1
|
Nawa H, Murakami M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacol Rep 2025; 45:e12520. [PMID: 39754403 PMCID: PMC11702486 DOI: 10.1002/npr2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process. In agreement, the anticancer drugs targeting EGFR such as Nimotuzumab and tyrosine kinase inhibitors are markedly effective on COVID-19. However, these data might raise a provisional caution regarding implication of psychiatric disorder such as schizophrenia. The author's group has been investigating the etiologic and neuropathologic associations of EGFR signaling with schizophrenia. There are significant molecular associations between schizophrenia and EGFR ligand levels in blood as well as in the brain. In addition, perinatal challenges of EGFR ligands and intraventricular administration of EGF to rodents and monkeys both resulted in severe behavioral and/or electroencephalographic endophenotypes relevant to this disorder. These animal models also display postpubertal abnormality in soliloquy-like self-vocalization as well as in intercortical functional connectivity. Here, we discuss neuropsychiatric implication of coronavirus infection and its interaction with the EGFR system, by searching related literatures in PubMed database as of the end of 2023.
Collapse
Affiliation(s)
- Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical SciencesWakayama Medical UniversityWakayamaJapan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute for Genetic MedicineHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
2
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
3
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024; 31:3673-3687. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
5
|
Nelson BK, Farah LN, Grier A, Su W, Chen J, Sossi V, Sekhon MS, Stoessl AJ, Wellington C, Honer WG, Lang D, Silverberg ND, Panenka WJ. Differences in brain structure and cognitive performance between patients with long-COVID and those with normal recovery. Neuroimage 2024; 300:120859. [PMID: 39317274 DOI: 10.1016/j.neuroimage.2024.120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The pathophysiology of protracted symptoms after COVID-19 is unclear. This study aimed to determine if long-COVID is associated with differences in baseline characteristics, markers of white matter diffusivity in the brain, and lower scores on objective cognitive testing. METHODS Individuals who experienced COVID-19 symptoms for more than 60 days post-infection (long-COVID) (n = 56) were compared to individuals who recovered from COVID-19 within 60 days of infection (normal recovery) (n = 35). Information regarding physical and mental health, and COVID-19 illness was collected. The National Institute of Health Toolbox Cognition Battery was administered. Participants underwent magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). Tract-based spatial statistics were used to perform a whole-brain voxel-wise analysis on standard DTI metrics (fractional anisotropy, axial diffusivity, mean diffusivity, radial diffusivity), controlling for age and sex. NIH Toolbox Age-Adjusted Fluid Cognition Scores were used to compare long-COVID and normal recovery groups, covarying for Age-Adjusted Crystallized Cognition Scores and years of education. False discovery rate correction was applied for multiple comparisons. RESULTS There were no significant differences in age, sex, or history of neurovascular risk factors between the groups. The long-COVID group had significantly (p < 0.05) lower mean diffusivity than the normal recovery group across multiple white matter regions, including the internal capsule, anterior and superior corona radiata, corpus callosum, superior fronto-occiptal fasciculus, and posterior thalamic radiation. However, the effect sizes of these differences were small (all β<|0.3|) and no significant differences were found for the other DTI metrics. Fluid cognition composite scores did not differ significantly between the long-COVID and normal recovery groups (p > 0.05). CONCLUSIONS Differences in diffusivity between long-COVID and normal recovery groups were found on only one DTI metric. This could represent subtle areas of pathology such as gliosis or edema, but the small effect sizes and non-specific nature of the diffusion indices make pathological inference difficult. Although long-COVID patients reported many neuropsychiatric symptoms, significant differences in objective cognitive performance were not found.
Collapse
Affiliation(s)
- Breanna K Nelson
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Lea N Farah
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Ava Grier
- University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Wayne Su
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Johnson Chen
- Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada
| | - Vesna Sossi
- University of British Columbia, Department of Physics and Astronomy, 325-6224 Agricultural Road Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Mypinder S Sekhon
- University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - A Jon Stoessl
- University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Cheryl Wellington
- University of British Columbia, Department of Pathology and Laboratory Medicine, 317 - 2194 Health Sciences Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - William G Honer
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Donna Lang
- University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Noah D Silverberg
- University of British Columbia, Department of Psychology, 2136 West Mall Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - William J Panenka
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada.
| |
Collapse
|
6
|
Volk P, Rahmani Manesh M, Warren ME, Besko K, Gonçalves de Andrade E, Wicki-Stordeur LE, Swayne LA. Long-term neurological dysfunction associated with COVID-19: Lessons from influenza and inflammatory diseases? J Neurochem 2024; 168:3500-3511. [PMID: 38014645 DOI: 10.1111/jnc.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
As the COVID-19 pandemic persists, SARS-CoV-2 infection is increasingly associated with long-term neurological side effects including cognitive impairment, fatigue, depression, and anxiety, colloquially known as "long-COVID." While the full extent of long-COVID neuropathology across years or even decades is not yet known, we can perhaps take direction from long-standing research into other respiratory diseases, such as influenza, that can present with similar long-term neurological consequences. In this review, we highlight commonalities in the neurological impacts of influenza and COVID-19. We first focus on the common potential mechanisms underlying neurological sequelae of long-COVID and influenza, namely (1) viral neurotropism and (2) dysregulated peripheral inflammation. The latter, namely heightened peripheral inflammation leading to central nervous system dysfunction, is emerging as a shared mechanism in various peripheral inflammatory or inflammation-associated diseases and conditions. We then discuss historical and modern examples of influenza- and COVID-19-associated cognitive impairment, depression, anxiety, and fatigue, revealing key similarities in their neurological sequelae. Although we are learning that the effects of influenza and COVID differ somewhat in terms of their influence on the brain, as the impacts of long-COVID grow, such comparisons will likely prove valuable in guiding ongoing research into long-COVID, and perhaps foreshadow what could be in store for individuals with COVID-19 and their brain health.
Collapse
Affiliation(s)
- Parker Volk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Mary E Warren
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katie Besko
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Wallensten J, Havervall S, Power Y, Åsberg M, Borg K, Nager A, Thålin C, Mobarrez F. Oneyear longitudinal study on biomarkers of blood-brain barrier permeability in COVID-19 patients. Sci Rep 2024; 14:22735. [PMID: 39349618 PMCID: PMC11442946 DOI: 10.1038/s41598-024-73321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The pathophysiology behind neurological and cognitive sequelae of COVID-19 may be related to dysfunction of the blood-brain barrier (BBB) and previous research indicate transient neuronal injury and glial activation. The aim of this study was to investigate if COVID-19 is related to increased BBB permeability by analyzing leakage of biomarkers such as astrocyte-derived extracellular vesicles (EVs) and S100B. We also investigated whether levels of these biomarkers correlated with self-reported symptoms that persisted > 2 months. The samples in this 1-year follow-up study came from an ongoing longitudinal study of unvaccinated patients hospitalized for COVID-19 at Danderyd University Hospital, Stockholm, Sweden, between April and June 2020. Blood samples were collected at baseline and 4, 8, and 12 months after hospitalization. Information on self-reported clinical symptoms was collected at follow-up visits. A total of 102 patients were enrolled, and 47 completed all follow-up measurements. Peak levels of both biomarkers were observed at 4 months in the subset of 55 patients who were measured at this timepoint. At 12 months, the biomarkers had returned to baseline levels. The biomarkers were not correlated with any of the long-term self-reported symptoms. COVID-19 is associated with transient increased BBB permeability, shown by elevated levels of astrocyte biomarkers in plasma. However, these levels return to baseline 12 months post-infection and do not correlate with long-term symptoms. Further research is needed to unravel the underlying mechanisms causing long-term symptoms in COVID-19 patients.
Collapse
Affiliation(s)
- Johanna Wallensten
- Academic Primary Health Care Centre, Region Stockholm, Solnavägen 1E, Box 45436, 104 31, Stockholm, Sweden.
- Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, 18288, Stockholm, Sweden.
| | - Sebastian Havervall
- Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Yvonne Power
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Marie Åsberg
- Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Kristian Borg
- Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Anna Nager
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177, Stockholm, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Fariborz Mobarrez
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| |
Collapse
|
8
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
9
|
Ismail FS, Faustmann TJ, Faustmann PM, Corvace F. Microglia as potential key regulators in viral-induced neuroinflammation. Front Cell Neurosci 2024; 18:1426079. [PMID: 39055547 PMCID: PMC11269195 DOI: 10.3389/fncel.2024.1426079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Yan Y, Cho AN. Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study. Int J Mol Sci 2024; 25:6522. [PMID: 38928228 PMCID: PMC11204318 DOI: 10.3390/ijms25126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.
Collapse
Affiliation(s)
- Yuwei Yan
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Ge Q, Zhou S, Porras J, Fu P, Wang T, Du J, Li K. SARS-CoV-2 neurotropism-induced anxiety/depression-like behaviors require Microglia activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560570. [PMID: 37873397 PMCID: PMC10592887 DOI: 10.1101/2023.10.02.560570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with a wide range of "long COVID" neurological symptoms. However, the mechanisms governing SARS-CoV-2 neurotropism and its effects on long-term behavioral changes remain poorly understood. Using a highly virulent mouse-adapted SARS-CoV-2 strain, denoted as SARS2-N501Y MA30 , we demonstrated that intranasal inoculation of SARS2-N501Y MA30 results in viral dissemination to multiple brain regions, including the amygdala and hippocampus. Behavioral assays indicated a marked elevation in anxiety- and depression-like behaviors post infection. A comparative analysis of RNA expression profiles disclosed alterations in the post-infected brains. Additionally, we observed dendritic spine remodeling on neurons within the amygdala after infection. Infection with SARS2-N501Y MA30 was associated with microglial activation and a subsequent increase in microglia-dependent neuronal activity in the amygdala. Pharmacological inhibition of microglial activity subsequent to viral spike inoculation mitigates microglia-dependent neuronal hyperactivity. Transcriptomic analysis of infected brains revealed the upregulation of inflammatory and cytokine-related pathways, implicating microglia-driven neuroinflammation in the pathogenesis of neuronal hyperactivity and behavioral abnormality. Overall, these data provide critical insights into the neurological consequences of SARS-CoV-2 infection and underscore microglia as a potential therapeutic target for ameliorating virus-induced neurobehavioral abnormalities.
Collapse
|
12
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
13
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
14
|
Romero-Molina AO, Ramirez-Garcia G, Chirino-Perez A, Fuentes-Zavaleta DA, Hernandez-Castillo CR, Marrufo-Melendez O, Lopez-Gonzalez D, Rodriguez-Rodriguez M, Castorena-Maldonado A, Rodriguez-Agudelo Y, Paz-Rodriguez F, Chavez-Oliveros M, Lozano-Tovar S, Gutierrez-Romero A, Arauz-Gongora A, Garcia-Santos RA, Fernandez-Ruiz J. SARS-CoV-2's brain impact: revealing cortical and cerebellar differences via cluster analysis in COVID-19 recovered patients. Neurol Sci 2024; 45:837-848. [PMID: 38172414 DOI: 10.1007/s10072-023-07266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND COVID-19 is a disease known for its neurological involvement. SARS-CoV-2 infection triggers neuroinflammation, which could significantly contribute to the development of long-term neurological symptoms and structural alterations in the gray matter. However, the existence of a consistent pattern of cerebral atrophy remains uncertain. OBJECTIVE Our study aimed to identify patterns of brain involvement in recovered COVID-19 patients and explore potential relationships with clinical variables during hospitalization. METHODOLOGY In this study, we included 39 recovered patients and 39 controls from a pre-pandemic database to ensure their non-exposure to the virus. We obtained clinical data of the patients during hospitalization, and 3 months later; in addition we obtained T1-weighted magnetic resonance images and performed standard screening cognitive tests. RESULTS We identified two groups of recovered patients based on a cluster analysis of the significant cortical thickness differences between patients and controls. Group 1 displayed significant cortical thickness differences in specific cerebral regions, while Group 2 exhibited significant differences in the cerebellum, though neither group showed cognitive deterioration at the group level. Notably, Group 1 showed a tendency of higher D-dimer values during hospitalization compared to Group 2, prior to p-value correction. CONCLUSION This data-driven division into two groups based on the brain structural differences, and the possible link to D-dimer values may provide insights into the underlying mechanisms of SARS-COV-2 neurological disruption and its impact on the brain during and after recovery from the disease.
Collapse
Affiliation(s)
- Angel Omar Romero-Molina
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
15
|
Pociūtė A, Kriaučiūnaitė K, Kaušylė A, Zablockienė B, Alčauskas T, Jelinskaitė A, Rudėnaitė A, Jančorienė L, Ročka S, Verkhratsky A, Pivoriūnas A. Plasma of COVID-19 Patients Does Not Alter Electrical Resistance of Human Endothelial Blood-Brain Barrier In Vitro. FUNCTION 2024; 5:zqae002. [PMID: 38486975 PMCID: PMC10935481 DOI: 10.1093/function/zqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 03/17/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.
Collapse
Affiliation(s)
- Agnė Pociūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Aida Kaušylė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Birutė Zablockienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Tadas Alčauskas
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Augustė Jelinskaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Akvilė Rudėnaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Ligita Jančorienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Saulius Ročka
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Center of Neurosurgery, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110052, China
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| |
Collapse
|
16
|
Bertollo AG, Leite Galvan AC, Dama Mingoti ME, Dallagnol C, Ignácio ZM. Impact of COVID-19 on Anxiety and Depression - Biopsychosocial Factors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:122-133. [PMID: 36809942 DOI: 10.2174/1871527322666230210100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Anxiety and depression are prevalent mental disorders around the world. The etiology of both diseases is multifactorial, involving biological and psychological issues. The COVID-19 pandemic settled in 2020 and culminated in several changes in the routine of individuals around the world, affecting mental health. People infected with COVID-19 are at greater risk of developing anxiety and depression, and individuals previously affected by these disorders have worsened the condition. In addition, individuals diagnosed with anxiety or depression before being affected by COVID-19 developed the severe illness at higher rates than individuals without mental disorders. This harmful cycle involves several mechanisms, including systemic hyper-inflammation and neuroinflammation. Furthermore, the context of the pandemic and some previous psychosocial factors can aggravate or trigger anxiety and depression. Disorders are also risks for a more severe picture of COVID-19. This review discusses research on a scientific basis, which brings evidence on biopsychosocial factors from COVID-19 and the context of the pandemic involved in anxiety and depression disorders.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Agatha Carina Leite Galvan
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Claudia Dallagnol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| |
Collapse
|
17
|
Sideratou CM, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect Dis Rep 2023; 15:806-830. [PMID: 38131885 PMCID: PMC10742861 DOI: 10.3390/idr15060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as 'long- COVID-19' (or simply 'long- COVID'), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as 'post-acute sequelae of SARS-CoV-2 infection' (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase. While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID's pathogenesis.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
18
|
Cappelletti G, Carsana EV, Lunghi G, Breviario S, Vanetti C, Di Fonzo AB, Frattini E, Magni M, Zecchini S, Clerici M, Aureli M, Fenizia C. SARS-CoV-2 hampers dopamine production in iPSC-derived dopaminergic neurons. Exp Mol Pathol 2023; 134:104874. [PMID: 37775022 DOI: 10.1016/j.yexmp.2023.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
An increasing number of patients experiences prolonged symptoms, whose profile and timeline remain uncertain, a condition that has been defined as post COVID. The majority of recovered hospitalized patients manifests at least one persistent symptom even sixty days after the first clinical manifestation's onset. Particularly, in light of the COVID-19-related symptomatology, it has been hypothesized that SARS-CoV-2 might affect the dopamine pathway. However, no scientific evidence has been produced so far. To this end, human iPSC-derived dopaminergic neurons were infected with EU, Delta and Omicron SARS-CoV-2 variants. The infection with EU and Delta variants, but not with Omicron, results in a reduced intracellular content and extracellular release of dopamine. Indeed, the tyrosine hydroxylase was found to be significantly upregulated at the mRNA level, while being greatly reduced at the protein level. The major downstream synthetic enzyme DOPA-decarboxylase and the dopamine transporter were significantly downregulated both at the mRNA and protein level. Notably, in vitro SARS-CoV-2 infection was also associated with an altered MAP2 and TAU expression and with an increased presence of neuronal stress markers. These preliminary observations suggest that the dopamine metabolism and production are affected by SARS-CoV-2, partially explaining some of the neurological symptoms manifested.
Collapse
Affiliation(s)
- G Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - E V Carsana
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - G Lunghi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - S Breviario
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - C Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - A B Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - E Frattini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - M Magni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - S Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - M Clerici
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy; IRCCS Fondazione Don Gnocchi, via Capecelatro 66, 20148 Milan, Italy
| | - M Aureli
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
19
|
Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Stimulate Release of Different Pro-Inflammatory Mediators via Activation of Distinct Receptors on Human Microglia Cells. Mol Neurobiol 2023; 60:6704-6714. [PMID: 37477768 DOI: 10.1007/s12035-023-03493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin converting enzyme 2 (ACE2) on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that SARS-CoV-2 infection produces neuroinflammation associated with neurological, neuropsychiatric, and cognitive symptoms persists well past the resolution of the infection, known as post-COVID-19 sequalae or long-COVID. The neuroimmune mechanism(s) involved in long-COVID have not been adequately characterized. In this study, we show that recombinant SARS-CoV-2 full-length S protein stimulates release of pro-inflammatory IL-1b, CXCL8, IL-6, and MMP-9 from cultured human microglia via TLR4 receptor activation. Instead, recombinant receptor-binding domain (RBD) stimulates release of TNF-α, IL-18, and S100B via ACE2 signaling. These results provide evidence that SARS-CoV-2 spike protein contributes to neuroinflammation through different mechanisms that may be involved in CNS pathologies associated with long-COVID.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA
| |
Collapse
|
20
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
22
|
Atashgar F, Shafieian M, Abolfathi N. The effect of the properties of cell nucleus and underlying substrate on the response of finite element models of astrocytes undergoing mechanical stimulations. Comput Methods Biomech Biomed Engin 2023; 26:1572-1581. [PMID: 36324266 DOI: 10.1080/10255842.2022.2128673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Astrocyte cells play a critical role in the mechanical behaviour of the brain tissue; hence understanding the properties of Astrocytes is a big step toward understanding brain diseases and abnormalities. Conventionally, atomic force microscopy (AFM) has been used as one of the most powerful tools to characterize the mechanical properties of cells. However, due to the complexities of experimental work and the complex behaviour of living cells, the finite element method (FEM) is commonly used to estimate the cells' response to mechanical stimulations. In this study, we developed a finite element model of the Astrocyte cells to investigate the effect of two key parameters that could affect the response of the cell to mechanical loading; the properties of the underlying substrate and the nucleus. In this regard, the cells were placed on two different substrates in terms of thickness and stiffness (gel and glass) with varying properties of the nucleus. The main achievement of this study was to develop an insight to investigate the response of the Astrocytes to mechanical loading for future studies, both experimentally and computationally.
Collapse
Affiliation(s)
- Fatemeh Atashgar
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nabiollah Abolfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Roczkowsky A, Limonta D, Fernandes JP, Branton WG, Clarke M, Hlavay B, Noyce RS, Joseph JT, Ogando NS, Das SK, Elaish M, Arbour N, Evans DH, Langdon K, Hobman TC, Power C. COVID-19 Induces Neuroinflammation and Suppresses Peroxisomes in the Brain. Ann Neurol 2023; 94:531-546. [PMID: 37190821 DOI: 10.1002/ana.26679] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using a multiplatform strategy. METHODS Brain tissues from coronavirus disease 2019 (COVID-19) (n = 12) and other disease control (ODC) (n = 12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by droplet digital polymerase chain reaction (ddPCR), quantitative reverse transcriptase PCR (RT-qPCR), and immunodetection methods. RESULTS SARS-CoV-2 RNA was detected in the CNS of 4 patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p < 0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11β, and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 compared to ODC patients (p < 0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p < 0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p < 0.05). INTERPRETATION COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. ANN NEUROL 2023;94:531-546.
Collapse
Affiliation(s)
- A Roczkowsky
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - D Limonta
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, USA
| | - J P Fernandes
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - W G Branton
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - M Clarke
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - B Hlavay
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - R S Noyce
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - J T Joseph
- Department of Pathology, University of Calgary, Calgary, AB, USA
| | - N S Ogando
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - S K Das
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, USA
| | - M Elaish
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
| | - N Arbour
- Department of Neuroscience, University of Montreal, and CHUM, Montreal, QC, Canada
| | - D H Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - K Langdon
- Department of Pathology, University of Calgary, Calgary, AB, USA
| | - T C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, USA
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - C Power
- Department of Medicine, University of Alberta, Edmonton, AB, USA
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| |
Collapse
|
24
|
Recaioglu H, Kolk SM. Developing brain under renewed attack: viral infection during pregnancy. Front Neurosci 2023; 17:1119943. [PMID: 37700750 PMCID: PMC10493316 DOI: 10.3389/fnins.2023.1119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 09/14/2023] Open
Abstract
Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV have become inevitable to also infect the most vulnerable groups in our society. That poses a danger to these populations including pregnant women since the developing brain is sensitive to maternal stressors including viral infections. Upon maternal infection, the viruses can gain access to the fetus via the maternofetal barrier and even to the fetal brain during which factors such as viral receptor expression, time of infection, and the balance between antiviral immune responses and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal infection. Both the direct pro-viral mechanisms and the resulting dysregulated immune response can cause multi-level impairment in the maternofetal and brain barriers and the developing brain itself leading to dysfunction or even loss of several cell populations. Thus, maternal viral infections can disturb brain development and even predispose to neurodevelopmental disorders. In this review, we discuss the potential contribution of maternal viral infections of three relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute Respiratory Syndrome Coronavirus-2, to the impairment of brain development throughout the entire route.
Collapse
Affiliation(s)
| | - Sharon M. Kolk
- Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
25
|
Wang H, Li X, Wang Q, Ma J, Gao X, Wang M. TREM2, microglial and ischemic stroke. J Neuroimmunol 2023; 381:578108. [PMID: 37302170 DOI: 10.1016/j.jneuroim.2023.578108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Immunity and inflammation are key factors in the pathophysiology of IS. The inflammatory response is involved in all stages of stroke, and microglia are the predominant cells involved in the post-stroke inflammatory response. Resident microglia are the main immune cells of the brain and the first line of defense of the nervous system. After IS, activated microglia can be both advantageous and detrimental to surrounding tissue; they can be divided into the harmful M1 types or the neuro-protective M2 type. Currently, with the latest progress of transcriptomics analysis, different and more complex phenotypes of microglia activation have been described, such as disease-related microglia (DAM) associated with Alzheimer's disease (AD), white matter associated microglia (WAMs) in aging, and stroke-related microglia (SAM) etc. The triggering receptor expressed on myeloid cell 2 (TREM2) is an immune-related receptor on the surface of microglia. Its expression increases after IS, which is related to microglial inflammation and phagocytosis, however, its relationship with the microglia phenotype is not clear. This paper reviews the following: 1) the phenotypic changes of microglia in various pathological stages after IS and its relationship with inflammatory factors; 2) the relationship between the expression of the TREM2 receptor and inflammatory factors; 3) the relationship between phenotypic changes of microglia and its surface receptor TREM2; 4) the TREM2-related signalling pathway of microglia after IS and treatment for TREM2 receptor; and finally 5) To clarify the relationship among TREM2, inflammation, and microglia phenotype after IS, as well as the mechanism among them and the some possible treatment of IS targeting TREM2. Moreover, the relationship between the new phenotype of microglia such as SAM and TREM2 has also been systematically summarized, but there are no relevant research reports on the relationship between TREM2 and SAM after IS.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaohong Gao
- Department of Neurology, Wuwei people's Hospital, North side of Xuanwu Street, Liangzhou District, Wuwei, Gansu 733000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
26
|
Yong CSK, Maniam EJH, Chang CWL, Lai JY, Ho CSH. Case report: Creutzfeldt-Jakob disease presenting with anxiety symptoms in a COVID-19 post-infection patient. Front Neurol 2023; 14:1239576. [PMID: 37609652 PMCID: PMC10440421 DOI: 10.3389/fneur.2023.1239576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Creutzfeldt-Jakob Disease (CJD) is a rare, rapidly progressive, and fatal neurodegenerative disorder. We describe a man whose initial manifestations of CJD occurred shortly after contracting Coronavirus disease 2019 (COVID-19). He first developed anxiety and short-term memory loss a few weeks after a mild COVID-19 infection. He subsequently developed parkinsonism, eventually progressed to akinetic mutism, and passed away 5 months after symptom onset. This case highlights a potential temporal relationship between COVID-19 infection and the onset of neurodegenerative symptoms. Microglia and astrocytes in the central nervous system (CNS) and 'S1' spike proteins on SARS-CoV-2 are potential mediators in neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Christl S. K. Yong
- Department of Psychological Medicine, National University Health System, Singapore, Singapore
| | - Ethan Jian-Hui Maniam
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheryl W. L. Chang
- Department of Psychological Medicine, National University Health System, Singapore, Singapore
| | - Jonathan Yexian Lai
- Department of Neurology, National Neuroscience Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, National University Health System, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Proust A, Queval CJ, Harvey R, Adams L, Bennett M, Wilkinson RJ. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J Neuroinflammation 2023; 20:184. [PMID: 37537664 PMCID: PMC10398935 DOI: 10.1186/s12974-023-02861-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Although mainly causing a respiratory syndrome, numerous neurological symptoms have been identified following of SARS-CoV-2 infection. However, how the virus affects the brain and how the mutations carried by the different variants modulate those neurological symptoms remain unclear. METHODS We used primary human pericytes, foetal astrocytes, endothelial cells and a microglial cell line to investigate the effect of several SARS-CoV-2 variants of concern or interest on their functional activities. Cells and a 3D blood-brain barrier model were infected with the wild-type form of SARS-CoV-2, Alpha, Beta, Delta, Eta, or Omicron (BA.1) variants at various MOI. Cells and supernatant were used to evaluate cell susceptibility to the virus using a microscopic assay as well as effects of infection on (i) cell metabolic activity using a colorimetric MTS assay; (ii) viral cytopathogenicity using the xCELLigence system; (iii) extracellular glutamate concentration by fluorometric assay; and (iv) modulation of blood-brain barrier permeability. RESULTS We demonstrate that productive infection of brain cells is SARS-CoV-2 variant dependent and that all the variants induce stress to CNS cells. The wild-type virus was cytopathic to all cell types except astrocytes, whilst Alpha and Beta variants were only cytopathic for pericytes, and the Omicron variant cytopathic for endothelial cells and pericytes. Lastly wild-type virus increases blood-brain barrier permeability and all variants, except Beta, modulate extracellular glutamate concentration, which can lead to excitotoxicity or altered neurotransmission. CONCLUSIONS These results suggest that SARS-CoV-2 is neurotropic, with deleterious consequences for the blood-brain barrier integrity and central nervous system cells, which could underlie neurological disorders following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alizé Proust
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Christophe J Queval
- High Throughput Screening Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Bennett
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| |
Collapse
|
28
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
29
|
Petersen M, Nägele FL, Mayer C, Schell M, Petersen E, Kühn S, Gallinat J, Fiehler J, Pasternak O, Matschke J, Glatzel M, Twerenbold R, Gerloff C, Thomalla G, Cheng B. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023; 120:e2217232120. [PMID: 37220275 PMCID: PMC10235949 DOI: 10.1073/pnas.2217232120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Felix Leonard Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Elina Petersen
- Department of Cardiology, University Heart and Vascular Center, 20251Hamburg, Germany
- Population Health Research Department, University Heart and Vascular Center, 20251Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, 202115Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 202Boston, MA
| | - Jakob Matschke
- Institute of Neuropathology, University Center Hamburg-Eppendorf, Hamburg, 20251Gemany
| | - Markus Glatzel
- Institute of Neuropathology, University Center Hamburg-Eppendorf, Hamburg, 20251Gemany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular Center, 20251Hamburg, Germany
- Population Health Research Department, University Heart and Vascular Center, 20251Hamburg, Germany
- German Center for Cardiovascular Research, Partner site Hamburg/Kiel/Luebeck, 20251Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, 202115Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| |
Collapse
|
30
|
Steardo L, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res 2023; 48:1015-1025. [PMID: 35922744 PMCID: PMC9362636 DOI: 10.1007/s11064-022-03709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nervous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physiological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
- Università Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
31
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
32
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
33
|
Müller K, Poppele I, Ottiger M, Zwingmann K, Berger I, Thomas A, Wastlhuber A, Ortwein F, Schultz AL, Weghofer A, Wilhelm E, Weber RC, Meder S, Stegbauer M, Schlesinger T. Impact of Rehabilitation on Physical and Neuropsychological Health of Patients Who Acquired COVID-19 in the Workplace. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1468. [PMID: 36674222 PMCID: PMC9864141 DOI: 10.3390/ijerph20021468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Workers, especially healthcare workers, are exposed to an increased risk for SARS-CoV-2 infection. However, less is known about the impact of rehabilitation on health outcomes associated with post-COVID. This longitudinal observational study examined the changes in physical and neuropsychological health and work ability after inpatient rehabilitation of 127 patients (97 females/30 males; age 21-69 years; Mean = 50.62) who acquired COVID-19 in the workplace. Post-COVID symptoms, functional status, physical performance, neuropsychological health, employment, and work ability were assessed before and after rehabilitation. Group differences relating to sex, professions, and acute COVID status were also analyzed. Except for fatigue, the prevalence of all post-COVID symptoms decreased after rehabilitation. Significant improvements in physical performance and neuropsychological health outcomes were determined. Moreover, healthcare workers showed a significantly greater reduction in depressive symptoms compared to non-healthcare workers. Nevertheless, participants reported poor work ability, and 72.5% of them were still unable to work after discharge from rehabilitation. As most participants were still suffering from the impact of COVID-19 at rehabilitation discharge, ongoing strategies in aftercare are necessary to improve their work ability. Further investigations of this study population at 6 and 12 months after rehabilitation should examine the further course of post-COVID regarding health and work ability status.
Collapse
Affiliation(s)
- Katrin Müller
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Iris Poppele
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Marcel Ottiger
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Katharina Zwingmann
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ivo Berger
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Andreas Thomas
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Alois Wastlhuber
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Franziska Ortwein
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Anna-Lena Schultz
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Anna Weghofer
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Eva Wilhelm
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | | | - Sylvia Meder
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Michael Stegbauer
- BG Hospital for Occupational Disease Bad Reichenhall, 83435 Bad Reichenhall, Germany
| | - Torsten Schlesinger
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
34
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
35
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
36
|
Yepes M. Neurological Complications of SARS-CoV-2 Infection and COVID-19 Vaccines: From Molecular Mechanisms to Clinical Manifestations. Curr Drug Targets 2022; 23:1620-1638. [PMID: 36121081 DOI: 10.2174/1389450123666220919123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is an infectious disease, caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), that reached pandemic proportions in 2020. Despite the fact that it was initially characterized by pneumonia and acute respiratory distress syndrome, it is now clear that the nervous system is also compromised in one third of these patients. Indeed, a significant proportion of COVID-19 patients suffer nervous system damage via a plethora of mechanisms including hypoxia, coagulopathy, immune response to the virus, and the direct effect of SARS-CoV-2 on endothelial cells, neurons, astrocytes, pericytes and microglia. Additionally, a low number of previously healthy individuals develop a variety of neurological complications after receiving COVID-19 vaccines and a large proportion of COVID-19 survivors experience longlasting neuropsychiatric symptoms. In conclusion, COVID-19 is also a neurological disease, and the direct and indirect effects of the virus on the nervous system have a significant impact on the morbidity and mortality of these patients. Here we will use the concept of the neurovascular unit, assembled by endothelial cells, basement membrane, perivascular astrocytes, neurons and microglia, to review the effects of SARS-CoV-2 in the nervous system. We will then use this information to review data published to this date on the neurological manifestations of COVID-19, the post- COVID syndrome and COVID-19 vaccines.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
37
|
Abstract
The German Society of Pneumology initiated 2021 the AWMF S1 guideline Long COVID/Post-COVID. In a broad interdisciplinary approach, this S1 guideline was designed based on the current state of knowledge.The clinical recommendations describe current Long COVID/Post-COVID symptoms, diagnostic approaches, and therapies.In addition to the general and consensus introduction, a subject-specific approach was taken to summarize the current state of knowledge.The guideline has an explicit practical claim and will be developed and adapted by the author team based on the current increase in knowledge.
Collapse
|
38
|
Gonçalves CA, Bobermin LD, Sesterheim P, Netto CA. SARS-CoV-2-Induced Amyloidgenesis: Not One, but Three Hypotheses for Cerebral COVID-19 Outcomes. Metabolites 2022; 12:1099. [PMID: 36422238 PMCID: PMC9692683 DOI: 10.3390/metabo12111099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2024] Open
Abstract
The main neuropathological feature of Alzheimer's disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Patricia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Centro Estadual de Vigilância Sanitária do Rio Grande do Sul (CEVS-RS), Porto Alegre 90450-190, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
39
|
Bispo DDDC, Brandão PRDP, Pereira DA, Maluf FB, Dias BA, Paranhos HR, von Glehn F, de Oliveira ACP, Regattieri NAT, Silva LS, Yasuda CL, Soares AADSM, Descoteaux M. Brain microstructural changes and fatigue after COVID-19. Front Neurol 2022; 13:1029302. [PMID: 36438956 PMCID: PMC9685991 DOI: 10.3389/fneur.2022.1029302] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Abstract
Background Fatigue and cognitive complaints are the most frequent persistent symptoms in patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to assess fatigue and neuropsychological performance and investigate changes in the thickness and volume of gray matter (GM) and microstructural abnormalities in the white matter (WM) in a group of patients with mild-to-moderate coronavirus disease 2019 (COVID-19). Methods We studied 56 COVID-19 patients and 37 matched controls using magnetic resonance imaging (MRI). Cognition was assessed using Montreal Cognitive Assessment and Cambridge Neuropsychological Test Automated Battery, and fatigue was assessed using Chalder Fatigue Scale (CFQ-11). T1-weighted MRI was used to assess GM thickness and volume. Fiber-specific apparent fiber density (FD), free water index, and diffusion tensor imaging data were extracted using diffusion-weighted MRI (d-MRI). d-MRI data were correlated with clinical and cognitive measures using partial correlations and general linear modeling. Results COVID-19 patients had mild-to-moderate acute illness (95% non-hospitalized). The average period between real-time quantitative reverse transcription polymerase chain reaction-based diagnosis and clinical/MRI assessments was 93.3 (±26.4) days. The COVID-19 group had higher total CFQ-11 scores than the control group (p < 0.001). There were no differences in neuropsychological performance between groups. The COVID-19 group had lower FD in the association, projection, and commissural tracts, but no change in GM. The corona radiata, corticospinal tract, corpus callosum, arcuate fasciculus, cingulate, fornix, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, and uncinate fasciculus were involved. CFQ-11 scores, performance in reaction time, and visual memory tests correlated with microstructural changes in patients with COVID-19. Conclusions Quantitative d-MRI detected changes in the WM microstructure of patients recovering from COVID-19. This study suggests a possible brain substrate underlying the symptoms caused by SARS-CoV-2 during medium- to long-term recovery.
Collapse
Affiliation(s)
- Diógenes Diego de Carvalho Bispo
- Diagnostic Imaging Unit, Brasilia University Hospital, University of Brasilia, Brasília, Brazil
- Faculty of Medicine, University of Brasilia, Brasília, Brazil
- Department of Radiology, Hospital Santa Marta, Taguatinga, Brazil
| | - Pedro Renato de Paula Brandão
- Neuroscience and Behavior Laboratory, University of Brasilia, Brasília, Brazil
- Hospital Sírio-Libanês, Brasília, Brazil
| | - Danilo Assis Pereira
- Advanced Psychometry Laboratory, Brazilian Institute of Neuropsychology and Cognitive Sciences, Brasília, Brazil
| | | | | | | | - Felipe von Glehn
- Faculty of Medicine, University of Brasilia, Brasília, Brazil
- Hospital Sírio-Libanês, Brasília, Brazil
| | | | | | - Lucas Scardua Silva
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | - Clarissa Lin Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | | | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron 2022; 110:3458-3483. [PMID: 36327895 PMCID: PMC9999291 DOI: 10.1016/j.neuron.2022.10.020] [Citation(s) in RCA: 730] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain.
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, (HHMI), MD, USA; Boston Children's Hospital, Boston, MA, USA.
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bahareh Ajami
- Department of Molecular Microbiology & Immunology, Department of Behavioral and Systems Neuroscience, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Mariko Bennett
- Children's Hospital of Philadelphia, Department of Psychiatry, Department of Pediatrics, Division of Child Neurology, Philadelphia, PA, USA
| | - Frederick Bennett
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Knut Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Staci Bilbo
- Departments of Psychology & Neuroscience, Neurobiology, and Cell Biology, Duke University, Durham, NC, USA
| | - Mathew Blurton-Jones
- Center for the Neurobiology of Learning and Memory, UCI MIND, University of California, Irvine, CA, USA
| | - Erik Boddeke
- Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Bernardo Castellano
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología, Barcelona, Spain; Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Republic of Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Bart de Strooper
- UK Dementia Research Institute at University College London, London, UK; Vlaams Instituut voor Biotechnologie at Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands
| | - Ukpong Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sonia Garel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France; College de France, Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | - Ozgun Gokce
- Institute for Stroke and Dementia Research, Ludwig Maximillian's University of Munich, Munich, Germany
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Berta González
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología and Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Siamon Gordon
- Chang Gung University, Taoyuan City, Taiwan (ROC); Sir William Dunn School of Pathology, Oxford, UK
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Geoffrey Jefferson Brain Research Centre, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität Munchen, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Soyon Hong
- UK Dementia Research Institute at University College London, London, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kettenmann
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Greg Lemke
- MNL-L, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marina Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ania Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tarja Malm
- University of Eastern Finland, Kuopio, Finland
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Michela Matteoli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Michelle Monje
- Howard Hughes Medical Institute, (HHMI), MD, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Agnes Nadjar
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France; Institut Universitaire de France (IUF), Paris, France
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Urte Neniskyte
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Institute of Mitochondrial Biology and Medicine of Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Phillip G Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clare Pridans
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, UK
| | - Josef Priller
- Department of Psychiatry & Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Michael W Salter
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Max Planck Institute for Biology of Ageing, Koeln, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cody J Smith
- Galvin Life Science Center, University of Notre Dame, Indianapolis, IN, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany; Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany; Department of Biology, Boston University, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Susanne A Wolf
- Charité Universitätsmedizin, Experimental Ophthalmology and Neuroimmunology, Berlin, Germany
| | - Long-Jun Wu
- Department of Neurology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors 2022; 48:1203-1216. [PMID: 36370412 DOI: 10.1002/biof.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
- Department of Molecular Medicine, Université de Laval, Québec City, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
42
|
Newhouse A, Kritzer MD, Eryilmaz H, Praschan N, Camprodon JA, Fricchione G, Chemali Z. Neurocircuitry Hypothesis and Clinical Experience in Treating Neuropsychiatric Symptoms of Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2. J Acad Consult Liaison Psychiatry 2022; 63:619-627. [PMID: 36030055 PMCID: PMC9404079 DOI: 10.1016/j.jaclp.2022.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022]
Abstract
Persistent symptoms following COVID-19 infection have been termed postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. Many of these symptoms are neuropsychiatric, such as inattention, impaired memory, and executive dysfunction; these are often colloquially termed "brain fog". These symptoms are common and often persist long after the acute phase. The pattern of these deficits combined with laboratory, neuroimaging, electroencephalographic, and neuropsychological data suggest that these symptoms may be driven by direct and indirect damage to the frontal-subcortical neural networks. Here, we review this evidence, share our clinical experience at an academic medical center, and discuss potential treatment implications. While the exact etiology remains unknown, a neurocircuit-informed understanding of postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection can help guide pharmacology, neuromodulation, and physical and psychological therapeutic approaches.
Collapse
Affiliation(s)
- Amy Newhouse
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Medicine, Massachusetts General Hospital, Boston, MA.
| | - Michael D Kritzer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Hamdi Eryilmaz
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zeina Chemali
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Lin X, Nie H, Tang R, Wang P, Jin X, Jiang Q, Han F, Chen N, Li Y. Network analysis between neuron dysfunction and neuroimmune response based on neural single-cell transcriptome of COVID-19 patients. Comput Biol Med 2022; 150:106055. [PMID: 36137317 PMCID: PMC9462930 DOI: 10.1016/j.compbiomed.2022.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022]
Abstract
Despite global vaccination efforts, COVID-19 breakthrough infections caused by variant virus continue to occur frequently, long-term sequelae of COVID-19 infection like neuronal dysfunction emerge as a noteworthy issue. Neuroimmune disorder induced by Inflammatory factor storm was considered as a possible reason, however, little was known about the functional factors affecting neuroimmune response to this virus. Here, using medial prefrontal cortex single cell data of COVID-19 patients, expression pattern analysis indicated that some immune-related pathway genes expressed specifically, including genes associated with T cell receptor, TNF signaling in microglia and Cytokine-cytokine receptor interaction and HIF-1 signaling pathway genes in astrocytes. Besides the well-known immune-related cell type microglia, we also observed immune-related factors like IL17D, TNFRSF1A and TLR4 expressed in Astrocytes. Based on the ligand-receptor relationship of immune-related factors, crosstalk landscape among cell clusters were analyzed. The findings indicated that astrocytes collaborated with microglia and affect excitatory neurons, participating in the process of immune response and neuronal dysfunction. Moreover, subset of astrocytes specific immune factors (hinged neuroimmune genes) were proved to correlate with Covid-19 infection and ventilator-associated pneumonia using multi-tissue RNA-seq and scRNA-seq data. Function characterization clarified that hinged neuroimmune genes were involved in activation of inflammation and hypoxia signaling pathways, which could lead to hyper-responses related neurological sequelae. Finally, a risk model was constructed and testified in RNA-seq and scRNA data of peripheral blood.
Collapse
Affiliation(s)
- Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Ran Tang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| |
Collapse
|
44
|
Akimoto T, Hara M, Tasaki K, Kurosawa Y, Nakamoto T, Hirose S, Mizoguchi T, Yokota Y, Ninomiya S, Nakajima H. Delayed encephalopathy after COVID-19: A case series of six patients. Medicine (Baltimore) 2022; 101:e31029. [PMID: 36281140 PMCID: PMC9592135 DOI: 10.1097/md.0000000000031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
RATIONALE Acute encephalopathy is a severe neurological complication of coronavirus disease 2019 (COVID-19). Most cases of acute encephalopathy associated with COVID-19 occur within several weeks of COVID-19 onset. We describe a case series of 6 patients who developed delayed encephalopathy (DE) after COVID-19. PATIENT CONCERNS AND DIAGNOSES We evaluated patients who recovered from COVID-19 and showed acute disturbance of consciousness or focal neurological deficits without recurrence of pneumonitis. Six patients, 2 females and 4 males, with ages ranging from 65 to 83 years were included. Durations of hospitalization due to COVID-19 were between 25 and 44 days. The severity of COVID-19 was moderate in 5 and severe in 1 patient. Patients were rehospitalized for acute disturbance of consciousness concomitant with postural tremor and, abnormal behavior, hemiplegia, aphasia, or apraxia between 34 and 67 days after the onset of COVID-19. Chest computed tomography showed no exacerbation of pneumonitis. Brain magnetic resonance imaging showed no specific findings except in 1 patient with an acute lacunar infarction. Electroencephalogram demonstrated diffuse slowing in all patients. Repeat electroencephalogram after recovery from encephalopathy demonstrated normal in all patients. One of the 6 patients had cerebrospinal fluid (CSF) pleocytosis. CSF protein levels were elevated in all patients, ranging from 51 to 115 mg/dL. CSF interleukin-6 levels ranged from 2.9 to 10.9 pg/mL. The immunoglobulin index was 0.39 to 0.44. Qlim(alb) < QAlb indicating dysfunction of the blood-brain barrier was observed in all patients. Severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction of CSF was negative in all patients. Neuronal autoantibodies were absent in serum and CSF. INTERVENTIONS AND OUTCOMES Immunotherapy including steroid pulses was administered to 3 patients; however, symptoms of encephalopathy resolved within several days in all patients, regardless of treatment with immunotherapy, and their consciousness levels were recovered fully. Notably, postural tremor remained for 2 weeks to 7 months. LESSONS In our patients, DE after COVID-19 was characterized by symptoms of acute encephalopathy accompanied with tremor in the absence of worsening pneumonitis after the fourth week of COVID-19 onset. Our findings indicate blood-brain barrier dysfunction may contribute to the pathogenesis of DE after COVID-19.
Collapse
Affiliation(s)
- Takayoshi Akimoto
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
- *Correspondence: Takayoshi Akimoto, Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo 173-8610, Japan (e-mail: )
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kenta Tasaki
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yusuke Kurosawa
- Division of Respiratory Disease, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tadaharu Nakamoto
- Division of Respiratory Disease, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Satoshi Hirose
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tomotaka Mizoguchi
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yuki Yokota
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Satoko Ninomiya
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hideto Nakajima
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
45
|
Gutierrez-Martinez L, Karten J, Kritzer MD, Josephy-Hernandez S, Kim D, Newhouse A, Pasinski M, Praschan N, Razafsha M, Rubin DB, Sonni A, Fricchione G, Rosand MPHJ, Chemali Z. Post-Acute Sequelae of SARS-CoV-2 Infection: A Descriptive Clinical Study. J Neuropsychiatry Clin Neurosci 2022; 34:393-405. [PMID: 35686346 DOI: 10.1176/appi.neuropsych.21070193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The investigators aimed to describe the clinical experience of a single center reporting on neuropsychiatric findings among patients experiencing persistent symptoms as part of post-acute sequelae of SARS-CoV-2 (PASC) infection. METHODS Data were collected retrospectively (between February 2020 and May 2021) from a cohort (N=100) within a COVID-19 survivors study of patients with persistent symptoms enrolled after a short inpatient stay or who had been outpatients never hospitalized. Patients without confirmatory positive PCR or antibody diagnostic test results were grouped separately as presumptive cases (N=13). RESULTS Of the 87 patients with confirmed SARS-CoV-2, 63 (72.4%) were female, and 65 (74.7%) were White. The mean age was 49.2 years (SD=14.9). The most prevalent symptoms after COVID-19 infection were fatigue, "brain fog," headache, anxiety, and sleep issues. Attention and executive function were frequently impaired. The mean Montreal Cognitive Assessment score was 26.0 (SD=2.8). Concentration and attention as well as memory issues were both significantly correlated with the complaint of brain fog. CONCLUSIONS These preliminary findings suggest that post-acute sequelae of SARS-CoV-2 vary in frequency and duration with relation to premorbid history and that these conditions affect functional domains and patients' ability to return to work. Longitudinal research with larger cohorts is needed to characterize PASC and to optimize care, especially for vulnerable populations.
Collapse
Affiliation(s)
- Leidys Gutierrez-Martinez
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Jordan Karten
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Michael D Kritzer
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Sylvia Josephy-Hernandez
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - David Kim
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Amy Newhouse
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Marie Pasinski
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Nathan Praschan
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Mahdi Razafsha
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Daniel B Rubin
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Akshata Sonni
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Gregory Fricchione
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - M P H Jonathan Rosand
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| | - Zeina Chemali
- Henry and Allison McCance Center for Brain Health (Gutierrez-Martinez, Karten, Newhouse, Pasinski, Rubin, Sonni, Fricchione, Rosand, Chemali); Department of Psychiatry, Division of Neuropsychiatry (Kritzer, Josephy-Hernandez, Kim, Newhouse, Praschan, Razafsha, Fricchione, Chemali); Department of Neurology (Josephy-Hernandez, Kim, Pasinski, Rubin, Rosand, Chemali); Department of Medicine (Newhouse); and Benson-Henry Mind-Body Institute (Fricchione), Massachusetts General Hospital, Boston
| |
Collapse
|
46
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Shaaban SS, Bhullar R, Mohammad I, Hashmi A. A Patient With Schizophrenia in Remission Relapses Following COVID-19: A Case Report. Cureus 2022; 14:e29845. [PMID: 36348867 PMCID: PMC9630057 DOI: 10.7759/cureus.29845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
As managing COVID-19 complications has become more prevalent in psychiatry, its effects can range from provoking new illnesses in previously healthy individuals to inducing relapses in patients in remission. However, an aspect of COVID-19’s influence that is not well documented is its effect on medication responsiveness. In this case, we present a 28-year-old male diagnosed with treatment-resistant schizophrenia for eight years. While in remission on a maintenance dose of clozapine, he was admitted to the hospital with signs of severe psychosis after testing positive for COVID-19. On admission, he did not have any other major stressors and no prior comorbidities that could have induced the relapse. Despite being on a higher dose of clozapine for four weeks while hospitalized, the patient’s psychosis did not improve. This raises the question if his infection had altered his response to medication that previously brought on remission.
Collapse
|
48
|
Mustafin RN, Kazantseva AV, Kovas YV, Khusnutdinova EK. Role Of Retroelements In The Development Of COVID-19 Neurological Consequences. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retroelements play a key role in brain functioning in humans and other animals, since they represent dynamic regulatory elements controlling the expression of specific neuron types. The activity of retroelements in the brain is impaired under the influence of SARS-CoV-2, penetrating the blood-brain barrier. We propose a new concept, according to which the neurological complications of COVID-19 and their long-term effects are caused by modified expression of retroelements in neurons due to viral effect. This effect is implemented in several ways: a direct effect of the virus on the promoter regions of retroelement-encoding genes, virus interaction with miRNAs causing silencing of transposons, and an effect of the viral RNA on the products of retroelement transcription. Aging-related physiological activation of retroelements in the elderly is responsible for more severe course of COVID-19. The associations of multiple sclerosis, Parkinson’s disease, Guillain-Barré syndrome, acute disseminated encephalomyelitis with coronavirus lesions also indicate the role of retroelements in such complications, because retroelements are involved in the mechanisms of the development of these diseases. According to meta-analyses, COVID-19-caused neurological complications ranged 36.4-73%. The neuropsychiatric consequences of COVID-19 are observed in patients over a long period after recovery, and their prevalence may exceed those during the acute phase of the disease. Even 12 months after recovery, unmotivated fatigue, headache, mental disorders, and neurocognitive impairment were observed in 82%, 60%, 26.2-45%, and 16.2-46.8% of patients, correspondingly. These manifestations are explained by the role of retroelements in the integration of SARS-CoV-2 into the human genome using their reverse transcriptase and endonuclease, which results in a long-term viral persistence. The research on the role of specific retroelements in these changes can become the basis for developing targeted therapy for neurological consequences of COVID-19 using miRNAs, since epigenetic changes in the functioning of the genome in neurons, affected by transposons, are reversible.
Collapse
Affiliation(s)
| | - Anastasiya V. Kazantseva
- Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State University, Ufa, Russia
| | - Yulia V. Kovas
- Bashkir State University, Ufa, Russia;University of London, London, Great Britain
| | - Elza K. Khusnutdinova
- Academy of Sciences of the Republic of Bashkortostan; Russian Academy of Education; Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
49
|
Positive Effect of Cognitive Training in Older Adults with Different APOE Genotypes and COVID-19 History: A 1-Year Follow-Up Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102312. [PMID: 36292001 PMCID: PMC9600912 DOI: 10.3390/diagnostics12102312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Older people suffer from cognitive decline; several risk factors contribute to greater cognitive decline. We used acquired (COVID-19 infection) and non-modifiable (presence of APOE rs429358 and rs7412 polymorphisms) factors to study the progression of subjective cognitive impairment while observing patients for one year. Cognitive training was used as a protective factor. (2) Methods: Two groups of subjects over the age of 65 participated in the study: group with subjective cognitive decline receiving cognitive training and individuals who did not complain of cognitive decline without receiving cognitive training (comparison group). On the first visit, the concentration of antibodies to COVID-19 and APOE genotype was measured. At the first and last point (1 year later) the Mini-Mental State Examination scale and the Hospital Anxiety and Depression Scale were performed. (3) Results: COVID-19 infection did not affect cognitive function. A significant role of cognitive training in improving cognitive functions was revealed. Older adults with APOE-ε4 genotype showed no positive effect of cognitive training. (4) Conclusions: Future research should focus on cognitive dysfunction after COVID-19 in long-term follow-up. Attention to the factors discussed in our article, but not limited to them, are useful for a personalized approach to maintaining the cognitive health of older adults.
Collapse
|
50
|
Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. Int J Mol Sci 2022; 23:ijms231911291. [PMID: 36232592 PMCID: PMC9569975 DOI: 10.3390/ijms231911291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term neurological and mental complications of COVID-19, the so-called post-COVID syndrome or long COVID, affect the quality of life. The most persistent manifestations of long COVID include fatigue, anosmia/hyposmia, insomnia, depression/anxiety, and memory/attention deficits. The physiological basis of neurological and psychiatric disorders is still poorly understood. This review summarizes the current knowledge of neurological sequelae in post-COVID patients and discusses brain demyelination as a possible mechanism of these complications with a focus on neuroimaging findings. Numerous reviews, experimental and theoretical studies consider brain demyelination as one of the mechanisms of the central neural system impairment. Several factors might cause demyelination, such as inflammation, direct effect of the virus on oligodendrocytes, and cerebrovascular disorders, inducing myelin damage. There is a contradiction between the solid fundamental basis underlying demyelination as the mechanism of the neurological injuries and relatively little published clinical evidence related to demyelination in COVID-19 patients. The reason for this probably lies in the fact that most clinical studies used conventional MRI techniques, which can detect only large, clearly visible demyelinating lesions. A very limited number of studies use specific methods for myelin quantification detected changes in the white matter tracts 3 and 10 months after the acute phase of COVID-19. Future research applying quantitative MRI assessment of myelin in combination with neurological and psychological studies will help in understanding the mechanisms of post-COVID complications associated with demyelination.
Collapse
|