1
|
Zhu J, Yin H, Cao C, Sun C, Zhang M, Hong Y, Zhang Y, Lv C, Guo B, Wang F, Xu R. Comparative Transcriptome Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Barley. PLANTS (BASEL, SWITZERLAND) 2024; 14:28. [PMID: 39795288 PMCID: PMC11722848 DOI: 10.3390/plants14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Waterlogging is becoming a global issue, affecting crop growth and yield in low-lying rainfed areas. A DH line, TamF169, showing superior waterlogging tolerance, and its waterlogging-sensitive parent, Franklin, were used to conduct transcriptome analyses. The results showed that 2209 and 2578 differentially expressed genes (DEGs) in Franklin and 1997 and 1709 DEGs in TamF169 were detected by comparing gene expression levels under control and waterlogging after 4 and 8 days, respectively, with 392 and 257 DEGs being specific to TamF169 after 4 and 8 days under waterlogging, respectively. KEGG analysis showed that glycolysis/gluconeogenesis, the MAPK signaling pathway, plant hormone signaling, and galactose metabolism pathways were significantly enriched in the waterlogging-tolerant genotype TamF169 four days after waterlogging. The qPCR results were consistent with the transcriptome data, suggesting the reliability of the transcriptome sequencing. A total of 13 genes in the mapping region of a QTL for root cortical aerenchyma (RCA) showed different expression levels in Franklin or TamF169, and the potential candidate genes for RCA-QTL are discussed. This study offers valuable information on the mechanism of tolerance to waterlogging stress in the DH line TamF169 and provides the candidate genes for RCA-QTL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safetyof Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (H.Y.); (C.C.); (C.S.); (M.Z.); (Y.H.); (Y.Z.); (C.L.); (B.G.); (F.W.)
| |
Collapse
|
2
|
Fang Q, Wu D, Sun H, Wang L, Liu Y, Mei W, Guo H. A bHLH Transcription Factor Confers Salinity Stress Tolerance in Betula platyphylla. PLANT DIRECT 2024; 8:e70029. [PMID: 39691550 PMCID: PMC11651711 DOI: 10.1002/pld3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
Basic helix-loop-helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. Betula platyphylla (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified. Quantitative real-time polymerase chain reaction (RT-PCR) analysis indicated that the expression of these TFs can be induced by salt stress, and the expression of BpbHLH1 was higher than that of other BpbHLH genes. Particle bombardment analysis revealed that BpbHLH1 was localized to the nucleus. Yeast transformation found that BpbHLH1 has transcriptional activation activity. We generated BpbHLH1-overexpressing and silencing transgenic birch plants and subjected them to salt stress analysis. BpbHLH1 can enhance the salt tolerance of birch plants by increasing the reactive oxygen species scavenging ability and inhibiting cell death. Yeast one-hybrid, ß-glucuronidase, and chromatin immunoprecipitation assays revealed that BpbHLH1 can regulate the expression of target genes involved in stress resistance by binding to the E-box-1, E-box-2 and G-box elements in their promoters. The results of this study enhanced our understanding of the salt tolerance conferred by BpbHLH TFs in B. platyphylla and identified useful genes for the breeding of novel birch germplasm.
Collapse
Affiliation(s)
- Qilong Fang
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Di Wu
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Hu Sun
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Luyao Wang
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Yuping Liu
- State Owned Forest Farm Management Service Center, Kuandian Manchu Autonomous CountyDandongChina
| | - Wenfeng Mei
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
3
|
Ali A, Khan NM, Jiang Y, Zhou G, Wan Y. Comprehensive Genome-Wide Identification and Expression Profiling of bHLH Transcription Factors in Areca catechu Under Abiotic Stress. Int J Mol Sci 2024; 25:12936. [PMID: 39684646 DOI: 10.3390/ijms252312936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor (TF) family, the second-largest among eukaryotes, is known for its evolutionary and functional diversity across plant species. However, bHLH genes have not yet been characterized in Areca catechu. In this study, we identified 76 AcbHLH genes, which exhibit a variety of physicochemical properties. Phylogenetic analysis revealed evolutionary relationships between Arabidopsis thaliana bHLH genes (AtbHLH) and their counterparts in A. catechu (AcbHLH). These analyses also highlighted conserved amino acid motifs (S, R, K, P, L, A, G, and D), conserved domains, and evolutionary changes, such as insertions, deletions, and exon gains or losses. Promoter analysis of AcbHLH genes revealed 76 cis-elements related to growth, phytohormones, light, and stress. Gene duplication analysis revealed four tandem duplications and twenty-three segmental duplications, while AcbHLH63 in the Areca genome exhibited significant synteny with bHLH genes from A. thaliana, Vitis vinifera, Solanum lycopersicum, Brachypodium distachyon, Oryza sativa, and Zea mays. Furthermore, relative expression analysis showed that under drought stress (DS), AcbHLH22, AcbHLH39, AcbHLH45, and AcbHLH58 showed distinct upregulation in leaves at specific time points, while all nine AcbHLH genes were upregulated in roots. Under salt stress (SS), AcbHLH22, AcbHLH39, AcbHLH45, and AcbHLH58 were upregulated in leaves, and AcbHLH22, AcbHLH34, and AcbHLH39 exhibited differential expression in roots at various time points. This study provides valuable insights into the bHLH superfamily in A. catechu, offering a solid foundation for further investigation into its role in responding to abiotic stresses.
Collapse
Affiliation(s)
- Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yiqi Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guangzhen Zhou
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yinglang Wan
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Hao Y, Su J, Cui Y, Wu K. Ectopic expression of HvbHLH132 from hulless barley reduces cold tolerance in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:297. [PMID: 39585367 DOI: 10.1007/s00299-024-03382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Overexpression of HvbHLH132 from hulless barley impairs in chilling and freezing tolerance at the seedlings stage in Arabidopsis thaliana The basic helix-loop-helix (bHLH) transcription factors (TF) are ubiquitously existed in eukaryote and play crucial roles in numerous biological processes. However, the characterization of their members and functions in hulless barley remains limited. Here, we conducted a genome-wide identification of the HvbHLH gene family and assessed the role of HvbHLH132 in cold stress tolerance. We identified 141 HvbHLH genes, which were categorized into twelve subfamilies. Subcellular localization predictions indicated that the majority of HvbHLH proteins were localized in the nucleus. cis-Acting element analysis revealed that the promoter regions of the HvbHLH family contain diverse elements associated with various biological processes. Expression profiling of the 141 HvbHLH genes in two extreme varieties revealed that HvbHLH132 was significantly induced and exhibited substantial differential expression under cold stress. Analyses of subcellular localization and transactivation activity confirmed that HvbHLH132 specifically localized in the nucleus and contributed to transcriptional activation. Furthermore, overexpression of HvbHLH132 in Arabidopsis resulted in impaired chilling and freezing tolerance at the seedling stage, leading to biochemical changes unfavorable for freezing stress. Additionally, the expression of some cold-responsive genes (COR) genes was significantly less induced compared to wild type under freezing stress. This study provides comprehensive insight into the HvbHLH gene family and reveals a critical role of HvbHLH132 in regulating cold tolerance in plants.
Collapse
Affiliation(s)
- Yilei Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
| | - Jing Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongmei Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
5
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1605-1624. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
6
|
Bhardwaj E, Pokhriyal E, Jain A, Lal M, Khari M, Jalan K, Das S. The non-canonically organized members of MIR395 gene family in Brassica juncea are associated with developmentally regulated, sulfate-stress responsive bidirectional promoters that exhibit orientation-dependent differential transcriptional activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112214. [PMID: 39127349 DOI: 10.1016/j.plantsci.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Several MICRORNA genes belonging to same family or different families are often found in homologous or non-homologous clusters. Among the various classes, head-to-head arranged genes form one of the largest categories of non-canonically organized genes. Such head-to-head arranged, non-canonically organized genes possibly share cis-regulatory region with the intergenic sequence having the potential to function as bi-directional promoter (BDP). The transcriptional regulation of head-to-head arranged genes, especially with bidirectional promoters, remains an enigma. In the past, bidirectional promoters have been characterized for a small set of protein-coding gene pairs in plants; however, to the best of our knowledge, no such study has been carried so far for MICRORNA genes. The present study thus functionally characterizes bidirectional promoters associated with members of MIR395 family, which is evolutionary conserved and is most frequently occurring cluster across plant kingdom. In Arabidopsis thaliana, the MIR395 gene family contains six members with two head-to-head arranged gene pairs- MIR395A-B and MIR395E-F. This organization was found to be conserved at seven loci for MIR395A-B, and eleven loci for MIR395E-F in five Brassica sps. Sequence analysis of the putative bidirectional promoters revealed variation in length, GC content and distribution of strict TATA-box. Comparatively higher level of conservation at both the ends of the bidirectional promoters, corresponding to ca. 250 bp upstream of 5'end of the respective MIRNA precursor, was observed. These conserved regions harbour several abiotic stress (nutrient, salt, drought) and hormone (ABA, ethylene) responsive cis-motifs. Functional characterization of putative bidirectional promoters associated with MIR395A-B and MIR395E-F from Arabidopsis and their respective orthologs from Brassica juncea (Bj_A08 MIR395A-B, Bj_B03 MIR395A-B, Bj_A07.1 MIR395E-F and Bj_A07.2 MIR395E-F) was carried out using a dual-reporter vector with β-glucuronidase (GUS) and Green Fluorescent Protein (GFP). Analysis of transcriptional regulation of the two reporter genes - GUS and GFP during developmental stages confirmed their bidirectional nature. Orientation-dependent differential reporter activity indicated asymmetric nature of the promoters. Comparison of the reporter activity amongst orthologs, paralogs and homeologs revealed regulatory diversification, an outcome expected in polyploid genomes. Interestingly, reporter gene activities driven by selected bidirectional promoters were also observed in anther and siliques apart vegetative tissues indicating role of miR395 in anther and fruit development. Finally, we evaluated the activity of reporter genes driven under transcriptional regulation of bidirectional promoters under normal and sulfate-deprived conditions which revealed asymmetric inducibility under sulfate-starvation, in agreement with the known role of miR395 in sulfate homeostasis.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Megha Khari
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Komal Jalan
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
7
|
Wu Z, Gong X, Zhang Y, Li T, Xiang J, Fang Q, Yu J, Ding L, Liang J, Teng N. LlbHLH87 interacts with LlSPT to modulate thermotolerance via activation of LlHSFA2 and LlEIN3 in lily. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1457-1473. [PMID: 39383391 DOI: 10.1111/tpj.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Basic helix-loop-helix (bHLH) proteins comprise one of the largest families of transcription factors in plants, which play roles in plant development, secondary metabolism, and the response to biotic/abiotic stresses. However, the roles of bHLH proteins in thermotolerance are largely unknown. Herein, we identified a heat-inducible member of the bHLH family in lily (Lilium longiflorum), named LlbHLH87, which plays a role in thermotolerance. LlbHLH87 was rapidly induced by transient heat stress, and its encoded protein was localized to the nucleus, exhibiting transactivation activity in both yeast and plant cells. Overexpression of LlbHLH87 in Arabidopsis enhanced basal thermotolerance, while silencing of LlbHLH87 in lily reduced basal thermotolerance. Further analysis showed that LlbHLH87 bound to the promoters of HEAT STRESS TRANSCRIPTION FACTOR A2 (LlHSFA2) and ETHYLENE-INSENSITIVE 3 (LlEIN3) to directly activate their expression. In addition, LlbHLH87 interacted with itself and with SPATULA (LlSPT) protein. LlSPT was activated by extended heat stress and its protein competed for the homologous interaction of LlbHLH87, which reduced the transactivation ability of LlbHLH87 for target genes. Compared with that observed under LlbHLH87 overexpression alone, co-overexpression of LlbHLH87 and LlSPT reduced the basal thermotolerance of lily to sudden heat shock, but improved its thermosensitivity to prolonged heat stress treatment. Overall, our data demonstrated that LlbHLH87 regulates thermotolerance via activation of LlEIN3 and LlHSFA2, along with an antagonistic interaction with LlSPT.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Gong
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Yinyi Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Jun Xiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Qianqian Fang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Junpeng Yu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing, 210043, China
| |
Collapse
|
8
|
Feng X, Bai S, Zhou L, Song Y, Jia S, Guo Q, Zhang C. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress. Int J Mol Sci 2024; 25:11135. [PMID: 39456917 PMCID: PMC11508776 DOI: 10.3390/ijms252011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Blueberries (Vaccinium spp.) are extremely sensitive to drought stress. Flavonoids are crucial secondary metabolites that possess the ability to withstand drought stress. Therefore, improving the drought resistance of blueberries by increasing the flavonoid content is crucial for the development of the blueberry industry. To explore the underlying molecular mechanism of blueberry in adaptation to drought stress, we performed an integrated analysis of the metabolome and transcriptome of blueberry leaves under drought stress. We found that the most enriched drought-responsive genes are mainly involved in flavonoid biosynthesis and plant hormone signal transduction pathways based on transcriptome data and the main drought-responsive metabolites come from the flavonoid class based on metabolome data. The UDP-glucose flavonoid 3-O-glucosyl transferase (UFGT), flavonol synthase (FLS), and anthocyanidin reductase (ANR-2) genes may be the key genes for the accumulation of anthocyanins, flavonols, and flavans in response to drought stress in blueberry leaves, respectively. Delphinidin 3-glucoside and delphinidin-3-O-glucoside chloride may be the most important drought-responsive flavonoid metabolites. VcMYB1, VcMYBPA1, MYBPA1.2, and MYBPA2.1 might be responsible for drought-induced flavonoid biosynthesis and VcMYB14, MYB14, MYB102, and MYB108 may be responsible for blueberry leaf drought tolerance. ABA responsive elements binding factor (ABF) genes, MYB genes, bHLH genes, and flavonoid biosynthetic genes might form a regulatory network to regulate drought-induced accumulation of flavonoid metabolites in blueberry leaves. Our study provides a useful reference for breeding drought-resistant blueberry varieties.
Collapse
Affiliation(s)
- Xinghua Feng
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sining Bai
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Lianxia Zhou
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yan Song
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sijin Jia
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxun Guo
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| | - Chunyu Zhang
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
9
|
Sun S, Qi X, Zhang Z, Sun L, Wang R, Li Y, Chen J, Gu H, Fang J, Lin M. A structural variation in the promoter of the leucoanthocyanidin reductase gene AaLAR1 enhances freezing tolerance by modulating proanthocyanidin accumulation in kiwifruit (Actinidia arguta). PLANT, CELL & ENVIRONMENT 2024; 47:4048-4066. [PMID: 38884345 DOI: 10.1111/pce.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.
Collapse
Affiliation(s)
- Shihang Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhenzhen Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hong Gu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
10
|
Zheng X, Zhu Q, Liu Y, Chen J, Wang L, Xiu Y, Zheng H, Lin S, Ling P, Tang M. Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado ( Persea americana Mill.). Int J Mol Sci 2024; 25:10312. [PMID: 39408642 PMCID: PMC11477099 DOI: 10.3390/ijms251910312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Plants generate a range of physiological and molecular responses to sustain their growth and development when suffering heat stress. Avocado is a type of tropical fruit tree with high economic value. Most avocado cultivars delete, wither, or even die when exposed to heat stress for a long time, which seriously restricts the introduction and cultivation of avocados. In this study, samples of a heat-intolerant variety ('Hass') were treated under heat stress, and the transcriptomics and metabolomics were analyzed, with the expectation of providing information on the variety improvement and domestication of avocados. The differentially expressed genes identified using transcriptome analysis mainly involved metabolic pathways such as plant hormone signal transduction, plant-pathogen interaction, and protein processing in the endoplasmic reticulum. Combined transcriptome and metabolome analysis indicated that the down-regulation of Hass.g03.10206 and Hass.g03.10205 in heat shock-like proteins may result in the reduced Trehalose and Sinapoyl aldehyde content. Metabolomics analysis results indicated that the decrease in Trehalose and Sinapoyl aldehyde content may be an important factor for heat intolerance. These results provide important clues for understanding the physiological mechanisms of adaptation to heat stress in avocados.
Collapse
Affiliation(s)
- Xinyi Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Junxiang Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Lingxia Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China (S.L.)
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China (S.L.)
| | - Peng Ling
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.Z.); (Q.Z.); (Y.L.); (J.C.); (L.W.); (H.Z.)
| |
Collapse
|
11
|
Zhou H, Meng F, Jiang W, Lu X, Zhang R, Huang A, Wu K, Deng P, Wang Y, Zhao H, Du Y, Huo J, Du X, Feng N, Zheng D. Potassium indole-3-butyric acid affects rice's adaptability to salt stress by regulating carbon metabolism, transcription factor genes expression, and biosynthesis of secondary metabolites. FRONTIERS IN PLANT SCIENCE 2024; 15:1416936. [PMID: 39290739 PMCID: PMC11405336 DOI: 10.3389/fpls.2024.1416936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 09/19/2024]
Abstract
Soil salinity pollution is increasing worldwide, seriously affecting plant growth and crop production. Existing reports on how potassium indole-3-butyric acid (IBAK) regulates rice salt stress adaptation by affecting rice carbon metabolism, transcription factor (TF) genes expression, and biosynthesis of secondary metabolites still have limitations. In this study, an IBAK solution at 40 mg L-1 was sprayed on rice leaves at the seedling stage. The results showed that the IBAK application could promote shoot and root growth, decrease sucrose and fructose content, increase starch content, and enhance acid invertase (AI) and neutral invertase (NI) activity under salt stress, indicating altered carbon allocation. Furthermore, the expression of TF genes belonging to the ethylene responsive factor (ERF), WRKY, and basic helix-loop-helix (bHLH) families was influenced by IBAK. Many key genes (OsSSIIc, OsSHM1, and OsPPDKB) and metabolites (2-oxoglutaric acid, fumaric acid, and succinic acid) were upregulated in the carbon metabolism pathway. In addition, this study highlighted the role of IBAK in regulating the biosynthesis of secondary metabolites pathway, potentially contributing to rice stress adaptability. The results of this study can provide new sustainable development solutions for agricultural production.
Collapse
Affiliation(s)
- Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Fengyan Meng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wenxin Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xutong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Rui Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Anqi Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Kunlun Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peng Deng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yaxin Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Huimin Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youwei Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jingxin Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaole Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
12
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
13
|
Zhang X, Yang M, Liu Z, Yang F, Zhang L, Guo Y, Huo D. Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1313-1328. [PMID: 39184561 PMCID: PMC11341512 DOI: 10.1007/s12298-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Fagopyrum tataricum, an important medicinal and edible crop, possesses significant agricultural and economic value. However, the development of buckwheat varieties and yields has been hindered by the delayed breeding progress despite the abundant material resources in China. Current research indicates that quantitative trait loci (QTLs) play a crucial role in controlling plant seed type and yield. To address these limitations, this study constructed recombinant inbred lines (RILs) utilizing both cultivated species and wild buckwheat as raw materials. In total, 84,521 Single Nucleotide Polymorphism (SNP) markers were identified through Genotyping-by-Sequencing (GBS) technology, and high-resolution and high-density SNP genetic maps were developed, which had significant value for QTL mapping, gene cloning and comparative mapping of buckwheat. In this study, we successfully identified 5 QTLs related to thousand grain weight (TGW), 9 for grain length (GL), and 1 for grain width (GW) by combining seed type and TGW data from 202 RIL populations in four different environments, within which one co-located QTL for TGW were discovered on the first chromosome. Transcriptome analysis during different grain development stages revealed 59 significant expression differences between the two materials, which can serve as candidate genes for further investigation into the regulation of grain weight and yield enhancement. The mapped major loci controlling TGW, GL and GW will be valuable for gene cloning and reveal the mechanism underlying grain development and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Miao Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031 China
| | - Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Yajing Guo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| |
Collapse
|
14
|
Liang S, Zang Y, Wang H, Xue S, Xin J, Li X, Tang X, Chen J. Combined transcriptomics and metabolomics analysis reveals salinity stress specific signaling and tolerance responses in the seagrass Zostera japonica. PLANT CELL REPORTS 2024; 43:203. [PMID: 39080075 DOI: 10.1007/s00299-024-03292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
KEY MESSAGE Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.
Collapse
Affiliation(s)
- Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Grugliasco, Turin, Italy
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Hongzhen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi Xin
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinqi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, Zhang S, Turlings TCJ, Zhou X, Peng J, Gao Y, Zhang D, Shi X, Liu Y. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. PLANT, CELL & ENVIRONMENT 2024; 47:2660-2674. [PMID: 38619176 DOI: 10.1111/pce.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhaojiang Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanhong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songbai Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Xiaobin Shi
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
16
|
Wang Q, Lei X, Wang Y, Di P, Meng X, Peng W, Rong J, Wang Y. Genome-wide identification of the LEA gene family in Panax ginseng: Evidence for the role of PgLEA2-50 in plant abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108742. [PMID: 38772166 DOI: 10.1016/j.plaphy.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Ginseng frequently encounters environmental stress during its growth and development. Late Embryogenesis Abundant (LEA) proteins play a crucial role in combating adversity stress, particularly against abiotic challenges In this study, 107 LEA genes from ginseng, spanning eight subfamilies, were identified, demonstrating significant evolutionary conservation, with the LEA2 subfamily being most prominent. Gene duplication events, primarily segmental duplications, have played a major role in the expansion of the LEA gene family, which has undergone strong purifying selection. PgLEAs were unevenly distributed across 22 chromosomes, with each subfamily featuring unique structural domains and conserved motifs. PgLEAs were expressed in various tissues, exhibiting distinct variations in abundance and tissue specificity. Numerous regulatory cis-elements, related to abiotic stress and hormones, were identified in the promoter region. Additionally, PgLEAs were regulated by a diverse array of abiotic stress-related transcription factors. A total of 35 PgLEAs were differentially expressed following treatments with ABA, GA, and IAA. Twenty-three PgLEAs showed significant but varied responses to drought, extreme temperatures, and salinity stress. The transformation of tobacco with the key gene PgLEA2-50 enhanced osmoregulation and antioxidant levels in transgenic lines, improving their resistance to abiotic stress. This study offers insights into functional gene analysis, focusing on LEA proteins, and establishes a foundational framework for research on ginseng's resilience to abiotic stress.
Collapse
Affiliation(s)
- Qi Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yihan Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Peng Di
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiangru Meng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
18
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
19
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Xu M, Tong Z, Jin C, Zhang Q, Lin F, Fang D, Chen X, Zhu T, Lou X, Xiao B, Xu H. Dissection of genetic architecture of nine hazardous component traits of mainstream smoke in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1358953. [PMID: 38779070 PMCID: PMC11109366 DOI: 10.3389/fpls.2024.1358953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Tobacco (Nicotiana tabacum L.) use is the leading cause of preventable death, due to deleterious chemical components and smoke from tobacco products, and therefore reducing harmful chemical components in tobacco is one of the crucial tobacco breeding targets. However, due to complexity of tobacco smoke and unavailability of high-density genetic maps, the genetic architecture of representative hazardous smoke has not been fully dissected. The present study aimed to explore the genetic architecture of nine hazardous component traits of mainstream smoke through QTL mapping using 271 recombinant inbred lines (RILs) derived from K326 and Y3 in multiple environments. The analysis of genotype and genotype by environment interaction (GE) revealed substantially greater heritability over 95% contributed mostly by GE interaction effects. We also observed strong genetic correlations among most studied hazardous smoke traits, with the highest correlation coefficient of 0.84 between carbon monoxide and crotonaldehyde. Based on a published high-density genetic map, a total of 19 novel QTLs were detected for eight traits using a full QTL model, of which 17 QTLs showed significant additive effects, six showed significant additive-by-environment interaction effects, and one pair showed significant epistasis-by-environment interaction effect. Bioinformatics analysis of sequence in QTL region predicted six genes as candidates for four traits, of which Nt21g04598.1, Nt21g04600.1, and Nt21g04601.1 had pleiotropic effects on PHE and TAR.
Collapse
Affiliation(s)
- Manling Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Chengting Jin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qixin Zhang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Lin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Tianneng Zhu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyang Lou
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Haiming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhou X, Wang X, Wei H, Zhang H, Wu Q, Wang L. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea 'Feitian 2'. BMC PLANT BIOLOGY 2024; 24:370. [PMID: 38714932 PMCID: PMC11075258 DOI: 10.1186/s12870-024-05078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.
Collapse
Affiliation(s)
- Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Huijin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Qian Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Guo F, Meng X, Hong H, Liu S, Yu J, Huang C, Dong T, Geng H, Li Z, Zhu M. Systematic identification and expression analysis of bHLH gene family reveal their relevance to abiotic stress response and anthocyanin biosynthesis in sweetpotato. BMC PLANT BIOLOGY 2024; 24:156. [PMID: 38424529 PMCID: PMC10905920 DOI: 10.1186/s12870-024-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Haiting Hong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Can Huang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Huixue Geng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
24
|
Ortolan F, Trenz TS, Delaix CL, Lazzarotto F, Margis-Pinheiro M. bHLH-regulated routes in anther development in rice and Arabidopsis. Genet Mol Biol 2024; 46:e20230171. [PMID: 38372977 PMCID: PMC10875983 DOI: 10.1590/1678-4685-gmb-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Anther development is a complex process essential for plant reproduction and crop yields. In recent years, significant progress has been made in the identification and characterization of the bHLH transcription factor family involved in anther regulation in rice and Arabidopsis, two extensively studied model plants. Research on bHLH transcription factors has unveiled their crucial function in controlling tapetum development, pollen wall formation, and other anther-specific processes. By exploring deeper into regulatory mechanisms governing anther development and bHLH transcription factors, we can gain important insights into plant reproduction, thereby accelerating crop yield improvement and the development of new plant breeding strategies. This review provides an overview of the current knowledge on anther development in rice and Arabidopsis, emphasizing the critical roles played by bHLH transcription factors in this process. Recent advances in gene expression analysis and functional studies are highlighted, as they have significantly enhanced our understanding of the regulatory networks involved in anther development.
Collapse
Affiliation(s)
- Francieli Ortolan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
| | - Thomaz Stumpf Trenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Camila Luiza Delaix
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| |
Collapse
|
25
|
Dwivedi S, Singh D, Singh N, Trivedi PK. Advances in regulatory mechanism(s) and biotechnological approaches to modulate nicotine content in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108397. [PMID: 38316099 DOI: 10.1016/j.plaphy.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.
Collapse
Affiliation(s)
- Shambhavi Dwivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Deeksha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nivedita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Ai Q, Han M, Liu C, Yang L. Transcriptome-Wide Identification and Expression Analysis of bHLH Family Genes in Iris domestica under Drought and Cu Stress. Int J Mol Sci 2024; 25:1773. [PMID: 38339051 PMCID: PMC10855607 DOI: 10.3390/ijms25031773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The role of bHLH transcription factors in plant response to abiotic stress and regulation of flavonoid metabolism is well documented. However, to date, the bHLH transcription factor family in Iris domestica remains unreported, impeding further research on flavonoid metabolism in this plant. To address this knowledge gap, we employed bioinformatics to identify 39 IdbHLH genes and characterised their phylogenetic relationships and gene expression patterns under both drought and copper stress conditions. Our evolutionary tree analysis classified the 39 IdbHLHs into 17 subfamilies. Expression pattern analysis revealed that different IdbHLH transcription factors had distinct expression trends in various organs, suggesting that they might be involved in diverse biological processes. We found that IdbHLH36 was highly expressed in all organs (Transcripts Per Million (TPM) > 10), while only 12 IdbHLH genes in the rhizome and four in the root were significantly upregulated under drought stress. Of these, four genes (IdbHLH05, -37, -38, -39) were co-upregulated in both the rhizome and root, indicating their potential role in drought resistance. With regards to copper stress, we found that only 12 genes were upregulated. Further co-expression analysis revealed that most bHLH genes were significantly correlated with key enzyme genes involved in isoflavone biosynthesis. Thereinto, IdbHLH06 showed a significant positive correlation with IdC4H1 and Id4CL1 (p < 0.05). Furthermore, a transient expression assay confirmed that the IdbHLH06 protein was localised in the nucleus. Our findings provide new insights into the molecular basis and regulatory mechanisms of bHLH transcription factors in isoflavone biosynthesis in I. domestica.
Collapse
Affiliation(s)
| | - Mei Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Cuijing Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | |
Collapse
|
27
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
28
|
Zhuang Y, Zhou L, Geng L, Jiang L, Sui Y, Luo L, Pan H, Zhang Q, Yu C. Genome-wide identification of the bHLH transcription factor family in Rosa persica and response to low-temperature stress. PeerJ 2024; 12:e16568. [PMID: 38188163 PMCID: PMC10771085 DOI: 10.7717/peerj.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Background Basic helix-loop-helix (bHLH) transcription factors are involved in plant growth and development, secondary metabolism, and abiotic stress responses have been studied in a variety of plants. Despite their importance in plant biology, the roles and expression patterns of bHLH family genes in Rosa persica have not been determined. Methods In this study, the RbebHLH family genes were systematically analyzed using bioinformatics methods, and their expression patterns under low-temperature stress were analyzed by transcriptome and related physiological index measurements. Results In total, 142 RbebHLHs were identified in the genome of R. persica, distributed on seven chromosomes. Phylogenetic analysis including orthologous genes in Arabidopsis divided RbebHLHs into 21 subfamilies, with similar structures and motifs within a subfamily. A collinearity analysis revealed seven tandem duplications and 118 segmental duplications in R. persica and 127, 150, 151, 172, and 164 segmental duplications between R. persica and Arabidopsis thaliana, Prunus mume, Fragaria vesca, Rosa chinensis, and Prunus persica, respectively. A number of cis-regulatory elements associated with abiotic stress response and hormone response were identified in RbebHLHs, and 21 RbebHLHs have potential interactions with the CBF family. In addition, the expression results showed that part of bHLH may regulate the tolerance of R. persica to low-temperature stress through the jasmonic acid and pathway. Transcriptomic data showed that the expression levels of different RbebHLHs varied during overwintering, and the expression of some RbebHLHs was significantly correlated with relative conductivity and MDA content, implying that RbebHLHs play important regulatory roles in R. persica response to low-temperature stress. Overall, this study provides valuable insights into the study of RbebHLHs associated with low-temperature stress.
Collapse
Affiliation(s)
- Yueying Zhuang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lijun Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lifang Geng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lv Jiang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yunji Sui
- Xinjiang Career Technical College, Xinjiang, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Yan Z, Li K, Li Y, Wang W, Leng B, Yao G, Zhang F, Mu C, Liu X. The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize. Int J Biol Macromol 2023; 253:126978. [PMID: 37741480 DOI: 10.1016/j.ijbiomac.2023.126978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The growth and productivity of maize (Zea mays), along with other crop plants, can be significantly hindered by salt stress. Nevertheless, the precise molecular mechanism underlying salt tolerance in maize has yet to be fully elucidated. Hence, it was attempted to identify ZmIAA9, a member of the maize Aux/IAA gene family, as a positive regulator of salt tolerance in maize, which was accompanied by the increased ROS detoxification and elevated transcript abundances of ROS scavenging genes. Molecular and biochemical assays have provided compelling evidence that ZmbHLH32, a transcription factor belonging to the bHLH family, was capable of binding directly to the promoter region of ZmIAA9, thereby activating its expression. This interaction between ZmbHLH32 and ZmIAA9 could be critical for the regulation of salt tolerance in maize. As expected, overexpression of ZmbHLH32 led to the enhanced salt tolerance. In contrast, decreased salt tolerance was attained after application of knockout mutants of ZmbHLH32. Furthermore, ZmARF1, which could act as a downstream of ZmIAA9, was found to physically interact with ZmIAA9 and repress the expression levels of ROS scavenging genes. Thus, our work uncovers a novel mechanism of ZmbHLH32-ZmIAA9-ZmARF1 module-mediated salt tolerance in maize, which can be exploited for breeding salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ke Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Wenli Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
30
|
Zahra N, Uzair M, Zaid IU, Attia KA, Inam S, Fiaz S, Abdallah RM, Naeem MK, Farooq U, Rehman N, Ali GM, Xu J, Li Z, Khan MR. The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress. Mol Biol Rep 2023; 51:22. [PMID: 38110786 DOI: 10.1007/s11033-023-08998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Salinity is one of the main abiotic factors that restrict plant growth, physiology, and crop productivity is salt stress. About 33% of the total irrigated land suffers from severe salinity because of intensive underground water extraction and irrigation with brackish water. Thus, it is important to understand the genetic mechanism and identify the novel genes involved in salt tolerance for the development of climate-resilient rice cultivars. METHODS AND RESULTS In this study, two rice genotypes with varying tolerance to salt stress were used to investigate the differential expressed genes and molecular pathways to adapt under saline soil by comparative RNA sequencing at 42 days of the seedling stage. Salt-susceptible (S3) and -tolerant (S13) genotypes revealed 3982 and 3463 differentially expressed genes in S3 and S13 genotypes. The up-regulated genes in both genotypes were substantially enriched in different metabolic processes and binding activities. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and plant signal transduction mechanisms were highly enriched. Salt-susceptible and -tolerant genotypes shared the same salt adaptability mechanism with no significant quantitative differences at the transcriptome level. Moreover, bHLH, ERF, NAC, WRKY, and MYB transcription factors were substantially up-regulated under salt stress. 391 out of 1806 identified novel genes involved in signal transduction mechanisms. Expression profiling of six novel genes further validated the findings from RNA-seq data. CONCLUSION These findings suggest that the differentially expressed genes and molecular mechanisms involved in salt stress adaptation are conserved in both salt-susceptible and salt-tolerant rice genotypes. Further molecular characterization of novel genes will help to understand the genetic mechanism underlying salt tolerance in rice.
Collapse
Affiliation(s)
- Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Imdad Ullah Zaid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan.
| | - Rizk M Abdallah
- Department of Rice, Field Crops Research Institute, ARC, Sakha, Kafrelshiekh, 33717, Egypt
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Umer Farooq
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan
| | | | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
31
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
32
|
Du T, Zhou Y, Qin Z, Li A, Wang Q, Li Z, Hou F, Zhang L. Genome-wide identification of the C2H2 zinc finger gene family and expression analysis under salt stress in sweetpotato. FRONTIERS IN PLANT SCIENCE 2023; 14:1301848. [PMID: 38152142 PMCID: PMC10752007 DOI: 10.3389/fpls.2023.1301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Introduction The higher plant transcription factor C2H2 zinc finger protein (C2H2-ZFP) is essential for plant growth, development, and stress response. There are limited studies on C2H2-ZFP genes in sweetpotato, despite a substantial number of C2H2-ZFP genes having been systematically found in plants. Methods In this work, 178 C2H2-ZFP genes were found in sweetpotato, distributed randomly on 15 chromosomes, and given new names according to where they were located. These members of the zinc finger gene family are separated into six branches, as shown by the phylogenetic tree. 24 tandem repeats of IbZFP genes and 46 fragment repeats were identified, and a homology study revealed that IbZFP genes linked more regions with wild relative species of sweetpotato as well as rhizome plants like potato and cassava. And we analyzed the expression patterns of IbZFP genes during the early development of sweetpotato storage roots (SRs) and salt stress using transcriptome data, and identified 44 IbZFP genes that exhibited differences in expression levels during the early expansion of sweetpotato SRs in different varieties, and 92 IbZFP genes that exhibited differences in expression levels under salt stress in salt tolerant and salt sensitive sweetpotato varieties. Additionally, we cloned six IbZFP genes in sweetpotato and analyzed their expression patterns in different tissues, their expression patterns under abiotic stress and hormone treatment, and subcellular localization. Results and discussion The results showed that the IbZFP genes had tissue specificity in sweetpotato and were induced to varying degrees by drought and salt stress. ABA and GA3 treatments also affected the expression of the IbZFP genes. We selected IbZFP105, which showed significant differences in expression levels under salt stress and ABA treatment, to be heterologously expressed in Arabidopsis thaliana. We found that IbZFP105 OE lines exhibited higher tolerance to salt stress and ABA stress. This indicates that IbZFP105 can enhance the salt tolerance of plants. These results systematically identified the evolution and expression patterns of members of the C2H2-ZFP gene family in sweetpotato, providing a theoretical basis for studying the role of IbZFP genes in the development of sweetpotato SRs and in resistance to stress.
Collapse
Affiliation(s)
- Taifeng Du
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
33
|
Tan Z, Lu D, Yu Y, Li L, Dong W, Xu L, Yang Q, Wan X, Liang H. Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius. PLANTS (BASEL, SWITZERLAND) 2023; 12:3764. [PMID: 37960120 PMCID: PMC10648185 DOI: 10.3390/plants12213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China;
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
34
|
Zhang F, Wu Y, Shi X, Wang X, Yin Y. Comparative Analysis of the GATA Transcription Factors in Five Solanaceae Species and Their Responses to Salt Stress in Wolfberry ( Lycium barbarum L.). Genes (Basel) 2023; 14:1943. [PMID: 37895292 PMCID: PMC10606309 DOI: 10.3390/genes14101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yan Wu
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xin Shi
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xiaojing Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
35
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
36
|
Zhang X, Liang S, Luo B, Zhou Z, Bao J, Fang R, Wang F, Song X, Liao Z, Chen G, Wang Y, Xu F, Teng Y, Li W, Xu S, Lin FC. Transcriptomic and Metabolomic Investigation on Leaf Necrosis Induced by ZmWus2 Transient Overexpression in Nicotiana benthamiana. Int J Mol Sci 2023; 24:11190. [PMID: 37446367 DOI: 10.3390/ijms241311190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.
Collapse
Affiliation(s)
- Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Luo
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiqiu Fang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China
| | - Fang Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijiao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhenfeng Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchang Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
37
|
Gao Q, Li X, Xiang C, Li R, Xie H, Liu J, Li X, Zhang G, Yang S, Liang Y, Zhai C, Zhao Y. EbbHLH80 Enhances Salt Responses by Up-Regulating Flavonoid Accumulation and Modulating ROS Levels. Int J Mol Sci 2023; 24:11080. [PMID: 37446256 DOI: 10.3390/ijms241311080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
bHLH transcription factors are involved in multiple aspects of plant biology, such as the response to abiotic stress. Erigeron breviscapus is a composite plant, and its rich flavonoids have strong preventive and therapeutic effects on cardio cerebral vascular disease. EbbHLH80, a gene from E. breviscapus that positively regulates flavonoid synthesis, was previously characterized. However, it is unclear whether EbbHLH80 increases flavonoid accumulation, which affects salt tolerance. The function of EbbHLH80 in transgenic tobacco seeds was identified by phylogenetic analysis and metabolome-transcriptome analysis. We investigated the role of EbbHLH80 in salt stress response. Our results showed that the expression of EbbHLH80 increased following salt treatment. Integrating the metabolome and transcriptome analysis of EbbHLH80-OE and Yunyan 87 (WT) seeds, we identified several genes and metabolites related to flavonoid biosynthesis and salt stress. Moreover, EbbHLH80-OE plants displayed higher salt tolerance than wild-type plants during seed germination and seedling growth. After salt treatment, transgenic tobacco had significantly lower levels of reactive oxygen species (ROS) than WT, with enhanced levels of antioxidant enzyme expression. Altogether, our results demonstrated that EbbHLH80 might be a positive regulator, promoting salt tolerance by modulating ROS scavenging and increasing stress-responsive genes.
Collapse
Affiliation(s)
- Qingqing Gao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunfan Xiang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ruolan Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Hongchun Xie
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jia Liu
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoning Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Zhang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shengchao Yang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yanli Liang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Yan Zhao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
38
|
Chen S, Wang X, Cheng Y, Gao H, Chen X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023; 28:4982. [PMID: 37446644 DOI: 10.3390/molecules28134982] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids represent the main class of plant secondary metabolites and occur in the tissues and organs of various plant species. In plants, flavonoids are involved in many biological processes and in response to various environmental stresses. The consumption of flavonoids has been known to reduce the risk of many chronic diseases due to their antioxidant and free radical scavenging properties. In the present review, we summarize the classification, distribution, biosynthesis pathways, and regulatory mechanisms of flavonoids. Moreover, we investigated their biological activities and discuss their applications in food processing and cosmetics, as well as their pharmaceutical and medical uses. Current trends in flavonoid research are also briefly described, including the mining of new functional genes and metabolites through omics research and the engineering of flavonoids using nanotechnology. This review provides a reference for basic and applied research on flavonoid compounds.
Collapse
Affiliation(s)
- Shen Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yu Cheng
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hongsheng Gao
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
39
|
Virág E, Kiniczky M, Kutasy B, Nagy Á, Pallos JP, Laczkó L, Freytag C, Hegedűs G. Supplementation of the Plant Conditioner ELICE Vakcina ® Product with β-Aminobutyric Acid and Salicylic Acid May Lead to Trans-Priming Signaling in Barley ( Hordeum vulgare). PLANTS (BASEL, SWITZERLAND) 2023; 12:2308. [PMID: 37375933 DOI: 10.3390/plants12122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Plant immunological memory, priming, is a defense mechanism that can be triggered by external stimuli, leading to the activation of biochemical pathways and preparing plants for disease resistance. Plant conditioners improve yield and crop quality through nutrient efficiency and abiotic stress tolerance, which is enhanced by the addition of resistance- and priming-induced compounds. Based on this hypothesis, this study aimed to investigate plant responses to priming actives of different natures, including salicylic acid and beta-aminobutyric acid, in combination with the plant conditioning agent ELICE Vakcina®. Phytotron experiments and RNA-Seq analyses of differentially expressed genes using the combinations of these three investigated compounds were performed in a barley culture to investigate possible synergistic relationships in the genetic regulatory network. The results indicated a strong regulation of defense responses, which was enhanced by supplemental treatments; however, both synergistic and antagonistic effects were enhanced with one or two components, depending on the supplementation. The overexpressed transcripts were functionally annotated to assess their involvement in jasmonic acid and salicylic acid signaling; however, their determinant genes were highly dependent on the supplemental treatments. Although the effects overlapped, the potential effects of trans-priming the two supplements tested could be largely separated.
Collapse
Affiliation(s)
- Eszter Virág
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str 12A, 8360 Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Márta Kiniczky
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Festetics Str 7, 8360 Keszthely, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - József Péter Pallos
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - Levente Laczkó
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
- ELKH-DE Conservation Biology Research Group, Egyetem Square, 4032 Debrecen, Hungary
| | - Csongor Freytag
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Géza Hegedűs
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str 12A, 8360 Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Gasparich Márk Str 18/A, 8900 Zalaegerszeg, Hungary
| |
Collapse
|
40
|
Tóth EG, Cseke K, Benke A, Lados BB, Tomov VT, Zhelev P, Kámpel JD, Borovics A, Köbölkuti ZA. Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data. Heredity (Edinb) 2023:10.1038/s41437-023-00629-2. [PMID: 37316726 PMCID: PMC10382515 DOI: 10.1038/s41437-023-00629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species' significant role in the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced diversity among them but showed a north-southeast gradient. Selection tests showed nine outlier SNPs positioned in different functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations, explaining 2.4-16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection in the examined Q. petraea populations.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Botond B Lados
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Vladimir T Tomov
- Department of Landscape Architecture, Faculty of Ecology and Landscape Architecture, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, Faculty of Forestry, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - József D Kámpel
- Ottó Herman Environmental and Agricultural Technical School, Vocational School and College (Agricultural Vocational Centre of the Kisalföld Region), Ernuszt Kelemen 1, Szombathely, 9700, Hungary
| | - Attila Borovics
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Zoltán A Köbölkuti
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
- Departement of Applied Forest Genetics Research, Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| |
Collapse
|
41
|
Guo G, Yu T, Zhang H, Chen M, Dong W, Zhang S, Tang X, Liu L, Heng W, Zhu L, Jia B. Evidence That PbrSAUR72 Contributes to Iron Deficiency Tolerance in Pears by Facilitating Iron Absorption. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112173. [PMID: 37299155 DOI: 10.3390/plants12112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Iron is an essential trace element for plants; however, low bioactive Fe in soil continuously places plants in an Fe-deficient environment, triggering oxidative damage. To cope with this, plants make a series of alterations to increase Fe acquisition; however, this regulatory network needs further investigation. In this study, we found notably decreased indoleacetic acid (IAA) content in chlorotic pear (Pyrus bretschneideri Rehd.) leaves caused by Fe deficiency. Furthermore, IAA treatment slightly induced regreening by increasing chlorophyll synthesis and Fe2+ accumulation. At that point, we identified PbrSAUR72 as a key negative effector output of auxin signaling and established its close relationship to Fe deficiency. Furthermore, the transient PbrSAUR72 overexpression could form regreening spots with increased IAA and Fe2+ content in chlorotic pear leaves, whereas its transient silencing does the opposite in normal pear leaves. In addition, cytoplasm-localized PbrSAUR72 exhibits root expression preferences and displays high homology to AtSAUR40/72. This promotes salt tolerance in plants, indicating a putative role for PbrSAUR72 in abiotic stress responses. Indeed, transgenic plants of Solanum lycopersicum and Arabidopsis thaliana overexpressing PbrSAUR72 displayed less sensitivity to Fe deficiency, accompanied by substantially elevated expression of Fe-induced genes, such as FER/FIT, HA, and bHLH39/100. These result in higher ferric chelate reductase and root pH acidification activities, thereby hastening Fe absorption in transgenic plants under an Fe-deficient condition. Moreover, the ectopic overexpression of PbrSAUR72 inhibited reactive oxygen species production in response to Fe deficiency. These findings contribute to a new understanding of PbrSAURs and its involvement in Fe deficiency, providing new insights for the further study of the regulatory mechanisms underlying the Fe deficiency response.
Collapse
Affiliation(s)
- Guoling Guo
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tao Yu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Agricultural Experimental Center of Guiyang, Guiyang Agriculture and Rural Bureau, Guiyang 550018, China
| | - Haiyan Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Singleron Biotechnology Co., Ltd., Nanjing 210000, China
| | - Weiyu Dong
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqin Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lun Liu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liwu Zhu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Bing Jia
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
42
|
Ma H, Zou F, Li D, Wan Y, Zhang Y, Zhao Z, Wang X, Gao H. Transcription Factor MdbHLH093 Enhances Powdery Mildew Resistance by Promoting Salicylic Acid Signaling and Hydrogen Peroxide Accumulation. Int J Mol Sci 2023; 24:ijms24119390. [PMID: 37298341 DOI: 10.3390/ijms24119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Powdery mildew is an apple disease caused by the obligate trophic fungus Podosphaera leucotricha. Basic helix-loop-helix (bHLH) transcription factors play important roles in plant development and stress responses, and they have been widely studied in model plants such as Arabidopsis thaliana. However, their role in the stress response of perennial fruit trees remains unclear. Here, we investigated the role of MdbHLH093 in the powdery mildew of apples. The expression of MdbHLH093 was significantly induced during the infection of apples with powdery mildew, and the allogenic overexpression of MdbHLH093 in A. thaliana enhanced the resistance to powdery mildew by increasing the accumulation of hydrogen peroxide (H2O2) and activating the salicylic acid (SA) signaling pathway. The transient overexpression of MdbHLH093 in apple leaves increased the resistance to powdery mildew. Conversely, when MdbHLH093 expression was silenced, the sensitivity of apple leaves to powdery mildew was increased. The physical interaction between MdbHLH093 and MdMYB116 was demonstrated by yeast two-hybrid, bi-molecular fluorescence complementation, and split luciferase experiments. Collectively, these results indicate that MdbHLH093 interacts with MdMYB116 to improve apple resistance to powdery mildew by increasing the accumulation of H2O2 and activating the SA signaling pathway, as well as by providing a new candidate gene for resistance molecular breeding.
Collapse
Affiliation(s)
- Hai Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Fuyan Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Dongmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Ye Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yiping Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
43
|
Liu G, Rui L, Yang Y, Liu R, Li H, Ye F, You C, Zhang S. Identification and Functional Characterization of MdNRT1.1 in Nitrogen Utilization and Abiotic Stress Tolerance in Malus domestica. Int J Mol Sci 2023; 24:ijms24119291. [PMID: 37298242 DOI: 10.3390/ijms24119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nitrate is one of the main sources of nitrogen for plant growth. Nitrate transporters (NRTs) participate in nitrate uptake and transport, and they are involved in abiotic stress tolerance. Previous studies have shown that NRT1.1 has a dual role in nitrate uptake and utilization; however, little is known about the function of MdNRT1.1 in regulating apple growth and nitrate uptake. In this study, apple MdNRT1.1, a homolog of Arabidopsis NRT1.1, was cloned and functionally identified. Nitrate treatment induced an increased transcript level of MdNRT1.1, and overexpression of MdNRT1.1 promoted root development and nitrogen utilization. Ectopic expression of MdNRT1.1 in Arabidopsis repressed tolerance to drought, salt, and ABA stresses. Overall, this study identified a nitrate transporter, MdNRT1.1, in apples and revealed how MdNRT1.1 regulates nitrate utilization and abiotic stress tolerance.
Collapse
Affiliation(s)
- Guodong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuying Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Ranxin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongliang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Fan Ye
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
44
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
45
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
46
|
Sarkar B, Varalaxmi Y, Vanaja M, RaviKumar N, Prabhakar M, Yadav SK, Maheswari M, Singh VK. Mapping of QTLs for morphophysiological and yield traits under water-deficit stress and well-watered conditions in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1124619. [PMID: 37223807 PMCID: PMC10200936 DOI: 10.3389/fpls.2023.1124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 05/25/2023]
Abstract
Maize productivity is significantly impacted by drought; therefore, improvement of drought tolerance is a critical goal in maize breeding. To achieve this, a better understanding of the genetic basis of drought tolerance is necessary. Our study aimed to identify genomic regions associated with drought tolerance-related traits by phenotyping a mapping population of recombinant inbred lines (RILs) for two seasons under well-watered (WW) and water-deficit (WD) conditions. We also used single nucleotide polymorphism (SNP) genotyping through genotyping-by-sequencing to map these regions and attempted to identify candidate genes responsible for the observed phenotypic variation. Phenotyping of the RILs population revealed significant variability in most of the traits, with normal frequency distributions, indicating their polygenic nature. We generated a linkage map using 1,241 polymorphic SNPs distributed over 10 chromosomes (chrs), covering a total genetic distance of 5,471.55 cM. We identified 27 quantitative trait loci (QTLs) associated with various morphophysiological and yield-related traits, with 13 QTLs identified under WW conditions and 12 under WD conditions. We found one common major QTL (qCW2-1) for cob weight and a minor QTL (qCH1-1) for cob height that were consistently identified under both water regimes. We also detected one major and one minor QTL for the Normalized Difference Vegetation Index (NDVI) trait under WD conditions on chr 2, bin 2.10. Furthermore, we identified one major QTL (qCH1-2) and one minor QTL (qCH1-1) on chr 1 that were located at different genomic positions to those identified in earlier studies. We found co-localized QTLs for stomatal conductance and grain yield on chr 6 (qgs6-2 and qGY6-1), while co-localized QTLs for stomatal conductance and transpiration rate were identified on chr 7 (qgs7-1 and qTR7-1). We also attempted to identify the candidate genes responsible for the observed phenotypic variation; our analysis revealed that the major candidate genes associated with QTLs detected under water deficit conditions were related to growth and development, senescence, abscisic acid (ABA) signaling, signal transduction, and transporter activity in stress tolerance. The QTL regions identified in this study may be useful in designing markers that can be utilized in marker-assisted selection breeding. In addition, the putative candidate genes can be isolated and functionally characterized so that their role in imparting drought tolerance can be more fully understood.
Collapse
|
47
|
Zhu Z, Luo M, Li J, Cui B, Liu Z, Fu D, Zhou H, Zhou A. Comparative transcriptome analysis reveals the function of SlPRE2 in multiple phytohormones biosynthesis, signal transduction and stomatal development in tomato. PLANT CELL REPORTS 2023; 42:921-937. [PMID: 37010556 DOI: 10.1007/s00299-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Transcriptomic, physiological, and qRT-PCR analysis revealed the potential mechanism by which SlPRE2 regulates plant growth and stomatal size via multiple phytohormone pathways in tomato. Paclobutrazol resistance proteins (PREs) are atypical members of the basic/helix-loop-helix (bHLH) transcription factor family that regulate plant morphology, cell size, pigment metabolism and abiotic stress in response to different phytohormones. However, little is known about the network regulatory mechanisms of PREs in plant growth and development in tomato. In this study, the function and mechanism of SlPRE2 in tomato plant growth and development were investigated. The quantitative RT-PCR results showed that the expression of SlPRE2 was regulated by multiple phytohormones and abiotic stresses. It showed light-repressed expression during the photoperiod. The RNA-seq results revealed that SlPRE2 regulated many genes involved in photosynthesis, chlorophyll metabolism, phytohormone metabolism and signaling, and carbohydrate metabolism, suggesting the role of SlPRE2 in gibberellin, brassinosteroid, auxin, cytokinin, abscisic acid and salicylic acid regulated plant development processes. Moreover, SlPRE2 overexpression plants showed widely opened stomata in young leaves, and four genes involved in stomatal development showed altered expression. Overall, the results demonstrated the mechanism by which SlPRE2 regulates phytohormone and stress responses and revealed the function of SlPRE2 in stomatal development in tomato. These findings provide useful clues for understanding the molecular mechanisms of SlPRE2-regulated plant growth and development in tomato.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| | - Menglin Luo
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Jialing Li
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Baolu Cui
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, China
| | - Zixin Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Dapeng Fu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Huiwen Zhou
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Anpei Zhou
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| |
Collapse
|
48
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
49
|
Liu X, Su L, Li L, Zhang Z, Li X, Liang Q, Li L. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. BMC Genomics 2023; 24:119. [PMID: 36927268 PMCID: PMC10018853 DOI: 10.1186/s12864-023-09219-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND HR (hairy root) has emerged as a valuable tissue for the rapid characterization of plant gene function and enzyme activity in vivo. AhGLK1 (Arachis hypogaea L. golden2-like 1) is known to play a role in post-drought recovery. However, it is unclear (a) whether HR has properties that are distinct from those of PR (primary root); and (b) which gene networks are regulated by AhGLK1 in response to drought stress and recovery in peanut. RESULTS We found that cells of the root tip cortex were larger in HR than in PR, while a total of 850 differentially expressed genes (DEGs) were identified in HR compared to PR. Eighty-eight of these DEGs, relating to chlorophyll and photosynthesis, were upregulated in HR. In addition, AhGLK1-OX (AhGLK1-overexpressing) HR showed a green phenotype, and had a higher relative water content than 35 S::eGFP (control) HR during drought stress. RNA-seq analysis showed that 74 DEGs involved both in the drought response and the post-drought recovery process were significantly enriched in the galactose metabolism pathway. GO terms enrichment analysis revealed that 59.19%, 29.79% and 17.02% of the DEGs mapped to the 'biological process' (BP), 'molecular function' (MF) and 'cellular component' (CC) domains, respectively. Furthermore, 20 DEGs involved in post-drought recovery were uniquely expressed in AhGLK1-OX HR and were significantly enriched in the porphyrin metabolism pathway. GO analysis showed that 42.42%, 30.30% and 27.28% of DEGs could be assigned to the BP, MF and CC domains, respectively. Transcription factors including bHLH and MYB family members may play a key role during drought stress and recovery. CONCLUSION Our data reveal that HR has some of the characteristics of leaves, indicating that HR is suitable for studying genes that are mainly expressed in leaves. The RNA-seq results are consistent with previous studies that show chlorophyll synthesis and photosynthesis to be critical for the role of AhGLK1 in improving post-drought recovery growth in peanut. These findings provide in-depth insights that will be of great utility for the exploration of candidate gene functions in relation to drought tolerance and/or post-drought recovery ability in peanut.
Collapse
Affiliation(s)
- Xing Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, 519040, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Liangchen Su
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, 519040, Zhuhai, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Qingjian Liang
- School of Fishery, Zhejiang Ocean University, 316022, Zhoushan, Zhejiang, China.
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
50
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|