1
|
Ding M, Lang X, Wang J, Shangguan F, Zhang XY. Prevalence, demographic characteristics, and clinical features of suicide risk in first episode drug-naïve schizophrenia patients with comorbid severe anxiety. J Psychiatr Res 2024; 176:232-239. [PMID: 38889553 DOI: 10.1016/j.jpsychires.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Both anxiety symptoms and suicide risk are common in schizophrenia. However, previous findings about the association between anxiety and suicide risk in schizophrenia were controversial. This study is the first to examine the prevalence of suicide risk and related demographic, clinical features in a large sample of first episode drug-naïve (FEDN) schizophrenia patients with comorbid severe anxiety. METHODS In total, 316 patients with FEDN schizophrenia were enrolled in this study. Patients' symptoms were assessed using the Hamilton Depression Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), and Positive and Negative Syndrome Scale (PANSS). Serum levels of glucose, insulin, uric acid, and lipids including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), were evaluated. RESULTS In the current study, 56.3% patients presented comorbid severe anxiety. The rate of suicide risk was higher in the severe anxiety group (55.6%) than in the mild-moderate anxiety group (33.3%). The interactions among severe anxiety, uric acid and HDL-C were associated with suicide risk. Compared with patients with normal uric acid, those with abnormal uric acid exhibited a stronger association between HAMA scores and HAMD-suicide item scores. This enhanced association was also observed for patients with abnormal HDL-C levels. CONCLUSIONS In FEDN schizophrenia patients with comorbid severe anxiety, our findings suggested a high incidence of suicide risk. Abnormal levels of uric acid and low levels of HDL-C, as well as high depression may be associated with an increased risk of suicide in FEDN schizophrenia patients with comorbid severe anxiety.
Collapse
Affiliation(s)
- Mengjie Ding
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China.
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Shanxi, 030000, China.
| | - Junhan Wang
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China.
| | - Fangfang Shangguan
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China.
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Kennedy L, Holt T, Hunter A, Golshan S, Cadenhead K, Mirzakhanian H. Development of an anti-inflammatory diet for first-episode psychosis (FEP): a feasibility study protocol. Front Nutr 2024; 11:1397544. [PMID: 39131737 PMCID: PMC11310932 DOI: 10.3389/fnut.2024.1397544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Evidence suggests inflammation plays a role in the pathophysiology of psychosis even in early illness, indicating a potential avenue for anti-inflammatory interventions that simultaneously address high rates of metabolic disease in this population. The aim of this study is to design a novel anti-inflammatory diet intervention (DI) that is feasible to implement in a first-episode psychosis (FEP) population. Methods Eligible FEP Participants are aged 15-30. The DI is currently being refined through a multi-phase process that includes the recruitment of focus groups that provide insight into feasibility of measures and nutritional education, as well as the implementation of the DI. The phases in the study are the Development Phase, Formative Phase, and the Feasibility Phase. Results The Development phase has resulted in the creation of a flexible DI for FEP based on existing research on nutritional health and informed by providers. This study has just completed the Formative phase, recruiting eligible participants to join focus groups that gleaned information about dietary habits, preferences, and food environments to further refine the DI. Conclusion Findings from earlier phases have advised the current Feasibility Phase in which this novel DI is being administered to a small cohort of FEP participants (N = 12) to determine acceptability of the DI from a lived experience perspective. Naturalistic changes in inflammatory biomarkers, metabolic health, and symptoms will also be measured.
Collapse
Affiliation(s)
- Leda Kennedy
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Tiffany Holt
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Anna Hunter
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Shahrokh Golshan
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Heline Mirzakhanian
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| |
Collapse
|
3
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
4
|
Tang M, Zhao T, Liu T, Dang R, Cai H, Wang Y. Nutrition and schizophrenia: associations worthy of continued revaluation. Nutr Neurosci 2024; 27:528-546. [PMID: 37565574 DOI: 10.1080/1028415x.2023.2233176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
BACKGROUND Accumulating evidence have shown that diet and nutrition play significant roles in mental illness, such as depression, anxiety and bipolar disorder. However, comprehensive evaluation of the relationship between nutrition and schizophrenia is lacking. OBJECTIVE The present review aims to synthetic elaborate the associations between nutrition and schizophrenia. Relevant studies on dietary patterns, macronutrients, micronutrients were performed through a literature search to synthesize the extracted data. SUMMARY Dietary interventions may help prevent the occurrence of schizophrenia, or delay symptoms: Healthy diets like nutritious plant-based foods and high-quality protein, have been linked to reducing the risk or symptoms of schizophrenia. Moreover, diet high in saturated fat and sugar is linked to more serious outcomes of schizophrenia. Additionally, when N-acetylcysteine acts as an adjuvant therapy, the overall symptoms of schizophrenia are significantly reduced. Also nascent evidence showed mental disorders may be related to intestinal microbiota dysfunction. Our study offered important insights into the dietary habits of patients with schizophrenia and the potential impact of nutritional factors on the disease. We also emphasized the need for further research, particularly in the form of large randomized double-blind controlled trials, to better understand the effects of nutrients on schizophrenia symptoms in different populations and disease types.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| |
Collapse
|
5
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
6
|
Kundu S, Nayak S, Rakshit D, Singh T, Shukla R, Khatri DK, Mishra A. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol 2023; 30:3557-3567. [PMID: 36880679 DOI: 10.1111/ene.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
Collapse
Affiliation(s)
- Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Sudipta Nayak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
7
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Castellini G, Cassioli E, Vitali F, Rossi E, Dani C, Melani G, Flaccomio D, D'Andria M, Mejia Monroy M, Galli A, Cavalieri D, Ricca V, Bartolucci GL, De Filippo C. Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders. Sci Rep 2023; 13:11753. [PMID: 37474544 PMCID: PMC10359458 DOI: 10.1038/s41598-023-38665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Eating disorders (EDs) are syndromes with a multifactorial etiopathogenesis, involving childhood traumatic experiences, as well as biological factors. Human microbiome has been hypothesised to play a fundamental role, impacting on emotion regulation, as well as with eating behaviours through its metabolites such as short chain fatty acids (SCFAs). The present study investigated the interactions between psychopathology of EDs, the gut microbiome and SCFAs resulting from bacterial community metabolic activities in a population of 47 patients with Anorexia Nervosa, Bulimia Nervosa, and Binge Eating Disorder and in healthy controls (HCs). Bacterial gut microbiota composition differences were found between subjects with EDs and HCs, especially in association with different pathological behaviours (binge-purge vs restricting). A mediation model of early trauma and ED-specific psychopathology linked reduction of microbial diversity to a typical microbiota-derived metabolite such as butyric acid. A possible interpretation for this model might be that childhood trauma represents a risk factor for gut dysbiosis and for a stable modification of mechanisms responsible for SCFAs production, and that this dysfunctional community is inherited in the passage from childhood to adulthood. These findings might open the way to novel interventions of butyric acid-like compounds as well as faecal transplant.
Collapse
Affiliation(s)
| | - Emanuele Cassioli
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Eleonora Rossi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristiano Dani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Melani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Dario Flaccomio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Martina D'Andria
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Valdo Ricca
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy.
| |
Collapse
|
9
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
Affiliation(s)
- Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University, Jinan, Shandong, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingming Kong
- School of Biological Engineering, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
10
|
Li Z, Qing Y, Cui G, Li M, Liu T, Zeng Y, Zhou C, Hu X, Jiang J, Wang D, Gao Y, Zhang J, Cai C, Wang T, Wan C. Shotgun metagenomics reveals abnormal short-chain fatty acid-producing bacteria and glucose and lipid metabolism of the gut microbiota in patients with schizophrenia. Schizophr Res 2023; 255:59-66. [PMID: 36965360 DOI: 10.1016/j.schres.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 03/27/2023]
Abstract
Evidence has shown that the gut microbiota is closely related to the pathogenesis of schizophrenia, but temporal changes in the gut microbiota of patients with schizophrenia (SZ) during treatment remain unclear. Here, to evaluate temporal changes in the gut microbiota in schizophrenia, we performed whole-genome shotgun metagenomics on fecal samples from 36 healthy controls (HCs) and 19 baseline-period patients, and followed up with patients upon treatment. Compared to that in HCs, beta diversity in SZ was significantly distinct. The genera Bacteroides, Prevotella and Clostridium were the top 3 altered genera between SZ and HCs, and the Bacteroides-Prevotella ratio was significantly increased in SZ. Thirty-three percent of differentially abundant species were short-chain fatty acid (SCFA)-producing bacteria. Functional analysis showed that glucose and lipid metabolism of the gut microbiota was decreased in SZ compared with those in HCs. The abundances of two rate-limiting enzymes in glucose and lipid metabolism, phosphofructokinase (PFK) and acetyl-CoA carboxylase (ACC), were significantly decreased in SZ, and differentially abundant metabolism-related enzymes were significantly associated with SCFA-producing bacteria. Next, we found that the abundance of SCFA-producing bacteria also changed after treatment and that Clostridium was significantly negatively correlated with the total positive and negative syndrome scale (PANSS) score in patients. Functional analysis showed that glycoside hydrolase family 30 incrementally increased in abundance during treatment and were significantly associated with SCFA-producing bacteria. Our findings help to provide evidence for the role of gut microbiota in the occurrence and development of schizophrenia.
Collapse
Affiliation(s)
- Zhuyun Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Liu
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Zeng
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhou
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Changqun Cai
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023; 15:nu15061436. [PMID: 36986165 PMCID: PMC10057655 DOI: 10.3390/nu15061436] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Neurological diseases are recognized as major causes of disability and mortality worldwide. Due to the dynamic progress of diseases such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), Schizophrenia, Depression, and Multiple Sclerosis (MD), scientists are mobilized to look for new and more effective methods of interventions. A growing body of evidence suggests that inflammatory processes and an imbalance in the composition and function of the gut microbiome, which play a critical role in the pathogenesis of various neurological diseases and dietary interventions, such as the Mediterranean diet the DASH diet, or the ketogenic diet can have beneficial effects on their course. The aim of this review was to take a closer look at the role of diet and its ingredients in modulating inflammation associated with the development and/or progression of central nervous system diseases. Presented data shows that consuming a diet abundant in fruits, vegetables, nuts, herbs, spices, and legumes that are sources of anti-inflammatory elements such as omega-3 fatty acids, polyphenols, vitamins, essential minerals, and probiotics while avoiding foods that promote inflammation, create a positive brain environment and is associated with a reduced risk of neurological diseases. Personalized nutritional interventions may constitute a non-invasive and effective strategy in combating neurological disorders.
Collapse
|
12
|
Xu R, Zhang Y, Chen S, Zeng Y, Fu X, Chen T, Luo S, Zhang X. The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential. Crit Rev Microbiol 2023; 49:151-176. [PMID: 35272549 DOI: 10.1080/1040841x.2022.2044286] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of Akkermansia muciniphila, one of the most abundant microorganisms of the intestinal microbiota, has been studied extensively in metabolic diseases, such as obesity and diabetes. It is considered a next-generation probiotic microorganism. Although its mechanism of action has not been fully elucidated, accumulating evidence indicates the important role of A. muciniphila in brain functions via the gut-brain axis and its potential as a therapeutic target in various neuropsychiatric disorders. However, only a limited number of studies, particularly clinical studies, have directly assessed the therapeutic effects of A. muciniphila interventions in these disorders. This is the first review to discuss the comprehensive mechanism of A. muciniphila in the gut-brain axis via the protection of the intestinal mucosal barrier and modulation of the immune system and metabolites, such as short-chain fatty acids, amino acids, and amino acid derivatives. Additionally, the role of A. muciniphila and its therapeutic potential in various neuropsychiatric disorders, including Alzheimer's disease and cognitive deficit, amyotrophic lateral sclerosis, Parkinson's disease, and multiple sclerosis, have been discussed. The review suggests the potential role of A. muciniphila in healthy brain functions.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuxuan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shurui Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohui Zeng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Fu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
14
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
15
|
Zhou C, Gong S, Xiang S, Liang L, Hu X, Huang R, Liao Z, Ma Y, Xiao Z, Qiu J. Changes and significance of gut microbiota in children with focal epilepsy before and after treatment. Front Cell Infect Microbiol 2022; 12:965471. [PMID: 36405958 PMCID: PMC9671114 DOI: 10.3389/fcimb.2022.965471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To better understand the alterations in gut microbiota and metabolic pathways in children with focal epilepsy, and to further investigate the changes in the related gut microbiota and metabolic pathways in these children before and after treatment. Methods Ten patients with newly diagnosed focal epilepsy in Hunan Children’s Hospital from April, 2020 to October, 2020 were recruited into the case group. The case group was further divided into a pre-treatment subgroup and a post-treatment subgroup. Additionally, 14 healthy children of the same age were recruited into a control group. The microbial communities were analyzed using 16s rDNA sequencing data. Metastas and LEfSe were used to identify different bacteria between and within groups. The Kyoto Encyclopedia of Genes and Genomes database was used to KEGG enrichment analysis. Results There were significant differences in α diversity among the pre-treatment, post-treatment, and control groups. Besides, the differences in gut microbiota composition in 3 groups were identified by principal co-ordinates analysis (PCoA), which showed a similar composition of the pre-treatment and post-treatment subgroups. At the phyla level, the relative abundance of Actinobacteria in the pre-treatment subgroup was significantly higher than that in the control group, which decreased significantly after 3 months of treatment and showed no significant difference between the control group. In terms of the genus level, Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas were enriched in the pre-treatment subgroup, while Faecalibacterium and Anaerostipes were enriched in the control group. The relative abundance of Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas was reduced significantly after a three-month treatment. Despite some genera remaining significantly different between the post-treatment subgroup and control group, the number of significantly different genera decreased from 9 to 4 through treatment. Notably, we found that the carbohydrate metabolism, especially succinate, was related to focal epilepsy. Conclusion Children with focal epilepsy compared with healthy controls were associated with the statistically significant differences in the gut microbiota and carbohydrate metabolism. The differences were reduced and the carbohydrate metabolism improved after effective treatment. Our research may provide new directions for understanding the role of gut microbiota in the pathogenesis of focal epilepsy and better alternative treatments.
Collapse
Affiliation(s)
- Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuaizheng Gong
- Department of Hematology and Oncology, Hunan Children’s Hospital, Changsha, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Lijuan Liang
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Xia Hu
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Ruiwen Huang
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Zhenyu Liao
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Ye Ma
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Zhenghui Xiao, ; Jun Qiu,
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Zhenghui Xiao, ; Jun Qiu,
| |
Collapse
|
16
|
Su J, Wang Y, Yan M, He Z, Zhou Y, Xu J, Li B, Xu W, Yu J, Chen S, Lv G. The beneficial effects of Polygonatum sibiricum Red. superfine powder on metabolic hypertensive rats via gut-derived LPS/TLR4 pathway inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154404. [PMID: 36075182 DOI: 10.1016/j.phymed.2022.154404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Metabolic hypertension (MH) is characterized by elevated blood pressure accompanied by metabolic abnormalities, with the gut-derived lipopolysaccharide/toll like receptor 4 (LPS/TLR4) pathway an important triggering mechanism. The conventional Chinese plant Polygonatum sibiricum Red. is traditionally used as a medicinal and edible food source. Currently, several studies have examined its anti-obesity and anti-diabetic actions, with potential roles for MH treatment; however, specific P. sibiricum Red. roles in MH and associated mechanisms remain unclear. OBJECTIVES Our purpose was to identify the effects and mechanisms of P. sibiricum Red. superfine powder (PSP) in a MH rat model triggered by high sugar and high fat compounds in an excessive alcohol diet (ACHSFDs). METHODS A MH rat model was induced by ACHSFDs, and PSP was administered daily at 0.5 and 1.0 g/kg doses, respectively. Firstly, the effects of PSP on MH were assessed using blood pressure, serum lipid, and lipid deposition assays in the liver. Changes in intestinal flora were detected by high-throughput 16S rRNA sequencing, while metabolite short-chain fatty acids (SCFAs) and LPS levels were quantified by gas chromatography (GC) and enzyme-linked immunosorbent assay (ELISA), respectively. Hematoxylin & eosin (H&E) staining and transmission electron microscopy (TEM) were performed to evaluate histopathological changes in the rat colon. d-lactic acid (d-LA) levels and tight junction proteins (TJPs) expression were also measured to assess intestinal barrier function. Also, aortic endothelial microstructures, serum endothelin 1 (ET-1), and nitric oxide (NO) levels were investigated to determine vascular endothelial function. Finally, the TLR4/MyD88 signaling pathway in the aorta and gut was evaluated by western blotting, immunohistochemistry (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Blood pressure and blood lipid metabolism disorders induced by ACHSFDs in MH rats were improved by PSP administration. Intestinal flora analyses revealed decreased SCFAs and LPS levels following PSP administration, which was accompanied by increased Streptococcus species levels and decreased Desulfobacter and Desulfovibrio species levels. PSP increased SCFAs levels, and the expression of SCFAs receptors GPCR41 and GPCR43 in the colon. Meanwhile, the expression of tight junction proteins (TJPs) such as Claudin-1, occludin were upregulated in the ileum and colon, while TLR4 and MyD88 were downregulated, thereby strengthening intestinal barrier integrity and reducing serum LPS levels. Additionally, PSP treatment improved vascular endothelial function by inhibiting the TLR4/MyD88 pathway in vessels, improving vascular endothelial cell shedding, and regulating the NO and ET-1 balance. CONCLUSIONS We demonstrated the beneficial effects and potential mechanisms of PSP in our MH rat model. Based on gut microbiota structure modulation and intestinal barrier improvements, PSP inhibited LPS-induced vascular TLR4/MyD88 signaling activation to improve vascular endothelial function, which in turn reduced blood pressure. Our study provides valuable insights on PSP therapy for MH.
Collapse
Affiliation(s)
- Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwen He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wanfeng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
17
|
Yu L, Li Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022; 10:biomedicines10102577. [PMID: 36289839 PMCID: PMC9599815 DOI: 10.3390/biomedicines10102577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.
Collapse
Affiliation(s)
- Liangen Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
18
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Albert O, Goumperis T, Knutsen HK. Safety of β-hydroxybutyrate salts as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07449. [PMID: 36254193 PMCID: PMC9558159 DOI: 10.2903/j.efsa.2022.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on β-hydroxybutyrate (BHB) salts as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of sodium, magnesium and calcium BHB salts, and is proposed to be used by adults as a food ingredient in a number of food categories and as food supplement. The data provided by the applicant about the identity, the production process and the compositional data of the NF over the course of the risk assessment period were overall considered unsatisfactory. The Panel noted inconsistencies in the reporting of the test item used in the subchronic toxicity study and human studies provided by the applicant. Owing to these deficiencies, the Panel cannot establish a safe intake level of the NF. The Panel concludes that the safety of the NF has not been established.
Collapse
|
19
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
20
|
Severance EG. Fungal Forces in Mental Health: Microbial Meddlers or Function Fixers? Curr Top Behav Neurosci 2022; 61:163-179. [PMID: 35543867 DOI: 10.1007/7854_2022_364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the mental health field, the gut-brain axis and associated pathways represent putative mechanisms by which gastrointestinal (GI) microbes and their gene products and metabolites can access and influence the central nervous system (CNS). These GI-centered investigations focus on bacteria, with significant information gaps existing for other microbial community members, such as fungi. Fungi are part of a complex and functionally diverse taxonomic kingdom whose interactions with hosts can be conversely deadly and beneficial. As serious sources of morbidity and mortality, fungal pathogens can quickly turn healthy microbiomes into toxic cycles of inflammation, gut permeability, and dysbiosis. Fungal commensals are also important human symbionts that provide a rich source of physiological functions to the host, such as protection against intestinal injuries, maintenance of epithelial structural integrities, and immune system development and regulation. Promising treatment compounds derived from fungi include antibiotics, probiotics, and antidepressants. Here I aim to illuminate the many attributes of fungi as they are applicable to overall improving our understanding of the mechanisms at work in psychiatric disorders. Healing the gut and its complex ecosystem is currently achievable through diet, probiotics, prebiotics, and other strategies, yet it is critical to recognize that the success of these interventions relies on a more precisely defined role of the fungal and other non-bacterial components of the microbiome.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
龚 帅, 仇 君, 吴 丽, 谭 李. Change in intestinal flora after treatment in children with focal epilepsy. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:290-296. [PMID: 35351260 PMCID: PMC8974657 DOI: 10.7499/j.issn.1008-8830.2109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the difference in intestinal flora between children with focal epilepsy and healthy children and the change in intestinal flora after treatment in children with epilepsy. METHODS A total of 10 children with newly diagnosed focal epilepsy were recruited as the case group and were all treated with oxcarbazepine alone. Their clinical data were recorded. Fecal specimens before treatment and after 3 months of treatment were collected. Fourteen aged-matched healthy children were recruited as the control group. Total bacterial DNA was extracted from the fecal specimens for 16S rDNA sequencing and bioinformatics analysis. RESULTS After 3 months of carbamazepine treatment, the seizure frequency was reduced by >50% in the case group. At the phylum level, the abundance of Actinobacteria in the case group before treatment was significantly higher than that in the control group (P<0.05), and it was reduced after treatment (P<0.05). At the genus level, the abundances of Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas in the case group before treatment were significantly higher than those in the control group (P<0.05), and the abundances of these bacteria decreased significantly after treatment (P<0.05). CONCLUSIONS There is a significant difference in intestinal flora between children with focal epilepsy and healthy children. Oxcarbazepine can significantly improve the symptoms and intestinal flora in children with epilepsy.
Collapse
Affiliation(s)
| | - 君 仇
- 湖南省儿童医院《临床小儿外科杂志》 编辑部,湖南长沙410007
| | | | | |
Collapse
|
22
|
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQH, Sperandio M, Di Ciaula A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci 2022; 23:ijms23031105. [PMID: 35163038 PMCID: PMC8835596 DOI: 10.3390/ijms23031105] [Citation(s) in RCA: 293] [Impact Index Per Article: 146.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
- Correspondence: (P.P.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
- Correspondence: (P.P.); (L.B.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (M.D.A.)
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Elisa Lanza
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Markus Sperandio
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| |
Collapse
|
23
|
Tang PY, Tee SF, Su KP. Editorial: The link between nutrition and schizophrenia. Front Psychiatry 2022; 13:1074120. [PMID: 36479557 PMCID: PMC9720389 DOI: 10.3389/fpsyt.2022.1074120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Kuan Pin Su
- Departments of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Onaolapo OJ, Onaolapo AY. Nutrition, nutritional deficiencies, and schizophrenia: An association worthy of constant reassessment. World J Clin Cases 2021; 9:8295-8311. [PMID: 34754840 PMCID: PMC8554424 DOI: 10.12998/wjcc.v9.i28.8295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a mental health disorder that occurs worldwide, cutting across cultures, socioeconomic groups, and geographical barriers. Understanding the details of the neurochemical basis of schizophrenia, factors that contribute to it and possible measures for intervention are areas of ongoing research. However, what has become more evident is the fact that in targeting the neurochemical imbalances that may underlie schizophrenia, the type of response seen with currently available phamacotherapeutic agents does not provide all the answers that are needed. Therefore, the possible contribution of non-pharmacological approaches to schizophrenia management is worthy of consideration. In recent times, research is beginning to show nutrition may play a possibly significant role in schizophrenia, affecting its development, progression and management; however, while attempts had been made to examine this possible relationship from different angles, articles addressing it from a holistic point of view are not common. In this review, we examine existing scientific literature dealing with the possible relationship between nutrition and schizophrenia, with a view to elucidating the impact of diet, nutritional deficiencies and excesses on the aetiology, progression, management and outcome of schizophrenia. Secondly, the effect of nutritional supplements in prevention, as sole therapy, or adjuncts in schizophrenia management are examined.
Collapse
Affiliation(s)
- Olakunle James Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osun State 234, Nigeria
| | | |
Collapse
|
25
|
Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de Gastroenterología. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2021; 86:287-304. [PMID: 34144942 DOI: 10.1016/j.rgmxen.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Dietary fiber intake is one of the most influential and efficacious strategies for modulating the gut microbiota. Said fiber can be digested by the microbiota itself, producing numerous metabolites, which include the short-chain fatty acids (SCFAs). SCFAs have local and systemic functions that impact the composition and function of the gut microbiota, and consequently, human health. The aim of the present narrative review was to provide a document that serves as a frame of reference for a clear understanding of dietary fiber and its direct and indirect effects on health. The direct benefits of dietary fiber intake can be dependent on or independent of the gut microbiota. The use of dietary fiber by the gut microbiota involves several factors, including the fiber's physiochemical characteristics. Dietary fiber type influences the gut microbiota because not all bacterial species have the same capacity to produce the enzymes needed for its degradation. A low-fiber diet can affect the balance of the SCFAs produced. Dietary fiber indirectly benefits cardiometabolic health, digestive health, certain functional gastrointestinal disorders, and different diseases.
Collapse
|
26
|
Craven H, McGuinness D, Buchanan S, Galbraith N, McGuinness DH, Jones B, Combet E, Mafra D, Bergman P, Ellaway A, Stenvinkel P, Ijaz UZ, Shiels PG. Socioeconomic position links circulatory microbiota differences with biological age. Sci Rep 2021; 11:12629. [PMID: 34135381 PMCID: PMC8209159 DOI: 10.1038/s41598-021-92042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Imbalanced nutrition is associated with accelerated ageing, possibly mediated by microbiota. An analysis of the circulatory microbiota obtained from the leukocytes of participants in the MRC Twenty-07 general population cohort was performed. We now report that in this cohort, the most biologically aged exhibit a significantly higher abundance of circulatory pathogenic bacteria, including Neisseria, Rothia and Porphyromonas, while those less biologically aged possess more circulatory salutogenic (defined as being supportive of human health and wellbeing) bacteria, including Lactobacillus, Lachnospiraceae UCG-004 and Kocuria. The presence of these salutogenic bactreria is consistent with a capacity to metabolise and produce Nrf2 agonists. We also demonstrate that associated one carbon metabolism, notably betaine levels, did not vary with chronological age, but displayed a difference with socioeconomic position (SEP). Those at lower SEP possessed significantly lower betaine levels indicative of a poorer diet and poorer health span and consistent with reduced global DNA methylation levels in this group. Our data suggest a clear route to improving age related health and resilience based on dietary modulation of the microbiota.
Collapse
Affiliation(s)
- Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Dagmara McGuinness
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Sarah Buchanan
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | | | | | - Brian Jones
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Emilie Combet
- School of Medicine, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Bergman
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anne Ellaway
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, UK.
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
27
|
Abreu Y Abreu AT, Milke-García MP, Argüello-Arévalo GA, Calderón-de la Barca AM, Carmona-Sánchez RI, Consuelo-Sánchez A, Coss-Adame E, García-Cedillo MF, Hernández-Rosiles V, Icaza-Chávez ME, Martínez-Medina JN, Morán-Ramos S, Ochoa-Ortiz E, Reyes-Apodaca M, Rivera-Flores RL, Zamarripa-Dorsey F, Zárate-Mondragón F, Vázquez-Frias R. Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de Gastroenterología. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2021. [PMID: 34088566 DOI: 10.1016/j.rgmx.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dietary fiber intake is one of the most influential and efficacious strategies for modulating the gut microbiota. Said fiber can be digested by the microbiota itself, producing numerous metabolites, which include the short-chain fatty acids (SCFAs). SCFAs have local and systemic functions that impact the composition and function of the gut microbiota, and consequently, human health. The aim of the present narrative review was to provide a document that serves as a frame of reference for a clear understanding of dietary fiber and its direct and indirect effects on health. The direct benefits of dietary fiber intake can be dependent on or independent of the gut microbiota. The use of dietary fiber by the gut microbiota involves several factors, including the fiber's physiochemical characteristics. Dietary fiber type influences the gut microbiota because not all bacterial species have the same capacity to produce the enzymes needed for its degradation. A low-fiber diet can affect the balance of the SCFAs produced. Dietary fiber indirectly benefits cardiometabolic health, digestive health, certain functional gastrointestinal disorders, and different diseases.
Collapse
Affiliation(s)
| | - M P Milke-García
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - G A Argüello-Arévalo
- Departamento de Gastroenterología y Nutrición Pediátrica, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - A M Calderón-de la Barca
- Departamento Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| | | | - A Consuelo-Sánchez
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - E Coss-Adame
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M F García-Cedillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - V Hernández-Rosiles
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - J N Martínez-Medina
- Unidad de Genómica de Poblaciones aplicada a la Salud, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - S Morán-Ramos
- Unidad de Genómica de Poblaciones aplicada a la Salud, Instituto Nacional de Medicina Genómica, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | | | - M Reyes-Apodaca
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - R L Rivera-Flores
- Laboratorio de Investigación en Gastro-Hepatología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - F Zamarripa-Dorsey
- Departamento de Gastroenterología, Hospital Juárez de México, Ciudad de México, México
| | - F Zárate-Mondragón
- Departamento de Gastroenterología, Instituto Nacional de Pediatría, Ciudad de México, México
| | - R Vázquez-Frias
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| |
Collapse
|
28
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
30
|
Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W, Wu G. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy. Front Cell Infect Microbiol 2021; 10:595759. [PMID: 33553004 PMCID: PMC7859631 DOI: 10.3389/fcimb.2020.595759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver disease is significantly different and is associated with the occurrence of HE. Moreover, intestinal microbiota is closely associated with multiple links in the pathogenesis of HE, including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics has significant effects on neurological disorders in HE. Therefore, this review aims at elucidating the potential microbial mechanisms and metabolic effects in the progression of HE through the gut-brain axis and its potential role as a therapeutic target in HE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guobin Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
31
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Sergi C, Villanacci V, Carroccio A. Non-celiac wheat sensitivity: rationality and irrationality of a gluten-free diet in individuals affected with non-celiac disease: a review. BMC Gastroenterol 2021; 21:5. [PMID: 33407153 PMCID: PMC7788993 DOI: 10.1186/s12876-020-01568-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Non-celiac gluten or wheat sensitivity (NCWS) is a "clinical entity induced by the ingestion of wheat leading to intestinal and/or extraintestinal symptoms that improve once the wheat-containing foodstuff is removed from the diet, and celiac disease and wheat allergy have been excluded". This mostly accepted definition raises several points that remain controversial on this condition. In the present review, the authors summarize the most recent advances in the clinic and research on NCWS through an accurate analysis of different studies. We screened PubMed, Medline, Embase, and Scopus using the keywords "non-celiac gluten sensitivity", "non-celiac wheat sensitivity", and "diagnosis". We would like to emphasize two main points, including (A) the controversial clinical and etiological aspects in different trials and experiences with particular attention to the Salerno criteria for the diagnosis of NCWS and (B) the histological aspects. The etiology of NCWS remains controversial, and the relationship with irritable bowel syndrome is obscure. Histologically, the duodenal mucosa may show a variable pattern from unremarkable to a slight increase in the number of T lymphocytes in the superficial epithelium of villi. The endorsement of this disease is based on a positive response to a gluten-free diet for a limited period, followed by the reappearance of symptoms after gluten challenge. The Salerno expert criteria may help to diagnose NCWS accurately. Social media and inaccurate interpretation of websites may jeopardize the diagnostic process if individuals self-label as gluten intolerant.
Collapse
Affiliation(s)
- Consolato Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, 8440 112 St., Edmonton, AB, T6G 2B7, Canada.
| | | | - Antonio Carroccio
- Internal Medicine Unit, "V Cervello Hospital", Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90129, Palermo, Italy
| |
Collapse
|
33
|
Li X, Fan X, Yuan X, Pang L, Hu S, Wang Y, Huang X, Song X. The Role of Butyric Acid in Treatment Response in Drug-Naïve First Episode Schizophrenia. Front Psychiatry 2021; 12:724664. [PMID: 34497548 PMCID: PMC8421030 DOI: 10.3389/fpsyt.2021.724664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Butyric acid, a major short-chain fatty acid (SCFA), has an important role in the microbiota-gut-brain axis and brain function. This study investigated the role of butyric acid in treatment response in drug-naïve first episode schizophrenia. Methods: The study recruited 56 Chinese Han schizophrenia inpatients with normal body weight and 35 healthy controls. Serum levels of butyric acid were measured using Gas Chromatography-Mass Spectrometer (GC-MS) analysis at baseline (for all participants) and 24 weeks after risperidone treatment (for patients). Clinical symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) for patients at both time points. Results: At baseline, there was no significant difference in serum levels of butyric acid between patients and healthy controls (p = 0.206). However, there was a significant increase in serum levels of butyric acid in schizophrenia patients after 24-week risperidone treatment (p = 0.030). The PANSS total and subscale scores were decreased significantly after 24-week risperidone treatment (p's < 0.001). There were positive associations between baseline serum levels of butyric acid and the reduction ratio of the PANSS total and subscale scores after controlling for age, sex, education, and duration of illness (p's < 0.05). Further, there was a positive association between the increase in serum levels of butyric acid and the reduction of the PANSS positive symptoms subscale scores (r = 0.38, p = 0.019) after controlling for potential confounding factors. Conclusions: Increased serum levels of butyric acid might be associated with a favorable treatment response in drug-naïve, first episode schizophrenia. The clinical implications of our findings were discussed.
Collapse
Affiliation(s)
- Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Shaohua Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Centre for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Xufeng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
A Comparison of Gene Expression Changes in the Blood of Individuals Consuming Diets Supplemented with Olives, Nuts or Long-Chain Omega-3 Fatty Acids. Nutrients 2020; 12:nu12123765. [PMID: 33302351 PMCID: PMC7762614 DOI: 10.3390/nu12123765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The Mediterranean diet, which is rich in olive oil, nuts, and fish, is considered healthy and may reduce the risk of chronic diseases. Methods: Here, we compared the transcriptome from the blood of subjects with diets supplemented with olives, nuts, or long-chain omega-3 fatty acids and identified the genes differentially expressed. The dietary genes obtained were subjected to network analysis to determine the main pathways, as well as the transcription factors and microRNA interaction networks to elucidate their regulation. Finally, a gene-associated disease interaction network was performed. Results: We identified several genes whose expression is altered after the intake of components of the Mediterranean diets compared to controls. These genes were associated with infection and inflammation. Transcription factors and miRNAs were identified as potential regulators of the dietary genes. Interestingly, caspase 1 and sialophorin are differentially expressed in the opposite direction after the intake of supplements compared to Alzheimer’s disease patients. In addition, ten transcription factors were identified that regulated gene expression in supplemented diets, mild cognitive impairment, and Alzheimer’s disease. Conclusions: We identified genes whose expression is altered after the intake of the supplements as well as the transcription factors and miRNAs involved in their regulation. These genes are associated with schizophrenia, neoplasms, and rheumatic arthritis, suggesting that the Mediterranean diet may be beneficial in reducing these diseases. In addition, the results suggest that the Mediterranean diet may also be beneficial in reducing the risk of dementia.
Collapse
|
35
|
Cha HY, Yang SJ. Anti-Inflammatory Diets and Schizophrenia. Clin Nutr Res 2020; 9:241-257. [PMID: 33204665 PMCID: PMC7644368 DOI: 10.7762/cnr.2020.9.4.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a mental illness characterized by symptoms such as hallucinations, delusions, disorganized speech, disorganized or catatonic behavior, and negative symptoms (emotional flatness, apathy, and lack of speech). It causes social and economic burdens to patients and their family. Although etiology of schizophrenia is still uncertain, dopamine dysregulation is traditionally considered as a main etiological factor of schizophrenia, which has been utilized to develop drugs for treating schizophrenia. Recently, inflammation has presented being a risk factor for schizophrenia in that neuroinflammation contributes to the pathophysiology of schizophrenia and the exacerbation of symptom severity. Various factors including diet can regulate inflammatory state. Specific foods or dietary patterns have anti- or pro-inflammatory potentials. Increased levels of pro-inflammatory cytokines and microglia activation have been reported in schizophrenia populations and were related to the pathogenesis of schizophrenia. Omega-3 fatty acids were often recommended to schizophrenia patients because of their anti-inflammatory activities. In this review, we investigate the inflammation-related pathogenesis of schizophrenia and summarize potential nutritional approaches to inhibit the manifestation of symptoms and to alleviate symptom severity using anti-inflammatory nutrients or functional components.
Collapse
Affiliation(s)
- Hee Yun Cha
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
36
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
37
|
Du X, Xiang Y, Lou F, Tu P, Zhang X, Hu X, Lyu W, Xiao Y. Microbial Community and Short-Chain Fatty Acid Mapping in the Intestinal Tract of Quail. Animals (Basel) 2020; 10:ani10061006. [PMID: 32526858 PMCID: PMC7341218 DOI: 10.3390/ani10061006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Quail is an economically important type of poultry, valued for its high meat quality and abundant egg nutrition. It is also an important laboratory research animal, widely used in developmental biology and toxicology tests. Since the gut microbiota plays a vital role in the host’s growth and health, we investigated the microbiota inhabiting the duodenum, jejunum, ileum, cecum, and colorectum of quail in the present study, using 16S rRNA gene sequencing and qPCR. The concentrations of short-chain fatty acids (SCFAs) were evaluated using gas chromatography. We found that the microbiota in the cecum was different from other intestinal sections and the enriched inhabitants of SCFA-producing bacterial genera made cecum the core locations of SCFA production in quail. The results of this study will provide fundamental data for further quail microbiology and functional studies. Abstract Quail is raised throughout China for egg and meat production. To deeply understand the gastrointestinal microbial composition and metabolites of quail, the present study characterized the microbiota inhabiting five intestinal locations of eight-week-old quail using 16S rRNA gene sequencing and qPCR, and evaluated the concentrations of short-chain fatty acids (SCFAs) in each individual location using gas chromatography. The results showed that Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Deferribacteres were the five most abundant phyla in the intestinal tract of quail. Firmicutes was largely dominant (>95%) in the small intestine, whereas Bacteroidetes increased significantly in the cecum (19.19%) and colorectum (8.09%). At the genus level, Lactobacillus was predominant in almost all sections (>50%) except in the cecum (7.26%), where Megamonas, Faecalibacterium, and Bacteroides were dominant. qPCR data indicated that the population sizes of both the total bacteria and proportions of the Firmicutes, Bacteroidetes, and Bacteroides group increased going from the proximal toward the distal end of the intestine in quail. The SCFA-producing bacterial genera Bacteroides, Faecalibacterium, Alistipes, Blautia, Parabacteroides, and Clostridium were of higher richness in the cecum and colorectum, where, accordingly, more SCFAs were produced. These findings will be helpful for the future study of quail microbiology, as well as its relationship with productive performance and health.
Collapse
Affiliation(s)
- Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Yun Xiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Fangfang Lou
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Pingguang Tu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Xujin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (X.D.); (Y.X.); (F.L.); (P.T.); (X.Z.); (X.H.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: ; Tel.: +86-571-86404015; Fax: +86-571-86401834
| |
Collapse
|
38
|
Pellegrini C, Antonioli L, Calderone V, Colucci R, Fornai M, Blandizzi C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog Neurobiol 2020; 191:101806. [PMID: 32473843 DOI: 10.1016/j.pneurobio.2020.101806] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence highlights the relevance of microbiota-gut-brain axis in the maintenance of brain homeostasis as well as in the pathophysiology of major neurological and psychiatric disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD) and major depressive disorder (MDD). In particular, changes in gut microbiota can promote enteric and peripheral neurogenic/inflammatory responses, which, in turn, could contribute to neuroinflammation and neurodegeneration in the central nervous system (CNS). Of note, the nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome acts as a key player in both coordinating the host physiology and shaping the peripheral and central immune/inflammatory responses in CNS diseases. In this context, there is pioneering evidence supporting the existence of a microbiota-gut-inflammasome-brain axis, in which enteric bacteria modulate, via NLRP3 signaling, inflammatory pathways that, in turn, contribute to influence brain homeostasis. The present review provides an overview of current knowledge on the role of microbiota-gut-inflammasome-brain axis in the major CNS diseases, including PD, AD, MS, ASD and MDD. In particular, though no direct and causal correlation among altered gut microbiota, NLRP3 activation and brain pathology has been demonstrated and in-depth studies are needed in this setting, our purpose was to pave the way to a novel and pioneering perspective on the pathophysiology of CNS disorders. Our intent was also to highlight and discuss whether alterations of microbiota-gut-inflammasome-brain axis support a holistic view of the pathophysiology of CNS diseases, even though each disorder displays a different clinical picture.
Collapse
Affiliation(s)
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
39
|
Teasdale S, Mörkl S, Müller-Stierlin AS. Nutritional psychiatry in the treatment of psychotic disorders: Current hypotheses and research challenges. Brain Behav Immun Health 2020; 5:100070. [PMID: 34589852 PMCID: PMC8474162 DOI: 10.1016/j.bbih.2020.100070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
|
40
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
41
|
The Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet on Metabolic Syndrome in Hospitalized Schizophrenic Patients: A Randomized Controlled Trial. Nutrients 2019; 11:nu11122950. [PMID: 31817080 PMCID: PMC6950694 DOI: 10.3390/nu11122950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
The relationship between the Dietary Approaches to Stop Hypertension (DASH) diet and metabolic syndrome (MetS) in people with schizophrenia is unknown and remains to be investigated. Therefore, we have conducted a three-month parallel-group randomized controlled trial. Sixty-seven hospitalized schizophrenic patients with MetS [n = 33 in the intervention group (IG) and n = 34 in the control group (CG)] completed the intervention. The IG followed the DASH diet with the caloric restriction of approximately 1673.6 kJ/day (400 kcal/day) when compared to the standard hospital diet followed by the CG. Simultaneously, both groups participated in a nutrition counseling program. Anthropometric and biochemical parameters and blood pressure were measured at the baseline and after three months, while nutrient intakes during the intervention were assessed using three non-consecutive 24-hour dietary recalls. The analyses were carried out based on the per-protocol approach. At three months, the MetS prevalence significantly decreased in both the IG and the CG (75.8%, p = 0.002, and 67.7%, p = 0.0003, respectively; odds ratio = 0.9; 95% confidence interval = 0.43–1.87). No significant differences in the prevalence of MetS and its features were found between the groups.
Collapse
|
42
|
Yang T, Rodriguez V, Malphurs WL, Schmidt JT, Ahmari N, Sumners C, Martyniuk CJ, Zubcevic J. Butyrate regulates inflammatory cytokine expression without affecting oxidative respiration in primary astrocytes from spontaneously hypertensive rats. Physiol Rep 2019; 6:e13732. [PMID: 30039527 PMCID: PMC6056753 DOI: 10.14814/phy2.13732] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
Neurons and glia exhibit metabolic imbalances in hypertensive animal models, and loss of metabolic homeostasis can lead to neuroinflammation and oxidative stress. The objective of this study was to determine the effects of the microbial metabolite butyrate on mitochondrial bioenergetics and inflammatory markers in mixed brainstem and hypothalamic primary cultures of astrocytes between normotensive (Sprague-Dawley, S-D) and spontaneously hypertensive (SHR) rats. Bioenergetics of mitochondria in astrocytes from normotensive S-D rats were modified with butyrate, but this was not the case in astrocytes derived from SHR, suggesting aberrant mitochondrial function. Transcripts related to oxidative stress, butyrate transporters, butyrate metabolism, and neuroinflammation were quantified in astrocyte cultures treated with butyrate at 0, 200, 600, and 1000 μmol/L. Butyrate decreased catalase and monocarboxylate transporter 1 mRNA in astrocytes of S-D rats but not in the SHR. Moreover, while butyrate did not directly regulate the expression of 3-hydroxybutyrate dehydrogenase 1 and 2 in astrocytes of either strain, the expression levels for these transcripts in untreated cultures were lower in the SHR compared to S-D. We observed higher levels of specific inflammatory cytokines in astrocytes of SHR, and treatment with butyrate decreased expression of Ccl2 and Tlr4 in SHR astrocytes only. Conversely, butyrate treatment increased expression of tumor necrosis factor in astrocytes from SHR but not from the S-D rats. This study improves our understanding of the role of microbial metabolites in regulating astrocyte function, and provides support that butyrate differentially regulates both the bioenergetics and transcripts related to neuroinflammation in astrocytes from SHR versus S-D rats.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Vermali Rodriguez
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Niousha Ahmari
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
43
|
Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case-Control Study from Bahrain. Nutrients 2019; 11:nu11081867. [PMID: 31405205 PMCID: PMC6722742 DOI: 10.3390/nu11081867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several studies have indicated that chronic low-grade inflammation is associated with the development of schizophrenia. Given the role of diet in modulating inflammatory markers, excessive caloric intake and increased consumption of pro-inflammatory components such as calorie-dense, nutrient-sparse foods may contribute toward increased rates of schizophrenia. This study aimed to examine the association between dietary inflammation, as measured by the dietary inflammatory index (DII®), and schizophrenia. METHODS A total of 120 cases attending the out-patient department in the Psychiatric Hospital/Bahrain were recruited, along with 120 healthy controls matched on age and sex. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a comprehensive food frequency questionnaire (FFQ). Logistic regression was used to estimate odds ratios and 95% confidence intervals, adjusting for potential confounders including age, sex, body mass index, education, employment, diabetes, hypertension, and cardiovascular disease with E-DII expressed both as a continuous variable and categorized as quartiles. RESULTS The mean E-DII score for the entire sample was 1.79 ± 1.52, indicating a generally pro-inflammatory diet. The cases with schizophrenia appeared to have a higher E-DII score compared to controls: 1.99 ± 1.39 vs. 1.60 ± 1.38, respectively (p = 0.009). For every one unit increase in the E-DII score, the odds of having schizophrenia increased by 62% (OR 1.62; 95% CI 1.17-2.26). Similarly, increased risk was observed when the E-DII was used as quartiles, with participants in most pro-inflammatory quartile 4 being nearly 6 times more likely to be schizophrenic than participants in the most anti-inflammatory group quartile 1 (OR 5.96; 1.74-20.38; p-trend = 0.01). CONCLUSIONS The data suggest that a pro-inflammatory diet, as indicated by increasing E-DII score, is associated with schizophrenia. This is the first study to examine the association between the DII and schizophrenia in a Middle Eastern population. Although these results are consistent with findings from research conducted in depression, additional studies are required before generalizing the findings to other populations.
Collapse
|
44
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
45
|
Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Res 2019; 8:699. [PMID: 32704349 PMCID: PMC7359750 DOI: 10.12688/f1000research.18992.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota plays a fundamental role in host health and disease. Host diet is one of the most significant modulators of the gut microbial community and its metabolic activities. Evidence demonstrates that dietary patterns such as the 'Western diet' and perturbations in gut microbiome (dysbiosis) have strong associations with a wide range of human diseases, including obesity, metabolic syndrome, type-2 diabetes and cardiovascular diseases. However, consumption of Mediterranean-style diets is considered healthy and associated with the prevention of cardiovascular and metabolic diseases, colorectal cancers and many other diseases. Such beneficial effects of the Mediterranean diet might be attributed to high proportion of fibers, mono- and poly-unsaturated fatty acids, antioxidants and polyphenols. Concurrent literature has demonstrated beneficial modulation of the gut microbiome following a Mediterranean-style diet in humans as well as in experimental animal models such as rodents. We recently demonstrated similar positive changes in the gut microbiome of non-human primates consuming a Mediterranean-style diet for long term (30 months). Therefore, it is rational to speculate that this positive modulation of the gut microbiome diversity, composition and function is one of the main factors intermediating the health effects of Mediterranean diet on the host. The present perspective discusses the evidences that the Mediterranean diet induces gut microbiome modulation in rodents, non-human primates and human subjects, and discusses the potential role of gut microbiota and microbial metabolites as one of the fundamental catalysts intermediating various beneficial health effects of Mediterranean diet on the host.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Carol A. Shively
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Thomas C. Register
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Hariom Yadav
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
46
|
Firth J, Veronese N, Cotter J, Shivappa N, Hebert JR, Ee C, Smith L, Stubbs B, Jackson SE, Sarris J. What Is the Role of Dietary Inflammation in Severe Mental Illness? A Review of Observational and Experimental Findings. Front Psychiatry 2019; 10:350. [PMID: 31156486 PMCID: PMC6529779 DOI: 10.3389/fpsyt.2019.00350] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Severe mental illnesses (SMI), including major depressive disorder, bipolar disorder, and schizophrenia, are associated with increased inflammation. Given diet's role in modulating inflammatory processes, excessive calorie-dense, nutrient-deficient processed food intake may contribute toward the heightened inflammation observed in SMI. This review assesses the evidence from observational and experimental studies to investigate how diet may affect physical and mental health outcomes in SMI through inflammation-related pathways. Cross-sectional studies indicate that individuals with SMI, particularly schizophrenia, consume more pro-inflammatory foods and fewer anti-inflammatory nutrients than the general population. Cohort studies indicate that high levels of dietary inflammation are associated with increased risk of developing depression, but there is currently a lack of evidence for schizophrenia or bipolar disorder. Randomized controlled trials show that dietary interventions improve symptoms of depression, but none have tested the extent to which these benefits are due to changes in inflammation. This review summarizes evidence on dietary inflammation in SMI, explores the directionality of these links, and discusses the potential use of targeted nutritional interventions for improving psychological well-being and physical health outcomes in SMI. Establishing the extent to which diet explains elevated levels of inflammatory markers observed in SMI is a priority for future research.
Collapse
Affiliation(s)
- Joseph Firth
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola Veronese
- Laboratory of Nutritional Biochemistry, Research Hospital, IRCCS “S. de Bellis”, Castellana Grotte, Italy
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Jack Cotter
- Cambridge Cognition, Cambridge, United Kingdom
| | - Nitin Shivappa
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Connecting Health Innovations LLC, Columbia, SC, United States
| | - James R. Hebert
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Connecting Health Innovations LLC, Columbia, SC, United States
| | - Carolyn Ee
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sarah E. Jackson
- Department of Behavioural Science and Health, University College London, London, United Kingdom
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Department of Psychiatry, University of Melbourne, The Melbourne Clinic Professorial Unit, Melbourne, VIC, Australia
| |
Collapse
|
47
|
A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236:1513-1530. [PMID: 30982128 PMCID: PMC6599482 DOI: 10.1007/s00213-019-05232-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.
Collapse
|
48
|
Huang C, Li Y, Feng X, Li D, Li X, Ouyang Q, Dai W, Wu G, Zhou Q, Wang P, Zhou K, Xu X, Li S, Peng Y. Distinct Gut Microbiota Composition and Functional Category in Children With Cerebral Palsy and Epilepsy. Front Pediatr 2019; 7:394. [PMID: 31646147 PMCID: PMC6779726 DOI: 10.3389/fped.2019.00394] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
Cerebral palsy (CP) and epilepsy are two interactive neurological diseases, and their clinical treatment can cause severe side-effects in children's development, especially when it involves long-term administration of antiepileptic drugs. Accumulating studies on the gut-brain axis indicated that the gut microbiota (GM), which participates in various neurological diseases, would provide a harmless therapeutic target for the treatment of CP and epilepsy. To explore the GM characteristics in children with both CP and epilepsy (CPE), we collected fecal samples from 25 CPE patients (CPE group) and 21 healthy children (Healthy group) for 16S rDNA sequencing. In this study, we discovered significantly higher microbial diversity in the CPE group compared to healthy group (P < 0.001). After selecting the top 15 most abundant genera in each group, we found significantly enriched Bifidobacterium, Streptococcus, Akkermansia, Enterococcus, Prevotella, Veillonella, Rothia, and Clostridium IV in the CPE group, and noticeably reduced Bacteroides, Faecalibacterium, Blautia, Ruminococcus, Roseburia, Anaerostipes, and Parasutterella. A GM co-occurrence network was also constructed, and negative correlations were discovered between Bacteroides and Lactobacillus (r = -0.768, P < 0.001, FDR < 0.001), as well as Intestinibacter and Bifidobacterium (r = -0.726, P < 0.001, FDR < 0.001). After KEGG annotation and functional enrichment, 24 functional categories exhibited different enrichment levels between the CPE and Healthy groups. The functions, associated with xenobiotics metabolism, immune system diseases, and neurodegenerative diseases, were enriched in the CPE group. Conversely, the functional categories related to the biosynthesis of secondary metabolites were reduced. Furthermore, the neurodegenerative diseases were mainly attributed to Streptococcus, while an increased risk of immune system diseases was associated with enriched Akkermansia in the CPE patients. Generally, this study characterized the GM in CPE patients, illustrated the microbial co-occurrence relationships, and detected the functional distributions of the bacteria.
Collapse
Affiliation(s)
- Congfu Huang
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Yinhu Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xin Feng
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Dongfang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyun Li
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Qiuxing Ouyang
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Wenkui Dai
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Genfeng Wu
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Peiqin Wang
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Ke Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Xu
- School of Statistics and Data Science, NanKai University, Tianjin, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanping Peng
- Department of Healthcare, Longgang District Social Welfare Center, Shenzhen, China
| |
Collapse
|
49
|
Abstract
Typical and atypical antipsychotics are the first-line treatments for schizophrenia, but these classes of drugs are not universally effective, and they can have serious side effects that impact compliance. Antipsychotic drugs generally target the dopamine pathways with some variation. As research of schizophrenia pathophysiology has shifted away from a strictly dopamine-centric focus, the development of new pharmacotherapies has waned. A field of inquiry with centuries-old roots is gaining traction in psychiatric research circles and may represent a new frontier for drug discovery in schizophrenia. At the forefront of this investigative effort is the immune system and its many components, pathways and phenotypes, which are now known to actively engage the brain. Studies in schizophrenia reveal an intricate association of environmentally-driven immune activation in concert with a disrupted genetic template. A consistent conduit through this gene-environmental milieu is the gut-brain axis, which when dysregulated can generate pathological autoimmunity. In this review, we present epidemiological and biochemical evidence in support of an autoimmune component in schizophrenia and depict gut processes and a dysbiotic microbiome as a source and perpetuator of autoimmune dysfunction in the brain. Within this framework, we review the role of infectious agents, inflammation, gut dysbioses and autoantibody propagation on CNS pathologies such as neurotransmitter receptor hypofunction and complement pathway-mediated synaptic pruning. We then review the new pharmacotherapeutic horizon and novel agents directed to impact these pathological conditions. At the core of this discourse is the understanding that schizophrenia is etiologically and pathophysiologically heterogeneous and thus its treatment requires individualized attention with disease state variants diagnosed with objective biomarkers.
Collapse
Affiliation(s)
| | | | - Robert H Yolken
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Yang H, Xiao Y, Gui G, Li J, Wang J, Li D. Microbial community and short-chain fatty acid profile in gastrointestinal tract of goose. Poult Sci 2018; 97:1420-1428. [PMID: 29365165 DOI: 10.3382/ps/pex438] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
Goose is an economically important herbivore waterfowl supplying nutritious meat and eggs, high-quality liver fat, and feathers. However, biogeograhpy of the gut microbiome of goose remains limited. The aim of this study was to investigate the microbiota inhabiting 7 different gastrointestinal locations (proventriculus, gizzard, duodenum, jejunum, ileum, cecum, and rectum) of 180-day-old geese and the short-chain fatty acids (SCFA) of their metabolites based on 16S rRNA gene sequences and gas chromatography, respectively. Consequently, 3,886,340 sequences were identified into 29 phyla and 359 genera. Proteobacteria, Firmicutes, Bacteroidetes, Cyanobacteria, and Actinobacteria were the major phyla, in which Bacteroidetes (28%) and Fusobacteria (0.8%) in the cecum were significantly higher than those in other sections (∼4.4 and 0.1%, respectively). In addition, Cyanobacteria in the gizzard (4.9%) was significantly higher than those in other gut sections except the proventriculus (2.4%). At the genus level, Bacteroides was the most dominant group in the cecum at 23.7%, which was much more than those in the 6 other sections (less than 4.6%). Moreover, Faecalibacterium and Butyricicoccus were significantly high in the cecum (P < 0.05). Results of SCFA showed that acetic and butyric acids in the cecum were significantly higher than those in the 6 other sections (P < 0.05); this result was consistent with the high abundance of Bacteroides, Faecalibacterium, Prevotella, and Butyricicoccus in the cecum. Additionally, isobutyric, isovaleric, and valeric acids were found only in the cecum. The different microbial compositions among the 7 gastrointestinal locations might be a cause and consequence of gut functional differences. All these results could offer some information for future study of the relationship between gastrointestinal microbiota and the ability of fiber utilization and adaptability.
Collapse
Affiliation(s)
- H Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Y Xiao
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - G Gui
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - J Li
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - D Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|