte myelination. Consequently, the Dicer deletion in astrocytes at P3 resulted in impaired spatial memory and motor coordination at the age of 9 weeks. To understand whether Dicer in astrocytes is also required for remyelination, we induced Dicer deletion in 3-month-old mice and then injected lysolecithin into the corpus callosum to induce demyelination. The Dicer deletion in astrocytes blocked remyelination in the corpus callosum 14 days after induced demyelination. Together, our results indicate that Dicer in astrocytes is required for oligodendroglia myelination in both the developing and adult CNS.
Collapse
|
41
|
Mitochondria in Myelinating Oligodendrocytes: Slow and Out of Breath? Metabolites 2021; 11:metabo11060359. [PMID: 34198810 PMCID: PMC8226700 DOI: 10.3390/metabo11060359] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Myelin is a lipid-rich membrane that wraps around axons and facilitates rapid action potential propagation. In the brain, myelin is synthesized and maintained by oligodendrocytes. These cells have a high metabolic demand that requires mitochondrial ATP production during the process of myelination, but they rely less on mitochondrial respiration after myelination is complete. Mitochondria change in morphology and distribution during oligodendrocyte development. Furthermore, the morphology and dynamic properties of mitochondria in mature oligodendrocytes seem different from any other brain cell. Here, we first give a brief introduction to oligodendrocyte biology and function. We then review the current knowledge on oligodendrocyte metabolism and discuss how the available data on mitochondrial morphology and mobility as well as transcriptome and proteome studies can shed light on the metabolic properties of oligodendrocytes.
Collapse
|
42
|
Roles of astrocytes in response to aging, Alzheimer's disease and multiple sclerosis. Brain Res 2021; 1764:147464. [PMID: 33812850 DOI: 10.1016/j.brainres.2021.147464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes are traditionally recognized for their multiple roles in support of brain function. However, additional changes in these roles are evident in response to brain diseases. In this review, we highlight positive and negative effects of astrocytes in response to aging, Alzheimer's disease and Multiple Sclerosis. We summarize data suggesting that reactive astrocytes may perform critical functions that might be relevant to the etiology of these conditions. In particular, we relate astrocytes effects to actions on synaptic transmission, cognition, and myelination. We suggest that a better understanding of astrocyte functions and how these become altered in response to aging or disease will lead to the appreciation of these cells as useful therapeutic targets.
Collapse
|
43
|
Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Möbius W, Odoardi F, Thal DR, Chang M, Opdenakker G, Bennett JL, Nessler S, Stadelmann C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Invest 2021; 131:141694. [PMID: 33645550 DOI: 10.1172/jci141694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael Haberl
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Theres Weil
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|