1
|
Vlasceanu AM, de la Rosa S, Barraclough NE. Perceptual discrimination of action formidableness and friendliness and the impact of autistic traits. Sci Rep 2024; 14:25554. [PMID: 39462021 PMCID: PMC11513001 DOI: 10.1038/s41598-024-76488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The ability to determine whether the actions of other individuals are friendly or formidable are key decisions we need to make to successfully navigate our complex social environment. In this study we measured perceptual performance when discriminating actions that vary in their friendliness or formidableness, and whether performance was related to the autistic traits of individuals. To do this, we developed an action morphing method to generate novel actions that lied along the action quality dimensions of formidableness and friendliness. In Experiment 1 we show that actions that vary along the formidableness or friendliness continua were rated as varying monotonically along the respective quality. In Experiment 2 we measured the ability of individuals with different levels of autistic traits to discriminate action formidableness and friendliness using adaptive 2-AFC procedures. We found considerable variation in perceptual thresholds when discriminating action formidableness (~ 540% interindividual variation) or friendliness (~ 1100% interindividual variation). Importantly, we found no evidence that autistic traits influenced perceptual discrimination of these action qualities. These results confirm that sensory enhancements with autistic traits are limited to lower level stimuli, and suggest that the perceptual processing of these complex social signals are not affected by autistic traits.
Collapse
Affiliation(s)
- Alessia M Vlasceanu
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Stephan de la Rosa
- Department of Social Sciences, IU University of Applied Sciences, Juri-Gagarin-Ring 152, 99084, Erfurt, Germany
| | - Nick E Barraclough
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
3
|
Parvin Z, Jaafari Suha A, Afarinesh MR, Hosseinmardi N, Janahmadi M, Behzadi G. Social hierarchy differentially influences the anxiety-like behaviors and dendritic spine density in prefrontal cortex and limbic areas in male rats. Behav Brain Res 2024; 469:115043. [PMID: 38729219 DOI: 10.1016/j.bbr.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.
Collapse
Affiliation(s)
- Zeinab Parvin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Han J, Ho TW, Stine JM, Overton SN, Herberholz J, Ghodssi R. Simultaneous Dopamine and Serotonin Monitoring in Freely Moving Crayfish Using a Wireless Electrochemical Sensing System. ACS Sens 2024; 9:2346-2355. [PMID: 38713172 DOI: 10.1021/acssensors.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dopamine (DA) and serotonin (5-HT) are neurotransmitters that regulate a wide range of physiological and behavioral processes. Monitoring of both neurotransmitters with real-time analysis offers important insight into the mechanisms that shape animal behavior. However, bioelectronic tools to simultaneously monitor DA and 5-HT interactive dynamics in freely moving animals are underdeveloped. This is mainly due to the limited sensor sensitivity with miniaturized electronics. Here, we present a semi-implantable electrochemical device achieved by integrating a multi-surface-modified carbon fiber microelectrode with a miniaturized potentiostat module to detect DA and 5-HT in vivo with high sensitivity and selectivity. Specifically, carbon fiber microelectrodes were modified through electrochemical treatment and surface coatings to improve sensitivity, selectivity, and antifouling properties. A customized, lightweight potentiostat module was developed for untethered electrochemical measurements. Integrated with the microelectrode, the microsystem is compact (2.8 × 2.3 × 2.1 cm) to minimize its impacts on animal behavior and achieved simultaneous detection of DA and 5-HT with sensitivities of 48.4 and 133.0 nA/μM, respectively, within submicromolar ranges. The system was attached to the crayfish dorsal carapace, allowing electrode implantation into the heart of a crayfish to monitor DA and 5-HT dynamics, followed by drug injections. The semi-implantable biosensor system displayed a significant increase in oxidation peak currents after DA and 5-HT injections. The device successfully demonstrated the application for in vivo simultaneous monitoring of DA and 5-HT in the hemolymph (i.e., blood) of freely behaving crayfish underwater, yielding a valuable experimental tool to expand our understanding of the comodulation of DA and 5-HT.
Collapse
Affiliation(s)
- Jinjing Han
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Ta-Wen Ho
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Justin M Stine
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney N Overton
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Jens Herberholz
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
6
|
Nelson J, Woeste EM, Oba K, Bitterman K, Billings BK, Sacco J, Jacobs B, Sherwood CC, Manger PR, Spocter MA. Neuropil Variation in the Prefrontal, Motor, and Visual Cortex of Six Felids. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:25-44. [PMID: 38354714 DOI: 10.1159/000537843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
Collapse
Affiliation(s)
- Jacob Nelson
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Erin M Woeste
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Ken Oba
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Oesch N. Social Brain Perspectives on the Social and Evolutionary Neuroscience of Human Language. Brain Sci 2024; 14:166. [PMID: 38391740 PMCID: PMC10886718 DOI: 10.3390/brainsci14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Human language and social cognition are two key disciplines that have traditionally been studied as separate domains. Nonetheless, an emerging view suggests an alternative perspective. Drawing on the theoretical underpinnings of the social brain hypothesis (thesis of the evolution of brain size and intelligence), the social complexity hypothesis (thesis of the evolution of communication), and empirical research from comparative animal behavior, human social behavior, language acquisition in children, social cognitive neuroscience, and the cognitive neuroscience of language, it is argued that social cognition and language are two significantly interconnected capacities of the human species. Here, evidence in support of this view reviews (1) recent developmental studies on language learning in infants and young children, pointing to the important crucial benefits associated with social stimulation for youngsters, including the quality and quantity of incoming linguistic information, dyadic infant/child-to-parent non-verbal and verbal interactions, and other important social cues integral for facilitating language learning and social bonding; (2) studies of the adult human brain, suggesting a high degree of specialization for sociolinguistic information processing, memory retrieval, and comprehension, suggesting that the function of these neural areas may connect social cognition with language and social bonding; (3) developmental deficits in language and social cognition, including autism spectrum disorder (ASD), illustrating a unique developmental profile, further linking language, social cognition, and social bonding; and (4) neural biomarkers that may help to identify early developmental disorders of language and social cognition. In effect, the social brain and social complexity hypotheses may jointly help to describe how neurotypical children and adults acquire language, why autistic children and adults exhibit simultaneous deficits in language and social cognition, and why nonhuman primates and other organisms with significant computational capacities cannot learn language. But perhaps most critically, the following article argues that this and related research will allow scientists to generate a holistic profile and deeper understanding of the healthy adult social brain while developing more innovative and effective diagnoses, prognoses, and treatments for maladies and deficits also associated with the social brain.
Collapse
Affiliation(s)
- Nathan Oesch
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
8
|
Kish Bar-On K, Lamm E. Neither Human Normativity nor Human Groupness Are in Humanity's Genes: A Commentary on Cecilia Heyes's "Rethinking Norm Psychology". PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:46-48. [PMID: 37503902 DOI: 10.1177/17456916231187391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Kati Kish Bar-On
- The Science, Technology and Society Program, Massachusetts Institute of Technology
| | - Ehud Lamm
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University
| |
Collapse
|
9
|
Song BL, Zhou J, Jiang Y, Li LF, Liu YJ. Dopamine D2 receptor within the intermediate region of the lateral septum modulate social hierarchy in male mice. Neuropharmacology 2023; 241:109735. [PMID: 37788799 DOI: 10.1016/j.neuropharm.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The dopamine (DA) system has long been involved in social hierarchies; however, the specific mechanisms have not been elucidated. The lateral septum (LS) is a limbic brain structure that regulates various emotional, motivational, and social behaviors. DA receptors are abundantly expressed in the LS, modulating its functions. In this study, we evaluated the functions of DA receptors within different subregions of the LS in social dominance using a confrontation tube test in male mice. The results showed that mice living in social groups formed linear dominance hierarchies after a few days of cohousing, and the subordinates showed increased anxiety. Fos expressions was elevated in the entire LS after a confrontation tube test in the subordinates. However, DA neurons were more activated in the dominates within the ventral tegmental area and the dorsal raphe nucleus. Quantitative real-time polymerase chain reaction results showed that D2 receptor (D2R) within the intermediate region of the LS (LSi) were elevated in the subordinate. In the following pharmacological studies, we found simultaneous D2R activation in the dominants and D2R inhibition in the subordinates switched the original dominant-subordinate relationship. The aforementioned results suggested that D2R within the LSi plays an important role in social dominance in male mice. These findings improve our understanding of the neural mechanisms underlying the social hierarchy, which is closely related to our social life and happiness.
Collapse
Affiliation(s)
- Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
10
|
Li LF, Li ZL, Song BL, Jiang Y, Wang Y, Zou HW, Yao LG, Liu YJ. Dopamine D2 receptors in the dorsomedial prefrontal cortex modulate social hierarchy in male mice. Curr Zool 2023; 69:682-693. [PMID: 37876636 PMCID: PMC10591156 DOI: 10.1093/cz/zoac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 10/26/2023] Open
Abstract
Social hierarchy greatly influences behavior and health. Both human and animal studies have signaled the medial prefrontal cortex (mPFC) as specifically related to social hierarchy. Dopamine D1 receptors (D1Rs) and D2 receptors (D2Rs) are abundantly expressed in the mPFC, modulating its functions. However, it is unclear how DR-expressing neurons in the mPFC regulate social hierarchy. Here, using a confrontation tube test, we found that most adult C57BL/6J male mice could establish a linear social rank after 1 week of cohabitation. Lower rank individuals showed social anxiety together with decreased serum testosterone levels. D2R expression was significantly downregulated in the dorsal part of mPFC (dmPFC) in lower rank individuals, whereas D1R expression showed no significant difference among the rank groups in the whole mPFC. Virus knockdown of D2Rs in the dmPFC led to mice being particularly prone to lose the contests in the confrontation tube test. Finally, simultaneous D2R activation in the subordinates and D2R inhibition in the dominants in a pair switched their dominant-subordinate relationship. The above results indicate that D2Rs in the dmPFC play an important role in social dominance. Our findings provide novel insights into the divergent functions of prefrontal D1Rs and D2Rs in social dominance, which may contribute to ameliorating social dysfunctions along with abnormal social hierarchy.
Collapse
Affiliation(s)
- Lai-Fu Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Zi-Lin Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Hua-Wei Zou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Lun-Guang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Ying-Juan Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| |
Collapse
|
11
|
Dai J, Jorgensen NA, Duell N, Capella J, Maza MT, Kwon SJ, Prinstein MJ, Lindquist KA, Telzer EH. Neural tracking of social hierarchies in adolescents' real-world social networks. Soc Cogn Affect Neurosci 2023; 18:nsad064. [PMID: 37978845 PMCID: PMC10656574 DOI: 10.1093/scan/nsad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
In the current study, we combined sociometric nominations and neuroimaging techniques to examine adolescents' neural tracking of peers from their real-world social network that varied in social preferences and popularity. Adolescent participants from an entire school district (N = 873) completed peer sociometric nominations of their grade at school, and a subset of participants (N = 117, Mage = 13.59 years) completed a neuroimaging task in which they viewed peer faces from their social networks. We revealed two neural processes by which adolescents track social preference: (1) the fusiform face area, an important region for early visual perception and social categorization, simultaneously represented both peers high in social preference and low in social preference; (2) the dorsolateral prefrontal cortex (DLPFC), which was differentially engaged in tracking peers high and low in social preference. No regions specifically tracked peers high in popularity and only the inferior parietal lobe, temporoparietal junction, midcingulate cortex and insula were involved in tracking unpopular peers. This is the first study to examine the neural circuits that support adolescents' perception of peer-based social networks. These findings identify the neural processes that allow youths to spontaneously keep track of peers' social value within their social network.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Nathan A Jorgensen
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Natasha Duell
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Maria T Maza
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Seh-Joo Kwon
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA
| |
Collapse
|
12
|
Park JS, Heo H, Kim MS, Lee SE, Park S, Kim KH, Kang YH, Kim JS, Sung YH, Shim WH, Kim DH, Song Y, Yoon SY. Amphiregulin normalizes altered circuit connectivity for social dominance of the CRTC3 knockout mouse. Mol Psychiatry 2023; 28:4655-4665. [PMID: 37730843 PMCID: PMC10914624 DOI: 10.1038/s41380-023-02258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Social hierarchy has a profound impact on social behavior, reward processing, and mental health. Moreover, lower social rank can lead to chronic stress and often more serious problems such as bullying victims of abuse, suicide, or attack to society. However, its underlying mechanisms, particularly their association with glial factors, are largely unknown. In this study, we report that astrocyte-derived amphiregulin plays a critical role in the determination of hierarchical ranks. We found that astrocytes-secreted amphiregulin is directly regulated by cAMP response element-binding (CREB)-regulated transcription coactivator 3 (CRTC3) and CREB. Mice with systemic and astrocyte-specific CRTC3 deficiency exhibited a lower social rank with reduced functional connectivity between the prefrontal cortex, a major social hierarchy center, and the parietal cortex. However, this effect was reversed by astrocyte-specific induction of amphiregulin expression, and the epidermal growth factor domain was critical for this action of amphiregulin. These results provide evidence of the involvement of novel glial factors in the regulation of social dominance and may shed light on the clinical application of amphiregulin in the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Ji-Seon Park
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, South Korea
| | - Hwon Heo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min-Seok Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Eun Lee
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sukyoung Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Hyun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Ho Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Je Seong Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hoon Sung
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Hyun Shim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Hou Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Seung-Yong Yoon
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, South Korea.
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Jiang Y, Zhou J, Song BL, Wang Y, Zhang DL, Zhang ZT, Li LF, Liu YJ. 5-HT1A receptor in the central amygdala and 5-HT2A receptor in the basolateral amygdala are involved in social hierarchy in male mice. Eur J Pharmacol 2023; 957:176027. [PMID: 37659688 DOI: 10.1016/j.ejphar.2023.176027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Most social animals self-organize into dominance hierarchies that strongly influence their behavior and health. The serotonin (5-HT) system is believed to play an important role in the formation of social hierarchy. 5-HT receptors are abundantly expressed in the amygdala, which is considered as the central node for the perception and learning of social hierarchy. In this study, we assessed the functions of various 5-HT receptor subtypes related to social rank determination in different subregions of the amygdala using the confrontation tube test in mice. We revealed that most adult C57BL/6 J male mice exhibited a linear social rank after a few days of cohousing. The tube test ranks were slightly related to anxiety-like behavioral performance. After the tube test, the amygdala and 5-HT neurons in the dorsal raphe nucleus were activated in lower-rank individuals. Quantitative real-time polymerase chain reaction analysis revealed that despite the high expression of 5-HT1A receptor mRNA in the central amygdala (CeA), 5-HT2A receptor mRNA expression was downregulated in the basolateral amygdala (BLA) in higher-rank individuals. The dominant-subordinate relationship between mouse pairs could be switched via pharmacological modulation of these receptors in CeA and BLA, suggesting that these expression changes are essential for establishing social ranks. Our findings provide novel insights into the divergent functions of 5-HT receptors in the amygdala related to social hierarchy, which is closely related to our health and welfare.
Collapse
Affiliation(s)
- Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Dong-Lin Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Zheng-Tian Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
14
|
Pegna AJ, Framorando D, Yu Z, Buhmann Z, Nelson N, Dixson BJW. Hierarchical status is rapidly assessed from behaviourally dominant faces. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1267-1280. [PMID: 37198384 PMCID: PMC10545651 DOI: 10.3758/s13415-023-01108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Recognition of social hierarchy is a key feature that helps us navigate through our complex social environment. Neuroimaging studies have identified brain structures involved in the processing of hierarchical stimuli, but the precise temporal dynamics of brain activity associated with such processing remains largely unknown. In this investigation, we used event-related potentials (ERPs) to examine the effect of social hierarchy on the neural responses elicited by dominant and nondominant faces. Participants played a game where they were led to believe that they were middle-rank players, responding alongside other alleged players, whom they perceived as higher or lower-ranking. ERPs were examined in response to dominant and nondominant faces, and low-resolution electromagnetic tomography (LORETA) was used to identify the implicated brain areas. The results revealed that the amplitude of the N170 component was enhanced for faces of dominant individuals, showing that hierarchy influences the early stages of face processing. A later component, the late positive potential (LPP) appearing between 350-700 ms, also was enhanced for faces of higher-ranking players. Source localisation suggested that the early modulation was due to an enhanced response in limbic regions. These findings provide electrophysiological evidence for enhanced early visual processing of socially dominant faces.
Collapse
Affiliation(s)
- Alan J Pegna
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia.
| | - David Framorando
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland
| | - Zhou Yu
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia
| | - Zak Buhmann
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia
| | - Nicole Nelson
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia
- School of Psychology, University of Adelaide, Adelaide, SA, Australia
| | - Barnaby J W Dixson
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, QLD, Sippy Downs, Australia
| |
Collapse
|
15
|
Sur D, Agranyoni O, Kirby M, Cohen N, Bagaev A, Karandasheva K, Shmerkin E, Gorobets D, Savita BK, Avneri R, Divon MS, Lax E, Michaelevski I, Pinhasov A. Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity. Mol Psychiatry 2023; 28:3816-3828. [PMID: 37845494 DOI: 10.1038/s41380-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.
Collapse
Affiliation(s)
- Debpali Sur
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Michael Kirby
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Naamah Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Anastasia Bagaev
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Kristina Karandasheva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Denis Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Brajesh Kumar Savita
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Mali-Salmon Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Izhak Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel.
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
16
|
Arshad F, Zegarra-Valdivia JA, Prioleau C, Valcour V, Miller BL. Impact of respect, equity, and leadership in brain health. Front Neurol 2023; 14:1198882. [PMID: 37614974 PMCID: PMC10442505 DOI: 10.3389/fneur.2023.1198882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Respect is a feeling of admiration for someone. It forms one of the core values of the Global Brain Health Institute (GBHI), which strives to protect the world's aging populations from threats to brain health. These values guide us as we advocate for reducing the global impact of dementia. By taking a values-based approach to brain health, we can drive global changes for millions of people. Respect fortifies gratitude and embraces diversity. Philosophical discussions of the ideas support the assertion that respect is crucial in everyday conversations and actions as well as in personal, social, political, and moral spheres. No one can become a leader unless they genuinely respect and care about the success of each team member. Diversity, equity, and inclusivity form the fundamental cornerstones of respect. Understanding this core value of respect will ensure altruistic behavior among the leaders that may help mitigate racism, cultural insults, gender discrimination, stigmatization, religious hatred, and, worst of all, poor leadership abilities that have been the disconcerting examples of disrespect in recent years. We present the underlying neurobiology of respect and its impact on equity and leadership.
Collapse
Affiliation(s)
- Faheem Arshad
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Jonathan Adrian Zegarra-Valdivia
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Human Medicine, Universidad Señor de Sipán, Chiclayo, Peru
| | - Caroline Prioleau
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Victor Valcour
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Wang Z, Yueh H, Chau M, Veenstra-VanderWeele J, O'Reilly KC. Circuits underlying social function and dysfunction. Autism Res 2023; 16:1268-1288. [PMID: 37458578 DOI: 10.1002/aur.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Substantial advances have been made toward understanding the genetic and environmental risk factors for autism, a neurodevelopmental disorder with social impairment as a core feature. In combination with optogenetic and chemogenetic tools to manipulate neural circuits in vivo, it is now possible to use model systems to test how specific neural circuits underlie social function and dysfunction. Here, we review the literature that has identified circuits associated with social interest (sociability), social reward, social memory, dominance, and aggression, and we outline a preliminary roadmap of the neural circuits driving these social behaviors. We highlight the neural circuitry underlying each behavioral domain, as well as develop an interactive map of how these circuits overlap across domains. We find that some of the circuits underlying social behavior are general and are involved in the control of multiple behavioral aspects, whereas other circuits appear to be specialized for specific aspects of social behavior. Our overlapping circuit map therefore helps to delineate the circuits involved in the various domains of social behavior and to identify gaps in knowledge.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Yueh
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Mirabella Chau
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
18
|
Jing P, Shan Q. Exogenous oxytocin microinjection into the nucleus accumbens shell attenuates social dominance in group-housed male mice. Physiol Behav 2023:114253. [PMID: 37270150 DOI: 10.1016/j.physbeh.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The nucleus accumbens (NAc), a part of the brain's limbic system, is involved in a variety of brain functions, including reward motivation and social hierarchy. Here, the study investigated the effect of intra-NAc different subregions microinjections of oxytocin on social hierarchy regulation. The hierarchical ranking of group-housed male mice in laboratory settings was determined through the tube test, and a new reliable and robust behavior assay-the mate competition test-was proposed. The mice were randomly divided into two groups, and the bilateral guide cannula was implanted into the shell and core of the NAc, respectively. After social dominance stabilized, changes in social hierarchy were determined through the tube test, warm spot, and mate competition tests. Intra-NAc shell microinjections of oxytocin (0.5 μg/site), but not the core (0.5 μg/site), significantly reduced the social dominance of mice. In addition, oxytocin microinjection into both the shell and core of the NAc significantly increased locomotor ability without affecting anxious behaviors. These findings are tremendously important in understanding the functions of the NAc subregions for social dominance and are more likely to indicate the potential of an oxytocin therapeutic strategy for psychiatric disorders and social impairments.
Collapse
Affiliation(s)
- Pengbo Jing
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
19
|
Yang R, Huang BY, Wang YN, Meng Q, Guo Y, Wang S, Yin XY, Feng H, Gong M, Wang S, Niu CY, Shi Y, Shi HS. Excision of mesenteric lymph nodes alters gut microbiota and impairs social dominance in adult mice. Brain Behav 2023:e3053. [PMID: 37157948 DOI: 10.1002/brb3.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1β and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.
Collapse
Affiliation(s)
- Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Bo-Ya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ning Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xue-Yong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Chun-Yu Niu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Shui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
20
|
Chien JH, Hung IT, Goh JOS, Kuo LW, Chang WW. Personal socio-cultural preferences modulate neural correlates of decisions to socialize with powerful persons. Hum Brain Mapp 2022; 43:4422-4432. [PMID: 35665565 PMCID: PMC9435004 DOI: 10.1002/hbm.25963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Social power differences fundamentally shape the behavioral interaction dynamics of groups and societies. While it has long been recognized that individual socio‐cultural preferences mitigate social interactions involving persons of power, there is limited empirical data on the underlying neural correlates. To bridge this gap, we asked university student participants to decide whether they were willing to engage in social activities involving their teachers (higher power status), classmates (equal power status), or themselves (control) while functional brain images were acquired. Questionnaires assessed participants' preferences for power distance, uncertainty avoidance, and cultural intelligence. As expected, participants generally accepted more social interactions with classmates than teachers. Also, left inferior frontal activity was higher when accepting than when rejecting social interactions with teachers. Critically, power distance preferences further modulated right lateral frontoparietal activity contrasting approach relative to avoidance decisions towards teachers. In addition, uncertainty avoidance modulated activity in medial frontal, precuneus, and left supramarginal areas distinguishing approach decisions towards teachers relative to classmates. Cultural intelligence modulated neural responses to classmate approach/avoidance decisions in anterior cingulate and left parietal areas. Overall, functional activities in distinct brain networks reflected different personal socio‐cultural preferences despite observed social decisions to interact with others of differential power status. Such findings highlight that social approach or avoidance behaviors towards powerful persons involves differential subjective neural processes possibly involved in computing implicit social utility.
Collapse
Affiliation(s)
- Jui-Hong Chien
- Graduate Institute of International Human Resource Development, National Taiwan Normal University, Taipei, Taiwan
| | - I-Tzu Hung
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Wen Chang
- Graduate Institute of International Human Resource Development, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
21
|
Ferreira-Fernandes E, Peça J. The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates. Front Cell Neurosci 2022; 16:874310. [PMID: 35634473 PMCID: PMC9133341 DOI: 10.3389/fncel.2022.874310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Social status is recognized as a major determinant of social behavior and health among animals; however, the neural circuits supporting the formation and navigation of social hierarchies remain under extensive research. Available evidence suggests the prefrontal cortex is a keystone in this circuit, but upstream and downstream candidates are progressively emerging. In this review, we compare and integrate findings from rodent and primate studies to create a model of the neural and cellular networks supporting social hierarchies, both from a macro (i.e., circuits) to a micro-scale perspective (microcircuits and synapses). We start by summarizing the literature on the prefrontal cortex and other relevant brain regions to expand the current “prefrontal-centric” view of social hierarchy behaviors. Based on connectivity data we also discuss candidate regions that might inspire further investigation, as well as the caveats and strategies that have been used to further our understanding of the biological substrates underpinning social hierarchy and dominance.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: João Peça
| |
Collapse
|
22
|
Maloney SE, Tabachnick DR, Jakes C, Avdagic S, Bauernfeind AL, Dougherty JD. Fluoxetine exposure throughout neurodevelopment differentially influences basilar dendritic morphology in the motor and prefrontal cortices. Sci Rep 2022; 12:7605. [PMID: 35534532 PMCID: PMC9085735 DOI: 10.1038/s41598-022-11614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The significance of serotonin (5HT) in mental health is underscored by the serotonergic action of many classes of psychiatric medication. 5HT is known to have a significant role in neurodevelopment, thus 5HT disruption during development may have a long term impact on brain structure and circuits. We previously generated a model of 5HT alteration throughout neurodevelopment by maternal administration of the selective serotonin reuptake inhibitor fluoxetine. We found resulting social behavior alterations in the offspring during both postnatal and adult ages. Previous work by others has indicated that early 5HT disruption influences neuronal morphology. Therefore, in the current study we sought to determine if dendritic morphological changes occur in areas involved in the social behavior deficits we previously observed, specifically the primary motor (M1) and medial prefrontal (mPFC) cortices. We quantified dendritic morphology of projection neurons in M1 and mPFC at postnatal day (P)10 and P79 in mice exposed to fluoxetine. Basilar dendritic complexity and spine density were persistently decreased in M1 fluoxetine-exposed neurons while in the mPFC, similar reductions were observed at P79 but were not present at P10. Our findings underscore that the developing brain, specifically the projection cortex, is vulnerable to 5HT system perturbation, which may be related to later behavioral disruptions.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disorders Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Dora R Tabachnick
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine Jakes
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Selma Avdagic
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disorders Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
23
|
Dwortz MF, Curley JP, Tye KM, Padilla-Coreano N. Neural systems that facilitate the representation of social rank. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200444. [PMID: 35000438 PMCID: PMC8743891 DOI: 10.1098/rstb.2020.0444] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Across species, animals organize into social dominance hierarchies that serve to decrease aggression and facilitate survival of the group. Neuroscientists have adopted several model organisms to study dominance hierarchies in the laboratory setting, including fish, reptiles, rodents and primates. We review recent literature across species that sheds light onto how the brain represents social rank to guide socially appropriate behaviour within a dominance hierarchy. First, we discuss how the brain responds to social status signals. Then, we discuss social approach and avoidance learning mechanisms that we propose could drive rank-appropriate behaviour. Lastly, we discuss how the brain represents memories of individuals (social memory) and how this may support the maintenance of unique individual relationships within a social group. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Madeleine F. Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kay M. Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nancy Padilla-Coreano
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Neuroscience, University of Florida, Gainesville, FN 32611, USA
| |
Collapse
|
24
|
Hao Y, Meng L, Zhang Y, Chen A, Zhao Y, Lian K, Guo X, Wang X, Du Y, Wang X, Li X, Song L, Shi Y, Yin X, Gong M, Shi H. Effects of chronic triclosan exposure on social behaviors in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127562. [PMID: 34736200 DOI: 10.1016/j.jhazmat.2021.127562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), a newly identified environmental endocrine disruptor (EED) in household products, has been reported to have toxic effects on animals and humans. The effects of TCS exposure on individual social behaviors and the potential underlying mechanisms are still unknown. This study investigated the behavioral effects of 42-day exposure to TCS (0, 50, 100 mg/kg) in drinking water using the open field test (OFT), social dominance test (SDT), social interaction test (SIT), and novel object recognition task (NOR). Using 16S rRNA sequencing analysis and transmission electron microscopy (TEM), we observed the effects of TCS exposure on the gut microbiota and ultrastructure of hippocampal neurons and synapses. Behavioral results showed that chronic TCS exposure reduced the social dominance of male and female mice. TCS exposure also reduced social interaction in male mice and impaired memory formation in female mice. Analysis of the gut microbiota showed that TCS exposure increased the relative abundance of the Proteobacteria and Actinobacteria phyla in female mice. Ultrastructural analysis revealed that TCS exposure induced ultrastructural damage to hippocampal neurons and synapses. These findings suggest that TCS exposure may affect social behaviors, which may be caused by altered gut microbiota and impaired plasticity of hippocampal neurons and synapses.
Collapse
Affiliation(s)
- Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Kaoqi Lian
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
25
|
Shan Q, Hu Y, Chen S, Tian Y. Nucleus accumbens dichotomically controls social dominance in male mice. Neuropsychopharmacology 2022; 47:776-787. [PMID: 34750567 PMCID: PMC8783020 DOI: 10.1038/s41386-021-01220-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Social dominance versus social submissiveness is a basic behavioral trait of social animals such as human beings and laboratory mice. The brain regions associated with this behavior have been intensely investigated, and early neuroimaging research on human subjects implies that the nucleus accumbens (NAc) might be involved in encoding social dominance. However, the underlying circuitry and synaptic mechanism are largely unknown. In this study, by introducing lesions to both NAc subregions, the shell and core, a causal relationship is established between social dominance and both NAc subregions. A further electrophysiology investigation on the circuitry of these two subregions revealed that the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D1 dopamine receptors in the shell is negatively correlated, and the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D2 dopamine receptors in the core is positively correlated, with social dominance. Correspondingly, a DREADD investigation revealed that the activities of these respective medium spiny neurons suppress and promote social dominance. These findings identify a neural substrate for social dominance, implying the potential for a therapeutic strategy for treating related psychiatric disorders.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - You Hu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, 300071, Tianjin, China
| |
Collapse
|
26
|
Li S, Krueger F, Camilleri JA, Eickhoff SB, Qu C. The neural signatures of social hierarchy-related learning and interaction: A coordinate- and connectivity-based meta-analysis. Neuroimage 2021; 245:118731. [PMID: 34788662 DOI: 10.1016/j.neuroimage.2021.118731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Numerous neuroimaging studies have investigated the neural mechanisms of two mutually independent yet closely related cognitive processes aiding humans to navigate complex societies: social hierarchy-related learning (SH-RL) and social hierarchy-related interaction (SH-RI). To integrate these heterogeneous results into a more fine-grained and reliable characterization of the neural basis of social hierarchy, we combined coordinate-based meta-analyses with connectivity and functional decoding analyses to understand the underlying neuropsychological mechanism of SH-RL and SH-RI. We identified the anterior insula and temporoparietal junction (dominance detection), medial prefrontal cortex (information updating and computation), and intraparietal sulcus region, amygdala, and hippocampus (social hierarchy representation) as consistent activated brain regions for SH-RL, but the striatum, amygdala, and hippocampus associated with reward processing for SH-RI. Our results provide an overview of the neural architecture of the neuropsychological processes underlying how we understand, and interact within, social hierarchy.
Collapse
Affiliation(s)
- Siying Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631 China
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, United States; Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Julia A Camilleri
- Research Center Jülich, Institute for Neuroscience and Medicine (INM-7), Germany; Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Simon B Eickhoff
- Research Center Jülich, Institute for Neuroscience and Medicine (INM-7), Germany; Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Chen Qu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631 China.
| |
Collapse
|
27
|
Báez-Mendoza R, Vázquez Y, Mastrobattista EP, Williams ZM. Neuronal Circuits for Social Decision-Making and Their Clinical Implications. Front Neurosci 2021; 15:720294. [PMID: 34658766 PMCID: PMC8517320 DOI: 10.3389/fnins.2021.720294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Social living facilitates individual access to rewards, cognitive resources, and objects that would not be otherwise accessible. There are, however, some drawbacks to social living, particularly when competing for scarce resources. Furthermore, variability in our ability to make social decisions can be associated with neuropsychiatric disorders. The neuronal mechanisms underlying social decision-making are beginning to be understood. The momentum to study this phenomenon has been partially carried over by the study of economic decision-making. Yet, because of the similarities between these different types of decision-making, it is unclear what is a social decision. Here, we propose a definition of social decision-making as choices taken in a context where one or more conspecifics are involved in the decision or the consequences of it. Social decisions can be conceptualized as complex economic decisions since they are based on the subjective preferences between different goods. During social decisions, individuals choose based on their internal value estimate of the different alternatives. These are complex decisions given that conspecifics beliefs or actions could modify the subject's internal valuations at every choice. Here, we first review recent developments in our collective understanding of the neuronal mechanisms and circuits of social decision-making in primates. We then review literature characterizing populations with neuropsychiatric disorders showing deficits in social decision-making and the underlying neuronal circuitries associated with these deficits.
Collapse
Affiliation(s)
- Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yuriria Vázquez
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, United States
| | - Emma P. Mastrobattista
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Amaral IM, Hofer A, El Rawas R. Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines 2021; 9:biomedicines9080877. [PMID: 34440081 PMCID: PMC8389638 DOI: 10.3390/biomedicines9080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired social behavior is a common feature of many psychiatric disorders, in particular with substance abuse disorders. Switching the preference of the substance-dependent individual toward social interaction activities remains one of the major challenges in drug dependence therapy. However, social interactions yield to the emergence of social ranking. In this review, we provide an overview of the studies that examined how social status can influence the dopaminergic mesolimbic system and how drug-seeking behavior is affected. Generally, social dominance is associated with an increase in dopamine D2/3 receptor binding in the striatum and a reduced behavioral response to drugs of abuse. However, it is not clear whether higher D2 receptor availability is a result of increased D2 receptor density and/or reduced dopamine release in the striatum. Here, we discuss the possibility of a potential shift from down to top rank via manipulation of the mesolimbic system. Identifying the neurobiology underlying a potential rank switch to a resilient phenotype is of particular interest in order to promote a positive coping behavior toward long-term abstinence from drugs of abuse and a protection against relapse to drugs. Such a shift may contribute to a more successful therapeutic approach to cocaine addiction.
Collapse
|
29
|
Luo Y, Zhao P, Dou M, Mao J, Zhang G, Su Y, Wang Q, Wang Q, Wang Y, Sun R, Liu T, Gong M, Gao Y, Yin X, Song L, Shi H. Exogenous microbiota-derived metabolite trimethylamine N-oxide treatment alters social behaviors: Involvement of hippocampal metabolic adaptation. Neuropharmacology 2021; 191:108563. [PMID: 33887311 DOI: 10.1016/j.neuropharm.2021.108563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that gut microbiota and its metabolites can influence the brain function and the related behaviors. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and many brain disorders. However, the potential effects of TMAO on social behaviors remain elusive. The present study investigated the effects of early life systemic TMAO exposure and intra-hippocampal TMAO infusion during adulthood on social behaviors in mice. We also analyzed the effects of intra-hippocampus infusion of TMAO during adulthood on levels of metabolites. The results showed that both systemic TMAO exposure in the post-weaning period and intra-hippocampal TMAO infusion during adulthood decreased social rank and reduced sexual preference in adult mice. Data from LC-MS metabolomics analysis showed that intra-hippocampal TMAO infusion induced a total 207 differential metabolites, which belongs to several metabolic or signaling pathways, especially FoxO signaling pathway and retrograde endocannabinoid signaling pathway. These data suggest that TMAO may affect social behaviors by regulating metabolites in the hippocampus, which may provide a new insight into the role of gut microbiota in regulating social behaviors.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China; Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxiao Dou
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiawen Mao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ge Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yurun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ruoxuan Sun
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tingxuan Liu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology. Chinese Academy of Medical Sciences, Shijiazhuang, 050017, China.
| |
Collapse
|
30
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
31
|
Han M, Jiang G, Luo H, Shao Y. Neurobiological Bases of Social Networks. Front Psychol 2021; 12:626337. [PMID: 33995181 PMCID: PMC8119875 DOI: 10.3389/fpsyg.2021.626337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A social network is a web that integrates multiple levels of interindividual social relationships and has direct associations with an individual’s health and well-being. Previous research has mainly focused on how brain and social network structures (structural properties) act on each other and on how the brain supports the spread of ideas and behaviors within social networks (functional properties). The structure of the social network is correlated with activity in the amygdala, which links decoding and interpreting social signals and social values. The structure also relies on the mentalizing network, which is central to an individual’s ability to infer the mental states of others. Network functional properties depend on multilayer brain-social networks, indicating that information transmission is supported by the default mode system, the valuation system, and the mentalizing system. From the perspective of neuroendocrinology, overwhelming evidence shows that variations in oxytocin, β-endorphin and dopamine receptor genes, including oxytocin receptor (OXTR), mu opioid receptor 1 (OPRM1) and dopamine receptor 2 (DRD2), predict an individual’s social network structure, whereas oxytocin also contributes to improved transmission of emotional and behavioral information from person to person. Overall, previous studies have comprehensively revealed the effects of the brain, endocrine system, and genes on social networks. Future studies are required to determine the effects of cognitive abilities, such as memory, on social networks, the characteristics and neural mechanism of social networks in mental illness and how social networks change over time through the use of longitudinal methods.
Collapse
Affiliation(s)
- Mengfei Han
- School of Psychology, Beijing Sport University, Beijing, China
| | - Gaofang Jiang
- College of Education, Cangzhou Normal University, Cangzhou, China
| | - Haoshuang Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| |
Collapse
|
32
|
Collective Housing of Mice of Different Age Groups before Maturity Affects Mouse Behavior. Behav Neurol 2020; 2020:6856935. [PMID: 33273986 PMCID: PMC7676975 DOI: 10.1155/2020/6856935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/29/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background Although population housing is recommended by many animal management and ethical guidelines, the effect of collective housing of mice of different age groups on mouse behavior has not been clarified. Since the development of the central nervous system continues to occur before sexual maturation, the stress of social ranking formation among male individuals in mixed housing conditions can affect postmaturation behavior. To assess these effects, sexually immature mice of different ages were housed in the same cage and a series of behavioral tests were performed after maturation. Results The findings for three groups of mice—junior mice housed with older mice, senior mice housed with younger mice, and mice housed with other mice of the same age—were compared. Junior mice showed higher body weight and activity as well as lower grip strength and anxiety-like behaviors than other mice. In contrast, senior mice showed lower body temperature and increased aggression, antinociceptive effect, and home-cage activity in the dark period in comparison with other mice. Conclusions Thus, combined housing of immature mice of different age groups affects mouse behavior after maturation. Appropriate prematuration housing conditions are crucial to eliminate the uncontrollable bias caused by age-related social stratification.
Collapse
|
33
|
Jones DN, Erwin JM, Sherwood CC, Hof PR, Raghanti MA. A comparison of cell density and serotonergic innervation of the amygdala among four macaque species. J Comp Neurol 2020; 529:1659-1668. [PMID: 33022073 DOI: 10.1002/cne.25048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
The genus Macaca is an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods. The species examined included rhesus (Macaca mulatta), Japanese (M. fuscata), pigtailed (M. nemestrina), and moor macaques (M. maura). We anticipated that the more aggressive rhesus and Japanese macaques would have lower serotonergic innervation within the amygdala compared to the more affiliative pigtailed and moor macaques. In contrast to our prediction, pigtailed macaques had higher serotonergic innervation than Japanese and moor macaques in the basal and central amygdala nuclei when controlling for neuron density. Our analysis of neural cell populations revealed that Japanese macaques possess significantly higher neuron and glia densities relative to the other three species, however we observed no glia-to-neuron ratio differences among species. The results of this study revealed serotonergic innervation and cell density differences among closely related macaque species, which may play a role in modulating subtle differences in emotional processing and species-typical social styles.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Joseph M Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
34
|
Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, Pellizzon MA, Kittana H, Cody LA, Geis AL, Heck K, Schmaltz RJ, Bindels LB, Cahoon EB, Benson AK, Clemente TE, Ramer-Tait AE. Stearidonic-Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of Akkermansia muciniphila. Mol Nutr Food Res 2020; 64:e2000162. [PMID: 32656952 PMCID: PMC8606245 DOI: 10.1002/mnfr.202000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Indexed: 11/06/2022]
Abstract
SCOPE Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Truyen Quach
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - João C Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Pamela A Pena
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Steven Weier
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Liz A Cody
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Abby L Geis
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Kari Heck
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Andrew K Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tom Elmo Clemente
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
35
|
Wang Y, Dai G, Gu Z, Liu G, Tang K, Pan YH, Chen Y, Lin X, Wu N, Chen H, Feng S, Qiu S, Sun H, Li Q, Xu C, Mao Y, Zhang YE, Khaitovich P, Wang YL, Liu Q, Han JDJ, Shao Z, Wei G, Xu C, Jing N, Li H. Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. Cell Res 2020; 30:408-420. [PMID: 32238901 PMCID: PMC7196073 DOI: 10.1038/s41422-020-0308-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
Social hierarchies emerged during evolution, and social rank influences behavior and health of individuals. However, the evolutionary mechanisms of social hierarchy are still unknown in amniotes. Here we developed a new method and performed a genome-wide screening for identifying regions with accelerated evolution in the ancestral lineage of placental mammals, where mammalian social hierarchies might have initially evolved. Then functional analyses were conducted for the most accelerated region designated as placental-accelerated sequence 1 (PAS1, P = 3.15 × 10-18). Multiple pieces of evidence show that PAS1 is an enhancer of the transcription factor gene Lhx2 involved in brain development. PAS1s isolated from various amniotes showed different cis-regulatory activity in vitro, and affected the expression of Lhx2 differently in the nervous system of mouse embryos. PAS1 knock-out mice lack social stratification. PAS1 knock-in mouse models demonstrate that PAS1s determine the social dominance and subordinate of adult mice, and that social ranks could even be turned over by mutated PAS1. All homozygous mutant mice had normal huddled sleeping behavior, motor coordination and strength. Therefore, PAS1-Lhx2 modulates social hierarchies and is essential for establishing social stratification in amniotes, and positive Darwinian selection on PAS1 plays pivotal roles in the occurrence of mammalian social hierarchies.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyi Dai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhili Gu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Guopeng Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510405, Guangdong, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Yujie Chen
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Xin Lin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Haoshan Chen
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Su Feng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Shou Qiu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Hongduo Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chuan Xu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Yanan Mao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yong Edward Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qunxiu Liu
- Shanghai Zoological Park, 200335, Shanghai, China
| | - Jing-Dong Jackie Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
36
|
Komori T, Makinodan M, Kishimoto T. Social status and modern-type depression: A review. Brain Behav 2019; 9:e01464. [PMID: 31743626 PMCID: PMC6908884 DOI: 10.1002/brb3.1464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUNDS Social hierarchy is one of the most influential social structures employed by social species. While dominants in such hierarchies can preferentially access rich resources, subordinates are forced into lower social statuses and lifestyles with inferior resources. Previous studies have indicated that the social rank regulates social behaviors and emotion in a variety of species, whereby individual organisms live within the framework of their ranks. However, in human societies, people, particularly young men, who cannot accept their own social status may show social withdrawal behaviors such as hikikomori to avoid confronting their circumstances. METHODS This article reviews the neural mechanisms underlying social status identified in animal studies with rodents and primates, and assesses how social rank affects animal's social behaviors and emotion which may be relevant to modern type depression. RESULTS Several brain regions such as medial prefrontal cortex are implicated in the formation of animal's social status, which leads to the differences in vulnerability and resilience to social stress. CONCLUSION On the basis of these findings, we propose that physical interventions such as voluntary exercise, diet, transcranial direct current stimulation, and psychotherapy, rather than psychotropic drugs, may be useful therapeutic approaches for modern type depression, which is a typical example of social status conflict and a phenotype of adjustment disorder to the traditional hierarchical social order.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
37
|
Van Vugt M, Smith JE. A Dual Model of Leadership and Hierarchy: Evolutionary Synthesis. Trends Cogn Sci 2019; 23:952-967. [DOI: 10.1016/j.tics.2019.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022]
|
38
|
Meng X, Nakawake Y, Nitta H, Hashiya K, Moriguchi Y. Space and rank: infants expect agents in higher position to be socially dominant. Proc Biol Sci 2019; 286:20191674. [PMID: 31594505 DOI: 10.1098/rspb.2019.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Social hierarchies exist throughout the animal kingdom, including among humans. Our daily interactions inevitably reflect social dominance relationships between individuals. How do we mentally represent such concepts? Studies show that social dominance is represented as vertical space (i.e. high = dominant) by adults and preschool children, suggesting a space-dominance representational link in social cognition. However, little is known about its early development. Here, we present experimental evidence that 12- to 16-month-old infants expect agents presented in a higher spatial position to be more socially dominant than agents in a lower spatial position. After infants repeatedly watched the higher and lower agents being presented simultaneously, they looked longer at the screen when the lower agent subsequently outcompeted the higher agent in securing a reward object, suggesting that this outcome violated their higher-is-dominant expectation. We first manipulated agents' positions by presenting them on a podium (experiment 1). Then we presented the agents on a double-decker stand to make their spatial positions directly above or below each other (experiment 2), and we replicated the results (experiment 3). This research demonstrates that infants expect spatially higher-positioned agents to be socially dominant, suggesting deep roots of the space-dominance link in ontogeny.
Collapse
Affiliation(s)
- Xianwei Meng
- Graduate School of Education, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Human-Environment Studies, Kyushu University, Fukuoka, Japan.,Centre for Baby Science, Doshisha University, Kyoto, Japan
| | - Yo Nakawake
- Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, UK.,Faculty of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nitta
- Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Kazuhide Hashiya
- Faculty of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
39
|
Hiraki-Kajiyama T, Yamashita J, Yokoyama K, Kikuchi Y, Nakajo M, Miyazoe D, Nishiike Y, Ishikawa K, Hosono K, Kawabata-Sakata Y, Ansai S, Kinoshita M, Nagahama Y, Okubo K. Neuropeptide B mediates female sexual receptivity in medaka fish, acting in a female-specific but reversible manner. eLife 2019; 8:39495. [PMID: 31383257 PMCID: PMC6684226 DOI: 10.7554/elife.39495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/18/2019] [Indexed: 12/28/2022] Open
Abstract
Male and female animals display innate sex-specific mating behaviors. In teleost fish, altering the adult sex steroid milieu can effectively reverse sex-typical mating behaviors, suggesting remarkable sexual lability of their brains as adults. In the teleost medaka, neuropeptide B (NPB) is expressed female-specifically in the brain nuclei implicated in mating behavior. Here, we demonstrate that NPB is a direct mediator of estrogen action on female mating behavior, acting in a female-specific but reversible manner. Analysis of regulatory mechanisms revealed that the female-specific expression of NPB is dependent on direct transcriptional activation by estrogen via an estrogen-responsive element and is reversed in response to changes in the adult sex steroid milieu. Behavioral studies of NPB knockouts revealed that female-specific NBP mediates female receptivity to male courtship. The female-specific NPB signaling identified herein is presumably a critical element of the neural circuitry underlying sexual dimorphism and lability of mating behaviors in teleosts.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Japan
| | - Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikoto Nakajo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaito Ishikawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukika Kawabata-Sakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Finlay BB, Pettersson S, Melby MK, Bosch TCG. The Microbiome Mediates Environmental Effects on Aging. Bioessays 2019; 41:e1800257. [PMID: 31157928 DOI: 10.1002/bies.201800257] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Humans' indigenous microbes strongly influence organ functions in an age- and diet-dependent manner, adding an important dimension to aging biology that remains poorly understood. Although age-related differences in the gut microbiota composition correlate with age-related loss of organ function and diseases, including inflammation and frailty, variation exists among the elderly, especially centenarians and people living in areas of extreme longevity. Studies using short-lived as well as nonsenescent model organisms provide surprising functional insights into factors affecting aging and implicate attenuating effects of microbes as well as a crucial role for certain transcription factors like forkhead box O. The unexpected beneficial effects of microbes on aged animals imply an even more complex interplay between the gut microbiome and the host. The microbiome constitutes the major interface between humans and the environment, is influenced by biosocial stressors and behaviors, and mediates effects on health and aging processes, while being moderated by sex and developmental stages.
Collapse
Affiliation(s)
- Brett B Finlay
- Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, M5G 1M1, ON, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sven Pettersson
- Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, M5G 1M1, ON, Canada.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore.,Department of Immunology, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Melissa K Melby
- Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, M5G 1M1, ON, Canada.,Department of Anthropology, College of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Thomas C G Bosch
- Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, M5G 1M1, ON, Canada.,Zoological Institute, University of Kiel, Kiel, 24118, Germany
| |
Collapse
|
41
|
Kikuchi Y, Hiraki-Kajiyama T, Nakajo M, Umatani C, Kanda S, Oka Y, Matsumoto K, Ozawa H, Okubo K. Sexually Dimorphic Neuropeptide B Neurons in Medaka Exhibit Activated Cellular Phenotypes Dependent on Estrogen. Endocrinology 2019; 160:827-839. [PMID: 30776298 DOI: 10.1210/en.2019-00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Brain and behavior of teleosts are highly sexually plastic throughout life, yet the underlying neural mechanisms are largely unknown. On examining brain morphology in the teleost medaka (Oryzias latipes), we identified distinctively large neurons in the magnocellular preoptic nucleus that occurred much more abundantly in females than in males. Examination of sex-reversed medaka showed that the sexually dimorphic abundance of these neurons is dependent on gonadal phenotype, but independent of sex chromosome complement. Most of these neurons in females, but none in males, produced neuropeptide B (Npb), whose expression is known to be estrogen-dependent and associated with female sexual receptivity. In phenotypic analysis, the female-specific Npb neurons had a large euchromatic nucleus with an abundant cytoplasm containing plentiful rough endoplasmic reticulum, exhibited increased overall transcriptional activity, and typically displayed a spontaneous regular firing pattern. These phenotypes, which are probably indicative of cellular activation, were attenuated by ovariectomy and restored by estrogen replacement. Furthermore, the population of Npb-expressing neurons emerged in adult males treated with estrogen, not through frequently occurring neurogenesis in the adult teleost brain, but through the activation of preexisting, quiescent male counterpart neurons. Collectively, our results demonstrate that the morphological, transcriptional, and electrophysiological phenotypes of sexually dimorphic preoptic Npb neurons are highly dependent on estrogen and can be switched between female and male patterns. These properties of the preoptic Npb neurons presumably underpin the neural mechanism for sexual differentiation and plasticity of brain and behavior in teleosts.
Collapse
Affiliation(s)
- Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Towako Hiraki-Kajiyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mikoto Nakajo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Keisuke Matsumoto
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
42
|
Blázquez G, Castañé A, Saavedra A, Masana M, Alberch J, Pérez-Navarro E. Social Memory and Social Patterns Alterations in the Absence of STriatal-Enriched Protein Tyrosine Phosphatase. Front Behav Neurosci 2019; 12:317. [PMID: 30760987 PMCID: PMC6362413 DOI: 10.3389/fnbeh.2018.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a neural-specific protein that opposes the development of synaptic strengthening and whose levels are altered in several neurodegenerative and psychiatric disorders. Since STEP is expressed in brain regions implicated in social behavior, namely the striatum, the CA2 region of the hippocampus, cortex and amygdala, here we investigated whether social memory and social patterns were altered in STEP knockout (KO) mice. Our data robustly demonstrated that STEP KO mice presented specific social memory impairment as indicated by the three-chamber sociability test, the social discrimination test, the 11-trial habituation/dishabituation social recognition test, and the novel object recognition test (NORT). This affectation was not related to deficiencies in the detection of social olfactory cues, altered sociability or anxiety levels. However, STEP KO mice showed lower exploratory activity, reduced interaction time with an intruder, less dominant behavior and higher immobility time in the tail suspension test than controls, suggesting alterations in motivation. Moreover, the extracellular levels of dopamine (DA), but not serotonin (5-HT), were increased in the dorsal striatum of STEP KO mice. Overall, our results indicate that STEP deficiency disrupts social memory and other social behaviors as well as DA homeostasis in the dorsal striatum.
Collapse
Affiliation(s)
- Gloria Blázquez
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Castañé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Neurochemistry and Neuropharmacology, CSIC-Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
43
|
Ghosal S, Sandi C, van der Kooij MA. Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies. Neuropharmacology 2019; 159:107498. [PMID: 30660627 DOI: 10.1016/j.neuropharm.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implicates the mesolimbic system, and associated neural circuits, on social hierarchies. In particular, we discuss the neurochemical and pharmacological studies that have highlighted the contributions of the mesolimbic system and associated circuits including dopamine signaling through the D1 or D2 receptors, GABAergic neurotransmission, the androgen receptor system, and mitochondria and bioenergetics. Given that low social status has been linked to the emergence of anxiety- and depressive-like disorders, a greater understanding of the neurochemistry underlying social dominance could be of tremendous benefit for the development of pharmacological treatments to dysfunctions in social behaviors. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- S Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland.
| | - M A van der Kooij
- Translational Psychiatry, Department of Psychiatry, Psychotherapy and Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; German Resilience Center, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
44
|
Park MJ, Seo BA, Lee B, Shin HS, Kang MG. Stress-induced changes in social dominance are scaled by AMPA-type glutamate receptor phosphorylation in the medial prefrontal cortex. Sci Rep 2018; 8:15008. [PMID: 30301947 PMCID: PMC6177388 DOI: 10.1038/s41598-018-33410-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
The establishment and maintenance of social dominance are critical for social stability and the survival and health of individual animals. Stress lead to depression and a decrease in the social status of depressed persons is a risk factor for suicide. Therefore, we explored the mechanistic and behavioral links among stress, depression, and social dominance and found that mice subjected to chronic restraint stress (CRS), an animal model of stress-induced depression, showed decreased social dominance as measured by a dominance tube test. Importantly, this submissive behavior was occluded by the antidepressant, fluoxetine, a selective serotonin reuptake inhibitor. It is known that social dominance is controlled by synaptic efficacy in the medial prefrontal cortex (mPFC) and that AMPA-type glutamate receptor (AMPA-R) is a key molecule for synaptic efficacy. We found that the phosphorylation on AMPA-R was bidirectionally changed by CRS and fluoxetine in the mPFC of mice with CRS. Moreover, we found a strong correlation between social dominance and AMPA-R phosphorylation that regulates synaptic efficacy by modulating the synaptic targeting of AMPA-R. Our correlational analysis of the behavior and biochemistry of the CRS model suggests that AMPA-R phosphorylation in the mPFC may serve as a biomarker of social dominance related to stress.
Collapse
Affiliation(s)
- Min-Jung Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bo Am Seo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Myoung-Goo Kang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
45
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
46
|
Weston CSE. Amygdala Represents Diverse Forms of Intangible Knowledge, That Illuminate Social Processing and Major Clinical Disorders. Front Hum Neurosci 2018; 12:336. [PMID: 30186129 PMCID: PMC6113401 DOI: 10.3389/fnhum.2018.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Amygdala is an intensively researched brain structure involved in social processing and multiple major clinical disorders, but its functions are not well understood. The functions of a brain structure are best hypothesized on the basis of neuroanatomical connectivity findings, and of behavioral, neuroimaging, neuropsychological and physiological findings. Among the heaviest neuroanatomical interconnections of amygdala are those with perirhinal cortex (PRC), but these are little considered in the theoretical literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed representations of objects and conspecifics. Consistent with this connectivity, amygdala is hypothesized to contribute meaningful and fine-grained representations of intangible knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and physiological findings further support amygdala mediation of a diversity of such representations. These representations include subjective valence, impact, economic value, noxiousness, importance, ingroup membership, social status, popularity, trustworthiness and moral features. Further, the formation of amygdala representations is little understood, and is proposed to be often implemented through embodied cognition mechanisms. The hypothesis builds on earlier work, and makes multiple novel contributions to the literature. It highlights intangible knowledge, which is an influential but insufficiently researched factor in social and other behaviors. It contributes to understanding the heavy but neglected amygdala-PRC interconnections, and the diversity of amygdala-mediated intangible knowledge representations. Amygdala is a social brain region, but it does not represent species-typical social behaviors. A novel proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate amygdala's involvement in several core symptoms of autism spectrum disorder (ASD). Specifically, novel and testable explanations are proposed for the ASD symptoms of disorganized visual scanpaths, apparent social disinterest, preference for concrete cognition, aspects of the disorder's heterogeneity, and impairment in some activities of daily living. Together, the presented hypothesis demonstrates substantial explanatory potential in the neuroscience, social and clinical domains.
Collapse
|
47
|
Mattan BD, Kubota JT, Cloutier J. How Social Status Shapes Person Perception and Evaluation: A Social Neuroscience Perspective. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2018; 12:468-507. [PMID: 28544863 DOI: 10.1177/1745691616677828] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inferring the relative rank (i.e., status) of others is essential to navigating social hierarchies. A survey of the expanding social psychological and neuroscience literatures on status reveals a diversity of focuses (e.g., perceiver vs. agent), operationalizations (e.g., status as dominance vs. wealth), and methodologies (e.g., behavioral, neuroscientific). Accommodating this burgeoning literature on status in person perception, the present review offers a novel social neuroscientific framework that integrates existing work with theoretical clarity. This framework distinguishes between five key concepts: (1) strategic pathways to status acquisition for agents, (2) status antecedents (i.e., perceptual and knowledge-based cues that confer status rank), (3) status dimensions (i.e., domains in which an individual may be ranked, such as wealth), (4) status level (i.e., one's rank along a given dimension), and (5) the relative importance of a given status dimension, dependent on perceiver and context characteristics. Against the backdrop of this framework, we review multiple dimensions of status in the nonhuman and human primate literatures. We then review the behavioral and neuroscientific literatures on the consequences of perceived status for attention and evaluation. Finally, after proposing a social neuroscience framework, we highlight innovative directions for future social status research in social psychology and neuroscience.
Collapse
Affiliation(s)
| | - Jennifer T Kubota
- 1 Department of Psychology, University of Chicago.,2 Center for the Study of Race, Politics, and Culture, University of Chicago
| | | |
Collapse
|
48
|
Demolliens M, Isbaine F, Takerkart S, Huguet P, Boussaoud D. Social and asocial prefrontal cortex neurons: a new look at social facilitation and the social brain. Soc Cogn Affect Neurosci 2018; 12:1241-1248. [PMID: 28402489 PMCID: PMC5597877 DOI: 10.1093/scan/nsx053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/02/2017] [Indexed: 01/13/2023] Open
Abstract
A fundamental aspect of behavior in many animal species is 'social facilitation', the positive effect of the mere presence of conspecifics on performance. To date, the neuronal counterpart of this ubiquitous phenomenon is unknown. We recorded the activity of single neurons from two prefrontal cortex regions, the dorsolateral part and the anterior cingulate cortex in monkeys as they performed a visuomotor task, either in the presence of a conspecific (Presence condition) or alone. Monkeys performed better in the presence condition than alone (social facilitation), and analyses of outcome-related activity of 342 prefrontal neurons revealed that most of them (86%) were sensitive to the performance context. Two populations of neurons were discovered: 'social neurons', preferentially active under social presence and 'asocial neurons', preferentially active under social isolation. The activity of these neurons correlated positively with performance only in their preferred context (social neurons under social presence; asocial neurons under social isolation), thereby providing a potential neuronal mechanism of social facilitation. More generally, the fact that identical tasks recruited either social or asocial neurons depending on the presence or absence of a conspecific also brings a new look at the social brain hypothesis.
Collapse
Affiliation(s)
- Marie Demolliens
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Faiçal Isbaine
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Sylvain Takerkart
- Aix Marseille Université, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Pascal Huguet
- Université Clermont Auvergne, CNRS, LAPSCO, F-63000 Clermont-Ferrand, France
| | - Driss Boussaoud
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
49
|
Munuera J, Rigotti M, Salzman CD. Shared neural coding for social hierarchy and reward value in primate amygdala. Nat Neurosci 2018; 21:415-423. [PMID: 29459764 PMCID: PMC6092962 DOI: 10.1038/s41593-018-0082-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.
Collapse
Affiliation(s)
- Jérôme Munuera
- Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Mattia Rigotti
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - C Daniel Salzman
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
50
|
Nam HH, Jost JT, Kaggen L, Campbell-Meiklejohn D, Van Bavel JJ. Amygdala structure and the tendency to regard the social system as legitimate and desirable. Nat Hum Behav 2017. [DOI: 10.1038/s41562-017-0248-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|