1
|
Lorenzo P, Galhano C, Dias MC. Organic Waste from the Management of the Invasive Oxalis pes-caprae as a Source of Nutrients for Small Horticultural Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:2358. [PMID: 39273842 PMCID: PMC11396882 DOI: 10.3390/plants13172358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The management of invasive plants is a challenge when using traditional control methods, which are ineffective for large areas, leading to the abandonment of invaded areas and the subsequent worsening of the situation. Finding potential uses for waste resulting from invaders' management could motivate their control in the long-term, concurrently providing new bio-based resources with different applications. Oxalis pes-caprae is an invasive plant, widely distributed worldwide, which spreads aggressively through bulbils, creating a dense ground cover. This study was designed to assess the potential of Oxalis aboveground waste for use as fertilizer and in ameliorating deficit irrigation effects in growing crops. Diplotaxis tenuifolia (wild rocket) seedlings were planted in pots with soil mixed with Oxalis waste at 0, 2.2 and 4.3 kg m-2 or with commercial fertilizer, left to grow for 27 days and then irrigated at 100% or 50% field capacity for 14 days. The incorporation of the Oxalis waste improved the biomass, photosynthesis, sugars, total phenols and total antioxidant capacity in the crop, achieving commercial fertilization values, as well as increasing the phosphorus in soils. However, Oxalis waste seems not to directly affect plants' relative water contents. Our results support the use of Oxalis waste as fertilizer, which can encourage the long-term control of this invasive species.
Collapse
Affiliation(s)
- Paula Lorenzo
- Associate Laboratory TERRA, Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cristina Galhano
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Maria Celeste Dias
- Associate Laboratory TERRA, Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Vukmirović A, Škvorc Ž, Bogdan S, Krstonošić D, Bogdan IK, Karažija T, Bačurin M, Brener M, Sever K. Photosynthetic Response to Phosphorus Fertilization in Drought-Stressed Common Beech and Sessile Oak from Different Provenances. PLANTS (BASEL, SWITZERLAND) 2024; 13:2270. [PMID: 39204706 PMCID: PMC11360473 DOI: 10.3390/plants13162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient-drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions.
Collapse
Affiliation(s)
- Antonia Vukmirović
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Saša Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Daniel Krstonošić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Ida Katičić Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Tomislav Karažija
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia
| | - Marko Bačurin
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Magdalena Brener
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Krunoslav Sever
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Potts AJ, Duker R, Hunt KL, Tempel A, Galuszynski NC. Restoring South African subtropical succulent thicket using Portulacaria afra: root growth of cuttings differs depending on the harvest site during a drought. PeerJ 2024; 12:e17471. [PMID: 38952986 PMCID: PMC11216190 DOI: 10.7717/peerj.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
The restoration of succulent thicket (the semi-arid components of the Albany Subtropical Thicket biome endemic to South Africa) has largely focused on the reintroduction of Portulacaria afra L. Jacq-a leaf- and stem-succulent shrub-through the planting of unrooted cuttings directly into field sites. However, there has been inconsistent establishment and survival rates, with low rates potentially due to a range of factors (e.g., post-planting drought, frost or herbivory), including the poor condition of source material used. Here we test the effect of parent-plant and harvesting site on the root development of P. afra cuttings in a common garden experiment. Ten sites were selected along a ∼110 km transect, with cuttings harvested from five parent-plants per site. Leaf moisture content was determined for each parent-plant at the time of harvesting as a proxy for plant condition. Root development-percentage of rooted cuttings and mean root dry weight-was recorded for a subset of cuttings from each parent-plant after 35, 42, 48, 56, and 103 days after planting in a common garden setting. We found evidence for cutting root development (rooting percentage and root dry mass) to be strongly associated with harvesting site across all sampling days (p < 0.005 for all tests). These differences are likely a consequence of underlying physiological factors; this was supported by the significant but weak correlation (r 2 = 0.10-0.26) between the leaf moisture content of the parent-plant (at the time of harvesting) and dry root mass of the cuttings (at each of the sampling days). Our findings demonstrate that varying plant condition across sites can significantly influence root development during dry phases (i.e., intra- and inter-annual droughts) and that this may be a critical component that needs to be understood as part of any restoration programme. Further work is required to identify the environmental conditions that promote or impede root development in P. afra cuttings.
Collapse
Affiliation(s)
- Alastair J. Potts
- Spekboom Restoration Research Group, Department of Botany, Nelson Mandela University, Gqeberha, Eastern Cape, South Africa
| | | | - Kristen L. Hunt
- Spekboom Restoration Research Group, Department of Botany, Nelson Mandela University, Gqeberha, Eastern Cape, South Africa
| | - Anize Tempel
- Spekboom Restoration Research Group, Department of Botany, Nelson Mandela University, Gqeberha, Eastern Cape, South Africa
| | - Nicholas C. Galuszynski
- Spekboom Restoration Research Group, Department of Botany, Nelson Mandela University, Gqeberha, Eastern Cape, South Africa
| |
Collapse
|
4
|
Luo J, Luo WX, Liu JT, Wang YJ, Li ZF, Tao JP, Liu JC. Karst fissures mitigate the negative effects of drought on plant growth and photosynthetic physiology. Oecologia 2024; 205:69-80. [PMID: 38683388 DOI: 10.1007/s00442-024-05556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Hard limestone substrates, which are extensively distributed, are believed to exacerbate drought and increase the difficulty of restoration in vulnerable karst regions. Fissures in such substrates may alleviate the negative effect of drought on plants, but the underlying mechanisms remain poorly understood. In a two-way factorial block design, the growth and photosynthesis of 2-year-old Phoebe zhennan seedlings were investigated in two water availabilities (high versus low) and three stimulated fissure habitat groups (soil, soil-filled fissure and non-soil-filled fissure). Moreover, the fissure treatments included both small and big fissures. Compared to the soil group, the non-soil-filled fissure group had decreased the total biomass, root biomass, total root length, and the root length of fine roots in the soil layer at both water availabilities, but increased net photosynthetic rate (Pn) and retained stable water use efficiency (WUE) at low water availability. However, there were no significant differences between the soil-filled fissure group and soil group in the biomass accumulation and allocation as well as Pn. Nevertheless, the SF group decreased the root distribution in total and in the soil layer, and also increased WUE at low water availability. Across all treatments, fissure size had no effect on plant growth or photosynthesis. Karst fissures filled with soil can alleviate drought impacts on plant root growth, which involves adjusting root distribution strategies and increasing water use efficiency. These results suggest that rock fissures can be involved in long-term plant responses to drought stress and vegetation restoration in rocky mountain environments under global climate change.
Collapse
Affiliation(s)
- Jie Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei-Xue Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China
| | - Jun-Ting Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zong-Feng Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian-Ping Tao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China.
- Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jin-Chun Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China.
- Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
5
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
6
|
Zhang J, Shoaib N, Lin K, Mughal N, Wu X, Sun X, Zhang L, Pan K. Boosting cadmium tolerance in Phoebe zhennan: the synergistic effects of exogenous nitrogen and phosphorus treatments promoting antioxidant defense and root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1340287. [PMID: 38362448 PMCID: PMC10867629 DOI: 10.3389/fpls.2024.1340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Plants possess intricate defense mechanisms to resist cadmium (Cd) stress, including strategies like metal exclusion, chelation, osmoprotection, and the regulation of photosynthesis, with antioxidants playing a pivotal role. The application of nitrogen (N) and phosphorus (P) fertilizers are reported to bolster these defenses against Cd stress. Several studies investigated the effects of N or P on Cd stress in non-woody plants and crops. However, the relationship between N, P application, and Cd stress resistance in valuable timber trees remains largely unexplored. This study delves into the Cd tolerance mechanisms of Phoebe zhennan, a forest tree species, under various treatments: Cd exposure alone, combined Cd stress with either N or P and Cd stress with both N and P application. Our results revealed that the P application enhanced root biomass and facilitated the translocation of essential nutrients like K, Mn, and Zn. Conversely, N application, especially under Cd stress, significantly inhibited plant growth, with marked reductions in leaf and stem biomass. Additionally, while the application of P resulted in reduced antioxidant enzyme levels, the combined application of N and P markedly amplified the activities of peroxidase by 266.36%, superoxide dismutase by 168.44%, and ascorbate peroxidase by 26.58% under Cd stress. This indicates an amplified capacity of the plant to neutralize reactive oxygen species. The combined treatment also led to effective regulation of nutrient and Cd distribution in roots, shoots, and leaves, illustrating a synergistic effect in mitigating toxic impact of N. The study also highlights a significant alteration in photosynthetic activities under different treatments. The N addition generally reduced chlorophyll content by over 50%, while P and NP treatments enhanced transpiration rates by up to 58.02%. Our findings suggest P and NP fertilization can manage Cd toxicity by facilitating antioxidant production, osmoprotectant, and root development, thus enhancing Cd tolerance processes, and providing novel strategies for managing Cd contamination in the environment.
Collapse
Affiliation(s)
- Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nishbah Mughal
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
8
|
Ouhaddou R, Meddich A, Ikan C, Lahlali R, Ait Barka E, Hajirezaei MR, Duponnois R, Baslam M. Enhancing Maize Productivity and Soil Health under Salt Stress through Physiological Adaptation and Metabolic Regulation Using Indigenous Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3703. [PMID: 37960059 PMCID: PMC10648834 DOI: 10.3390/plants12213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Salinity poses a persistent threat to agricultural land, continuously jeopardizing global food security. This study aimed to enhance sweet corn (SC) fitness under varying levels of salinity using indigenous biostimulants (BioS) and to assess their impacts on plant performance and soil quality. The experiment included control (0 mM NaCl), moderate stress (MS; 50 mM NaCl), and severe stress (SS; 100 mM NaCl) conditions. Indigenous biostimulants, including compost (C), Bacillus sp., Bacillus subtilis (R), and a consortium of arbuscular mycorrhizal fungi (A) were applied either individually or in combination. Growth traits, physiological and biochemical parameters in maize plants, and the physico-chemical properties of their associated soils were assessed. SS negatively affected plant growth and soil quality. The RC combination significantly improved plant growth under SS, increasing aerial (238%) and root (220%) dry weights compared to controls. This treatment reduced hydrogen peroxide by 54% and increased peroxidase activity by 46% compared to controls. The indigenous biostimulants, particularly C and R, enhanced soil structure and mineral composition (K and Mg). Soil organic carbon and available phosphorus increased notably in C-treated soils. Furthermore, RC (437%) and CAR (354%) treatments exhibited a significant increase in glomalin content under SS. Indigenous biostimulants offer a promising strategy to mitigate salinity-related threats to agricultural land. They improve plant fitness, fine-tune metabolism, and reduce oxidative stress. In addition, the biostimulants improved the soil structure and mineral composition, highlighting their potential for reconstitution and sustainability in salt-affected areas. This approach holds promise for addressing salinity-related threats to global food security.
Collapse
Affiliation(s)
- Redouane Ouhaddou
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Plant Physiology and Biotechnology Team, Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Plant Physiology and Biotechnology Team, Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Chayma Ikan
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Plant Physiology and Biotechnology Team, Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Plant Pathology Laboratory, AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, Department of Physiology and Cell Biology, OT Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Robin Duponnois
- Laboratoire des Symbioses Tropicales & Méditerranéennes UMR 113 IRD/CIRAD/INRAe/SupAgro Montpellier/UM Campus International de Baillarguet TA A-82/J, CEDEX 5, 34398 Montpellier, France
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Plant Physiology and Biotechnology Team, Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
- GrowSmart, Seoul 07516, Republic of Korea
| |
Collapse
|
9
|
Yang H, Wang F, An W, Gu Y, Jiang Y, Guo H, Liu M, Peng J, Jiang B, Wan X, Chen L, Huang X, He F, Zhu P. Comparative Metabolomics and Transcriptome Analysis Reveal the Fragrance-Related Metabolite Formation in Phoebe zhennan Wood. Molecules 2023; 28:7047. [PMID: 37894523 PMCID: PMC10608883 DOI: 10.3390/molecules28207047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanmu (Phoebe zhennan) has a unique fragrance and is a high-quality tree species for forest conservation. The types and contents of volatile compounds in different tissues of nanmu wood are different, and the study of its volatile metabolites can help us to understand the source of its fragrance and functions. In order to explore the metabolites related to the wood fragrance of nanmu and to find out the unique volatile substances in the heartwood, gas chromatography-mass spectrometry (GC-MS) was performed to analyze the non-targeted metabolomics in five radial tissues from the sapwood to the heartwood of nanmu. A total of 53 volatile metabolites belonging to 11 classes were detected in all tissues, including terpenes, aromatic hydrocarbons, organoheterocyclics, phenols, esters, organic acids, alcohols, alkaloids, alkane, indoles derivatives, and others. And most of the volatile metabolites were identified for the first time in nanmu wood. Among them, terpenes and aromatic hydrocarbons were the main volatile components. In addition, 22 differential metabolites were screened from HW and SW, HW, and TZ via metabolomic analysis. Among these DAMs, three volatile metabolites (cadinene, a sesquiterpenoid; p-cymene, a monoterpenoid; 1,3,5-triisopropylbenzene, an aromatic hydrocarbon) contributed heavily to the characteristic fragrance of the heartwood. Additionally, the expression of transcripts showed that the unigenes in the terpenoid biosynthesis pathway were especially up-regulated in the SW. Therefore, we speculated that fragrance-related metabolites were synthesized in SW and then deposited in heartwood during sapwood transformed to heartwood. The expression levels of transcription factors (e.g., WRKY, C2H2, NAC) acted as the major regulatory factors in the synthesis of terpenoid. The results lay the foundations for further studies on the formation mechanism of fragrance components in nanmu wood and also provide a reference for the further development and utilization of nanmu wood.
Collapse
Affiliation(s)
- Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Fang Wang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Wenna An
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Yunjie Gu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Yongze Jiang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Hongying Guo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China; (H.G.); (B.J.)
| | - Minhao Liu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Jian Peng
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Bo Jiang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China; (H.G.); (B.J.)
- Du Fu Thatched Cottage Museum, Chengdu 610001, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Xiong Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Fang He
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Peng Zhu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| |
Collapse
|
10
|
Wang Y, Cao JL, Hashem A, Abd_Allah EF, Wu QS. Serendipita indica mitigates drought-triggered oxidative burst in trifoliate orange by stimulating antioxidant defense systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1247342. [PMID: 37860240 PMCID: PMC10582986 DOI: 10.3389/fpls.2023.1247342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Soil drought is detrimental to plant growth worldwide, particularly by triggering reactive oxygen species (ROS) burst. Serendipita indica (Si), a culturable root-associated endophytic fungus, can assist host plants in dealing with abiotic stresses; however, it is unknown whether and how Si impacts the drought tolerance of citrus plants. To unravel the effects and roles of Si on drought-stressed plants, trifoliate orange (Poncirus trifoliata L. Raf.; a citrus rootstock) seedlings were inoculated with Si and exposed to soil drought, and growth, gas exchange, ROS levels, antioxidant defense systems, and expression of genes encoding antioxidant enzymes and fatty acid desaturases in leaves were measured. Soil drought suppressed plant biomass, whereas Si inoculation significantly increased plant biomass (10.29%-22.47%) and shoot/root ratio (21.78%-24.68%) under ample water and drought conditions, accompanied by improved net photosynthetic rate (105.71%), water use efficiency (115.29%), chlorophyll index (55.34%), and nitrogen balance index (63.84%) by Si inoculation under soil drought. Soil drought triggered an increase in leaf hydrogen peroxide and superoxide anion levels, while Si inoculation significantly reduced these ROS levels under soil drought, resulting in lower membrane lipid peroxidation with respect to malondialdehyde changes. Furthermore, Si-inoculated seedlings under soil drought had distinctly higher levels of ascorbate and glutathione, as well as catalase, peroxidase, and glutathione peroxidase activities, compared with no-Si-inoculated seedlings. Si inoculation increased the expression of leaf PtFAD2, PtFAD6, PtΔ9, PtΔ15, PtFe-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1 genes under both ample water and soil drought conditions. Overall, Si-inoculated trifoliate orange plants maintained a low oxidative burst in leaves under drought, which was associated with stimulation of antioxidant defense systems. Therefore, Si has great potential as a biostimulant in enhancing drought tolerance in plants, particularly citrus.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jin-Li Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
12
|
Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2861. [PMID: 37571014 PMCID: PMC10421280 DOI: 10.3390/plants12152861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants' tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed.
Collapse
Affiliation(s)
- Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| |
Collapse
|
13
|
Liu M, Yang C, Mu R. Effect of soil water-phosphorus coupling on the photosynthetic capacity of Robinia pseudoacacia L. seedlings in semi-arid areas of the Loess Plateau, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:932. [PMID: 37432491 DOI: 10.1007/s10661-023-11574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Afforestation can improve soil erosion in the ecologically fragile areas of the Loess Plateau; however, the amount of water and phosphorus fertilizer that can promote vegetation survival is unclear, which hinders the improvement of the local ecological environment and the waste of water and fertilizer. In this study, based on field surveys, water and fertilizer control tests on Robinia pseudoacacia L. seedlings in experimental fields, and fitting CO2 response curves to R. pseudoacacia seedlings using a Li-6400 portable photosynthesizer, we measured their leaf nutrient contents and calculated resource use efficiency. The results showed that (1) under the same moisture gradient, except for photosynthetic phosphorus utilization efficiency (PPUE), light use efficiency (LUE), water use efficiency (WUE), carbon utilization efficiency (CUE), and photosynthetic nitrogen use efficiency (PNUE) all increased with increasing phosphorus fertilizer application. Under the same phosphorus fertilizer gradient, WUE increased with decreasing water application, and LUE, CUE, PNUE, and PPUE all reached the maximum at 55-60% of field water holding capacity. (2) Net photosynthetic rate (Pn) of R. pseudoacacia seedlings increased with increasing intercellular carbon dioxide concentration (Ci), and as Ci continued to increase, the increase in Pn became slower, but no maximal electron transport rate (TPU) occurred. Under the same CO2 concentration, Pn reached a maximum at 55-60% of field water holding capacity and phosphorus fertilizer at 30 gPm-2·a-1. (3) Leaf maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), daily respiration (Rd), stomatal conductance (Gs), and mesophyll conductance (Gm) reached their maximum at 30 gPm-2·a-1 of phosphorus fertilizer. Vcmax, Jmax, and Rd reached their maximum at 55-60% of field water holding capacity; Gs and Gm reached their maximum at 75-80% of field water holding capacity. (4) The higher the soil phosphorus content, the lower the biochemical (lb), stomatal (ls), and mesophyll (lm). With the increase of soil moisture, lb and ls are higher, and lm is lower. (5) Structural equation modeling showed that water-phosphorus coupling had a less direct effect on Rd and a more direct impact on Gs and Gm. Relative photosynthetic limitation directly affected the photosynthetic rate, indicating that water and phosphorus affected the photosynthetic rate through relative plant limitation. It was concluded that the resource use efficiency and photosynthetic capacity reached the maximum when 55-60% of field water holding capacity was maintained, and phosphorus fertilization was at 30 gP m-2·a-1. Therefore, maintaining suitable soil moisture and phosphorus fertilizer levels in the semi-arid zone of the Loess Plateau can improve the photosynthetic capacity of R. pseudoacacia seedlings.
Collapse
Affiliation(s)
- Minxia Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Chunliang Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ruolan Mu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
14
|
Abbasi S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1074279. [PMID: 37360699 PMCID: PMC10290171 DOI: 10.3389/fpls.2023.1074279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) is one of the essential minerals for many biochemical and physiological responses in all biota, especially in plants. P deficiency negatively affects plant performance such as root growth and metabolism and plant yield. Mutualistic interactions with the rhizosphere microbiome can assist plants in accessing the available P in soil and its uptake. Here, we provide a comprehensive overview of plant-microbe interactions that facilitate P uptake by the plant. We focus on the role of soil biodiversity in improved P uptake by the plant, especially under drought conditions. P-dependent responses are regulated by phosphate starvation response (PSR). PSR not only modulates the plant responses to P deficiency in abiotic stresses but also activates valuable soil microbes which provide accessible P. The drought-tolerant P-solubilizing bacteria are appropriate for P mobilization, which would be an eco-friendly manner to promote plant growth and tolerance, especially in extreme environments. This review summarizes plant-microbe interactions that improve P uptake by the plant and brings important insights into the ways to improve P cycling in arid and semi-arid ecosystems.
Collapse
|
15
|
Yuan YG, Gao FL, Yu FH, Li JM, Li MH. Resource availability and parasitism intensity influence the response of soybean to the parasitic plant Cuscuta australis. FRONTIERS IN PLANT SCIENCE 2023; 14:1177154. [PMID: 37229133 PMCID: PMC10203557 DOI: 10.3389/fpls.2023.1177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Introduction Parasitic plants can damage crop plants and consequently cause yield losses and thus threaten food security. Resource availability (e.g., phosphorus, water) has an important role in the response of crop plants to biotic attacks. However, how the growth of crop plants under parasitism are affected by environmental resource fluctuation is poorly understood. Methods We conducted a pot experiment to test the effects of the intensity of Cuscuta australis parasitism and the availability of water and phosphorus (P) on soybean shoot and root biomass. Results and discussion We found that low-intensity parasitism caused ~6% biomass reduction, while high-intensity parasitism caused ~26% biomass reduction in soybean. Under 5-15% water holding capacity (WHC), the deleterious effect of parasitism on soybean hosts was ~60% and ~115% higher than that under 45-55% WHC and 85-95% WHC, respectively. When the P supply was 0 μM, the deleterious effect of parasitism on soybean was 67% lower than that when the P supply was 20 μM. Besides, the biomass of C. australis was highest when both the water and the P availability were lowest. Cuscuta australis caused the highest damage to soybean hosts under 5 μM P supply, 5-15% WHC, and high-intensity parasitism. Additionally, C. australis biomass was significantly and negatively related to the deleterious effect of parasitism on soybean hosts and to the total biomass of soybean hosts under high-intensity parasitism, but not under low-intensity parasitism. Although high resource availability can promote soybean growth, the two resources have different impacts on the response of hosts to parasitism. Higher P availability decreased host tolerance to parasites, while higher water availability increased host tolerance. These results indicate that crop management, specifically water and phosphorus supply, can efficiently control C. australis in soybean. To our best knowledge, this appears to be the first study to test the interactive effect of different resources on the growth and response of host plants under parasitism.
Collapse
Affiliation(s)
- Yong-Ge Yuan
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Fang-Lei Gao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Fei-Hai Yu
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Jun-Min Li
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Mai-He Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
16
|
Iqbal A, Huiping G, Qiang D, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Differential responses of contrasting low phosphorus tolerant cotton genotypes under low phosphorus and drought stress. BMC PLANT BIOLOGY 2023; 23:168. [PMID: 36997867 PMCID: PMC10061777 DOI: 10.1186/s12870-023-04171-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Drought is one of the main reasons for low phosphorus (P) solubility and availability. AIMS The use of low P tolerant cotton genotypes might be a possible option to grow in drought conditions. METHODS This study investigates the tolerance to drought stress in contrasting low P-tolerant cotton genotypes (Jimian169; strong tolerant to low P and DES926; weak tolerant to low P). In hydroponic culture, the drought was artificially induced with 10% PEG in both cotton genotypes followed by low (0.01 mM KH2PO4) and normal (1 mM KH2PO4) P application. RESULTS The results showed that under low P, PEG-induced drought greatly inhibited growth, dry matter production, photosynthesis, P use efficiency, and led to oxidative stress from excessive malondialdehyde (MDA) and higher accumulation of reactive oxygen species (ROS), and these effects were more in DES926 than Jimian169. Moreover, Jimian169 alleviated oxidative damage by improving the antioxidant system, photosynthetic activities, and an increase in the levels of osmoprotectants like free amino acids, total soluble proteins, total soluble sugars, and proline. CONCLUSIONS The present study suggests that the low P-tolerant cotton genotype can tolerate drought conditions through high photosynthesis, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
- Department of Agriculture, Hazara University, Khyber Pakhtunkhwa, Mansehra, 21120, Pakistan
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| |
Collapse
|
17
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Li G, Li Y, Zhu Y, Zheng W, Li M, Hu J, Fei Y, Zhu S. Exogenous application of melatonin to mitigate drought stress-induced oxidative damage in Phoebe sheareri seedlings. PeerJ 2023; 11:e15159. [PMID: 37090109 PMCID: PMC10117382 DOI: 10.7717/peerj.15159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background Drought stress is a major prevalent environmental factor impairing growth. Melatonin mitigates the impacts of drought stress on plants. However, melatonin's role in Phoebe sheareri (Hemsl.) Gamble (P. sheareri) is unknown. We aimed to reveal the protective effects of melatonin on P. sheareri seedlings under drought conditions. Methods Melatonin was sprayed under drought or normal water conditions. The parameters, including growth, physiological factors, and phytohormones of P. sheareri, were examined. Results Compared to the normal control group, drought stress inhibited the growth of seedlings and significantly reduced the content of carotenoids, SOD, POD, APX, PPO, CAT, GR, and soluble sugars, and increased the contents of MDA, O2 •-, proline, soluble proteins, ABA, and JA-Me in P. sheareri seedlings. However, melatonin treatment significantly reversed the adverse drought-induced responses and promoted the P. sheareri seedling's growth. Moreover, the heatmap and principal component analysis suggested a high similarity in the behavior patterns of the six measured antioxidant enzymes in P. sheareri seedlings. Conclusion Our study reported for the first time that melatonin has a protective role in P. sheareri seedlings under drought-stress conditions. This role is related to ROS scavenging, activation of antioxidant enzymes, and crosstalk of phytohormones. This study provided a theoretical basis for improving the ability of P. sheareri adapted to arid environments.
Collapse
Affiliation(s)
- Guifang Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yanzhen Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yuzi Zhu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Wenjun Zheng
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Mengxi Li
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Jinlong Hu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| | - Yongjun Fei
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Sijia Zhu
- College of Tourism & Landscape Architecture, Guilin University of Technology/College of Plant and Ecological Engineering, Guilin, China
| |
Collapse
|
19
|
Sabeem M, Abdul Aziz M, Mullath SK, Brini F, Rouached H, Masmoudi K. Enhancing growth and salinity stress tolerance of date palm using Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2022; 13:1037273. [PMID: 36507455 PMCID: PMC9733834 DOI: 10.3389/fpls.2022.1037273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Endophytic fungi are known to enhance plant growth and performance under salt stress. The current study investigated the growth, as well as biochemical and molecular properties of Phoenix dactylifera colonized with the mutualistic fungus Piriformospora indica, under control and salinity stress. Our findings indicated an increase in the plant biomass, lateral root density, and chlorophyll content of P. indica-colonized plants under both normal and salt stress conditions. Furthermore, there was a decline in the inoculated plants leaf and root Na+/K+ ratio. The colonization enhanced the levels of antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase in plants. Increased ionic content of Zn and P were also found in salt-stressed date palm. The fungus colonization was also associated with altered expression levels of essential Na+ and K+ ion channels in roots like HKT1;5 and SOS1 genes. This alteration improved plant growth due to their preservation of Na+ and K+ ions balanced homeostasis under salinity stress. Moreover, it was confirmed that RSA1 and LEA2 genes were highly expressed in salt-stressed and colonized plant roots and leaves, respectively. The current study exploited P. indica as an effective natural salt stress modulator to ameliorate salinity tolerance in plants.
Collapse
Affiliation(s)
- Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Sangeeta K. Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, India
| | - Faical Brini
- Plant Protection Laboratory, Center of Biotechnology, Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Ullah A, Tariq A, Zeng F, Sardans J, Graciano C, Ullah S, Chai X, Zhang Z, Keyimu M, Asghar MA, Javed HH, Peñuelas J. Phosphorous Supplementation Alleviates Drought-Induced Physio-Biochemical Damages in Calligonum mongolicum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223054. [PMID: 36432784 PMCID: PMC9699272 DOI: 10.3390/plants11223054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (H2O2) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Akash Tariq
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Correspondence: (A.T.); (F.Z.); Tel.: +86-155-0448-0471 (A.T.)
| | - Fanjiang Zeng
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
- Correspondence: (A.T.); (F.Z.); Tel.: +86-155-0448-0471 (A.T.)
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires B1406, Argentina
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar 25000, Pakistan
| | - Xutian Chai
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Zhihao Zhang
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Maierdang Keyimu
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Hafiz Hassan Javed
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
21
|
Barquero M, Poveda J, Laureano-Marín AM, Ortiz-Liébana N, Brañas J, González-Andrés F. Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1036973. [PMID: 36438093 PMCID: PMC9686006 DOI: 10.3389/fpls.2022.1036973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 05/29/2023]
Abstract
Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.
Collapse
Affiliation(s)
- Marcia Barquero
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Ana M. Laureano-Marín
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | - Noemí Ortiz-Liébana
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Javier Brañas
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | | |
Collapse
|
22
|
Aslam MM, Karanja JK, Dodd IC, Waseem M, Weifeng X. Rhizosheath: An adaptive root trait to improve plant tolerance to phosphorus and water deficits? PLANT, CELL & ENVIRONMENT 2022; 45:2861-2874. [PMID: 35822342 PMCID: PMC9544408 DOI: 10.1111/pce.14395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/09/2023]
Abstract
Drought and nutrient limitations adversely affect crop yields, with below-ground traits enhancing crop production in these resource-poor environments. This review explores the interacting biological, chemical and physical factors that determine rhizosheath (soil adhering to the root system) development, and its influence on plant water uptake and phosphorus acquisition in dry soils. Identification of quantitative trait loci for rhizosheath development indicate it is genetically determined, but the microbial community also directly (polysaccharide exudation) and indirectly (altered root hair development) affect its extent. Plants with longer and denser root hairs had greater rhizosheath development and increased P uptake efficiency. Moreover, enhanced rhizosheath formation maintains contact at the root-soil interface thereby assisting water uptake from drying soil, consequently improving plant survival in droughted environments. Nevertheless, it can be difficult to determine if rhizosheath development is a cause or consequence of improved plant adaptation to dry and nutrient-depleted soils. Does rhizosheath development directly enhance plant water and phosphorus use, or do other tolerance mechanisms allow plants to invest more resources in rhizosheath development? Much more work is required on the interacting genetic, physical, biochemical and microbial mechanisms that determine rhizosheath development, to demonstrate that selection for rhizosheath development is a viable crop improvement strategy.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgricultureYangzhou UniversityYangzhouJiangsuChina
- State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Joseph K. Karanja
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ian C. Dodd
- The Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Xu Weifeng
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgricultureYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
23
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
24
|
Ganie SA, Bhat JA, Devoto A. The influence of endophytes on rice fitness under environmental stresses. PLANT MOLECULAR BIOLOGY 2022; 109:447-467. [PMID: 34859329 PMCID: PMC9213282 DOI: 10.1007/s11103-021-01219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Endophytes are crucial for the promotion of rice growth and stress tolerance and can be used to increase rice crop yield. Endophytes can thus be exploited in biotechnology and genetic engineering as eco-friendly and cost-effective means for the development of high-yielding and stress-tolerant rice plants. Rice (Oryza sativa) crop is continuously subjected to biotic and abiotic stresses, compromising growth and consequently yield. The situation is exacerbated by climate change impacting on ecosystems and biodiversity. Genetic engineering has been used to develop stress-tolerant rice, alongside physical and chemical methods to mitigate the effect of these stresses. However, the success of these strategies has been hindered by short-lived field success and public concern on adverse effects associated. The limited success in the field of stress-tolerant cultivars developed through breeding or transgenic approaches is due to the complex nature of stress tolerance as well as to the resistance breakdown caused by accelerated evolution of pathogens. It is therefore necessary to develop novel and acceptable strategies to enhance rice stress tolerance and durable resistance and consequently improve yield. In the last decade, plant growth promoting (PGP) microbes, especially endophytes, have drawn the attention of agricultural scientists worldwide, due to their ability to mitigate environmental stresses in crops, without causing adverse effects. Increasing evidence indicates that endophytes effectively confer fitness benefits also to rice under biotic and abiotic stress conditions. Endophyte-produced metabolites can control the expression of stress-responsive genes and improve the physiological performance and growth of rice plants. This review highlights the current evidence available for PGP microbe-promoted tolerance of rice to abiotic stresses such as salinity and drought and to biotic ones, with special emphasis on endophytes. Associated molecular mechanisms are illustrated, and prospects for sustainable rice production also in the light of the impending climate change, discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
25
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
26
|
The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. BIOLOGY 2022; 11:biology11070952. [PMID: 36101333 PMCID: PMC9312039 DOI: 10.3390/biology11070952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Environmental stresses are one of the biggest threats to modern agriculture, and climate change has heightened the risks of these stresses in different parts of the world. Among all the environmental stresses, salinity and drought are a severe threat to arid and semi-arid regions of the world, and for a long time, scientists have been searching for ways to reduce the risk of these stresses. In recent decades, solutions have been developed to reduce the risk of environmental stress on plants by identifying beneficial soil microorganisms. This study was conducted to identify morphophysiological and molecular changes of plants in coexistence with Serendipita indica and their impact on drought and salinity stress reduction. The study also has investigated the stressors’ impact on plants and the plants’ mechanisms to cope with them; Furthermore, sharing results with researchers provides a clear path for future research. Abstract Plant stress is one of the biggest threats to crops, causing irreparable damage to farmers’ incomes; Therefore, finding suitable, affordable, and practical solutions will help the agricultural economy and prevent the loss of millions of tons of agricultural products. Scientists have taken significant steps toward improving farm productivity in the last few decades by discovering how beneficial soil microorganisms enhance plant resistance to environmental stresses. Among these microorganisms is Serendipita indica, which the benefits of coexisting this fungus with plant roots have been extensively explored in recent years. By investigating fungus specification and its effects on plants’ morphological, physiological, and molecular traits, the present study seeks to understand how Serendipita indica affects plant resistance to salinity and drought conditions. Furthermore, this study attempts to identify the unknown mechanisms of action of the coexistence of Serendipita indica with plants in the face of stress using information from previous studies. Thus, it provides a way for future research to assess the impact of this fungus on tackling environmental stresses and enhancing agricultural productivity.
Collapse
|
27
|
Xie N, Li B, Yu J, Shi R, Zeng Q, Jiang Y, Zhao D. Transcriptomic and proteomic analyses uncover the drought adaption landscape of Phoebe zhennan. BMC PLANT BIOLOGY 2022; 22:95. [PMID: 35240986 PMCID: PMC8892755 DOI: 10.1186/s12870-022-03474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phoebe zhennan S.Lee (nanmu) is listed as a threatened tree species in China, whose growth and development, especially during the seedling stage, can be severely limited by drought. Previous studies on nanmu responses to drought stress involved physiological and biochemical analyses, while the molecular mechanisms remained unclear. Therefore, it is of great significance to carry out molecular biology research on the drought resistance of nanmu and reveal the genetic background and molecular regulation mechanism of nanmu drought resistance. RESULTS Drought stress enhanced the soluble sugar (SS), free proline(PRO), superoxide anion (O2·-), and hydrogen peroxide (H2O2) contents as well as the peroxidase (POD) and monodehydroascorbate reductase (MDHAR) activities of nanmu. However, glutathione S-transferase (GST) activity was sensitive to drought stress. Further transcriptomic and proteomic analyses revealed the abundant members of the differentially expressed genes(DEGs) and differentially expressed proteins(DEPs) that were related to phenylpropanoid and flavonoid biosynthesis, hormone biosynthesis and signal transduction, chlorophyll metabolism, photosynthesis, and oxidation-reduction reaction, which suggested their involvement in the drought response of nanmu. These enhanced the osmotic regulation, detoxification, and enzyme-induced and non-enzyme-induced antioxidant ability of nanmu. Moreover, 52% (447/867) of proteins that were up-regulated and 34% (307/892) down-regulated ones were attributed to the increase and decrease of transcription abundance. Transcript up (TU) and protein up (PU) groups had 447 overlaps, while transcript down (TD) and protein down (PD) groups had 307 overlaps, accounting for 54% of up and 35% of down-regulated proteins. The lack of overlap between DEGs and DEPs also suggested that post-transcriptional regulation has a critical role in nanmu response to drought. CONCLUSIONS Our research results provide significant insights into the regulatory mechanisms of drought stress in nanmu.
Collapse
Affiliation(s)
- Na Xie
- Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Academy of Agricultural Sciences, Guizhou Plant Conservation Technology Center, Guiyang, 550006, Guizhou, China
| | - Bo Li
- Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Academy of Agricultural Sciences, Guizhou Plant Conservation Technology Center, Guiyang, 550006, Guizhou, China
| | - Jing Yu
- Tobacco Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Ruxia Shi
- Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Academy of Agricultural Sciences, Guizhou Plant Conservation Technology Center, Guiyang, 550006, Guizhou, China
| | - Qin Zeng
- Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Academy of Agricultural Sciences, Guizhou Plant Conservation Technology Center, Guiyang, 550006, Guizhou, China
| | - Yunli Jiang
- Guizhou Academy of Forestry, Guiyang, 550005, Guizhou, China.
| | - Dan Zhao
- Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
- Guizhou Academy of Agricultural Sciences, Guizhou Plant Conservation Technology Center, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
28
|
The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int J Mol Sci 2022; 23:ijms23042353. [PMID: 35216469 PMCID: PMC8877309 DOI: 10.3390/ijms23042353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants. To maintain P homeostasis, plants have developed lots of intricate responsive and acclimatory mechanisms at different levels, which contribute to administering the acquisition of inorganic phosphate (Pi), translocation, remobilization, and recycling of Pi. In recent years, significant advances have been made in the exploration of the utilization of P in annual plants, while the research progress in woody perennial plants is still vague. In the meanwhile, compared to annual plants, relevant reviews about P utilization in woody perennial plants are scarce. Therefore, based on the importance of P in the growth and development of plants, we briefly reviewed the latest advances on the genetic and molecular mechanisms of plants to uphold P homeostasis, P sensing, and signaling, ion transporting and metabolic regulation, and proposed the possible sustainable management strategies to fasten the P cycle in modern agriculture and new directions for future studies.
Collapse
|
29
|
Bechtaoui N, Rabiu MK, Raklami A, Oufdou K, Hafidi M, Jemo M. Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:679916. [PMID: 34777404 PMCID: PMC8581177 DOI: 10.3389/fpls.2021.679916] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/28/2021] [Indexed: 05/22/2023]
Abstract
The importance of phosphorus in the regulation of plant growth function is well studied. However, the role of the inorganic phosphate (Pi) molecule in the mitigation of abiotic stresses such as drought, salinity, heavy metal, heat, and acid stresses are poorly understood. We revisited peer-reviewed articles on plant growth characteristics that are phosphorus (P)-dependently regulated under the sufficient-P and low/no-P starvation alone or either combined with one of the mentioned stress. We found that the photosynthesis rate and stomatal conductance decreased under Pi-starved conditions. The total chlorophyll contents were increased in the P-deficient plants, owing to the lack of Pi molecules to sustain the photosynthesis functioning, particularly, the Rubisco and fructose-1,6-bisphosphatase function. The dry biomass of shoots, roots, and P concentrations were significantly reduced under Pi starvation with marketable effects in the cereal than in the legumes. To mitigate P stress, plants activate alternative regulatory pathways, the Pi-dependent glycolysis, and mitochondrial respiration in the cytoplasm. Plants grown under well-Pi supplementation of drought stress exhibited higher dry biomass of shoots than the no-P treated ones. The Pi supply to plants grown under heavy metals stress reduced the metal concentrations in the leaves for the cadmium (Cd) and lead (Pb), but could not prevent them from absorbing heavy metals from soils. To detoxify from heavy metal stress, plants enhance the catalase and ascorbate peroxidase activity that prevents lipid peroxidation in the leaves. The HvPIP and PHO1 genes were over-expressed under both Pi starvation alone and Pi plus drought, or Pi plus salinity stress combination, implying their key roles to mediate the stress mitigations. Agronomy Pi-based interventions to increase Pi at the on-farm levels were discussed. Revisiting the roles of P in growth and its better management in agricultural lands or where P is supplemented as fertilizer could help the plants to survive under abiotic stresses.
Collapse
Affiliation(s)
- Noura Bechtaoui
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Muhammad Kabir Rabiu
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Centre for Dryland Agriculture, Bayero University, Kano, Nigeria
| | - Anas Raklami
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Khalid Oufdou
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Hafidi
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Martin Jemo
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
30
|
Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:152-161. [PMID: 33176068 DOI: 10.1111/plb.13211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 05/21/2023]
Abstract
The interaction of mineral nutrients with metals/metalloids and signalling molecules is well known. In the present study, we investigated the effect of phosphorus (P) in mitigation of arsenic (As) stress in mustard (Brassica juncea L.). The study was conducted to investigate potential of 30 mg P·kg-1 soil P supplement (diammonium phosphate) to cope up with the adverse effects of As stress (24 mg As·kg-1 soil) in mustard plants Supplementation of P influenced nitric oxide (NO) generation, which up-regulated proline metabolism, ascorbate-glutathione system and glyoxalase system and alleviated the effects of on photosynthesis and growth. Arsenic stress generated ROS and methylglyoxal content was scavenged through P-mediated NO, and reduced As translocation from roots to leaves. The involvement of NO under P-mediated alleviation of As stress was substantiated with the use of cPTIO (NO biosynthesis inhibitor) and SNP (NO inducer). The reversal of P effects on photosynthesis under As stress with the use of cPTIO emphasized the role of P-mediated NO in mitigation of As stress and protection of photosynthesis The results suggested that P reversed As-induced oxidative stress by modulation of NO formation, which regulated antioxidant machinery. Thus, P-induced regulatory interaction between NO and reversal of As-induced oxidative stress for the protection of photosynthesis may be suggested for sustainable crops.
Collapse
Affiliation(s)
- M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - B Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - V Goyal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - J Hamid
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N Iqbal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Puthiyottil P, Akkara Y. Pre treatment with Bacillus subtilis mitigates drought induced photo-oxidative damages in okra by modulating antioxidant system and photochemical activity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:945-957. [PMID: 34092946 PMCID: PMC8140019 DOI: 10.1007/s12298-021-00982-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED Growth promoting potential of Bacillus subtilis (BS) in drought stressed Abelmoschus esculentus (L.) Moench (okra) was assessed by measuring the chlorophyll stability index (CSI), chlorophyll a (Chl-a) fluorescence, leaf osmotic potential and lipid peroxidation by malondialdehyde content, emission of reactive oxygen species (ROS), osmolyte content and the activity of non-enzyme and enzyme antioxidants. BS treatment significantly increased the leaf osmotic potential, osmolyte production and the activity of non-enzyme and enzyme antioxidants under drought stress. BS treatment mitigated the drought-induced reduction in Chl a fluorescence and CSI. Concomitant increase in total sugar, proline, non-enzyme antioxidants [glutathione and ascorbate] and enzyme antioxidants like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase modulate the intracellular ROS concentration in okra to resist the stress induced oxidative damage in BS treated plants led to fast recovery and less photodamage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00982-8.
Collapse
Affiliation(s)
| | - Yusuf Akkara
- Department of Botany, University of Calicut, Calicut, Kerala 673635 India
| |
Collapse
|
32
|
Verma K, Song XP, Verma CL, Malviya MK, Guo DJ, Rajput VD, Sharma A, Wei KJ, Chen GL, Solomon S, Li YR. Predication of Photosynthetic Leaf Gas Exchange of Sugarcane ( Saccharum spp) Leaves in Response to Leaf Positions to Foliar Spray of Potassium Salt of Active Phosphorus under Limited Water Irrigation. ACS OMEGA 2021; 6:2396-2409. [PMID: 33521478 PMCID: PMC7841956 DOI: 10.1021/acsomega.0c05863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 05/06/2023]
Abstract
Sufficient water and fertilizer inputs in agriculture play a major role in crop growth, production, and quality. In this study, the response of sugarcane to limited water irrigation and foliar application of potassium salt of active phosphorus (PSAP) for photosynthetic responses were examined, and PSAP's role in limited water irrigation management was assessed. Sugarcane plants were subjected to limited irrigation (95-90 and 45-40% FC) after three months of germination, followed by a foliar spray (0, 2, 4, 6, and 10 M) of PSAP. The obtained results indicated that limited water irrigation negatively affected sugarcane growth and reduced leaf gas exchange activities. However, the application of PSAP increased the photosynthetic activities by protecting the photosynthetic machinery during unfavorable conditions. Mathematical modeling, a Skewed model, was developed and compared with the existing Gaussian model to describe the photosynthetic responses of sugarcane leaves under the limited irrigation with and without PSAP application. The models fitted well with the observed values, and the predicted photosynthetic parameters were in close relationship with the obtained results. The Skewed model was found to be better than the Gaussian model in describing the photosynthetic parameters of plant leaves positioned over a stem of limited water irrigation and applied PSAP application and is recommended for further application.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Xiu-Peng Song
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Chhedi Lal Verma
- Irrigation
and Drainage Engineering, ICAR-Central Soil
Salinity Research Institute, Regional Research Station, Lucknow 226005, India
| | - Mukesh Kumar Malviya
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Dao-Jun Guo
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
- College
of Agriculture, Guangxi University, Nanning 530004 Guangxi, China
| | - Vishnu D. Rajput
- Academy
of Biology and Biotechnology, Southern Federal
University, Rostov-on-Don 344006, Russia
| | - Anjney Sharma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Kai-Jun Wei
- Liuzhou
Institute of Agricultural Sciences, Liuzhou 545 003 Guangxi, China
| | - Gan-Lin Chen
- Institute
of Biotechnology, Guangxi Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Nanning 530 007 Guangxi, China
| | - Sushil Solomon
- ICAR-Indian
Institute of Sugarcane Research, Lucknow 226 021, India
| | - Yang-Rui Li
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
- College
of Agriculture, Guangxi University, Nanning 530004 Guangxi, China
| |
Collapse
|
33
|
Suzuki RM, Tamaki V, Nievola CC, Costa JP, Guardia MC, Cachenco MV, Kanashiro S, Baptista W, Shidomi Y, Santos Junior NAD. Prior fertilization enables higher survival of relocated terricolous orchids? RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The construction of highways causes several impacts on the environment, including, the suppression of vegetation, which can lead to reduced biodiversity. One mitigating measure involves reallocating plant to protected areas and orchids might be important for this use. An example could be the terricolous orchid Sauroglossum nitidum. In an attempt to optimize the survival of S. nitidum following reallocation, the aim of this study was to investigate whether the fertilization can increase the survival of this orchid. For this, five lots with ten plants per lot were randomly separated, with five plants submitted to soluble fertilization with NPK 10-52-10 (1 g.L-1), spraying each plant with 1 mL of the fertilizer, and the other five sprayed with the same volume of distilled water. This treatment was repeated fortnightly for two months before reallocation. The plants were relocated in September 2015 and monitored monthly until November 2016. Overall orchid survival was 92%. Additionally, flowering was observed to be significantly higher in fertilized plants. In conclusion, reallocation of S. nitidum with previous NPK fertilization is recommended.
Collapse
|
34
|
Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One 2020; 15:e0232228. [PMID: 32353077 PMCID: PMC7192560 DOI: 10.1371/journal.pone.0232228] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K +/Na + homeostasis and water status. PLANT CELL REPORTS 2019; 38:1151-1163. [PMID: 31152194 DOI: 10.1007/s00299-019-02434-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 05/21/2023]
Abstract
Piriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K+/Na+ homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins. Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P. indica inoculation on growth, accumulation of nutrients, the transcription level of genes involved in ionic homeostasis (NHXs, SOS1 and CNGC15) and regulating water status (PIP1;2, PIP2;4, TIP1;1 and TIP2;2) in roots and leaves of tomato seedlings were investigated. The P. indica improved the uptake of N, P, Ca and K, and reduced Na accumulation, and had no significant effect on Cl accumulation in roots and leaves. The endophytic fungus also increased in K+/Na+ ratio in roots and leaves of tomato by regulating the expression of NHX isoforms and upregulating SOS1 and CNGC15 expression. Salinity stress increased the transcription of PIP2;4 gene and reduced the transcription of PIP1;2, TIP1;1 and TIP2;2 genes compared to the control treatment. However, P. indica inoculation upregulated the expression of PIP1;2 and PIP2;4 genes versus non-inoculated plants but did not have a significant effect on TIP1;1 and TIP2;2 expression. These results conclude that the positive effects of P. indica on nutrients accumulation, ionic homeostasis and water status lead to the increased salinity tolerance and the improved plant growth under NaCl treatment.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Vali Ollah Ghasemi Omran
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Hemmatollah Pirdashti
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
36
|
Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Li N, Song D, Sun F, Wu X, Dakhil MA, Sun X, Zhang L. Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings. PHYSIOLOGIA PLANTARUM 2019; 166:894-908. [PMID: 30414178 DOI: 10.1111/ppl.12868] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 05/11/2023]
Abstract
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well-watered and water-stressed) and phosphorus (P) applications (with and without P) on the morphological and physio-biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn ), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over-production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well-watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought-stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn , quantum efficiency of photosystem II (Fv /Fm ), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well-watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.
Collapse
Affiliation(s)
- Akash Tariq
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Olusanya A Olatunji
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Zilong Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Dagang Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Mohammed A Dakhil
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Botany and Microbiology department, Faculty of Science, Helwan University, Cairo, 11790, Egypt
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| |
Collapse
|
37
|
Wilmowicz E, Kućko A, Burchardt S, Przywieczerski T. Molecular and Hormonal Aspects of Drought-Triggered Flower Shedding in Yellow Lupine. Int J Mol Sci 2019; 20:E3731. [PMID: 31370140 PMCID: PMC6695997 DOI: 10.3390/ijms20153731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/01/2023] Open
Abstract
The drought is a crucial environmental factor that determines yielding of many crop species, e.g., Fabaceae, which are a source of valuable proteins for food and feed. Herein, we focused on the events accompanying drought-induced activation of flower abscission zone (AZ)-the structure responsible for flower detachment and, consequently, determining seed production in Lupinus luteus. Therefore, detection of molecular markers regulating this process is an excellent tool in the development of improved drought-resistant cultivars to minimize yield loss. We applied physiological, molecular, biochemical, immunocytochemical, and chromatography methods for a comprehensive examination of changes evoked by drought in the AZ cells. This factor led to significant cellular changes and activated AZ, which consequently increased the flower abortion rate. Simultaneously, drought caused an accumulation of mRNA of genes inflorescence deficient in abscission-like (LlIDL), receptor-like protein kinase HSL (LlHSL), and mitogen-activated protein kinase6 (LlMPK6), encoding succeeding elements of AZ activation pathway. The content of hydrogen peroxide (H2O2), catalase activity, and localization significantly changed which confirmed the appearance of stressful conditions and indicated modifications in the redox balance. Loss of water enhanced transcriptional activity of the abscisic acid (ABA) and ethylene (ET) biosynthesis pathways, which was manifested by elevated expression of zeaxanthin epoxidase (LlZEP), aminocyclopropane-1-carboxylic acid synthase (LlACS), and aminocyclopropane-1-carboxylic acid oxidase (LlACO) genes. Accordingly, both ABA and ET precursors were highly abundant in AZ cells. Our study provides information about several new potential markers of early response on water loss, which can help to elucidate the mechanisms that control plant response to drought, and gives a useful basis for breeders and agronomists to enhance tolerance of crops against the stress.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Agata Kućko
- Department of Plant Physiology Warsaw, University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| | - Tomasz Przywieczerski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| |
Collapse
|
38
|
Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int J Mol Sci 2018; 19:E3073. [PMID: 30297682 PMCID: PMC6213855 DOI: 10.3390/ijms19103073] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Sang-Hoon Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Hee Chung Ji
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Chris Stephen Jones
- Feed and Forage Biosciences, International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Ki-Won Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| |
Collapse
|
39
|
Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. RICE (NEW YORK, N.Y.) 2018; 11:34. [PMID: 29799607 PMCID: PMC5968016 DOI: 10.1186/s12284-018-0226-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice is a drought susceptible crop. A symbiotic association between rice and mycorrhizal fungi could effectively protect the plant against sudden or frequent episodes of drought. Due to its extensive network of hyphae, the endophyte is able to deeply explore the soil and transfer water and minerals to the plant, some of them playing an important role in mitigating the effects of drought stress. Moreover, the endophyte could modify the expression of drought responsive genes and regulate antioxidants. RESULTS Three rice genotypes, WC-297 (drought tolerant), Caawa (moderately drought tolerant) and IR-64 (drought susceptible) were inoculated with Piriformospora indica (P. indica), a dynamic endophyte. After 20 days of co-cultivation with the fungus, rice seedlings were subjected to 15% polyethylene glycol-6000 induced osmotic stress. P. indica improved the growth of rice seedlings. It alleviated the destructive effects of the applied osmotic stress. This symbiotic association increased seedling biomass, the uptake of phosphorus and zinc, which are functional elements for rice growth under drought stress. It boosted the chlorophyll fluorescence, increased the production of proline and improved the total antioxidant capacity in leaves. The association with the endophyte also up regulated the activity of the Pyrroline-5-carboxylate synthase (P5CS), which is critical for the synthesis of proline. CONCLUSION A mycorrhizal association between P. indica and rice seedlings provided a multifaceted protection to rice plants under osmotic stress (- 0.295 MPa).
Collapse
Affiliation(s)
- Muhammad Abu Bakar Saddique
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, Muhammad Nawaz Shareef University of Agriculture, 60000, Multan, Pakistan.
| | - Abdus Salam Khan
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, 38040, Faisalabad, Pakistan
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
40
|
Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Zhang L, Wu X, Chen W, Song D, Huang D, Xue T, Zhang A. Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Sci Rep 2018; 8:5644. [PMID: 29618772 PMCID: PMC5884865 DOI: 10.1038/s41598-018-24038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.
Collapse
Affiliation(s)
- Akash Tariq
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| | - Olusanya Abiodun Olatunji
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Zilong Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Feng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Wenkai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Dagang Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Dan Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Tan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Aiping Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| |
Collapse
|