1
|
Alallam B, Abdulameed HT, Lim V. Unbiased Metabolomic and Chemometric profiles of three Sargassum polycystum extracts using GCMS and LCMS/MS: content analysis, correlation analysis and molecular docking. Food Chem 2025; 470:142666. [PMID: 39755036 DOI: 10.1016/j.foodchem.2024.142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Sargassum polycystum (S. polycystum) is a brown macroalga with a high phytochemical content, making it a nutritious and bioactive food source. However, information on factors contributing to health benefits, like antioxidants and cytotoxicity, is less explored for Malaysian S. polycystum. In this study, three extracts of S. polycystum were characterized using a combination of analytical techniques. Despite similar carbohydrate content across all extracts, water extract exhibited the highest protein [21.90 ± 1.01 albumin equivalent (μg/mg)] and phenolic [7.73 ± 1.95 gallic acid equivalent (μg/mg)] contents. However, it displayed the lowest antioxidant and anticancer activities [half-maximal inhibitory concentration (IC50) of > 2000 μg/mL]. Interestingly, ethanolic extract demonstrated the strongest scavenging activity (IC50 of 397.90 ± 20.43 μg/mL) and selective anticancer activity against MCF7 breast cancer cells (IC50 of 338.63 ± 48.98 μg/mL). Untargeted metabolomic profiling confirmed the differences in the chemical composition of the extracts. Subsequently, correlation and docking analyses were used to identify the potential bioactive compounds within the extracts. The ethanolic extract is a rich source of these bioactive compounds with superior antioxidant and anticancer properties, highlighting the need for further research on its potential utility in the food industry.
Collapse
Affiliation(s)
- Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia; Department of Biochemistry, Kwara State University, Malete, Nigeria.
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Quintarelli V, Borgatti D, Baretta M, Stazi SR, Allevato E, Pancaldi S, Baldisserotto C, Mancinelli R, Tedeschi P, Radicetti E, Ben Hassine M. Microbial biofertilizers and algae-based biostimulant affect fruit yield characteristics of organic processing tomato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:530-539. [PMID: 39215534 DOI: 10.1002/jsfa.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.). The experimental treatments were: (i) two microbial biofertilizers (PGPM_1, PGPM_2) and no inoculated plants (No_PGPM); and (ii) two algae-based biostimulant rates (0.5% (Biost_0.5%), 1.0% (Biost_1.0%)) and no application (No_Biost). PGPMs were applied at transplanting, while biostimulants at 15 and 30 days after transplanting. Treatments were replicated three times according to a split-plot experimental design. Plant characteristics were evaluated at 30 days after transplanting in No_Biost treatments. During tomato cultivation, soil plant analysis development (SPAD), nitrogen difference vegetation index (NDVI), leaf area index (LAI) and photosynthetic photon flux density (PPFD) were monitored. Tomato yield was determined. RESULTS PGPM_2 showed the highest shoot biomass (132.9 g plant-1), plant height (44.7 cm), leaf number (34.0 plant-1) and root biomass (9.22 g plant-1). Intermediate values were observed in PGPM_1, while all parameters were lower in No_PGPM. Both PGPMs achieved higher values of SPAD, NDVI, PPFD and LAI than No_PGPM. Biost_1.0% increased all measured growth parameters followed by Biost_0.5% and No_Biost, respectively. Tomato yield was the highest for PGPM_2-Biost_1.0% (67.2 t ha-1). PGPMs affected fruit size and sugar content, while biostimulants were associated with color and lycopene. CONCLUSION The application of microbial biofertilizers and algae-based biostimulants could be part of environment-friendly practice in organic farming. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Quintarelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniele Borgatti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mattia Baretta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Mancinelli
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mortadha Ben Hassine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol 2025; 23:9-23. [PMID: 39147829 DOI: 10.1038/s41579-024-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Global research on the plant microbiome has enhanced our understanding of the complex interactions between plants and microorganisms. The structure and functions of plant-associated microorganisms, as well as the genetic, biochemical, physical and metabolic factors that influence the beneficial traits of plant microbiota have also been intensively studied. Harnessing the plant microbiome has led to the development of various microbial applications to improve crop productivity in the face of a range of challenges, for example, climate change, abiotic and biotic stresses, and declining soil properties. Microorganisms, particularly nitrogen-fixing rhizobia as well as mycorrhizae and biocontrol agents, have been applied for decades to improve plant nutrition and health. Still, there are limitations regarding efficacy and consistency under field conditions. Also, the wealth of expanding knowledge on microbiome diversity, functions and interactions represents a huge source of information to exploit for new types of application. In this Review, we explore plant microbiome functions, mechanisms, assembly and types of interaction, and discuss current applications and their pitfalls. Furthermore, we elaborate on how the latest findings in plant microbiome research may lead to the development of new or more advanced applications. Finally, we discuss research gaps to fully leverage microbiome functions for sustainable plant production.
Collapse
Affiliation(s)
| | | | - Tanja Kostić
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Günter Brader
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | | |
Collapse
|
4
|
Khan RU, Ullah I, Khurshid G, Suboktagin S, Khan AR, Zeb I, Khan ZA, Jamil M, Rha ES, Muhammad Ali H, Ahmad R. Stimulatory effects of smoke solution and biogas digestate slurry application on photosynthesis, growth, and methylation profiling of solanum tuberosum. PLANT SIGNALING & BEHAVIOR 2024; 19:2336724. [PMID: 38600704 PMCID: PMC11017950 DOI: 10.1080/15592324.2024.2336724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.
Collapse
Affiliation(s)
- Rafi Ullah Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irfan Ullah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ghazal Khurshid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Sultan Suboktagin
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zahid Ahmad Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University, Kohat, Pakistan
| | - Eui Shik Rha
- Department of Wellbeing Resources, Sunchon National University, Sunchon, South Korea
| | - Hayssam Muhammad Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
5
|
Tegou A, Giannoulis KD, Zournatzis E, Papadopoulos S, Bartzialis D, Danalatos NG, Wogiatzi-Kamvoukou E. Assessing the Impact of Irrigation and Biostimulants on the Yield and Quality Characteristics of Two Different St. John's Wort Cultivars in Their Second Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:3573. [PMID: 39771272 PMCID: PMC11679836 DOI: 10.3390/plants13243573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The perennial species Hypericum perforatum, commonly known as St. John's Wort, is well regarded for its medicinal attributes, particularly its strong anti-inflammatory and antidepressant effects. Hypericum perforatum L., commonly known as balsam, is extensively employed in both traditional and contemporary medicine due to its biological properties, although the plant's medicine distribution is limited to Europe and Asia. This study pioneers the investigation of Hypericum perforatum cultivation in a Mediterranean country, specifically Greece, focusing on the effects of irrigation and biostimulants of two distinct genotypes on quantitative (height, drug yield, essential oil yield) and qualitative (essential oil content and composition) characteristics. A field trial was conducted at the experimental farm of the Agrotechnology Department at the University of Thessaly, located in the Larissa region. This study investigated various testing varieties under different irrigation levels and biostimulant applications. The results underscore the importance of customized irrigation and biostimulant strategies in improving yield and quality during the second growing season, establishing a foundation for sustainable agricultural progress. Notably, irrigated treatments significantly increased plant height, dry biomass yield, and essential oil production per hectare. Specifically, the essential oil yields for irrigated treatments were nearly double those of rainfed treatments, with 219 kg/ha for rainfed and 407 kg/ha for irrigated. The genotype played a crucial role in influencing production potential, height, flowering, and essential oil composition, with one variety demonstrating biennial blooming and modified essential oil compounds. While irrigation positively impacted yield, it also reduced certain essential oil compounds while increasing β-pinene content. The effects of biostimulants varied based on their composition, with some enhancing and others diminishing essential oil content. Notably, the biostimulant containing algae with auxin and cytokinin (B2) proved to be the most effective in improving the therapeutic profile. This study offers valuable insights into the cultivation of H. perforatum in a Mediterranean climate, highlighting the necessity for ongoing research into native populations, irrigation levels, biostimulants, fertilization, and other factors that affect crop yield and quality characteristics.
Collapse
Affiliation(s)
- Athina Tegou
- Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece; (A.T.); (E.Z.); (S.P.); (E.W.-K.)
| | - Kyriakos D. Giannoulis
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (D.B.); (N.G.D.)
| | - Elias Zournatzis
- Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece; (A.T.); (E.Z.); (S.P.); (E.W.-K.)
| | - Savvas Papadopoulos
- Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece; (A.T.); (E.Z.); (S.P.); (E.W.-K.)
| | - Dimitrios Bartzialis
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (D.B.); (N.G.D.)
| | - Nikolaos G. Danalatos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (D.B.); (N.G.D.)
| | - Eleni Wogiatzi-Kamvoukou
- Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece; (A.T.); (E.Z.); (S.P.); (E.W.-K.)
| |
Collapse
|
6
|
Afonso S, Oliveira I, Guedes F, Meyer AS, Gonçalves B. GLYCINE betaine and seaweed-based biostimulants improved leaf water status and enhanced photosynthetic activity in sweet cherry trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1467376. [PMID: 39759231 PMCID: PMC11695132 DOI: 10.3389/fpls.2024.1467376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.g., Ecklonia maxima (EM)], can represent a sustainable approach to improving plant conditions, even under adverse environmental circumstances. Despite their potential, few studies have focused on the effects of GB or EM exogenous application on sweet cherry tree physiology. To address this lack of research, a study was conducted in a Portuguese sweet cherry commercial orchard, using Lapins and Early Bigi cultivars. Trees were treated with products based on GB and EM at two different concentrations [GB 0.25% (v/v) and GB 0.40% (v/v); EM 0.30% (v/v) and EM 0.15% (v/v)], a combination of the lowest concentrations of both biostimulants (Mix -GB 0.25% and EM 0.15%), and a control group (C) treated with water. Applications were performed over three consecutive years (2019, 2020, and 2021) at three different phenological stages, according to the BBCH scale: 77, 81, and 86 BBCH. Results showed, in general, that the application of biostimulants led to improvements in water status as well as significantly lower values of electrolyte leakage and thiobarbituric acid reactive substances compared to C samples. Additionally, biostimulants reduced pigment loss in the leaves and enhanced their biosynthesis. The Chlorophylla/Chlorophyllb ratio, ranging from 2 to 4, indicated a greater capacity for light absorption and lower stress levels in treated leaves. Soluble sugar and starch content decreased during fruit development in both cultivars and years; however, biostimulants increased these contents, with increments of approximately 15% to 30% in leaves treated with EM. Soluble protein content also showed the same pattern for treated leaves. Biostimulants, especially EM, demonstrated a significant positive effect (p ≤ 0.001) on total phenolic content, with increases of approximately 25% to 50% in treated leaves. In conclusion, the application of biostimulants, especially algae-based, significantly improved tree performance by enhancing physiological parameters and stress resilience and could represent a novel approach in fruit production systems.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Francisco Guedes
- Cermouros-Cerejas de São Martinho de Mouros, Lda., Resende, Portugal
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
7
|
Zhang H, Yu H, Xiang Y, Wang H, Qian Y, Huang X. Enhanced bioremediation of bensulfuron-methyl contaminated soil by Hansschlegelia zhihuaiae S113: Metabolic pathways and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136471. [PMID: 39547044 DOI: 10.1016/j.jhazmat.2024.136471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Bensulfuron-methyl (BSM), a widely used herbicide, can persist in soil and damag sensitive crops. Microbial degradation, supplemented with exogenous additives, provides an effective strategy to enhance BSM breakdown. Hansschlegelia zhihuaiae S113 has been shown to efficiently degrade this sulfonylurea herbicide. However, depending solely on a single strain for degradation proves inefficient and unlikely to achieve ideal remediation in practical applications. This study assessed the impact of various carbon sources on the degradation efficiency of S113 in BSM-polluted soil. Among these, glucose was the most effective, achieving a 98.7 % degradation rate after 9 d of inoculation. In addition, seven intermediates were detected during BSM degradation in soil through the cleavage of the phenyl ring ester bond, the pyrimidine rings, and urea bridge peptide bond, among other pathways. 2-amino-4,6-dimethoxy pyrimidine (ADMP), and 2-(aminosulfonylmethyl)-methyl benzoate(MSMB) were the primary intermediates. These metabolites were less toxic to maize, sorghum, and bacteria than the BSM. Community structure analysis indicated that variations in exogenous carbon sources and environmental pollutants significantly improved the ecological functions of soil microbial communities, enhancing pollutant degradation. Addition of carbon sources notably affected soil microbial community structure, modifying metabolic activities and interaction patterns. Specifically, glucose substantially increased the richness and diversity of soil bacterial communities. These findings offer valuable insights for field remediation practices and contributed to the development of more robust soil pollution management strategies.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Life Science, Nanyang Normal University, Nanyang 473061, PR China
| | - Houyu Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang 550081, PR China
| | - Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
9
|
Pipiak P, Sieczyńska K, Gendaszewska D, Skwarek-Fadecka M. Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour. Int J Mol Sci 2024; 25:12480. [PMID: 39596545 PMCID: PMC11594436 DOI: 10.3390/ijms252212480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of this study was to investigate the effects of treating maize (Zea mays L.) seeds with fish collagen hydrolysate (FC) and keratin (KE) derived from animal waste by-products of leather and meat production, as well as poly(hexamethylene biguanide) hydrochloride (P) and bentonite (B). This research is in line with the search for new, environmentally friendly methods to increase yields of industrial crops in a way that is compatible with sustainable development. The effect of the binders used was investigated by analysing the grown maize seedlings by determining changes in parameters of chlorophyll fluorescence, photosynthetic pigments, elemental composition and FTIR analysis on maize shoots. The results indicated a slightly higher fresh weight (FW) of shoots in plants treated with fish collagen, PHMB and bentonite (FC+P+B) and FW of roots in plants treated with keratin, PHMB and bentonite (KE+P+B). Unexpectedly, the FW and dry weight (DW) of both roots and shoots of all bentonite-treated plants were significantly higher than the corresponding non-bentonite-treated groups. In addition, changes in chlorophyll-a fluorescence were observed for the keratin, PHMB and bentonite variants. This study showed that the proposed materials could be promising seed pelleting agents to improve seed growth and yield.
Collapse
Affiliation(s)
- Paulina Pipiak
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Katarzyna Sieczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Dorota Gendaszewska
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Monika Skwarek-Fadecka
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
| |
Collapse
|
10
|
Katerova Z, Todorova D, Vaseva II, Shopova E, Petrakova M, Iliev M, Sergiev I. Effects of Melatonin Pre- and Post-Drought Treatment on Oxidative Stress Markers and Expression of Proline-Related Transcripts in Young Wheat Plants. Int J Mol Sci 2024; 25:12127. [PMID: 39596196 PMCID: PMC11594100 DOI: 10.3390/ijms252212127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Wheat can tolerate a mild water deficit, but prolonged drought causes a number of detrimental physiological changes resulting in a substantial decrease in productivity. The present study evaluates the potential of the natural plant growth regulator melatonin to alleviate the negative effects of moderate drought in two Bulgarian winter wheat cultivars at the early vegetative stage. Melatonin doses of 75 µM were root-supplemented 24 h before or after the stress period. The levels of several biometric parameters, osmolyte content and stress indicators as well as the expression of genes coding for key enzymes of the proline biosynthesis pathway were analyzed in leaves at the end of the drought stress and after two and four days of recovery. Applied alone, melatonin did not exert significant effects on most of the monitored parameters. Water deprivation negatively affected seedlings' fresh weight and water content and increased the stress markers and osmolyte levels. These were accompanied by a high accumulation of TaP5CS and TaP5CR transcripts coding for the enzymes Δ-pyrroline-5-carboxylate synthase and Δ-pyrroline-5-carboxylate reductase, respectively. The effect of melatonin in reducing drought stress was similar whether applied before or after exposure, though slightly more effective when used as a pre-treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.K.); (D.T.); (I.I.V.); (E.S.); (M.P.); (M.I.)
| |
Collapse
|
11
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
12
|
Cerruti P, Campobenedetto C, Montrucchio E, Agliassa C, Contartese V, Acquadro A, Bertea CM. Antioxidant activity and comparative RNA-seq analysis support mitigating effects of an algae-based biostimulant on drought stress in tomato plants. PHYSIOLOGIA PLANTARUM 2024; 176:e70007. [PMID: 39703136 DOI: 10.1111/ppl.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Drought is a significant global environmental stress. Biostimulants offer a sustainable solution to enhance crop tolerance and mitigate productivity losses. This study assessed the impact of foliar application of ERANTHIS®, a biostimulant derived from the algae Ascophyllum nodosum and Laminaria digitata and yeast extracts, on tomato plants under mild water stress. Evaluations were conducted at 5 and 24 hours after the third treatment. Under optimal water conditions, the biostimulant showed a priming effect, with an early increase of stress markers and a timing-specific modulation of ROS non enzymatic and enzymatic ROS scavenging activities. Under drought stress, the biostimulant later decreased stress markers, by aligning the majority of analyzed ROS scavengers closer to levels in well-irrigated plants. Transcriptome analysis using RNA-seq data revealed differentially expressed genes (DEGs) and multivariate data highlighted groups of co-regulated genes (k-means clustering). Genes involved in water channel activity, transcription regulator activity, and oxidoreductase activity were significantly modulated. Cluster analysis identified distinct gene clusters influenced by the biostimulant under optimal conditions, including early responses (cell wall modification, hormone signaling) and late responses (RNA modification, nutrient uptake process). Under water stress, early responses involved actin filament organization and MAPK signaling, while late responses were related to plasma membrane components and cell wall organization. This study, integrating biochemical and transcriptomic data, provides a comprehensive understanding of how a biostimulant primes plants under optimal conditions and mitigates water stress effects, offering valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Paolo Cerruti
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Elisa Montrucchio
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | | | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
13
|
Muthu-Pandian Chanthini K, Pavithra GS, Murugan P, Malarvizhi P, Deva-Andrews A, Ramasubramanian R, Thulasi-Raman N, Rajagopal R, Senthil-Nathan S, Malafaia G. Enhancement of root abscisic acid mediated osmotic regulation by macroalgal compounds promotes adaptability of rice (Oryza sativa L.) in response to progressive metal ion mediated environmental stress. ENVIRONMENTAL RESEARCH 2024; 259:119485. [PMID: 38917933 DOI: 10.1016/j.envres.2024.119485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Soil deterioration is a major cause of poor agricultural productivity, necessitating sufficient nutrient inputs like fertilizers and amendments for sustainable use. As one such strategy, the current study evaluates the potential of Sargassum wightii, a brown seaweed extract, as an osmopriming agent to improve seed germination, early establishment, and competent seedling performances in acidic soil. The elemental makeup of seaweed extract (BS) showed that it included major plant macro (Potassium, Nitrogen and Phosphorous), as well as micronutrients (Magnesium and Iron) and trace elements (Zinc, Copper, and Molybdenum). While seed germination was impacted by H+ ion toxicity, seeds primed with BS emerged earlier and showed a higher germination percentage (98.2%) and energy (92.4%). BS treatments enhanced seedling growth by 63% and had a positive effect on root growth (68.2%) as well as increases in root surface area (10%) and volume (67.01%). Stressed seedlings had 76.39% and 63.2% less carotenoid and chlorophyll, respectively. In seedlings treated with BS, an increase in protein and Total Soluble Sugars content of 14.56 and 7.19%, respectively, was seen. Fourier Transform-Infra Red analysis of postharvest soil indicated improved soil health with absorbance corresponding to enhanced soil water holding capacity and organic matter. Increased abscisic acid synthesis rate and associated antioxidant enzyme system (Malondialdehyde, Glutathione peroxidases and ascorbate peroxidase) activation, along with enhanced H+ adenosine triphosphate-ase and glutathione activities, help ameliorate and deport H+ ions from cells, scavenge Reactive Oxygen Species, thus protecting cells from injury. Seaweed extract successfully reduced H+-induced ion toxicities in rice by promoting their germination, physiological, metabolically, and growth parameters that could ultimately increase their productivity and yield in a sustainable and environmentally friendly manner.
Collapse
Affiliation(s)
- Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ganesh-Subbaraja Pavithra
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ponnusamy Murugan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Pauldurai Malarvizhi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Arulsoosairaj Deva-Andrews
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Narayanan Thulasi-Raman
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Guilherme Malafaia
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210, Sarajevo, Bosnia and Herzegovina; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
14
|
Albaladejo-Marico L, Carvajal M, Yepes-Molina L. Involvement of glucosinolates and phenolics in the promotion of broccoli seedling growth through the modulation of primary and secondary metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112205. [PMID: 39069007 DOI: 10.1016/j.plantsci.2024.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.
Collapse
Affiliation(s)
- Lorena Albaladejo-Marico
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain.
| |
Collapse
|
15
|
Scotti R, D'Agostino N, Pane C, Zaccardelli M. Transcriptional reprogramming of tomato (Solanum lycopersicum L.) roots treated with humic acids and filter sterilized compost tea. BMC PLANT BIOLOGY 2024; 24:894. [PMID: 39343884 PMCID: PMC11441126 DOI: 10.1186/s12870-024-05602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND To counteract soil degradation, it is important to convert conventional agricultural practices to environmentally sustainable management practices. To this end, the application of biostimulants could be considered a good strategy. Compost, produced by the composting of biodegradable organic compounds, is a source of natural biostimulants, such as humic acids, which are naturally occurring organic compounds that arise from the decomposition and transformation of organic residues, and compost tea, a compost-derived liquid formulated produced by compost water-phase extraction. This study aimed to determine the molecular responses of the roots of tomato plants (cv. Crovarese) grown under hydroponic conditions and subjected to biostimulation with humic substances (HSs) and filtered sterile compost tea (SCT). RESULTS The 13C CPMAS NMR of humic acids (HA) and SCT revealed strong O-alkyl-C signals, indicating a high content of polysaccharides.Thermochemolysis identified over 100 molecules, predominantly from lignin, fatty acids, and biopolymers. RNA-Seq analysis of tomato roots treated with HA or SCT revealed differentially expressed genes (DEGs) with distinct patterns of transcriptional reprogramming. Notably, HA treatment affected carbohydrate metabolism and secondary metabolism, particularly phenylpropanoids and flavonoids, while SCT had a broader impact on hormone and redox metabolism. Both biostimulants induced significant gene expression changes within 24 h, including a reduction in cell wall degradation activity and an increase in the expression of hemicellulose synthesis genes, suggesting that the treatments prompted proactive cell wall development. CONCLUSIONS The results demonstrate that HS and SCT can mitigate stress by activating specific molecular mechanisms and modifying root metabolic pathways, particularly those involved in cell wall synthesis. However, gene regulation in response to these treatments is complex and influenced by various factors. These findings highlight the biostimulatory effects of HS and SCT, suggesting their potential application in crop biofertilization and the development of innovative breeding strategies to maximize the benefits of humic substances for crops. Further research is needed to fully elucidate these mechanisms across various contexts and plant species.
Collapse
Affiliation(s)
- Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, Pontecagnano Faiano, 84098, Italy.
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Catello Pane
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, Pontecagnano Faiano, 84098, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, Pontecagnano Faiano, 84098, Italy
| |
Collapse
|
16
|
Lenart A, Wrona D, Krupa T. Biostimulators with marine algae extracts and their role in increasing tolerance to drought stress in highbush blueberry cultivation. PLoS One 2024; 19:e0306831. [PMID: 39298418 DOI: 10.1371/journal.pone.0306831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 09/21/2024] Open
Abstract
Drought is one of the most serious challenges facing agriculture and ecosystems around the world. With more frequent and more extreme weather events, the effects of drought are becoming more severe, leading to yield losses, soil depletion and environmental degradation. In this work, we present an analysis of the impact of a marine algae biostimulanat andits ability to offset the effects of drought stress in blueberry cultivation. The aim of the research was to evaluate various fertilisation programs in increasing plant resistance to abiotic stress such as drought. It was tested whether the algal biostimulator provides the same tolerance to drought stress in highbush blueberry plants as regular fertilisers without biostimulation. The research was conducted in 2022 in a greenhouse in controlled drought conditions. Three-year-old highbush blueberry bushes (12 pieces) were used in the experiment. Highbush blueberry bushes (Vaccinium corymbosum) 'Brigitta Blue' varieties were planted in plastic pots with a capacity of 10 dm3 containing an acidic substrate and placed in a greenhouse. Controlled lighting conditions were maintained using sodium lamps and a temperature of 25°C/20°C day/night. The substrate in pots was maintained at 80% of field water capacity by manual watering and weekly supply of nutrient solution for 5 weeks until water deficit occurred. Half of the plants were sprayed weekly with biostimulant at a concentration of 1%, three times 1 week apart (1 application per week). The biostimulant was evenly applied to the entire plant. Seven days after the third application of the product, half of the unsprayed and sprayed plants were subjected to water deficit stress by holding thewatering until 40% of the field water capacity (FC) was reached. The experimental layout included four combinations: C-Control-no biostimulation, no water deficit; CS-Stress control-water deficit up to 40% FC, no biostimulation; B-Biostimulator-no water deficit, biostimulation; BS-Stress plus biostimulator-water deficit up to 40% FC, biostimulation. Fertilisers with seaweed extracts show the ability to reduce the adverse effects of stress, promoting plant resilience, including tolerance to drought stress. The following were evaluated in the experiment: catalase activity, peroxidase activity, free malondialdehyde content, photosynthetic activity and leaf mineral content. The biostimulant used in experiment increased the oxidative activity of the enzymes pe-roxidase and catalase under simulated drought stress conditions. The algal biostimulant increased the average value of catalase activity by 20% in comparison to the control plants, in both combinatinations. The tested biostimulator had no effect on the chlorophyll content in the leaves or the concentration of nutrients in the leaves. The effect of marine algae products on the yield quantity and high quality is related among other to bioactive substances which helps to prevent drought stress.
Collapse
Affiliation(s)
- Agnieszka Lenart
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Dariusz Wrona
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Tomasz Krupa
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| |
Collapse
|
17
|
Moustaka J, Sperdouli I, İşgören S, Şaş B, Moustakas M. Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2590. [PMID: 39339565 PMCID: PMC11434670 DOI: 10.3390/plants13182590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 μM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 μM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 μM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 μM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 μmol photons m-2 s-1), and by 13% at a high irradiance (HI, 1000 μmol photons m-2 s-1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (-38%), in drought-stressed oregano plants sprayed with 100 μM MT, than the corresponding decrease in 1O2 production at the GI (-20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 μM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 μM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.
Collapse
Affiliation(s)
- Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Begüm Şaş
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 197101 Saint-Petersburg, Russia
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Ancín M, Soba D, Picazo PJ, Gámez AL, Le Page JF, Houdusse D, Aranjuelo I. Optimizing oilseed rape growth: Exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield. PHYSIOLOGIA PLANTARUM 2024; 176:e14561. [PMID: 39363578 DOI: 10.1111/ppl.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The current agricultural system is in search of new strategies to achieve a more sustainable production while keeping or even increasing crop yield and quality. In this scenario, the application of biostimulants constitutes a potent solution. In the current study, the impact of a blue-green microalgal extract (MB) and a pig tissue hydrolysate (PTH) on rapeseed plants' development was characterized. Obtained results revealed a positive effect on yield parameters of plants treated with MB and, especially, PTH; this was associated to an improvement on the photosynthetic performance. Moreover, this study remarked the effects of biostimulants on plant phenology through their pivotal role in modulating developmental processes. More specifically, proteomic, metabolomic, and hormone content analyses revealed distinct alterations associated with the acceleration of phenology induced by biostimulant application. Additionally, some antioxidant enzymes and stress-related compounds were up-regulated upon MB and PTH treatments, indicating enhanced plant defense mechanisms in response to accelerated phenological transitions. Such findings highlight the intricate interplay between biostimulants and plant physiology, wherein biostimulants orchestrate rapid developmental changes, ultimately influencing growth dynamics. Altogether, the current study reveals that the application of both MB and PTH biostimulants promoted rapeseed plant phenology and productivity associated with an improvement in the photosynthetic machinery while boosting other physiological and molecular mechanisms.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Pedro J Picazo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Angie L Gámez
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | | | | | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| |
Collapse
|
19
|
Berikbol N, Klivenko A, Markin V, Orazzhanova L, Yelemessova G, Kassymova Z. Development of Interpolyelectrolyte Complex Based on Chitosan and Carboxymethylcellulose for Stabilizing Sandy Soil and Stimulating Vegetation of Scots Pine ( Pinus sylvestris L.). Polymers (Basel) 2024; 16:2373. [PMID: 39204592 PMCID: PMC11359870 DOI: 10.3390/polym16162373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
The issue of water and wind erosion of soil remains critically important. Polymeric materials offer a promising solution to this problem. In this study, we prepared and applied an interpolyelectrolyte complex (IPEC) composed of the biopolymers chitosan and sodium carboxymethyl cellulose (Na-CMC) for the structuring of forest sandy soils and the enhancement of the pre-sowing treatment of Scots pine (Pinus sylvestris L.) seeds. A nonstoichiometric IPEC [Chitosan]:[Na-CMC] = [3:7] was synthesized, and its composition was determined using gravimetry, turbidimetry, and rheoviscosimetry methods. Soil surface treatment with IPEC involved the sequential application of a chitosan polycation (0.006% w/w) and Na-CMC polyanion (0.02% w/w) relative to the air-dry soil weight. The prepared IPEC increased soil moisture by 77%, extended water retention time by sixfold, doubled the content of agronomically valuable soil fractions > 0.25 mm, enhanced soil resistance to water erosion by 64% and wind erosion by 81%, and improved the mechanical strength of the soil-polymer crust by 17.5 times. Additionally, IPEC application resulted in slight increases in the content of humus, mobile potassium, mobile phosphorus, ammonium nitrogen, and mineral salts in the soil while maintaining soil solution pH stability and significantly increasing nitrate nitrogen levels. The novel application technologies of biopolymers and IPEC led to a 16-25% improvement in Scots pine seed germination and seedling growth metrics.
Collapse
Affiliation(s)
- Nazira Berikbol
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Alexey Klivenko
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Vadim Markin
- Department of Organic Chemistry, Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia;
| | - Lazzyat Orazzhanova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Gulnur Yelemessova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Zhanar Kassymova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| |
Collapse
|
20
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
21
|
Ciriello M, Rajabi Hamedani S, Rouphael Y, Colla G, Cardarelli M. Enriching NPK Mineral Fertilizer with Plant-Stimulating Peptides Increases Soilless Tomato Production, Grower Profit, and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2024; 13:2004. [PMID: 39065531 PMCID: PMC11280885 DOI: 10.3390/plants13142004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The need to increase agricultural production to feed a steadily growing population may clash with the more environmentally friendly but less efficient production methods required. Therefore, it is important to try to reduce the use of chemical inputs without compromising production. In this scenario, natural biostimulants have become one of the most sought-after and researched technologies. In the present study, the results of a greenhouse experiment on hydroponic tomatoes (Solanum lycopersicum L.) are presented, which involved comparing the use of ordinary NPK fertilizer (Cerbero®) with the use of NPK fertilizers enriched with 0.5% protein hydrolysate of plant origin (Cerbero Green®) at both standard (100%) and reduced (70%) fertilization rates. The results highlight how the use of Cerbero Green® fertilizers improves the production performance of tomatoes. More specifically, they show that the use of Cerbero Green® leads to higher marketable yields, especially under reducing fertilizer use, ensuring a positive net change in profit for the grower. In addition, carbon footprint analysis has revealed that the use of Cerbero Green® reduces the environmental impact of hydroponic tomato growing practices by up to 8%. The observed higher yield of hydroponically grown tomatoes even with reduced fertilization rates underlines once again the key role of natural biostimulants in increasing both the economic and environmental sustainability of horticultural production.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (Y.R.)
| | - Sara Rajabi Hamedani
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| |
Collapse
|
22
|
Garg S, Nain P, Kumar A, Joshi S, Punetha H, Sharma PK, Siddiqui S, Alshaharni MO, Algopishi UB, Mittal A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Front Microbiol 2024; 15:1439561. [PMID: 39104588 PMCID: PMC11299335 DOI: 10.3389/fmicb.2024.1439561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as "plant biostimulants" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
Collapse
Affiliation(s)
- Shivanshu Garg
- Department of Biochemistry, CBSH-GBPUA&T, Pantnagar, India
| | - Pooja Nain
- Department of Soil Science, College of Agriculture, GBPUA&T, Pantnagar, India
| | - Ashish Kumar
- Department of Microbiology, CBSH-GBPUA&T, Pantnagar, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | | | - Pradeep Kumar Sharma
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Amit Mittal
- School of Allied Sciences, Graphic Era Hill University, Bhimtal, India
| |
Collapse
|
23
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Zhao T, Khatoon S, Matloob Javed M, Ghazy AH, Al-Doss AA, Rauf M, Khalid T, Ding C, Shah ZH. Delineation of the impacts of varying 6-benzylaminopurine concentrations on physiological, biochemical and genetic traits of different olive cultivars under in vitro conditions. AOB PLANTS 2024; 16:plae038. [PMID: 39081857 PMCID: PMC11287765 DOI: 10.1093/aobpla/plae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Abstract. The plant growth regulator 6-benzylaminopurine (BAP) is an important component of plant nutrient medium with tendency to accelerate physiological, biochemical and molecular processes in woody plants such as olive. To date, limited knowledge is available on the role of BAP in mediating physiological, biochemical and genetic activities in olives under in vitro conditions. To cover this research gap, the current study was conducted with the objective of studying the role of BAP in regulating physiological traits (chlorophyll, CO2 assimilation), antioxidant enzymes (superoxide dismutase, catalase and peroxidase), metabolic contents (starch, sucrose and flavonoids) and gene expression (OeRbcl, OePOD10, OeSOD10, OeCAT7, OeSS4, OeSuSY7, OeF3GT and OeChlH) under varying concentrations (0, 0.5, 1.5 and 2.5 mg L-1) within the provided in vitro conditions. The explants obtained from different olive cultivars ('Leccino', 'Gemlik', 'Moraiolo', 'Arbosana') were cultured on olive medium (OM) provided with different BAP concentrations using a two-factorial design, and data were analysed statistically. All traits increased significantly under in vitro conditions due to increasing concentrations of BAP; however, this increase was more dramatic at 2.5 mg L-1 and the least dramatic at 0.5 mg L-1. Moreover, correlation, principal component analysis and heatmap cluster analysis confirmed significant changes in the paired association and expression of traits with changing BAP concentration and type of olive cultivars. Likewise, the expression of all genes varied due to changes in BAP concentration in all cultivars, corresponding to variations in physiological and biochemical traits. Moreover, the spectrographs generated via scanning electron microscopy further indicated the variations in the distribution of elements in olive leaf samples due to varying BAP concentrations. Although all cultivars showed a significant response to in vitro varying concentrations of BAP, the response of Arbosana was statistically more significant. In conclusion, the current study proved the dynamic impact of the varying BAP concentrations on regulating the physiological, biochemical, and molecular attributes of olive cultivars.
Collapse
Affiliation(s)
- Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin, China
| | - Sadia Khatoon
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin, China
| | - Muhammad Matloob Javed
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdel-Halim Ghazy
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Doss
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Rauf
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Taimoor Khalid
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin, China
| | - Zahid Hussain Shah
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46000, Pakistan
| |
Collapse
|
25
|
Mutlu-Durak H, Arikan-Algul Y, Bayram E, Haznedaroglu BZ, Kutman UB, Kutman BY. Various extracts of the brown seaweed Cystoseira barbata with different compositions exert biostimulant effects on seedling growth of wheat. PHYSIOLOGIA PLANTARUM 2024; 176:e14503. [PMID: 39191702 DOI: 10.1111/ppl.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Worldwide, where the demand for novel and greener solutions for sustainable agricultural production is increasing, the use of eco-friendly products such as seaweed-derived biostimulants as pre-sowing treatment represent a promising and important approach for the future. Cystoseira barbata, a brown seaweed species abundant in the Mediterranean Region, was collected from the Marmara Sea and subjected to water, alkali, and acidic extractions, and the biostimulant activity of these extracts was tested on wheat (Triticum durum cv. Saricanak-98) using different rates through application to the seeds or germination medium (substrate) applications. The different extracts were characterized by mineral, total phenolic, free amino acid, mannitol, polysaccharide, antioxidant concentrations and hormone-like activity. The effects of the extracts on growth parameters, root morphology, esterase activity, and mineral nutrient concentrations of wheat seedlings were investigated. Our results suggest that the substrate application was more effective in enhancing the seedling performance compared to the seed treatment. High rates of seaweed extracts applied to substrates increased the shoot length and fresh weight of wheat seedlings by up to 20 and 25%, respectively. The substrate applications enhanced the root fresh weights of wheat seedlings by up to 25% when compared to control plants. Among the biostimulant extract applications, the water extract at the highest rate yielded the most promising results in terms of the measured parameters. Cystoseira barbata extracts with different compositions can be used as effective biostimulants to boost seedling growth. The local seaweed biomass affected by mucilage problems, has great potential as a bioeconomy resource and can contribute to sustainable practices for agriculture.
Collapse
Affiliation(s)
- Hande Mutlu-Durak
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
| | - Yagmur Arikan-Algul
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
- Gubretas R&D Center, Kocaeli, Turkiye
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Besiktas, Istanbul, Turkiye
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Bogazici University, Besiktas, Istanbul, Turkiye
| | - Umit Baris Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
| | - Bahar Yildiz Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
- Original Bio-Economy Resources Center of Excellence (OBEK), Gebze, Kocaeli, Turkiye
| |
Collapse
|
26
|
Orts A, Navarro-Torre S, Macías-Benítez S, Orts JM, Naranjo E, Castaño A, Parrado J. A new biostimulant derived from soybean by-products enhances plant tolerance to abiotic stress triggered by ozone. BMC PLANT BIOLOGY 2024; 24:580. [PMID: 38890606 PMCID: PMC11186251 DOI: 10.1186/s12870-024-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.
Collapse
Affiliation(s)
- Angel Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Sandra Macías-Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - José M Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Emilia Naranjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Angélica Castaño
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain.
| | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| |
Collapse
|
27
|
Delgado MZ, Aranda FL, Hernandez-Tenorio F, Garrido-Miranda KA, Meléndrez MF, Palacio DA. Polyelectrolytes for Environmental, Agricultural, and Medical Applications. Polymers (Basel) 2024; 16:1434. [PMID: 38794627 PMCID: PMC11124962 DOI: 10.3390/polym16101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, polyelectrolytes (PELs) have attracted significant interest owing to a surge in research dedicated to the development of new technologies and applications at the biological level. Polyelectrolytes are macromolecules of which a substantial portion of the constituent units contains ionizable or ionic groups. These macromolecules demonstrate varied behaviors across different pH ranges, ionic strengths, and concentrations, making them fascinating subjects within the scientific community. The aim of this review is to present a comprehensive survey of the progress in the application studies of polyelectrolytes and their derivatives in various fields that are vital for the advancement, conservation, and technological progress of the planet, including agriculture, environmental science, and medicine. Through this bibliographic review, we seek to highlight the significance of these materials and their extensive range of applications in modern times.
Collapse
Affiliation(s)
- Martina Zuñiga Delgado
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| | - Francisca L. Aranda
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
- Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
| | - Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Manuel F. Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascuales, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| |
Collapse
|
28
|
Ntanasi T, Karavidas I, Spyrou GP, Giannothanasis E, Aliferis KA, Saitanis C, Fotopoulos V, Sabatino L, Savvas D, Ntatsi G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. PLANTS (BASEL, SWITZERLAND) 2024; 13:1404. [PMID: 38794474 PMCID: PMC11125247 DOI: 10.3390/plants13101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Salinity, one of the major abiotic stresses in plants, significantly hampers germination, photosynthesis, biomass production, nutrient balance, and yield of staple crops. To mitigate the impact of such stress without compromising yield and quality, sustainable agronomic practices are required. Among these practices, seaweed extracts (SWEs) and microbial biostimulants (PGRBs) have emerged as important categories of plant biostimulants (PBs). This research aimed at elucidating the effects on growth, yield, quality, and nutrient status of two Greek tomato landraces ('Tomataki' and 'Thessaloniki') following treatments with the Ascophyllum nodosum seaweed extract 'Algastar' and the PGPB 'Nitrostim' formulation. Plants were subjected to bi-weekly applications of biostimulants and supplied with two nutrient solutions: 0.5 mM (control) and 30 mM NaCl. The results revealed that the different mode(s) of action of the two PBs impacted the tolerance of the different landraces, since 'Tomataki' was benefited only from the SWE application while 'Thessaloniki' showed significant increase in fruit numbers and average fruit weight with the application of both PBs at 0.5 and 30 mM NaCl in the root zone. In conclusion, the stress induced by salinity can be mitigated by increasing tomato tolerance through the application of PBs, a sustainable tool for productivity enhancement, which aligns well with the strategy of the European Green Deal.
Collapse
Affiliation(s)
- Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - George P. Spyrou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Evangelos Giannothanasis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus;
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| |
Collapse
|
29
|
Ciriello M, Campana E, Colla G, Rouphael Y. An Appraisal of Nonmicrobial Biostimulants' Impact on the Productivity and Mineral Content of Wild Rocket ( Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1326. [PMID: 38794397 PMCID: PMC11125422 DOI: 10.3390/plants13101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Modern agriculture urgently requires viable alternatives to synthetic chemical substances, such as pesticides and fertilizers, to comply with new and stringent international regulations and meet the growing demands of consumers who prefer chemical-free food. Consequently, organic agriculture has garnered increasing interest over time. To compensate for yield reduction resulting from opting out of the use mineral fertilizers, research has focused on the use of biostimulants to sustain the productivity of horticultural crops. To this end, a greenhouse experiment was conducted to assess the effects of three nonmicrobial biostimulants (a plant extract, vegetable protein hydrolysate, and a seaweed extract) and an untreated control on the production and mineral content of wild rocket (Diplotaxis tenuifolia (L.) DC.) cultivated under organic conditions and harvested three times during the growth cycle. In general, the nitrate content, which defines the commercial quality of wild rocket, was not influenced by the application of biostimulants. At each harvest, the application of biostimulants resulted in improved production performance, although this was not always accompanied by an increase in mineral content. Specifically, the best results were obtained with the use of plant-derived protein hydrolysate and plant extract, which led to an improvement in total yield of 32.1% and 27.2%, respectively compared to that of control plants. These results reconfirm that biostimulants represent a valid and indispensable tool for organic growers.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.)
| | - Emanuela Campana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.)
| |
Collapse
|
30
|
Jiang P, Wang X, Wang R. Improving grape fruit quality through soil conditioner: Insights from RNA-seq analysis of Cabernet Sauvignon roots. Open Life Sci 2024; 19:20220864. [PMID: 38737104 PMCID: PMC11087741 DOI: 10.1515/biol-2022-0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
The application of fertilizers and soil quality are crucial for grape fruit quality. However, the molecular data linking different fertilizer (or soil conditioner [SC]) treatments with grape fruit quality is still lacking. In this study, we investigated three soil treatments, namely inorganic fertilizer (NPK, 343.5 kg/hm2 urea [N ≥ 46%]; 166.5 kg/hm2 P2O5 [P2O5 ≥ 64%]; 318 kg/hm2 K2O [K2O ≥ 50%]), organic fertilizer (Org, 9 t/hm2 [organic matter content ≥ 35%, N + P2O5 + K2O ≥ 13%]), and SC (SC, 3 t/hm2 [humic acid ≥ 38.5%; C, 56.1%; H, 3.7%; N, 1.5%; O, 38%; S, 0.6%]), on 4-year-old Cabernet Sauvignon grapevines. Compared with the NPK- and Org-treated groups, the SC significantly improved the levels of soluble solids, tannins, anthocyanins, and total phenols in the grape berries, which are important biochemical indicators that affect wine quality. Furthermore, we conducted RNA-seq analysis on the grapevine roots from each of the three treatments and used weighted gene co-expression network analysis to identify five hub genes that were associated with the biochemical indicators of the grape berries. Furthermore, we validated the expression levels of three hub genes (ERF, JP, and SF3B) and five selected genes related to anthocyanin biosynthesis (UFGT1, UFGT2, UFGT3, GST, and AT) by using quantitative reverse transcription-polymerase chain reaction. Compared to the NPK and Org treatment groups, the SC treatment resulted in a significant increase in the transcription levels of three hub genes as well as VvUFGT1, VvUFGT3, VvGST, and VvAT. These results suggest that the SC can improve grape fruit quality by altering gene transcription patterns in grapevine roots and further influence the biochemical indices of grape fruits, particularly anthocyanin content. This study reveals that the application of SC can serve as an important measure for enhancing vineyard SC and elevating grape quality.
Collapse
Affiliation(s)
- Peng Jiang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
| | - Xiaojing Wang
- Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products, Yinchuan750001, P.R. China
| | - Rui Wang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
- Ningxia Grape and Wine Research Institute, Yinchuan750021, P.R. China
| |
Collapse
|
31
|
Sandor R, Wagh SG, Kelterborn S, Großkinsky DK, Novak O, Olsen N, Paul B, Petřík I, Wu S, Hegemann P, Strnad M, Červený J, Roitsch T. Cytokinin-deficient Chlamydomonas reinhardtii CRISPR-Cas9 mutants show reduced ability to prime resistance of tobacco against bacterial infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14311. [PMID: 38715208 DOI: 10.1111/ppl.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.
Collapse
Affiliation(s)
- Roman Sandor
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Simon Kelterborn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for translational physiology, Berlin, Germany
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Ondrej Novak
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Niels Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Bichitra Paul
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Ivan Petřík
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Shujie Wu
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Peter Hegemann
- Humboldt Universität zu Berlin, Institute of Biology, Experimental Biophysics, Berlin, Germany
| | - Miroslav Strnad
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Jan Červený
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Roitsch
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
32
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
33
|
Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S. A red seaweed Kappaphycus alvarezii-based biostimulant (AgroGain ®) improves the growth of Zea mays and impacts agricultural sustainability by beneficially priming rhizosphere soil microbial community. Front Microbiol 2024; 15:1330237. [PMID: 38646629 PMCID: PMC11027899 DOI: 10.3389/fmicb.2024.1330237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The overuse of chemical-based agricultural inputs has led to the degradation of soil with associated adverse effects on soil attributes and microbial population. This scenario leads to poor soil health and is reportedly on the rise globally. Additionally, chemical fertilizers pose serious risks to the ecosystem and human health. In this study, foliar sprays of biostimulant (AgroGain/LBS6) prepared from the cultivated, tropical red seaweed Kappaphycus alvarezii increased the phenotypic growth of Zea mays in terms of greater leaf area, total plant height, and shoot fresh and dry weights. In addition, LBS6 improved the accumulation of chlorophyll a and b, total carotenoids, total soluble sugars, amino acids, flavonoids, and phenolics in the treated plants. LBS6 applications also improved the total bacterial and fungal count in rhizospheric soil. The V3-V4 region of 16S rRNA gene from the soil metagenome was analyzed to study the abundance of bacterial communities which were increased in the rhizosphere of LBS6-treated plants. Treatments were found to enrich beneficial soil bacteria, i.e., Proteobacteria, especially the classes Alphaproteobacteria, Cyanobacteria, Firmicutes, Actinobacteriota, Verrucomicrobiota, Chloroflexi, and Acidobacteriota and several other phyla related to plant growth promotion. A metagenomic study of those soil samples from LBS6-sprayed plants was correlated with functional potential of soil microbiota. Enrichment of metabolisms such as nitrogen, sulfur, phosphorous, plant defense, amino acid, co-factors, and vitamins was observed in soils grown with LBS6-sprayed plants. These results were further confirmed by a significant increase in the activity of soil enzymes such as urease, acid phosphatase, FDAse, dehydrogenase, catalase, and biological index of fertility in the rhizosphere of LBS6-treated corn plant. These findings conclude that the foliar application of LBS6 on Z. mays improves and recruits beneficial microbes and alters soil ecology in a sustainable manner.
Collapse
Affiliation(s)
| | - Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, NCBS-TIFR Campus, Bengaluru, India
| | | | | | | |
Collapse
|
34
|
Nkebiwe PM, Stevens Lekfeldt JD, Symanczik S, Thonar C, Mäder P, Bar-Tal A, Halpern M, Biró B, Bradáčová K, Caniullan PC, Choudhary KK, Cozzolino V, Di Stasio E, Dobczinski S, Geistlinger J, Lüthi A, Gómez-Muñoz B, Kandeler E, Kolberg F, Kotroczó Z, Kulhanek M, Mercl F, Tamir G, Moradtalab N, Piccolo A, Maggio A, Nassal D, Szalai MZ, Juhos K, Fora CG, Florea A, Poşta G, Lauer KF, Toth B, Tlustoš P, Mpanga IK, Weber N, Weinmann M, Yermiyahu U, Magid J, Müller T, Neumann G, Ludewig U, de Neergaard A. Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1333249. [PMID: 38628362 PMCID: PMC11020074 DOI: 10.3389/fpls.2024.1333249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.
Collapse
Affiliation(s)
- Peteh Mehdi Nkebiwe
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Jonas D. Stevens Lekfeldt
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Cécile Thonar
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Asher Bar-Tal
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Moshe Halpern
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Borbala Biró
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Klára Bradáčová
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Pedro C. Caniullan
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Krishna K. Choudhary
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Vincenza Cozzolino
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Stefan Dobczinski
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Joerg Geistlinger
- Institute of Bioanalytical Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Angelika Lüthi
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Beatriz Gómez-Muñoz
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Flora Kolberg
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Zsolt Kotroczó
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Martin Kulhanek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
| | - Guy Tamir
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Narges Moradtalab
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Dinah Nassal
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Magdolna Zita Szalai
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Juhos
- Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Ciprian G. Fora
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, Timișoara, Romania
| | - Andreea Florea
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, Timișoara, Romania
| | - Gheorghe Poşta
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, Timișoara, Romania
| | - Karl Fritz Lauer
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, Timișoara, Romania
| | - Brigitta Toth
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Agricultural Management, University of Debrecen, Debrecen, Hungary
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
| | - Isaac K. Mpanga
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Nino Weber
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Markus Weinmann
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Uri Yermiyahu
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Jakob Magid
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Torsten Müller
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Andreas de Neergaard
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Roskilde University, Roskilde, Denmark
| |
Collapse
|
35
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
36
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
37
|
Zenteno‐Alegría CO, Yarzábal Rodríguez LA, Ciancas Jiménez J, Álvarez Gutiérrez PE, Gunde‐Cimerman N, Batista‐García RA. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol 2024; 17:e14439. [PMID: 38478382 PMCID: PMC10936741 DOI: 10.1111/1751-7915.14439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 10/17/2024] Open
Abstract
Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.
Collapse
Affiliation(s)
- Claribel Orquídea Zenteno‐Alegría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | | | | | | | - Nina Gunde‐Cimerman
- Departament of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Ramón Alberto Batista‐García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
| |
Collapse
|
38
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
39
|
Mulugeta T, Ilomo M, Mueke A, Onyango C, Matsaunyane L, Kritzinger Q, Alexandersson E. Smallholder farmers' knowledge, attitudes, and practices (KAP) regarding agricultural inputs with a focus on agricultural biologicals. Heliyon 2024; 10:e26719. [PMID: 38434028 PMCID: PMC10906418 DOI: 10.1016/j.heliyon.2024.e26719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
There is a general drive to reduce pesticide use owing to the potential negative effects of pesticides on the environment and human health. The EU Commission, for example, through its "Farm to Fork Strategy," has proposed to decrease the use of hazardous chemical pesticides by 50% by 2030. In addition, smallholder farmers in low-income countries do not always follow pesticide safety precautions. This necessitates the introduction of low-risk crop protection strategies also suited for these farmers. Agricultural biologicals can substitute for, or at least partially replace hazardous chemical pesticides. While the market for and use of biologicals is growing quickly in industrialized countries, this practice remains limited in sub-Saharan Africa. To understand the reason behind the low adoption of biologicals, this study examined the knowledge, attitudes, and practices toward biologicals among 150 smallholder farmers in the Chole district in Ethiopia. All farmers used chemical pesticides and/or inorganic fertilizers to protect crops, improve yields, and comply with government regulations. The use of biologicals was, however, restricted to one group of biologicals, bio-fertilizers, which approximately 60% of farmers used, and no use of biologicals for plant protection was reported. Even though the understanding of the concept of biologicals was deemed high among respondents, the majority (90%) did not identify biologicals as safer alternatives to conventional agricultural inputs. More than half of the respondents (54%) did not recommend biologicals as safer alternatives to their colleagues. Nevertheless, even if the responding farmers did not perceive biologicals as risk-free, they had a positive attitude towards biologicals when it came to producing healthy food and increasing crop yields and incomes. In comparison to the positive attitude, farmers' knowledge and practice of biologicals were generally low; thus, efforts are needed to create awareness among farmers.
Collapse
Affiliation(s)
- Tewodros Mulugeta
- Department of Biology, College of Natural and Computational Science, Kotebe University of Education, Addis Ababa, Ethiopia
| | - Mesia Ilomo
- Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| | - Allan Mueke
- Department of Animal Health and Production, School of Pure and Applied Science, Mount Kenya University, General Kago Rd PO BOX 342-01000, Thika, Kenya
| | - Cecillia Onyango
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Lerato Matsaunyane
- Department of Plant Breeding, Agricultural Research Council-Vegetable and Ornamental Plants, Pretoria, 0001, South Africa
| | - Quenton Kritzinger
- Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| | - Erik Alexandersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-23053, Lomma, Sweden
| |
Collapse
|
40
|
Malikova L, Malik M, Pavlik J, Ulman M, Pechouckova E, Skrivan M, Kokoska L, Tlustos P. Anti-staphylococcal activity of soilless cultivated cannabis across the whole vegetation cycle under various nutritional treatments in relation to cannabinoid content. Sci Rep 2024; 14:4343. [PMID: 38383569 PMCID: PMC10881570 DOI: 10.1038/s41598-024-54805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.
Collapse
Affiliation(s)
- Lucie Malikova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic.
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic.
| | - Matej Malik
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Jan Pavlik
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Milos Ulman
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Eva Pechouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic
| | - Milos Skrivan
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic
| | - Ladislav Kokoska
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
41
|
Zuzunaga-Rosas J, Calone R, Mircea DM, Shakya R, Ibáñez-Asensio S, Boscaiu M, Fita A, Moreno-Ramón H, Vicente O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1341714. [PMID: 38434431 PMCID: PMC10906269 DOI: 10.3389/fpls.2024.1341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.
Collapse
Affiliation(s)
- Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
- Innovak Global S. A. de C. V., La Concordia, Chihuahua, Mexico
| | - Roberta Calone
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Rome, Italy
| | - Diana M. Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi, India
| | - Sara Ibáñez-Asensio
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Héctor Moreno-Ramón
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
42
|
Jia Y, Kang L, Wu Y, Zhou C, Cai R, Zhang H, Li J, Chen Z, Kang D, Zhang L, Pan C. Nano-selenium foliar intervention-induced resistance of cucumber to Botrytis cinerea by activating jasmonic acid biosynthesis and regulating phenolic acid and cucurbitacin. PEST MANAGEMENT SCIENCE 2024; 80:554-568. [PMID: 37733166 DOI: 10.1002/ps.7784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE AND METHODS Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Runze Cai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Hui Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhendong Chen
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dexian Kang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Li Zhang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Chabili A, Minaoui F, Hakkoum Z, Douma M, Meddich A, Loudiki M. A Comprehensive Review of Microalgae and Cyanobacteria-Based Biostimulants for Agriculture Uses. PLANTS (BASEL, SWITZERLAND) 2024; 13:159. [PMID: 38256713 PMCID: PMC10820584 DOI: 10.3390/plants13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
Significant progress has been achieved in the use of biostimulants in sustainable agricultural practices. These new products can improve plant growth, nutrient uptake, crop yield and quality, stress adaptation and soil fertility, while reducing agriculture's environmental footprint. Although it is an emerging market, the biostimulant sector is very promising, hence the increasing attention of the scientific community and agro-industry stakeholders in finding new sources of plant biostimulants. Recently, pro- and eucaryotic microalgae have gained prominence and can be exploited as biostimulants due to their ability to produce high-value-added metabolites. Several works revealed the potential of microalgae- and cyanobacteria-based biostimulants (MCBs) as plant growth promoters and stress alleviators, as well as encouraging results pointing out that their use can address current and future agricultural challenges. In contrast to macroalgae biostimulants, the targeted applications of MBs in agriculture are still in their earlier stages and their commercial implementation is constrained by the lack of research and cost of production. The purpose of this paper is to provide a comprehensive overview on the use of this promising new category of plant biostimulants in agriculture and to highlight the current knowledge on their application prospects. Based on the prevailing state of the art, we aimed to roadmap MCB formulations from microalgae and cyanobacteria strain selection, algal biomass production, extraction techniques and application type to product commercialization and farmer and consumer acceptance. Moreover, we provide examples of successful trials demonstrating the beneficial applications of microalgal biostimulants as well as point out bottlenecks and constraints regarding their successful commercialization and input in sustainable agricultural practices.
Collapse
Affiliation(s)
- Amer Chabili
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Farah Minaoui
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Zineb Hakkoum
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Mountasser Douma
- Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, Khouribga 25000, Morocco;
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco;
| | - Mohammed Loudiki
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| |
Collapse
|
44
|
Nichol JB, Ribano AKB, Hickerson NM, Ali N, Jamois F, Samuel MA. Plant growth regulator extracts from seaweeds promote plant growth and confer drought tolerance in canola ( Brassica napus). PLANT SIGNALING & BEHAVIOR 2023; 18:2267222. [PMID: 37903454 PMCID: PMC10761089 DOI: 10.1080/15592324.2023.2267222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Brassica napus, commonly known as canola, is an important oilseed crop in Canada contributing over $29.9 billion CAD to the Canadian economy annually. A major challenge facing Canadian canola is drought, which has become increasingly prevalent in recent years due to the changing climate. Research investigating novel agronomic techniques in mitigating drought is key to securing yields and sustainability in canola and other crops. One such technique is the use of bio-stimulant sprays to help offset biotic and abiotic stresses in plants through promoting stand establishment. Previous studies have shown that the application of seaweed extracts as bio-stimulant sprays to Brassicaceae has been successful in improving plant growth and development along with stress tolerance. However, this method has yet to be tested on canola. The organic nutrients that are waste products from processed seaweed help stimulate plant growth, yielding higher quality plants as a result. In association with Le Groupe Roullier, this study demonstrates that the Roullier extracts (RE) help increase plant growth characteristics and drought tolerance in canola when sprayed 3 times over a 3-week period. A high yielding but drought sensitive mutant of canola, d14 (developed through gene editing) was used for drought assays after 8 weeks of growth and where water was withheld for 6 days. Application of the REs prior to drought resulted in plants having enhanced survival rate and improved biomass retention indicating high drought tolerance. Subsequent RNA sequencing and gene ontological term analysis performed using RE treated plants in triplicates, revealed substantial levels of differential expression of growth-related genes along with stress-related genes. These REs elicited responses in plants that had previously only been achieved through gene editing and transgenic methodologies. Using bio-stimulant sprays provides a novel platform to promote beneficial agronomic traits, independent of genetic manipulation.
Collapse
Affiliation(s)
- Justin B. Nichol
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Neil M.N. Hickerson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics Department, Agro Innovation International, Centre Mondial de l’Innovation Roullier - TIMAC AGRO, Saint-Malo, France
| | - Frank Jamois
- Phys-Chem and Bio-Analytics Department, Agro Innovation International, Centre Mondial de l’Innovation Roullier - TIMAC AGRO, Saint-Malo, France
| | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Cirillo V, Romano I, Woo SL, Di Stasio E, Lombardi N, Comite E, Pepe O, Ventorino V, Maggio A. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1304627. [PMID: 38126011 PMCID: PMC10731302 DOI: 10.3389/fpls.2023.1304627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
46
|
da Silva SN, de Oliveira LF, Repke RA, Pereira AK, Barbosa LD, Nunes RL, Sussulini A, Pinheiro F, Fill TP. Metabolomic analysis reveals stress tolerance mechanisms in common bean ( Phaseolus vulgaris L.) related to treatment with a biostimulant obtained from Corynebacterium glutamicum. Mol Omics 2023; 19:743-755. [PMID: 37581345 DOI: 10.1039/d3mo00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Microbial biostimulants have emerged as a sustainable alternative to increase the productivity and quality of important crops. Despite this, the effects of the treatment on plant metabolism are poorly understood. Thus, this study investigated the metabolic response of common bean (Phaseolus vulgaris) related to the treatment with a biostimulant obtained from the extract of Corynebacterium glutamicum that showed positive effects on the development, growth, and yield of crops previously. By untargeted metabolomic analysis using UHPLC-MS/MS, plants and seeds were subjected to treatment with the biostimulant. Under ideal growth conditions, the plants treated exhibited higher concentration levels of glutamic acid, nicotiflorin and glycosylated lipids derived from linolenic acid. The foliar application of the biostimulant under water stress conditions increased the chlorophyll content by 17% and induced the accumulation of flavonols, mainly quercetin derivatives. Also, germination seed assays exhibited longer radicle lengths for seeds treated compared to the untreated control even in the absence of light (13-18% increase, p-value <0.05). Metabolomic analysis of the seeds indicated changes in concentration levels of amino acids (tryptophan, phenylalanine, tyrosine, glutamine, and arginine) and their derivatives. The results point out the enhancement of abiotic stress tolerance and the metabolic processes triggered in this crop associated with the treatment with the biostimulant, giving the first insights into stress tolerance mechanisms in P. vulgaris.
Collapse
Affiliation(s)
| | | | | | - Alana Kelyene Pereira
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | - Luidy Darlan Barbosa
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | | | - Alessandra Sussulini
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| | - Fabio Pinheiro
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Taicia Pacheco Fill
- Instituto de Química, Universidade Estadual de Campinas;, Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
47
|
Ginter A, Zarzecka K, Gugała M, Mystkowska I. Biostimulants and herbicides a tool to reduce non-commercial yield tubers and improve potato yield structure. Sci Rep 2023; 13:20468. [PMID: 37993484 PMCID: PMC10665426 DOI: 10.1038/s41598-023-47831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The basis for the study was a field experiment conducted in 2012-2014 in the production fields of multi-branch Soleks company in Wojnów, the district of Siedlce in eastern Poland. The experiment was established in a split-plot arrangement as a two-factor experiment in three replications. The first factor were: three cultivars of edible potato-Bartek, Gawin, Honorata, and the second factor were: five objects of potato cultivation with herbicides and biostimulants: 1-Control object-without chemical protection, 2-herbicide Harrier 295 ZC, 3-herbicide Harrier 295 ZC + biostimulant Kelpak SL, 4-herbicide Sencor 70 WG, 5-herbicide Sencor 70 WG + biostimulant Asahi SL. The aim of the study was to reduce the non-commercial potato yield and improve the yield structure through the application of biostimulants and herbicides, and to determine the relationship between weed infestation and tuber yield. The least amount of weeds and the best destruction efficiency were obtained after the application of herbicide Sencor 70 WG + biostimulant Asahi SL and herbicide Harrier 295 ZC + biostimulant Kelpak SL. Effective reduction of weed infestation contributed to improvement of yield structure and reduction of potato non-commercial yield. Based on correlation coefficients, a significant relationship between weed infestation and potato non-commercial yield was shown.
Collapse
Affiliation(s)
- Agnieszka Ginter
- Faculty of Agricultural Sciences, University of Siedlce, Prusa Street 14, 08-110, Siedlce, Poland.
| | - Krystyna Zarzecka
- Faculty of Agricultural Sciences, University of Siedlce, Prusa Street 14, 08-110, Siedlce, Poland
| | - Marek Gugała
- Faculty of Agricultural Sciences, University of Siedlce, Prusa Street 14, 08-110, Siedlce, Poland
| | - Iwona Mystkowska
- Department of Dieteties, John Paul II University of Applied Sciences, Sidorska Street 95/97, 21-500, Biała Podlaska, Poland
| |
Collapse
|
48
|
Zhao HM, Zheng DF, Feng NJ, Zhou GS, Khan A, Lu XT, Deng P, Zhou H, Du YW. Regulatory effects of Hemin on prevention and rescue of salt stress in rapeseed (Brassica napus L.) seedlings. BMC PLANT BIOLOGY 2023; 23:558. [PMID: 37957575 PMCID: PMC10644511 DOI: 10.1186/s12870-023-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed. RESULTS Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress. CONCLUSION Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
Collapse
Affiliation(s)
- Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Guang-Sheng Zhou
- College of Plant Science & Technology of Hua Zhong Agricultural University, Wuhan, 430070, China.
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xu-Tong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
49
|
Yonny ME, Toscano Adamo ML, Rodríguez Torresi A, Reversat G, Zhou B, Oger C, Galano JM, Durand T, Vigor C, Nazareno MA. Oxidative stress mitigation in horticultural crops using foliar applications of Ilex paraguariensis extract: a dose-dependent study. PHYSIOLOGIA PLANTARUM 2023; 175:e14066. [PMID: 38148241 DOI: 10.1111/ppl.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
Abiotic stress has been shown to induce the formation of reactive oxygen species (ROS) in plant cells. When the level of ROS surpasses the capacity of the endogenous defence mechanism, oxidative stress status is reached, leading to plant damage and a drop in crop productivity. Under oxidative stress conditions, ROS can react with polyunsaturated fatty acids to form oxidized derivatives called phytoprostanes (PhytoPs) and phytofurans (PhytoFs), which are recognized as biomarkers of oxidative damage advance. Modern agriculture proposes the use of biostimulants as a sustainable strategy to alleviate the negative effects of oxidative stress on plants. This work evaluates the dose effect of natural antioxidant extract to mitigate the oxidative-stress deleterious effects in melon and sweet pepper exposed to thermal stress. The plants were sprayed with Ilex paraguariensis (IP) aqueous extract in three different concentrations before exposure to abiotic stress. PhytoP and PhytoF levels were determined in the leaves of melon and pepper plants. IP1 and IP2 were effective against oxidative stress in both plants, with IP1 being the most protective one. IP1 decreased the levels of PhytoPs and PhytoFs by roughly 44% in both melon plants and pepper plants. The yield, with IP1, increased by 57 and 39% in stressed melon and pepper plants, respectively. IP3 foliar application in melon plants induced a pro-oxidant effect rather than the expected mitigating action. However, in sweet pepper plants, IP3 decreased the oxidative stress progress and increased the fruit yield.
Collapse
Affiliation(s)
- Melisa E Yonny
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | - María L Toscano Adamo
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | | | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Binqging Zhou
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Mónica A Nazareno
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| |
Collapse
|
50
|
Alharbi K, Khan AA, Sakit Alhaithloul HA, Al-Harbi NA, Al-Qahtani SM, Aloufi SS, Abdulmajeed AM, Muneer MA, Alghanem SMS, Zia-Ur-Rehman M, Usman M, Soliman MH. Synergistic effect of β-sitosterol and biochar application for improving plant growth of Thymus vulgaris under heat stress. CHEMOSPHERE 2023; 340:139832. [PMID: 37591372 DOI: 10.1016/j.chemosphere.2023.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Climate change has become the global concern due to its drastic effects on the environment. Agriculture sector is the backbone of food security which remains at the disposal of climate change. Heat stress is the is the most concerning effect of climate change which negatively affect the plant growth and potential yields. The present experiment was conducted to assess the effects of exogenously applied β-sitosterol (Bs at 100 mg/L) and eucalyptus biochar (Eb at 5%) on the antioxidants and nutritional status in Thymus vulgaris under heat stressed conditions. The pot experiment was conducted in completely randomize design in which thymus plants were exposed to heat stress (33 °C) and as a result, plants showed a substantial decline in morpho-physiological and biochemical parameters e.g., a reduction of 59.46, 75.51, 100.00, 34.61, 22.65, and 38.65% was found in plant height, shoot fresh weight, root fresh weight, dry shoot weight, dry root weight and leaf area while in Bs + Eb + heat stress showed 21.16, 56.81, 67.63, 23.09, 12.84, and 35.89% respectively as compared to control. In the same way photosynthetic pigments, transpiration rate, plant nutritional values and water potential increased in plants when treated with Bs and Eb in synergy. Application of Bs and Eb significantly decreased the electrolytic leakage of cells in heat stressed thymus plants. The production of reactive oxygen species was significantly decreased while the synthesis of antioxidants increased with the application of Bs and Eb. Moreover, the application Bs and Eb increased the concentration of minerals nutrients in the plant body under heat stress. Our results suggested that application of Bs along with Eb decreased the effect of heat stress by maintaining nutrient supply and enhanced tolerance by increasing the production of photosynthetic pigments and antioxidant activity.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amir Abdullah Khan
- Department of Plant Biology and Ecology, Nankai University, Tianjin, 300071, China
| | | | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Saeedah Sallum Aloufi
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj, 46429, Tabuk, Saudi Arabia
| | - Muhammad Atif Muneer
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|