1
|
Hu Y, Huang X, Xiao Q, Wu X, Tian Q, Ma W, Shoaib N, Liu Y, Zhao H, Feng Z, Yu G. Advances in Plant GABA Research: Biological Functions, Synthesis Mechanisms and Regulatory Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:2891. [PMID: 39458838 PMCID: PMC11510998 DOI: 10.3390/plants13202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The γ-aminobutyric acid (GABA) is a widely distributed neurotransmitter in living organisms, known for its inhibitory role in animals. GABA exerts calming effects on the mind, lowers blood pressure in animals, and enhances stress resistance during the growth and development of plants. Enhancing GABA content in plants has become a focal point of current research. In plants, GABA is synthesized through two metabolic pathways, the GABA shunt and the polyamine degradation pathway, with the GABA shunt being the primary route. Extensive studies have investigated the regulatory mechanisms governing GABA synthesis. At the genetic level, GABA production and degradation can be modulated by gene overexpression, signaling molecule-induced expression, transcription factor regulation, and RNA interference. Additionally, at the level of transporter proteins, increased activity of GABA transporters and proline transporters enhances the transport of glutamate and GABA. The activity of glutamate decarboxylase, a key enzyme in GABA synthesis, along with various external factors, also influences GABA synthesis. This paper summarizes the biological functions, metabolic pathways, and regulatory mechanisms of GABA, providing a theoretical foundation for further research on GABA in plants.
Collapse
Affiliation(s)
- Yixuan Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Xin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Qinglai Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Xuan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Qi Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Wenyi Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Noman Shoaib
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Yajie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Hui Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Zongyun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| | - Guowu Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.H.); (Q.X.); (X.W.); (Q.T.); (W.M.); (H.Z.)
| |
Collapse
|
2
|
Khalil HB, Lutfi AM, Sayed AR, Mahmoud MT, Mostafa SA, Ibrahim ZA, Sharf-Eldin AA, Abou-Zeid MA, Ibrahim MFM, Thabet M. Gamma-Aminobutyric Acid (GABA) as a Defense Booster for Wheat against Leaf Rust Pathogen ( Puccinia triticina). PLANTS (BASEL, SWITZERLAND) 2024; 13:2792. [PMID: 39409662 PMCID: PMC11478885 DOI: 10.3390/plants13192792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Wheat leaf rust, caused by Puccinia triticina, poses a growing threat to global wheat production, necessitating alternative strategies for effective disease management. This study investigated the potential of gamma-aminobutyric acid (GABA) to enhance resistance to leaf rust in two wheat cultivars: the susceptible Morocco and moderately resistant Sakha 94 cultivar. Our findings revealed that GABA significantly improved resistance in both cultivars to P. triticina, particularly in Morocco, by mitigating disease severity and reducing pustule density and size while extending both incubation and latent periods. This study assessed the effectiveness of two GABA application methods: plants received 1 mM GABA treatment, as a foliar spray, twenty-four hours prior to infection (pre-GABA), and plants received 1 mM GABA treatment both 24 h before and after infection (pre-/post-GABA), with the latter yielding significantly better results in reducing infection severity and improving plant resilience. Additionally, GABA application influenced stomatal behavior, promoting closure that may enhance resilience against leaf rust. GABA application on plants also modulated the production of reactive oxygen species (ROS). This led to a stronger oxidative burst in both susceptible and moderately resistant cultivars. GABA increased O2●- levels in guard cells and surrounding stomata, enhancing stomatal closure and the hypersensitive response. GABA enhanced the accumulation of soluble phenols and increased the activity of key antioxidant enzymes, catalase (CAT) and peroxidase (POX), which are vital for managing oxidative stress. To the best of our knowledge, this investigation represents the first report into the impact of GABA on wheat leaf rust disease.
Collapse
Affiliation(s)
- Hala Badr Khalil
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Abdullah Mohsen Lutfi
- Biotechnology Program, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; (A.M.L.); (A.R.S.); (M.T.M.); (S.A.M.); (Z.A.I.)
| | - Ahmed Reyad Sayed
- Biotechnology Program, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; (A.M.L.); (A.R.S.); (M.T.M.); (S.A.M.); (Z.A.I.)
| | - Mohamed Tharwat Mahmoud
- Biotechnology Program, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; (A.M.L.); (A.R.S.); (M.T.M.); (S.A.M.); (Z.A.I.)
| | - Salah Abdelfatah Mostafa
- Biotechnology Program, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; (A.M.L.); (A.R.S.); (M.T.M.); (S.A.M.); (Z.A.I.)
| | - Zeyad Ahmed Ibrahim
- Biotechnology Program, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; (A.M.L.); (A.R.S.); (M.T.M.); (S.A.M.); (Z.A.I.)
| | - Asmaa A. Sharf-Eldin
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.S.-E.); (M.F.M.I.)
| | - Mohamed A. Abou-Zeid
- Wheat Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.S.-E.); (M.F.M.I.)
| | - Marian Thabet
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| |
Collapse
|
3
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Khan Z, Jan R, Asif S, Farooq M, Kim KM. Exogenous GABA Enhances Copper Stress Resilience in Rice Plants via Antioxidant Defense Mechanisms, Gene Regulation, Mineral Uptake, and Copper Homeostasis. Antioxidants (Basel) 2024; 13:700. [PMID: 38929139 PMCID: PMC11200589 DOI: 10.3390/antiox13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 μM, 100 μM, and 200 μM. Under copper stress, particularly at 100 μM and 200 μM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions. However, GABA treatment significantly alleviated the adverse effects of copper stress. It increased plant height by 13%, 18%, and 32%; plant biomass by 28%, 52%, and 60%; chlorophyll content by 12%, 30%, and 24%; and relative water content by 10%, 24%, and 26% in comparison to the C50, C100, and C200 treatments. Furthermore, GABA treatment effectively reduced electrolyte leakage by 11%, 34%, and 39%, and the concentration of reactive oxygen species, such as malondialdehyde (MDA), by 9%, 22%, and 27%, hydrogen peroxide (H2O2) by 12%, 38%, and 30%, and superoxide anion content by 8%, 33, and 39% in comparison to C50, C100, and C200 treatments. Additionally, GABA supplementation led to elevated levels of glutathione by 69% and 80%, superoxide dismutase by 22% and 125%, ascorbate peroxidase by 12% and 125%, and catalase by 75% and 100% in the C100+G and C200+G groups as compared to the C100 and C200 treatments. Similarly, GABA application upregulated the expression of GABA shunt pathway-related genes, including gamma-aminobutyric transaminase (OsGABA-T) by 38% and 80% and succinic semialdehyde dehydrogenase (OsSSADH) by 60% and 94% in the C100+G and C200+G groups, respectively, as compared to the C100 and C200 treatments. Conversely, the expression of gamma-aminobutyric acid dehydrogenase (OsGAD) was downregulated. GABA application reduced the absorption of Cu2+ by 54% and 47% in C100+G and C200+G groups as compared to C100, and C200 treatments. Moreover, GABA treatment enhanced the uptake of Ca2+ by 26% and 82%, Mg2+ by 12% and 67%, and K+ by 28% and 128% in the C100+G and C200+G groups as compared to C100, and C200 treatments. These findings underscore the pivotal role of GABA-induced enhancements in various physiological and molecular processes, such as plant growth, chlorophyll content, water content, antioxidant capacity, gene regulation, mineral uptake, and copper sequestration, in enhancing plant tolerance to copper stress. Such mechanistic insights offer promising implications for the advancement of safe and sustainable food production practices.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
6
|
Jan R, Asif S, Asaf S, Lubna, Khan Z, Kim KM. Unveiling the protective role of anthocyanin in rice: insights into drought-induced oxidative stress and metabolic regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1397817. [PMID: 38863532 PMCID: PMC11165195 DOI: 10.3389/fpls.2024.1397817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
This study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000). Anthocyanin-treated plants exhibited significant enhancements in various traits, including growth parameters and reproductive characteristics, under normal conditions. When subjected to drought stress, these plants displayed resilience, maintaining or improving essential morphological and physiological features compared to non-treated counterparts. Notably, anthocyanin application mitigated drought-induced oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and lipid membrane peroxidation. The study also elucidates the regulatory role of anthocyanins in the expression of flavonoid biosynthetic genes, leading to increased levels of key secondary metabolites. Furthermore, anthocyanin treatment influenced the levels of stress-related signaling molecules, including melatonin, proline, abscisic acid (ABA), and salicylic acid (SA), contributing to enhanced stress tolerance. The enzymatic activity of antioxidants and the expression of drought-responsive genes were modulated by anthocyanins, emphasizing their role in antioxidant defense and stress response. Additionally, anthocyanin treatment positively influenced macronutrient concentrations, particularly calcium ion (Ca+), potassium ion (K+), and sodium ion (Na+), essential for cell wall and membrane stability. The findings collectively highlight the multifaceted protective effects of anthocyanins, positioning them as potential key players in conferring resilience to drought stress in rice plants. The study provides valuable insights into the molecular and physiological mechanisms underlying anthocyanin-mediated enhancement of drought stress tolerance, suggesting promising applications in agricultural practices for sustainable crop production.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Li J, Liu X, Chang S, Chu W, Lin J, Zhou H, Hu Z, Zhang M, Xin M, Yao Y, Guo W, Xie X, Peng H, Ni Z, Sun Q, Long Y, Hu Z. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. SCIENCE ADVANCES 2024; 10:eadk4027. [PMID: 38608020 PMCID: PMC11014451 DOI: 10.1126/sciadv.adk4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.
Collapse
Affiliation(s)
- Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Hui Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhuoran Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
8
|
Ahmad S, Fariduddin Q. "Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108502. [PMID: 38492486 DOI: 10.1016/j.plaphy.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Gamma-aminobutyric acid (GABA) is an amino acid with a four-carbon structure, widely distributed in various organisms. It exists as a zwitterion, possessing both positive and negative charges, enabling it to interact with other molecules and participate in numerous physiological processes. GABA is widely distributed in various plant cell compartments such as cytoplasm mitochondria, vacuoles, peroxisomes, and plastids. GABA is primarily synthesized from glutamate using glutamate decarboxylase and participates in the GABA shunt within mitochondria, regulating carbon and nitrogen metabolism in plants The transport of GABA is regulated by several intracellular and intercellular transporters such as aluminium-activated malate transporters (ALMTs), GABA transporters (GATs), bidirectional amino acid transporters (BATs), and cationic amino acid transporters (CATs). GABA plays a vital role in cellular transformations, gene expression, cell wall modifications, and signal transduction in plants. Recent research has unveiled the role of GABA as a signaling molecule in plants, regulating stomatal movement and pollen tube growth. This review provides insights into multifaceted impact of GABA on physiological and biochemical traits in plants, including cellular communication, pH regulation, Krebs cycle circumvention, and carbon and nitrogen equilibrium. The review highlights involvement of GABA in improving the antioxidant defense system of plants, mitigating levels of reactive oxygen species under normal and stressed conditions. Moreover, the interplay of GABA with other plant growth regulators (PGRs) have also been explored.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Akter N, Kulsum U, Moniruzzaman M, Yasuda N, Akama K. Truncation of the calmodulin binding domain in rice glutamate decarboxylase 4 ( OsGAD4) leads to accumulation of γ-aminobutyric acid and confers abiotic stress tolerance in rice seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:21. [PMID: 38435472 PMCID: PMC10904699 DOI: 10.1007/s11032-024-01460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
GABA (Gamma-aminobutyric acid) is a non-protein amino acid widely known as major inhibitory neurotransmitter. It is synthesized from glutamate via the enzyme glutamate decarboxylase (GAD). GAD is ubiquitous in all organisms, but only plant GAD has ability to bind Ca2+/calmodulin (CaM). This kind of binding suppresses the auto-inhibition of Ca2+/calmodulin binding domain (CaMBD) when the active site of GAD is unfolded resulting in stimulated GAD activity. OsGAD4 is one of the five GAD genes in rice genome. It was confirmed that OsGAD4 has ability to bind to Ca2+/CaM. Moreover, it exhibits strongest expression against several stress conditions among the five OsGAD genes. In this study, CRISPR/Cas9-mediated genome editing was performed to trim the coding region of CaMBD from the OsGAD4 gene, to remove its autoinhibitory function. DNA sequence analysis of the genome edited rice plants revealed the truncation of CaMBD (216 bp). Genome edited line (#14-1) produced 11.26 mg GABA/100 g grain, which is almost nine-fold in comparison to wild type. Short deletion in the coding region for CaMBD yielded in mutant (#14-6) with lower GABA content than wild type counterpart. Abiotic stresses like salinity, flooding and drought significantly enhanced GABA accumulation in #14-1 at various time points compared to wild-type and #14-6 under the same stress conditions. Moreover, upregulated mRNA expression in vegetative tissues seems correlated with the stress-responsiveness of OsGAD4 when exposed to the above-mentioned stresses. Stress tolerance of OsGAD4 genome edited lines was evidenced by the higher survival rate indicating the gene may induce tolerance against abiotic stresses in rice. This is the first report on abiotic stress tolerance in rice modulated by endogenous GABA. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01460-1.
Collapse
Affiliation(s)
- Nadia Akter
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
- Genetic Resources and Seed Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Ummey Kulsum
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Mohammad Moniruzzaman
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Norito Yasuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Kazuhito Akama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| |
Collapse
|
10
|
Cao Y, Chen Y, Cheng N, Zhang K, Duan Y, Fang S, Shen Q, Yang X, Fang W, Zhu X. CsCuAO1 Associated with CsAMADH1 Confers Drought Tolerance by Modulating GABA Levels in Tea Plants. Int J Mol Sci 2024; 25:992. [PMID: 38256065 PMCID: PMC10815580 DOI: 10.3390/ijms25020992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.
Collapse
Affiliation(s)
- Yu Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yiwen Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Nuo Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Shimao Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Qiang Shen
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Xiaowei Yang
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| |
Collapse
|
11
|
Al-Quraan NA, Samarah NH, Tanash AA. Effect of drought stress on wheat ( Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36346967 DOI: 10.1071/fp22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD ) and dehydrin (dhn and wcor ) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.
Collapse
Affiliation(s)
- Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah A Tanash
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
12
|
Fitzner M, Schreiner M, Baldermann S. Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154124. [PMID: 37944241 DOI: 10.1016/j.jplph.2023.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Institute of Nutritional Science, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Faculty of Life Science: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| |
Collapse
|
13
|
Vuksanović V, Kovačević B, Kebert M, Pavlović L, Kesić L, Čukanović J, Orlović S. In vitro selection of drought-tolerant white poplar clones based on antioxidant activities and osmoprotectant content. FRONTIERS IN PLANT SCIENCE 2023; 14:1280794. [PMID: 38046609 PMCID: PMC10690421 DOI: 10.3389/fpls.2023.1280794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Introduction In light of upcoming climate change, there is an urgent requirement for tree improvement regarding adaptability to drought-caused stress and the development of quick and reliable screening methodologies for genotypes' drought tolerance. White poplar is, despite its high adaptability, considered to be an endangered tree species in Serbia, which gives it special importance in the preservation and improvement of biodiversity of riparian ecosystems. The main goal of this research was to evaluate the tolerance of five white poplar clones to the presence of polyethylene glycol (PEG 6000 molecular weight 6000) (different concentrations (e.g. 0 g/L, 1 g/L, 10 g/L, 20 g/L, and 50 g/L) in Aspen Culture Medium (ACM). Methods The tolerance of the clones was evaluated by using morphological parameters (shoot fresh and dry weight, root fresh and dry weight), photosynthetic pigments (contents of chlorophyll a, chlorophyll b, carotenoids, and chlorophyll a+b), and biochemical parameters (total phenolic content, total flavonoid content, ferric reducing antioxidant power, antioxidant activities (DPPH activity and ABTS assay), free proline content and glycine betaine content. Results and Discussion The values of morphological and photosynthetic pigments declined with an increase in the concentration of PEG 6000. At a concentration of 50 g/L, the content of shoot fresh mass decreased by 41%, the content of Chl a by 68%, Chl b by 65%, and Car by 76% compared to the control. Also, at the same medium, there was an increase in the content of total phenols, accumulation of proline, the content of glycine betaine as well as in antioxidant activity. Based on the obtained results, it can be assumed that more drought-tolerant clones are characterized by high values for biomass, high content of photosynthetic pigments, and high content of proline and glycine betaine in conditions similar to drought in vitro. Clone L-80 showed better results in most of the tested parameters, especially compared to the reference clone Villafranca.
Collapse
Affiliation(s)
- Vanja Vuksanović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Lazar Pavlović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Lazar Kesić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Čukanović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Saša Orlović
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
14
|
Alharbi K, Khan AA, Sakit Alhaithloul HA, Al-Harbi NA, Al-Qahtani SM, Aloufi SS, Abdulmajeed AM, Muneer MA, Alghanem SMS, Zia-Ur-Rehman M, Usman M, Soliman MH. Synergistic effect of β-sitosterol and biochar application for improving plant growth of Thymus vulgaris under heat stress. CHEMOSPHERE 2023; 340:139832. [PMID: 37591372 DOI: 10.1016/j.chemosphere.2023.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Climate change has become the global concern due to its drastic effects on the environment. Agriculture sector is the backbone of food security which remains at the disposal of climate change. Heat stress is the is the most concerning effect of climate change which negatively affect the plant growth and potential yields. The present experiment was conducted to assess the effects of exogenously applied β-sitosterol (Bs at 100 mg/L) and eucalyptus biochar (Eb at 5%) on the antioxidants and nutritional status in Thymus vulgaris under heat stressed conditions. The pot experiment was conducted in completely randomize design in which thymus plants were exposed to heat stress (33 °C) and as a result, plants showed a substantial decline in morpho-physiological and biochemical parameters e.g., a reduction of 59.46, 75.51, 100.00, 34.61, 22.65, and 38.65% was found in plant height, shoot fresh weight, root fresh weight, dry shoot weight, dry root weight and leaf area while in Bs + Eb + heat stress showed 21.16, 56.81, 67.63, 23.09, 12.84, and 35.89% respectively as compared to control. In the same way photosynthetic pigments, transpiration rate, plant nutritional values and water potential increased in plants when treated with Bs and Eb in synergy. Application of Bs and Eb significantly decreased the electrolytic leakage of cells in heat stressed thymus plants. The production of reactive oxygen species was significantly decreased while the synthesis of antioxidants increased with the application of Bs and Eb. Moreover, the application Bs and Eb increased the concentration of minerals nutrients in the plant body under heat stress. Our results suggested that application of Bs along with Eb decreased the effect of heat stress by maintaining nutrient supply and enhanced tolerance by increasing the production of photosynthetic pigments and antioxidant activity.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amir Abdullah Khan
- Department of Plant Biology and Ecology, Nankai University, Tianjin, 300071, China
| | | | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Saeedah Sallum Aloufi
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj, 46429, Tabuk, Saudi Arabia
| | - Muhammad Atif Muneer
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
15
|
Fusco GM, Carillo P, Nicastro R, Pagliaro L, De Pascale S, Paradiso R. Metabolic Profiling in Tuberous Roots of Ranunculus asiaticus L. as Influenced by Vernalization Procedure. PLANTS (BASEL, SWITZERLAND) 2023; 12:3255. [PMID: 37765419 PMCID: PMC10537181 DOI: 10.3390/plants12183255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ranunculus asiaticus L. is an ornamental geophyte. In commercial practice, it is mainly propagated by rehydrated tuberous roots. Vernalization before planting is a common practice to overcome the natural dormancy of tuberous roots; however, little is known about the mechanisms underlying the plant's response to low temperatures. We investigated the influence of three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth, leaf photosynthesis, flowering, and metabolism in plants of two hybrids, MBO (early flowering, pale orange flower) and MDR (medium earliness, bright orange flower), grown in pots in an unheated greenhouse. We reported the responses observed in the aerial part in a previous article in this journal. In this paper, we show changes in the underground organs in carbohydrate, amino acids, polyphenols, and protein levels throughout the growing cycle in the different plant stages: pre-planting, vegetative growth, and flowering. The metabolic profile revealed that the two hybrids had different responses to the root preparation procedure. In particular, MBO synthesized GABA and alanine after 2 weeks and sucrose after 4 weeks of vernalization. In contrast, MDR was more sensitive to vernalization; in fact, a higher synthesis of polyphenols was observed. However, both hybrids synthesized metabolites that could withstand exposure to low temperatures.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.F.); (R.N.); (L.P.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.F.); (R.N.); (L.P.)
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.F.); (R.N.); (L.P.)
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.F.); (R.N.); (L.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
16
|
Komatsu S, Kimura T, Rehman SU, Yamaguchi H, Hitachi K, Tsuchida K. Proteomic Analysis Reveals Salt-Tolerant Mechanism in Soybean Applied with Plant-Derived Smoke Solution. Int J Mol Sci 2023; 24:13734. [PMID: 37762035 PMCID: PMC10530690 DOI: 10.3390/ijms241813734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Salt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| | - Taiki Kimura
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| | - Shafiq Ur Rehman
- Department of Biology, University of Haripur, Haripur 22620, Pakistan;
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| |
Collapse
|
17
|
Rouphael Y, Carillo P, Ciriello M, Formisano L, El-Nakhel C, Ganugi P, Fiorini A, Miras Moreno B, Zhang L, Cardarelli M, Lucini L, Colla G. Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1235686. [PMID: 37692443 PMCID: PMC10484225 DOI: 10.3389/fpls.2023.1235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Luigi Lucini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
18
|
Sharma K, Kapoor R. Arbuscular mycorrhiza differentially adjusts central carbon metabolism in two contrasting genotypes of Vigna radiata (L.) Wilczek in response to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111706. [PMID: 37054921 DOI: 10.1016/j.plantsci.2023.111706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The study aimed at investigating Arbuscular Mycorrhiza (AM) mediated metabolic changes in two genotypes of mungbean (Vigna radiata) differing in their salt tolerance in presence of salt stress (100 mM NaCl). Colonisation by Claroideoglomus etunicatum resulted in higher growth, photosynthetic efficiency, total protein content, and lower levels of stress markers, indicating alleviation of stress in mungbean plants. AM differentially upregulated the components of Tricarboxylic acid (TCA) cycle in salt tolerant (ST) and salt sensitive (SS) genotypes that could be correlated to AM-mediated moderation in nutrient uptake. Under salt stress, while maximum increase in the activity of α-ketoglutarate dehydrogenase (65%) was observed in mycorrhizal (M)-ST; the increase in isocitrate dehydrogenase (79%) and fumarase (133%) activities was maximum in M-SS plants over their non-mycorrhizal (NM) counterparts. Apart from TCA, AM also affected gamma-aminobutyric acid (GABA) and glyoxylate pathways. Activities of enzymes implicated in GABA shunt increased in both the genotypes under stress resulting in increase in GABA concentration (46%). Notably, glyoxylate pathway was induced by AM in SS only, wherein M-SS exhibited significantly higher isocitrate lyase (49%) and malate synthase (104%) activities, reflected in higher malic acid concentration (84%), than NM under stress. The results suggest that AM moderates the central carbon metabolism and strategizes towards boosting the formation of stress-alleviating metabolites such as GABA and malic acid, especially in SS, bypassing the steps catalysed by salt-sensitive enzymes in TCA cycle. The study, therefore, advances the understanding on mechanisms by which AM ameliorates salt stress.
Collapse
Affiliation(s)
- Karuna Sharma
- Department of Botany, University of Delhi, 110007 Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, 110007 Delhi, India.
| |
Collapse
|
19
|
Pasam RK, Kant S, Thoday-Kennedy E, Dimech A, Joshi S, Keeble-Gagnere G, Forrest K, Tibbits J, Hayden M. Haplotype-Based Genome-Wide Association Analysis Using Exome Capture Assay and Digital Phenotyping Identifies Genetic Loci Underlying Salt Tolerance Mechanisms in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2367. [PMID: 37375992 DOI: 10.3390/plants12122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Soil salinity can impose substantial stress on plant growth and cause significant yield losses. Crop varieties tolerant to salinity stress are needed to sustain yields in saline soils. This requires effective genotyping and phenotyping of germplasm pools to identify novel genes and QTL conferring salt tolerance that can be utilised in crop breeding schemes. We investigated a globally diverse collection of 580 wheat accessions for their growth response to salinity using automated digital phenotyping performed under controlled environmental conditions. The results show that digitally collected plant traits, including digital shoot growth rate and digital senescence rate, can be used as proxy traits for selecting salinity-tolerant accessions. A haplotype-based genome-wide association study was conducted using 58,502 linkage disequilibrium-based haplotype blocks derived from 883,300 genome-wide SNPs and identified 95 QTL for salinity tolerance component traits, of which 54 were novel and 41 overlapped with previously reported QTL. Gene ontology analysis identified a suite of candidate genes for salinity tolerance, some of which are already known to play a role in stress tolerance in other plant species. This study identified wheat accessions that utilise different tolerance mechanisms and which can be used in future studies to investigate the genetic and genic basis of salinity tolerance. Our results suggest salinity tolerance has not arisen from or been bred into accessions from specific regions or groups. Rather, they suggest salinity tolerance is widespread, with small-effect genetic variants contributing to different levels of tolerance in diverse, locally adapted germplasm.
Collapse
Affiliation(s)
- Raj K Pasam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Adam Dimech
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Sameer Joshi
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
| | | | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
20
|
Guo Z, Gong J, Luo S, Zuo Y, Shen Y. Role of Gamma-Aminobutyric Acid in Plant Defense Response. Metabolites 2023; 13:741. [PMID: 37367899 DOI: 10.3390/metabo13060741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that acts as a defense substance and a signaling molecule in various physiological processes, and which helps plants respond to biotic and abiotic stresses. This review focuses on the role of GABA's synthetic and metabolic pathways in regulating primary plant metabolism, redistributing carbon and nitrogen resources, reducing the accumulation of reactive oxygen species, and improving plants' tolerance of oxidative stress. This review also highlights the way in which GABA maintains intracellular pH homeostasis by acting as a buffer and activating H+-ATPase. In addition, calcium signals participate in the accumulation process of GABA under stress. Moreover, GABA also transmits calcium signals through receptors to trigger downstream signaling cascades. In conclusion, understanding the role of GABA in this defense response provides a theoretical basis for applying GABA in agriculture and forestry and feasible coping strategies for plants in complex and changeable environments.
Collapse
Affiliation(s)
- Zhujuan Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Junqing Gong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Shuitian Luo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yixin Zuo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yingbai Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
21
|
Azeem MA, Ali F, Ullah A, Iqbal M, Ali K, Al Farraj DA, Elshikh MS, Naz Q, Munis MFH, Chaudhary HJ. Exploration of plant growth promoting traits and regulatory mechanisms of Bacillus anthracis PM21 in enhancing salt stress tolerance in maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27820-6. [PMID: 37256400 DOI: 10.1007/s11356-023-27820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Bacillus species have been reported to reduce the negative effects of salt stress on plants; the involvement of Bacillus anthracis PM21 and the internal mechanisms involved in this process are unclear. The effects of PM21 inoculation on maize plants under salt stress were investigated in this study. The study aimed to assess the ability of Bacillus anthracis PM21 to endure high levels of salinity stress while preserving the concentration of plant growth regulators. The biomass, photosynthetic pigments, relative water content (RWC), antioxidants, osmoprotectants, inorganic ion contents, regulation of plant hormones and expression of antioxidants enzyme encoded genes were investigated under normal and salinity stress conditions. Bacillus anthracis PM21 produced a significant amount of 1-aminocyclopropane-1-carboxylate deaminase enzyme (ACC deaminase) and exopolysaccharides (EPS) under salt stress and normal conditions. PM21 also produced plant growth stimulants including indole acetic acid, gibberellic acid (GA3), kinetin, and siderophore under salinity stress and normal conditions. Under salt stress, PM21 inoculation markedly increased plant growth indices, stimulate antioxidant enzyme mechanisms, osmoprotectants, and chlorophyll content. The use of qRT-PCR to analyze the transcription of targeted genes indicated greater expression of antioxidant-encoded genes and inferred their possible function in salinity stress tolerance. Our findings shed light on the functions of PM21 and its regulatory mechanisms in plant salt stress tolerance, as well as the importance of PM21 in this process. This study will provide a thorough analysis of the theoretical framework for adopting PM21 in agricultural production as an eco-friendly method to enhance crop growth and yield under salinity stress.
Collapse
Affiliation(s)
- Muhammad Atif Azeem
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fawad Ali
- Department of Botany, University of Baltistan, Skardu, 16400, Pakistan
| | - Abid Ullah
- Botany Department, University of Malakand, Chakdara, 18800, Pakistan
| | - Mahmood Iqbal
- Department of Agricultural Extension, Education and Communication, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Arab League Street, P.O. Box 24449, Doha, Qatar
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Qirat Naz
- School of Social Sciences, University of South Wales, Newport, UK
| | | | | |
Collapse
|
22
|
Ham S, Kim HJ, Shin N, Hwang JH, Oh SJ, Park JY, Joo JC, Kim HT, Bhatia SK, Yang YH. Continuous production of gamma aminobutyric acid by engineered and immobilized Escherichia coli whole-cells in a small-scale reactor system. Enzyme Microb Technol 2023; 168:110258. [PMID: 37210798 DOI: 10.1016/j.enzmictec.2023.110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
γ-Amino butyric acid (GABA) is a non-proteinogenic amino acid and a human neurotransmitter. Recently, increasing demand for food additives and biodegradable bioplastic monomers, such as nylon 4, has been reported. Consequently, considerable efforts have been made to produce GABA through fermentation and bioconversion. To realize bioconversion, wild-type or recombinant strains harboring glutamate decarboxylase were paired with the cheap starting material monosodium glutamate, resulting in less by-product formation and faster production compared to fermentation. To increase the reusability and stability of whole-cell production systems, this study used an immobilization and continuous production system with a small-scale continuous reactor for gram-scale production. The cation type, alginate concentration, barium concentration, and whole-cell concentration in the beads were optimized and this optimization resulted in more than 95 % conversion of 600 mM monosodium glutamate to GABA in 3 h and reuse of the immobilized cells 15 times, whereas free cells lost all activity after the ninth reaction. When a continuous production system was applied after optimizing the buffer concentration, substrate concentration, and flow rate, 165 g of GABA was produced after 96 h of continuous operation in a 14-mL scale reactor. Our work demonstrates the efficient and economical production of GABA by immobilization and continuous production in a small-scale reactor.
Collapse
Affiliation(s)
- Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jun Young Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Chungchung nam-do, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Kebert M, Kostić S, Stojnić S, Čapelja E, Markić AG, Zorić M, Kesić L, Flors V. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak. Int J Mol Sci 2023; 24:ijms24087510. [PMID: 37108671 PMCID: PMC10139069 DOI: 10.3390/ijms24087510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Silviculture, Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Martina Zorić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Lazar Kesić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Victor Flors
- Plant Immunity and Biochemistry Group, Department of Biology, Biochemistry, and Natural Sciences, Jaume I University, 12071 Castellón de la Plana, Spain
| |
Collapse
|
24
|
Álvarez-Rodríguez S, Alvite CM, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of Arabidopsis thaliana (L.) Heynh. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6073-6086. [PMID: 37026701 PMCID: PMC10119982 DOI: 10.1021/acs.jafc.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Finding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Carla M. Alvite
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J. Reigosa
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M. Sánchez-Moreiras
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n° 2, 20133 Milano, Italy
| |
Collapse
|
25
|
Fitzner M, Schreiner M, Baldermann S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. FRONTIERS IN PLANT SCIENCE 2023; 14:1105162. [PMID: 37082347 PMCID: PMC10110887 DOI: 10.3389/fpls.2023.1105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
- Food Metabolome, Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
26
|
Wang Y, Cao H, Wang S, Guo J, Dou H, Qiao J, Yang Q, Shao R, Wang H. Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114756. [PMID: 36924595 DOI: 10.1016/j.ecoenv.2023.114756] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hongzhang Cao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shancong Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hangyu Dou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiangfang Qiao
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450099, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| | - Hao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| |
Collapse
|
27
|
Fusco GM, Carillo P, Nicastro R, Modarelli GC, Arena C, De Pascale S, Paradiso R. Vernalization Procedure of Tuberous Roots Affects Growth, Photosynthesis and Metabolic Profile of Ranunculus asiaticus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:425. [PMID: 36771508 PMCID: PMC9920070 DOI: 10.3390/plants12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In Ranunculus asiaticus L., vernalization of propagation material is a common practice for the production scheduling of cut flowers, however little is known about the plant physiology and metabolism of this species as affected by cold treatments. We investigated the influence of two hybrids, MBO and MDR, and three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth and flowering, leaf photosynthesis, and leaf metabolic profile in plants grown in pot in a cold greenhouse. Net photosynthesis (NP) was higher in MDR than in MBO. In the two genotypes, the NP did not change in V2 and increased in V4 compared to C in MBO, while was unaffected by vernalization in MDR. Quantum yield of PSII electron transport (ΦPSII), linear electron transport rate (ETR) and non-photochemical quenching (NPQ) did not differ in the two hybrids, whereas maximal PSII photochemical efficiency (Fv/Fm) was higher in MBO than in MDR. Fluorescence indexes were unaffected by the preparation procedure, except for ETR, which decreased in V2 compared to C and V4 in MDR. A significant interaction between genotype and preparation procedure was found in plant leaf area, which was reduced only in V4 in MBO, while decreased in both the vernalization procedures in MDR. In Control plants, flowering started in 65 days in MBO and 69 days in MDR. Compared to controls, both the vernalization treatments anticipated flowering in MDR, while they were detrimental or only slightly efficient in promoting flowering in MBO. Vernalization always reduced the quality of flower stems in both the hybrids.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Carmen Arena
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
28
|
Cipriano R, Martins JPR, Conde LT, da Silva MM, Silva DM, Gontijo ABPL, Falqueto AR. Anatomical and physiological responses of Aechmea blanchetiana (Bromeliaceae) induced by silicon and sodium chloride stress during in vitro culture. PeerJ 2023; 11:e14624. [PMID: 36647445 PMCID: PMC9840392 DOI: 10.7717/peerj.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Salt stress is one of the most severe abiotic stresses affecting plant growth and development. The application of silicon (Si) is an alternative that can increase the tolerance of plants to various types of biotic and abiotic stresses. The objective was to evaluate salt stress's effect in vitro and Si's mitigation potential on Aechmea blanchetiana plants. For this purpose, plants already established in vitro were transferred to a culture medium with 0 or 14 µM of Si (CaSiO3). After growth for 30 days, a stationary liquid medium containing different concentrations of NaCl (0, 100, 200, or 300 µM) was added to the flasks. Anatomical and physiological analyses were performed after growth for 45 days. The plants cultivated with excess NaCl presented reduced root diameter and effective photochemical quantum yield of photosystem II (PSII) (ΦPSII) and increased non-photochemical dissipation of fluorescence (qN). Plants that grew with the presence of Si also had greater content of photosynthetic pigments and activity of the enzymes of the antioxidant system, as well as higher values of maximum quantum yield of PSII (FV/FM), photochemical dissipation coefficient of fluorescence (qP) and fresh weight bioaccumulation of roots and shoots. The anatomical, physiological and biochemical responses, and growth induced by Si mitigated the effect of salt stress on the A. blanchetiana plants cultivated in vitro, which can be partly explained by the tolerance of this species to grow in sandbank (Restinga) areas.
Collapse
Affiliation(s)
- Rosiane Cipriano
- Plant Ecophysiology Laboratory, Federal University of Espírito Santo, São Mateus, Espírito Santo, Brazil,Plant Tissue Culture Laboratory, Federal University of Espírito Santo, São Mateus, Espírito Santo, Brazil
| | | | - Lorenzo Toscano Conde
- Plant Tissue Culture Laboratory, Federal University of Espírito Santo, São Mateus, Espírito Santo, Brazil
| | - Mariela Mattos da Silva
- Center for the Study of Photosynthesis, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Diolina Moura Silva
- Center for the Study of Photosynthesis, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Antelmo Ralph Falqueto
- Plant Ecophysiology Laboratory, Federal University of Espírito Santo, São Mateus, Espírito Santo, Brazil
| |
Collapse
|
29
|
Wang J, Cheng JH, Sun DW. Enhancement of Wheat Seed Germination, Seedling Growth and Nutritional Properties of Wheat Plantlet Juice by Plasma Activated Water. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2006-2022. [PMID: 35668726 PMCID: PMC9152647 DOI: 10.1007/s00344-022-10677-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
UNLABELLED Previous studies have shown the great potential of using plasma-activated water (PAW) on improving agriculture seed germination, however, information on the influence of PAW on crop plantlet juice remains scanty. In this research, the effect of PAW generated by atmosphere pressure Ar-O2 plasma jet for 1-5 min on wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice was investigated. Results revealed that all PAWs could enhance wheat seed germination and seedling growth in 7 days by improving the germination rate, germination index, fresh weight, dry weight and vigour index, and especially that PAW activated for 3 min (PAW-3) showed the best overall performance. In addition, the application of PAWs enhanced the nutritional properties of wheat plantlet juice from those grown for 14 days by improving total soluble solids, protein content, photosynthetic pigments, total phenolic content, antioxidant activity, enzyme activity, free amino acids and minerals content, and the best enhancement was also observed in PAW-3. It was concluded that PAWs would be an effective technique to enhance the growth and nutritional properties of crop sprouts, which could be served as functional foods in many forms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00344-022-10677-3.
Collapse
Affiliation(s)
- Junhong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
31
|
Sun G, Wase N, Shu S, Jenkins J, Zhou B, Torres-Rodríguez JV, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Pedersen C, Gottilla T, Foltz A, Yu H, O'Malley R, Zhang C, Devos KM, Sigmon B, Yu B, Obata T, Schmutz J, Schnable JC. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass. Nat Commun 2022; 13:7731. [PMID: 36513676 PMCID: PMC9747981 DOI: 10.1038/s41467-022-35507-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation.
Collapse
Affiliation(s)
- Guangchao Sun
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Nishikant Wase
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Biomolecular Analysis Facility. School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cindy Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Yuko Yoshinga
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Luke Berry
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Connor Pedersen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas Gottilla
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Ashley Foltz
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ronan O'Malley
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
32
|
Kebert M, Kostić S, Čapelja E, Vuksanović V, Stojnić S, Markić AG, Zlatković M, Milović M, Galović V, Orlović S. Ectomycorrhizal Fungi Modulate Pedunculate Oak's Heat Stress Responses through the Alternation of Polyamines, Phenolics, and Osmotica Content. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233360. [PMID: 36501399 PMCID: PMC9736408 DOI: 10.3390/plants11233360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 05/13/2023]
Abstract
The physiological and biochemical responses of pedunculate oaks (Quercus robur L.) to heat stress (HS) and mycorrhization (individually as well in combination) were estimated. One-year-old Q. robur seedlings were grown under controlled conditions in a pot experiment, inoculated with a commercial inoculum of ectomycorrhizal (ECM) fungi, and subjected to 72 h of heat stress (40 °C/30 °C day/night temperature, relative humidity 80%, photoperiod 16/8 h) in a climate chamber, and they were compared with seedlings that were grown at room temperature (RT). An in-depth analysis of certain well-known stress-related metrics such as proline, total phenolics, FRAP, ABTS, non-protein thiols, and lipid peroxidation revealed that mycorrhized oak seedlings were more resistant to heat stress (HS) than non-mycorrhized oaks. Additionally, levels of specific polyamines, total phenolics, flavonoids, and condensed tannins as well as osmotica (proline and glycine betaine) content were measured and compared between four treatments: plants inoculated with ectomycorrhizal fungi exposed to heat stress (ECM-HS) and those grown only at RT (ECM-RT) versus non-mycorrhized controls exposed to heat stress (NM-HS) and those grown only at room temperature (NM-RT). In ectomycorrhiza inoculated oak seedlings, heat stress led to not only a rise in proline, total phenols, FRAP, ABTS, non-protein thiols, and lipid peroxidation but a notable decrease in glycine betaine and flavonoids. Amounts of three main polyamines (putrescine, spermine, and spermidine) were quantified by using high-performance liquid chromatography coupled with fluorescent detection (HPLC/FLD) after derivatization with dansyl-chloride. Heat stress significantly increased putrescine levels in non-mycorrhized oak seedlings but had no effect on spermidine or spermine levels, whereas heat stress significantly increased all inspected polyamine levels in oak seedlings inoculated with ectomycorrhizal inoculum. Spermidine (SPD) and spermine (SPM) contents were significantly higher in ECM-inoculated plants during heat stress (approximately 940 and 630 nmol g-1 DW, respectively), whereas these compounds were present in smaller amounts in non-mycorrhized oak seedlings (between 510 and 550 nmol g-1 DW for Spd and between 350 and 450 nmol g-1 DW for Spm). These findings supported the priming and biofertilizer roles of ectomycorrhizal fungi in the mitigation of heat stress in pedunculate oaks by modification of polyamines, phenolics, and osmotica content.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-616-142-706
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Marina Milović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| |
Collapse
|
33
|
Aljuaid BS, Ashour H. Exogenous γ-Aminobutyric Acid (GABA) Application Mitigates Salinity Stress in Maize Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111860. [PMID: 36430995 PMCID: PMC9697566 DOI: 10.3390/life12111860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
The effect of γ-Aminobutyrate (GABA) on maize seedlings under saline stress conditions has not been well tested in previous literature. Maize seedlings were subjected to two saline water concentrations (50 and 100 mM NaCl), with distilled water as the control. Maize seedlings under saline and control conditions were sprayed with GABA at two concentrations (0.5 and 1 mM). Our results indicated that GABA application (1 mM) significantly enhanced plant growth parameters (fresh shoots and fresh roots by 80.43% and 47.13%, respectively) and leaf pigments (chlorophyll a, b, and total chlorophyll by 22.88%, 56.80%, and 36.21%, respectively) compared to untreated seedlings under the highest saline level. Additionally, under 100 mM NaCl, methylglyoxal (MG), malondialdehyde (MDA), and hydrogen peroxidase (H2O2) were reduced by 1 mM GABA application by 43.66%, 33.40%, and 35.98%, respectively. Moreover, maize seedlings that were treated with 1 mM GABA contained a lower Na content (22.04%) and a higher K content (60.06%), compared to the control under 100 mM NaCl. Peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase activities were improved (24.62%, 15.98%, 62.13%, and 70.07%, respectively) by the highest GABA rate, under the highest stress level. Seedlings treated with GABA under saline conditions showed higher levels of expression of the potassium transporter protein (ZmHKT1) gene, and lower expression of the ZmSOS1 and ZmNHX1 genes, compared to untreated seedlings. In conclusion, GABA application as a foliar treatment could be a promising strategy to mitigate salinity stress in maize plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (B.S.A.); (H.A.)
| | - Hatem Ashour
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (B.S.A.); (H.A.)
| |
Collapse
|
34
|
Gholami R, Fahadi Hoveizeh N, Zahedi SM, Gholami H, Carillo P. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC PLANT BIOLOGY 2022; 22:477. [PMID: 36203130 PMCID: PMC9540738 DOI: 10.1186/s12870-022-03855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought stress is among the most serious threats jeopardizing the economic yield of crop plants in Iran. In particular, in response to withholding irrigation, the reduction in performance and quality of a precious plant such as the olive tree is remarkable. Therefore, the selection of cultivars that are resistant or tolerant to drought has been recognized as one of the most effective long-term strategies for sustainably alleviating the adverse effects of this stress. In this view, our study evaluated the response of 8 olive cultivars including 4 elite native cultivars (Zard Aliabad, Roughani, Dezful, and Shengeh) and 4 foreign cultivars (Manzanilla, Sevillana, Konservolia, and Mission) to water shortage in the Dallaho Olive Research station of Sarpole-Zahab in Kermanshah province in 2020. Olive trees underwent 3 levels of irrigation treatment including 100% full irrigation (control), 75%, and 50% deficit irrigation. RESULTS Based on the results, 50% deficit irrigation decreased both growth and pomological traits, but determined the highest dry matter percentage. As the severity of drought stress increased, with an accumulation of sodium and malondialdehyde, an incremental increase in osmolytes was observed, as well as an enhancement of the activity of antioxidant enzymes (peroxidase and catalase). In contrast, full irrigation led to an increase in photosynthetic pigments, calcium, and potassium. Dezful and Konservolia cultivars revealed a significantly higher growth rate, correlated in the former to higher levels of chlorophyll, compatible compounds, total phenolic content, relative water content, potassium to sodium ratio, catalase, and peroxidase activities compared with other cultivars. Konservolia showed the best yield parameters under 75% and 100% irrigation regimes, correlated to higher chlorophyll, potassium, and total phenolic content (in particular at 75% ET). CONCLUSIONS Generally, the selection of more resilient or tolerant cultivars to sustain water scarcity stress is a widely operative solution to extend rainfed orchards in semi-arid environments. Our study showed that Dezful and Konservolia had the best adaptive mechanisms to cope with the detrimental effects of drought stress.
Collapse
Affiliation(s)
- Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hojattollah Gholami
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
35
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
36
|
Hanifah A, Firmanto H, Putri SP, Fukusaki E. Unique metabolite profiles of Indonesian cocoa beans from different origins and their correlation with temperature. J Biosci Bioeng 2022; 134:125-132. [PMID: 35654674 DOI: 10.1016/j.jbiosc.2022.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
Chocolate flavors vary depending on the origin of the cocoa beans used. Differences in soil, microorganisms, and environmental factors contribute to the formation of flavor precursors in cocoa beans. During cocoa bean fermentation, environmental temperature has been shown to alter metabolite concentrations. However, the correlation between the metabolite profile of cocoa beans and the temperature of their region of origin has not been fully defined. In this study, the metabolite profiles of Indonesian cocoa beans of various origins were evaluated using gas chromatography/mass spectrometry-based analysis, and were found to differ depending on the origin of the bean. Subsequently, the correlation between metabolite profile and environmental temperature of the origin was assessed using orthogonal projection to latent structure regression (OPLS-R) analysis. The analysis revealed that seven metabolites were associated with temperature: γ-aminobutyric acid (GABA), ethanolamine, glycerol, isocitric acid + citric acid, succinic acid, malic acid, and saccharic acid. The findings of this study will be valuable to chocolate industries for the production of single-origin chocolates.
Collapse
Affiliation(s)
- Abu Hanifah
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hendy Firmanto
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, Jawa Timur 68118, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Hao Y, Hong Y, Guo H, Qin P, Huang A, Yang X, Ren G. Transcriptomic and metabolomic landscape of quinoa during seed germination. BMC PLANT BIOLOGY 2022; 22:237. [PMID: 35538406 PMCID: PMC9088103 DOI: 10.1186/s12870-022-03621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa), a dicotyledonous species native to Andean region, is an emerging crop worldwide nowadays due to its high nutritional value and resistance to extreme abiotic stresses. Although it is well known that seed germination is an important and multiple physiological process, the network regulation of quinoa seed germination is largely unknown. RESULTS Here, we performed transcriptomic study in five stages during transition from quinoa dry seed to seedling. Together with the GC-MS based metabolome analysis, we found that seed metabolism is reprogrammed with significant alteration of multiple phytohormones (especially abscisic acid) and other nutrients during the elongation of radicels. Cell-wall remodeling is another main active process happening in the early period of quinoa seed germination. Photosynthesis was fully activated at the final stage, promoting the biosynthesis of amino acids and protein to allow seedling growth. The multi-omics analysis revealed global changes in metabolic pathways and phenotype during quinoa seed germination. CONCLUSION The transcriptomic and metabolomic landscape depicted here pave ways for further gene function elucidation and quinoa development in the future.
Collapse
Affiliation(s)
- Yuqiong Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yechun Hong
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Huimin Guo
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China
| | - Ancheng Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China.
- College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu, 610106, China.
| |
Collapse
|
38
|
Cold Treatment Modulates Changes in Primary Metabolites and Flowering of Cut Flower Tulip Hybrids. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tulip is one of the most important bulbous genera in the world’s floriculture. It is known that cold exposure of bulbs before planting is required to break the bulb dormancy and to promote the plant’s flowering. Preparation procedures performed by breeders differ in the duration and the thermal level, and the choice of the procedure depends on the genotype’s sensitivity to temperature; however, little is known about the metabolic responses underlying the different behaviours of the numerous commercial hybrids. We evaluated the influence of two bulb-preparation procedures, 15–18 weeks at 5 ÷ 9 °C, and 9–14 weeks at 2 ÷ 5 °C, in two hybrids of tulip (Tulipa gesneriana L.), ‘Royal Virgin’ and ‘Ad Rem’, grown hydroponically in a floating system. Tulip plants of the two hybrids responded differently to bulb exposure to low temperatures in terms of early flowering, as this was unaffected by the preparation procedure in ‘Royal Virgin’ (27.1 days from transplanting, on average), while it was earlier after treatment at higher temperatures compared with lower temperatures in ‘Ad Rem’ (24.1 vs. 26.7 days at 5 °C vs. at 9 °C). This different flowering earliness may be related to the diverse metabolic responses enacted by the bulbs for cold acclimation that depended on hybrid x thermal treatment. Plant leaf area and flower stem characteristics were similar in the hybrids and were unaffected by the bulb-preparation procedure.
Collapse
|
39
|
Das S, Majumder B, Biswas AK. Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:468-489. [PMID: 35122561 DOI: 10.1007/s10646-022-02524-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Arsenic contamination of groundwater is a major concern for its usage in crop irrigation in many regions of the world. Arsenic is absorbed by rice plants mainly from arsenic contaminated water during irrigation. It hampers growth and agricultural productivity. The aim of the study was to mitigate the toxic effects of arsenate (As-V) [25 μM, 50 μM, and 75 μM] by silicon (Si) [2 mM] and selenium (Se) [5 μM] amendments on the activity of the TCA cycle, synthesis of γ-aminobutyric acid (GABA) and polyamines (PAs) in rice (Oryza sativa L. cv. MTU-1010) seedlings and to identify which chemical was more potential to combat this threat. As(V) application decreased the activities of tested respiratory enzymes and increased the levels of organic acids (OAs) in the test seedlings. Application of Si with As(V) and Se with As(V) increased the activities of respiratory enzymes and the levels of OAs. The effects were more pronounced during Si amendments. The activities of GABA synthesizing enzymes along with accumulation of GABA were increased under As(V) stress. During joint application of Si with As(V) and Se with As(V) the activity and the level of said parameters were decreased that indicating defensive role of these chemicals to resist As(V) toxicity in rice and Si amendments showed greater potential to reduce As(V) induced damages in the test seedlings. PAs trigger tolerance mechanism against As(V) in plants. PAs such as putrescine, spermidine and spermine were synthesized more during Si and Se amendments in As(V) contaminated rice seedlings to combat the toxic effects of As(V). Si amendments substantially modulated the toxic effects caused by As(V) over Se amendments in the As(V) challenged test seedlings. Thus, in future application of Si enriched fertilizer will be beneficial to grow rice plants with normal vigor in arsenic contaminated soil.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
40
|
Song C, Acuña T, Adler-Agmon M, Rachmilevitch S, Barak S, Fait A. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. HORTICULTURE RESEARCH 2022; 9:uhac061. [PMID: 35531316 PMCID: PMC9071376 DOI: 10.1093/hr/uhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.
Collapse
Affiliation(s)
- Chao Song
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Simon Barak
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
41
|
Zhang M, Liu Z, Fan Y, Liu C, Wang H, Li Y, Xin Y, Gai Y, Ji X. Characterization of GABA-Transaminase Gene from Mulberry ( Morus multicaulis) and Its Role in Salt Stress Tolerance. Genes (Basel) 2022; 13:501. [PMID: 35328056 PMCID: PMC8954524 DOI: 10.3390/genes13030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) has been reported to accumulate in plants when subjected to salt stress, and GABA-transaminase (GABA-T) is the main GABA-degrading enzyme in the GABA shunt pathway. So far, the salt tolerance mechanism of the GABA-T gene behind the GABA metabolism remains unclear. In this study, the cDNA (designated MuGABA-T) of GABA-T gene was cloned from mulberry, and our data showed that MuGABA-T protein shares some conserved characteristics with its homologs from several plant species. MuGABA-T gene was constitutively expressed at different levels in mulberry tissues, and was induced substantially by NaCl, ABA and SA. In addition, our results demonstrated that exogenous application of GABA significantly reduced the salt damage index and increased plant resistance to NaCl stress. We further performed a functional analysis of MuGABA-T gene and demonstrated that the content of GABA was reduced in the transgenic MuGABA-T Arabidopsis plants, which accumulated more ROS and exhibited more sensitivity to salt stress than wild-type plants. However, exogenous application of GABA significantly increased the activities of antioxidant enzymes and alleviated the active oxygen-related injury of the transgenic plants under NaCl stress. Moreover, the MuGABA-T gene was overexpressed in the mulberry hairy roots, and similar results were obtained for sensitivity to salt stress in the transgenic mulberry plants. Our results suggest that the MuGABA-T gene plays a pivotal role in GABA catabolism and is responsible for a decrease in salt tolerance, and it may be involved in the ROS pathway in the response to salt stress. Taken together, the information provided here is helpful for further analysis of the function of GABA-T genes, and may promote mulberry resistance breeding in the future.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Zhaoyang Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yiting Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
| | - Chaorui Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Hairui Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yan Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yingping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| |
Collapse
|
42
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
43
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
44
|
Liu Q, Dong GR, Ma YQ, Huang XX, Mu TJ, Huang XX, Li YJ, Li X, Hou BK. Retracted: Glycosyltransferase UGT79B7 negatively regulates hypoxia response through γ-aminobutyric acid homeostasis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7998-8010. [PMID: 33693583 DOI: 10.1093/jxb/erab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Qian Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Guang-Rui Dong
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yu-Qing Ma
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xiu-Xiu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Tian-Jiao Mu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| |
Collapse
|
45
|
Chou YJ, Cheng KC, Hsu FC, Wu JSB, Ting Y. Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher γ-aminobutyric acid (GABA) content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6463-6471. [PMID: 33997980 DOI: 10.1002/jsfa.11317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Germination of mung beans increases the content of dietary fiber, vitamin C, antioxidants, and γ-aminobutyric acid (GABA). Atmospheric cold plasma is a recently developed technology that can rapidly modify the surface properties of an object. In this work, atmospheric cold plasma was utilized to promote higher moisture absorption of mung bean seeds and, thus, enhance the germination ratio and GABA level. The selected healthy seeds that were exposed to plasma generated at different ionizing powers. RESULT According to the experimental results, atmospheric cold plasma treatments on mung bean seeds could induce significantly more water absorption and lead to a higher rate of germination. The physical appearance of the sprout developed after plasma treatment was noticeably modified to a more desirable form, which has a short radicle and longer hypocotyls with a larger diameter. The content of the bioactive component GABA in plasma-treated beans was approximately three times higher than the untreated group due to the response of seed to the environmental stress created by the plasma treatment. CONCLUSION The result from this work will serve as a good reference for future investigation that is searching for a solution to enhance bioactive compound production in natural products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Jou Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei City, Taiwan
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Yuwen Ting
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
46
|
Li C, Zhu J, Sun L, Cheng Y, Hou J, Fan Y, Ge Y. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:92-101. [PMID: 34773806 DOI: 10.1016/j.plaphy.2021.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, 'Golden Delicious' apples were dipped with γ-aminobutyric acid (GABA) solution to investigate the changes of quality parameters, ethylene anabolism, polyamine metabolism and GABA shunt. Results showed that GABA distinctly suppressed respiratory rate, reduced titratable acidity, maintained higher soluble solid content and pericarp firmness of apples. Compared to the control, GABA also repressed the activities and gene expressions of polyamine oxidase (PAO) and diamine oxidase (DAO), enhanced MdMT, MdMS, MdSAMS, MdSAMDC, MdSPDS, MdODC, MdADC, and MdACL5 expressions, and accelerated the accumulation of putrescine, spermidine, and spermine in the exocarp of apples. Moreover, GABA decreased ethylene release, MdACS and MdACO gene expressions in the exocarp. In addition, exogenous GABA activated MdGAD, MdGDH, MdGS expressions and inhibited MdGABA-T and MdSSADH expressions in the GABA shunt, therefore increased endogenous GABA, pyruvic acid and glutamate contents in the exocarp. These findings suggest that exogenous GABA regulates ethylene anabolism, polyamine metabolism and GABA shunt to maintain fruit quality of 'Golden Delicious' apples.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yiting Fan
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
47
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
48
|
Shaltout AA, Hassan FAS. Seasonal Variability of Elemental Composition and Phytochemical Analysis of Moringa oleifera Leaves Using Energy-Dispersive X-ray Fluorescence and Other Related Methods. Biol Trace Elem Res 2021; 199:4319-4329. [PMID: 33415585 DOI: 10.1007/s12011-020-02523-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 11/30/2022]
Abstract
The elemental contents and the phytochemical components of Moringa oleifera are crucial for nutrition and medical purposes. Therefore, the monthly and seasonal variations of the elemental composition and phytochemical analysis of Moringa oleifera leaves collected from the same ecological area have been investigated. For this purpose, Moringa oleifera leaves were collected monthly from the same tree's branches during the whole year from January 2019 to December 2019. A non-destructive elemental analysis technique was used, namely energy-dispersive X-ray fluorescence spectrometry. The seasonal variations are different from one season to another. The highest concentrations of Mo, Cr, Fe, Ti, and Si were found during winter, whereas the highest concentrations of Br, Cl, and Cu were found during the summer seasons. Based on Pearson's correlation analysis, a strong correlation between Ca and Sr was found, whereas Sr has a negative correlation with other detected elements. Similarly, Cu and Zn as well as Br and Cl have a strong correlation. Remarkable different concentrations were found during May which has the lowest positive correlation. The phytochemical analysis revealed that Moringa oleifera leaves collected during the spring season resulted in the highest chlorophyll content, phenol content, and the greatest scavenging activity. Therefore, the mineral contents and phytochemical compounds are affected by the changing of the seasons of the year. Collectively, the current results are useful for optimizing the harvest time of Moringa oleifera leaves with respect to the quality.
Collapse
Affiliation(s)
- Abdallah A Shaltout
- Spectroscopy Department, Physics Division, National Research Centre, El Behooth Str., 12622 Dokki, Cairo, Egypt.
| | - Fahmy A S Hassan
- Department of Biology, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
49
|
El-Serafy RS, El-Sheshtawy ANA, Abd El-Razek UA, Abd El-Hakim AF, Hasham MMA, Sami R, Khojah E, Al-Mushhin AAM. Growth, Yield, Quality, and Phytochemical Behavior of Three Cultivars of Quinoa in Response to Moringa and Azolla Extracts under Organic Farming Conditions. AGRONOMY 2021; 11:2186. [DOI: 10.3390/agronomy11112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Increased demand for quinoa as a functional food has resulted in more quinoa-growing areas and initiatives to increase grain production, particularly in organic agriculture. Quinoa seeds are a superfood with incredible nutritional benefits. They are abundant in secondary metabolites with significant medicinal activity. This report was consequently performed to investigate whether Azolla fliculoides (AE) or moringa leaf extract (MLE) foliar spray can be supplemented as organic extracts to enhance quinoa growth and productivity under organic farming. Three quinoa cultivars, KVL–SRA2 (C1), Chipaya (C2), and Q–37 (C3), were grown organically and subjected to foliar spraying with AE or MLE at a 20% ratio, as well as their combination (AE+MLE). Plant performance of the three cultivars was significantly enhanced by MLE or AE applications as compared with control plants. The highest outputs were obtained by AE+MLE treatment, which significantly increased the seed yield by about 29% as compared with untreated plants. Seed quality exhibited a marked increase in response to AE+MLE that was superior in this regard as it showed higher protein, carbohydrates, saponine, tannins, phenolics, and flavonoids content. The C3-cultivar demonstrated the highest productivity, saponine, and flavonoids levels as compared to the other cultivars. Overall, the current study indicated that foliar spray with AE+MLE could enhance growth and productivity as well as quality and pharmaceutical active ingredients of quinoa cultivars grown under farming conditions.
Collapse
|
50
|
Li D, Liu J, Zong J, Guo H, Li J, Wang J, Wang H, Li L, Chen J. Integration of the metabolome and transcriptome reveals the mechanism of resistance to low nitrogen supply in wild bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:480. [PMID: 34674655 PMCID: PMC8532362 DOI: 10.1186/s12870-021-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient that significantly affects turf quality. Commercial cultivars of bermudagrass (Cynodon dactylon (L.) Pers.) require large amounts of nitrogenous fertilizer. Wild bermudagrass germplasm from natural habitats with poor nutrition and diverse N distributions is an important source for low-N-tolerant cultivated bermudagrass breeding. However, the mechanisms underlying the differences in N utilization among wild germplasm resources of bermudagrass are not clear. RESULTS To clarify the low N tolerance mechanism in wild bermudagrass germplasm, the growth, physiology, metabolome and transcriptome of two wild accessions, C291 (low-N-tolerant) and C716 (low-N-sensitive), were investigated. The results showed that root growth was less inhibited in low-N-tolerant C291 than in low-N-sensitive C716 under low N conditions; the root dry weight, soluble protein content and free amino acid content of C291 did not differ from those of the control, while those of C716 were significantly decreased. Down-regulation of N acquisition, primary N assimilation and amino acid biosynthesis was less pronounced in C291 than in C716 under low N conditions; glycolysis and the tricarboxylic acid (TCA) cycle pathway were also down-regulated, accompanied by a decrease in the biosynthesis of amino acids; strikingly, processes such as translation, biosynthesis of the structural constituent of ribosome, and the expression of individual aminoacyl-tRNA synthetase genes, most of genes associated with ribosomes related to protein synthesis were all up-regulated in C291, but down-regulated in C716. CONCLUSIONS Overall, low-N-tolerant wild bermudagrass tolerated low N nutrition by reducing N primary assimilation and amino acid biosynthesis, while promoting the root protein synthesis process and thereby maintaining root N status and normal growth.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|