1
|
Pauly R, Johnson L, Feltus FA, Casanova EL. Enrichment of a subset of Neanderthal polymorphisms in autistic probands and siblings. Mol Psychiatry 2024; 29:3452-3461. [PMID: 38760502 PMCID: PMC11541192 DOI: 10.1038/s41380-024-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Homo sapiens and Neanderthals underwent hybridization during the Middle/Upper Paleolithic age, culminating in retention of small amounts of Neanderthal-derived DNA in the modern human genome. In the current study, we address the potential roles Neanderthal single nucleotide polymorphisms (SNP) may be playing in autism susceptibility in samples of black non-Hispanic, white Hispanic, and white non-Hispanic people using data from the Simons Foundation Powering Autism Research (SPARK), Genotype-Tissue Expression (GTEx), and 1000 Genomes (1000G) databases. We have discovered that rare variants are significantly enriched in autistic probands compared to race-matched controls. In addition, we have identified 25 rare and common SNPs that are significantly enriched in autism on different ethnic backgrounds, some of which show significant clinical associations. We have also identified other SNPs that share more specific genotype-phenotype correlations but which are not necessarily enriched in autism and yet may nevertheless play roles in comorbid phenotype expression (e.g., intellectual disability, epilepsy, and language regression). These results strongly suggest Neanderthal-derived DNA is playing a significant role in autism susceptibility across major populations in the United States.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
| | - Layla Johnson
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA
| | - F Alex Feltus
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Clemson, SC, 29634, USA
| | - Emily L Casanova
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA.
| |
Collapse
|
2
|
Sörnyei D, Vass Á, Németh D, Farkas K. Autistic and schizotypal traits exhibit similarities in their impact on mentalization and adult attachment impairments: a cross-sectional study. BMC Psychiatry 2024; 24:654. [PMID: 39363301 PMCID: PMC11451163 DOI: 10.1186/s12888-024-06048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Deficits in mentalizing and attachment occur in the autism and schizophrenia spectrum, and their extended traits in the general population. Parental attachment and the broader social environment highly influence the development of mentalizing. Given the similarities in the symptomatology and neurodevelopmental correlates of autism spectrum disorder (ASD) and schizophrenia (SCH), it is crucial to identify their overlaps and differences to support screening, differential diagnosis, and intervention. METHODS This cross-sectional study utilized questionnaire data from 2203 adults (65.1% female, mean age[SD] = 37.98[9.66]), including participants diagnosed with ASD, SCH, and those exhibiting subclinical traits to investigate the associations between mentalizing, attachment, and perceived social support during adolescence across the autistic and schizotypy spectrum. RESULTS It was revealed that both autistic and schizotypal traits have comparable effects on insecure adult attachment, primarily through challenges in mentalizing. The impact of mentalizing deficits on adult attachment slightly varies between autistic and schizotypal traits. Conversely, perceived social support during adolescence relates to improved mentalizing and secure adult attachment as a protective factor during development. CONCLUSIONS These outcomes highlight the significance of supportive therapeutic relationships and community care while suggesting directions for further research and collaborative treatments addressing ASD and SCH, considering the differential impact of mentalizing on adult attachment.
Collapse
Affiliation(s)
- Dániel Sörnyei
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary
- Department of Clinical Psychology, Semmelweis University, Üllői út 25, Budapest, 1091, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary
| | - Ágota Vass
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, Université Claude Bernard Lyon 1, CNRS, Bron, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary.
| |
Collapse
|
3
|
Linke AC, Chen B, Olson L, Cordova M, Wilkinson M, Wang T, Herrera M, Salmina M, Rios A, Mahmalji J, Do T, Vu J, Budman M, Walker A, Fishman I. Altered development of the Hurst Exponent in medial prefrontal cortex in preschoolers with autism. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00271-4. [PMID: 39293740 DOI: 10.1016/j.bpsc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Atypical balance of excitation (E) and inhibition (I) in the brain is thought to contribute to the emergence and symptomatology of autism spectrum disorders (ASD). E/I ratio can be estimated from resting state functional magnetic resonance imaging (fMRI) using the Hurst Exponent (H). A recent study reported decreased ventromedial prefrontal cortex (vmPFC) H in male adults with ASD. Part of the default mode network (DMN), vmPFC plays an important role in emotion regulation, decision making, and social cognition. It frequently shows altered function and connectivity in autistic individuals. METHODS The current study presents the first fMRI evidence of altered early development of vmPFC H and its link to DMN functional connectivity (FC) and emotional control in toddlers and preschoolers with ASD. 83 children (n=45 ASD), ages 1½ - 5 years, underwent natural sleep fMRI as part of a longitudinal study. RESULTS In a cross-sectional analysis, vmPFC H decreased with age in children with ASD, reflecting increasing E/I ratio, but not in typically developing children. This effect remained significant when controlling for gestational age at birth, socioeconomic status, or ethnicity. The same pattern was also observed in a subset of children with longitudinal fMRI data acquired two years apart on average. Lower vmPFC H was further associated with reduced FC within the DMN as well as with higher emotional control deficits (though only significant transdiagnostically). CONCLUSIONS These results suggest an early onset of E/I imbalances in vmPFC in ASD with likely consequences for the maturation of the DMN.
Collapse
Affiliation(s)
- Annika C Linke
- Department of Psychology, San Diego State University, San Diego, CA; SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA; SDSU Center for Autism and Developmental Disorders, San Diego, CA.
| | - Bosi Chen
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY
| | - Lindsay Olson
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA; University of California San Francisco, Department of Psychiatry and Behavioral Sciences, San Francisco, CA
| | - Michaela Cordova
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Molly Wilkinson
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Tiffany Wang
- Department of Psychology, University of California San Diego, La Jolla, CA
| | - Meagan Herrera
- Department of Psychology, San Diego State University, San Diego, CA
| | - Madison Salmina
- Department of Psychology, San Diego State University, San Diego, CA
| | - Adriana Rios
- Department of Psychology, San Diego State University, San Diego, CA
| | - Judy Mahmalji
- Department of Psychology, San Diego State University, San Diego, CA
| | - Tess Do
- Department of Psychology, San Diego State University, San Diego, CA
| | - Jessica Vu
- Department of Psychology, San Diego State University, San Diego, CA
| | - Michelle Budman
- Department of Psychology, San Diego State University, San Diego, CA
| | - Alexis Walker
- Department of Psychology, San Diego State University, San Diego, CA
| | - Inna Fishman
- Department of Psychology, San Diego State University, San Diego, CA; SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA; SDSU Center for Autism and Developmental Disorders, San Diego, CA
| |
Collapse
|
4
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Cheng Y, Cai H, Liu S, Yang Y, Pan S, Zhang Y, Mo F, Yu Y, Zhu J. Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2024:S0006-3223(24)01489-6. [PMID: 39103010 DOI: 10.1016/j.biopsych.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia. METHODS To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Siyu Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Shan Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqi Zhang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Fan Mo
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
6
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
7
|
Ogurcakova V, Kajsova M, Marusic P, Amlerova J. Social cognition in Idiopathic generalised epilepsies. Behav Brain Res 2024; 469:115044. [PMID: 38734033 DOI: 10.1016/j.bbr.2024.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Social cognition is a set of mental skills necessary to create satisfactory interpersonal relationships and feel a sense of belonging to a social group. Its deficits significantly reduce the quality of life in people with epilepsy. Studies on social cognition and its impairments focus predominantly on people with focal epilepsies. Idiopathic generalised epilepsies are a group of diseases that share similar clinical, prognostic and electrographic characteristics. Despite their typically normal intelligence, people with Idiopathic generalised epilepsies can suffer from learning disabilities and executive dysfunctions. Current studies also suggest social cognition impairments, but their results are inconsistent. This review offers the latest knowledge of social cognition in adults with Idiopathic generalised epilepsies. In addition, we provide an overview of the most frequently used assessment methods. We explain possible reasons for different outcomes and discuss future research perspectives.
Collapse
Affiliation(s)
- Viktoria Ogurcakova
- Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Charles University, ERN EpiCARE, Prague, Czech Republic.
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Charles University, ERN EpiCARE, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Charles University, ERN EpiCARE, Prague, Czech Republic
| | - Jana Amlerova
- Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Charles University, ERN EpiCARE, Prague, Czech Republic
| |
Collapse
|
8
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
9
|
Ross G, Radtke-Schuller S, Frohlich F. Ferret as a model system for studying the anatomy and function of the prefrontal cortex: A systematic review. Neurosci Biobehav Rev 2024; 162:105701. [PMID: 38718987 PMCID: PMC11162921 DOI: 10.1016/j.neubiorev.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Hsu TT, Huang TN, Wang CY, Hsueh YP. Deep brain stimulation of the Tbr1-deficient mouse model of autism spectrum disorder at the basolateral amygdala alters amygdalar connectivity, whole-brain synchronization, and social behaviors. PLoS Biol 2024; 22:e3002646. [PMID: 39012916 PMCID: PMC11280143 DOI: 10.1371/journal.pbio.3002646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.
Collapse
Affiliation(s)
- Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chien-Yao Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
11
|
Jin X, Zhang K, Lu B, Li X, Yan CG, Du Y, Liu Y, Lu J, Luo X, Gao X, Liu J. Shared atypical spontaneous brain activity pattern in early onset schizophrenia and autism spectrum disorders: evidence from cortical surface-based analysis. Eur Child Adolesc Psychiatry 2024; 33:2387-2396. [PMID: 38147111 PMCID: PMC11255015 DOI: 10.1007/s00787-023-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Schizophrenia and autism spectrum disorders (ASD) were considered as two neurodevelopmental disorders and had shared clinical features. we hypothesized that they have some common atypical brain functions and the purpose of this study was to explored the shared brain spontaneous activity strength alterations in early onset schizophrenia (EOS) and ASD in the children and adolescents with a multi-center large-sample study. A total of 171 EOS patients (aged 14.25 ± 1.87), 188 ASD patients (aged 9.52 ± 5.13), and 107 healthy controls (aged 11.52 ± 2.82) had scanned with Resting-fMRI and analyzed surface-based amplitude of low-frequency fluctuations (ALFF). Results showed that both EOS and ASD had hypoactivity in the primary sensorimotor regions (bilateral primary and early visual cortex, left ventral visual stream, left primary auditory cortex) and hyperactivity in the high-order transmodal regions (bilateral SFL, bilateral DLPFC, right frontal eye fields), and bilateral thalamus. EOS had more severe abnormality than ASD. This study revealed shared functional abnormalities in the primary sensorimotor regions and the high-order transmodal regions in EOS and ASD, which provided neuroimaging evidence of common changes in EOS and ASD, and may help with better early recognition and precise treatment for EOS and ASD.
Collapse
Affiliation(s)
- Xingyue Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kun Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yasong Du
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Yi Liu
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Xuerong Luo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xueping Gao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
12
|
Brown SE, Wang Z(Z, Newman EL, Engin E, Berretta S, Balu DT, Folorunso OO. Serine racemase deletion alters adolescent social behavior and whole-brain cFos activation. Front Psychiatry 2024; 15:1365231. [PMID: 38979499 PMCID: PMC11228300 DOI: 10.3389/fpsyt.2024.1365231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
Background Neurodevelopmental disorders (NDDs) can cause debilitating impairments in social cognition and aberrant functional connectivity in large-scale brain networks, leading to social isolation and diminished everyday functioning. To facilitate the treatment of social impairments, animal models of NDDs that link N- methyl-D-aspartate receptor (NMDAR) hypofunction to social deficits in adulthood have been used. However, understanding the etiology of social impairments in NDDs requires investigating social changes during sensitive windows during development. Methods We examine social behavior during adolescence using a translational mouse model of NMDAR hypofunction (SR-/-) caused by knocking out serine racemase (SR), the enzyme needed to make D-serine, a key NMDAR coagonist. Species-typical social interactions are maintained through brain-wide neural activation patterns; therefore, we employed whole-brain cFos activity mapping to examine network-level connectivity changes caused by SR deletion. Results In adolescent SR-/- mice, we observed disinhibited social behavior toward a novel conspecific and rapid social habituation toward familiar social partners. SR-/- mice also spent more time in the open arm of the elevated plus maze which classically points to an anxiolytic behavioral phenotype. These behavioral findings point to a generalized reduction in anxiety-like behavior in both social and non-social contexts in SR-/- mice; importantly, these findings were not associated with diminished working memory. Inter-regional patterns of cFos activation revealed greater connectivity and network density in SR-/- mice compared to controls. Discussion These results suggest that NMDAR hypofunction - a potential biomarker for NDDs - can lead to generalized behavioral disinhibition in adolescence, potentially arising from disrupted communication between and within salience and default mode networks.
Collapse
Affiliation(s)
- Stephanie E. Brown
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
| | - Ziyi (Zephyr) Wang
- Division of Basic Neuroscience, Stress Neurobiology Laboratory, McLean Hospital, Belmont, MA, United States
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Depression and Anxiety Disorders, Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA, United States
| | - Elif Engin
- Division of Basic Neuroscience, Stress Neurobiology Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Basic Neuroscience, Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States
| | - Darrick T. Balu
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Oluwarotimi O. Folorunso
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Basic Neuroscience, Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
13
|
Rippon G. Differently different?: A commentary on the emerging social cognitive neuroscience of female autism. Biol Sex Differ 2024; 15:49. [PMID: 38872228 PMCID: PMC11177439 DOI: 10.1186/s13293-024-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Autism is a neurodevelopmental condition, behaviourally identified, which is generally characterised by social communication differences, and restrictive and repetitive patterns of behaviour and interests. It has long been claimed that it is more common in males. This observed preponderance of males in autistic populations has served as a focussing framework in all spheres of autism-related issues, from recognition and diagnosis through to theoretical models and research agendas. One related issue is the near total absence of females in key research areas. For example, this paper reports a review of over 120 brain-imaging studies of social brain processes in autism that reveals that nearly 70% only included male participants or minimal numbers (just one or two) of females. Authors of such studies very rarely report that their cohorts are virtually female-free and discuss their findings as though applicable to all autistic individuals. The absence of females can be linked to exclusionary consequences of autism diagnostic procedures, which have mainly been developed on male-only cohorts. There is clear evidence that disproportionately large numbers of females do not meet diagnostic criteria and are then excluded from ongoing autism research. Another issue is a long-standing assumption that the female autism phenotype is broadly equivalent to that of the male autism phenotype. Thus, models derived from male-based studies could be applicable to females. However, it is now emerging that certain patterns of social behaviour may be very different in females. This includes a specific type of social behaviour called camouflaging or masking, linked to attempts to disguise autistic characteristics. With respect to research in the field of sex/gender cognitive neuroscience, there is emerging evidence of female differences in patterns of connectivity and/or activation in the social brain that are at odds with those reported in previous, male-only studies. Decades of research have excluded or overlooked females on the autistic spectrum, resulting in the construction of inaccurate and misleading cognitive neuroscience models, and missed opportunities to explore the brain bases of this highly complex condition. A note of warning needs to be sounded about inferences drawn from past research, but if future research addresses this problem of male bias, then a deeper understanding of autism as a whole, as well as in previously overlooked females, will start to emerge.
Collapse
Affiliation(s)
- Gina Rippon
- Emeritus of Cognitive NeuroImaging, Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
14
|
Qian S, Yang Q, Cai C, Dong J, Cai S. Spatial-Temporal Characteristics of Brain Activity in Autism Spectrum Disorder Based on Hidden Markov Model and Dynamic Graph Theory: A Resting-State fMRI Study. Brain Sci 2024; 14:507. [PMID: 38790485 PMCID: PMC11118919 DOI: 10.3390/brainsci14050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Functional magnetic resonance imaging (fMRI) can be used to measure the temporal correlation of blood-oxygen-level-dependent (BOLD) signals in the brain to assess the brain's intrinsic connectivity and capture dynamic changes in the brain. In this study, the hidden Markov model (HMM) and dynamic graph (DG) theory are used to study the spatial-temporal characteristics and dynamics of brain networks based on dynamic functional connectivity (DFC). By using HMM, we identified three typical brain states for ASD and healthy control (HC). Furthermore, we explored the correlation between HMM time-varying properties and clinical autism scale scores. Differences in brain topological characteristics and dynamics between ASD and HC were compared by DG analysis. The experimental results indicate that ASD is more inclined to enter a strongly connected HMM brain state, leading to the isolation of brain networks and alterations in the topological characteristics of brain networks, such as default mode network (DMN), ventral attention network (VAN), and visual network (VN). This work suggests that using different data-driven methods based on DFC to study brain network dynamics would have better information complementarity, which can provide a new direction for the extraction of neuro-biomarkers in the early diagnosis of ASD.
Collapse
Affiliation(s)
| | | | | | | | - Shuhui Cai
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (S.Q.); (Q.Y.); (C.C.); (J.D.)
| |
Collapse
|
15
|
Fradkin Y, De Taboada L, Naeser M, Saltmarche A, Snyder W, Steingold E. Transcranial photobiomodulation in children aged 2-6 years: a randomized sham-controlled clinical trial assessing safety, efficacy, and impact on autism spectrum disorder symptoms and brain electrophysiology. Front Neurol 2024; 15:1221193. [PMID: 38737349 PMCID: PMC11086174 DOI: 10.3389/fneur.2024.1221193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.
Collapse
Affiliation(s)
- Yuliy Fradkin
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | | | - Margaret Naeser
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | | | | | |
Collapse
|
16
|
Luo W, Liu B, Tang Y, Huang J, Wu J. Rest to Promote Learning: A Brain Default Mode Network Perspective. Behav Sci (Basel) 2024; 14:349. [PMID: 38667145 PMCID: PMC11047624 DOI: 10.3390/bs14040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The brain often switches freely between focused attention and divergent thinking, and the Default Mode Network (DMN) is activated during brain rest. Since its discovery, the DMN, together with its function and characteristics, indicates that learning does not stop when the brain "rests". Therefore, DMN plays an important role in learning. Neural activities such as beta wave rhythm regulation, "subconscious" divergence thinking mode initiation, hippocampal function, and neural replay occur during default mode, all of which explains that "rest" promotes learning. This paper summarized the function and neural mechanism of DMN in learning and proposed that the DMN plays an essential role in learning, which is that it enables rest to promote learning.
Collapse
Affiliation(s)
- Wei Luo
- Department of Applied Psychology, School of Education Sciences, Nanning Normal University, Nanning 530299, China; (W.L.); (Y.T.)
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Guangxi Education Modernization and Quality Monitoring Research Center, Nanning 530001, China
| | - Biao Liu
- School of Foreign Languages, Nanning Normal University, Nanning 530100, China;
| | - Ying Tang
- Department of Applied Psychology, School of Education Sciences, Nanning Normal University, Nanning 530299, China; (W.L.); (Y.T.)
| | - Jingwen Huang
- Department of Science Research, Guangxi University, Nanning 530004, China;
| | - Ji Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Kang E, Heo DW, Lee J, Suk HI. A Learnable Counter-Condition Analysis Framework for Functional Connectivity-Based Neurological Disorder Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1377-1387. [PMID: 38019623 DOI: 10.1109/tmi.2023.3337074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
To understand the biological characteristics of neurological disorders with functional connectivity (FC), recent studies have widely utilized deep learning-based models to identify the disease and conducted post-hoc analyses via explainable models to discover disease-related biomarkers. Most existing frameworks consist of three stages, namely, feature selection, feature extraction for classification, and analysis, where each stage is implemented separately. However, if the results at each stage lack reliability, it can cause misdiagnosis and incorrect analysis in afterward stages. In this study, we propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations. Notably, we devised an adaptive attention network as a feature selection approach to identify individual-specific disease-related connections. We also propose a functional network relational encoder that summarizes the global topological properties of FC by learning the inter-network relations without pre-defined edges between functional networks. Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis. We simulated the FC that reverses the diagnostic information (i.e., counter-condition FC): converting a normal brain to be abnormal and vice versa. We validated the effectiveness of our framework by using two large resting-state functional magnetic resonance imaging (fMRI) datasets, Autism Brain Imaging Data Exchange (ABIDE) and REST-meta-MDD, and demonstrated that our framework outperforms other competing methods for disease identification. Furthermore, we analyzed the disease-related neurological patterns based on counter-condition analysis.
Collapse
|
18
|
Jensen KM, Calhoun VD, Fu Z, Yang K, Faria AV, Ishizuka K, Sawa A, Andrés-Camazón P, Coffman BA, Seebold D, Turner JA, Salisbury DF, Iraji A. A whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry. Neuroimage Clin 2024; 41:103584. [PMID: 38422833 PMCID: PMC10944191 DOI: 10.1016/j.nicl.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.
Collapse
Affiliation(s)
- Kyle M Jensen
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.
| | - Vince D Calhoun
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Zening Fu
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Kun Yang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreia V Faria
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo Andrés-Camazón
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica A Turner
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
19
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
20
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
21
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Nenadić I, Meller T, Evermann U, Pfarr JK, Federspiel A, Walther S, Grezellschak S, Abu-Akel A. Modelling the overlap and divergence of autistic and schizotypal traits on hippocampal subfield volumes and regional cerebral blood flow. Mol Psychiatry 2024; 29:74-84. [PMID: 37891246 PMCID: PMC11078729 DOI: 10.1038/s41380-023-02302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Psychiatric disorders show high co-morbidity, including co-morbid expressions of subclinical psychopathology across multiple disease spectra. Given the limitations of classical case-control designs in elucidating this overlap, new approaches are needed to identify biological underpinnings of spectra and their interaction. We assessed autistic-like traits (using the Autism Quotient, AQ) and schizotypy - as models of subclinical expressions of disease phenotypes and examined their association with volumes and regional cerebral blood flow (rCBF) of anterior, mid- and posterior hippocampus segments from structural MRI scans in 318 and arterial spin labelling (ASL) in 346 nonclinical subjects, which overlapped with the structural imaging sample (N = 298). We demonstrate significant interactive effects of positive schizotypy and AQ social skills as well as of positive schizotypy and AQ imagination on hippocampal subfield volume variation. Moreover, we show that AQ attention switching modulated hippocampal head rCBF, while positive schizotypy by AQ attention to detail interactions modulated hippocampal tail rCBF. In addition, we show significant correlation of hippocampal volume and rCBF in both region-of-interest and voxel-wise analyses, which were robust after removal of variance related to schizotypy and autistic traits. These findings provide empirical evidence for both the modulation of hippocampal subfield structure and function through subclinical traits, and in particular how only the interaction of phenotype facets leads to significant reductions or variations in these parameters. This makes a case for considering the synergistic impact of different (subclinical) disease spectra on transdiagnostic biological parameters in psychiatry.
Collapse
Affiliation(s)
- Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany.
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
- Marburg University Hospital - UKGM, Marburg, Germany.
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
- Marburg University Hospital - UKGM, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
23
|
Waddington JL. From operational diagnostic to dimensional-continuum concepts of psychotic and non-psychotic illness: Embracing catatonia across psychopathology and intrinsic movement disorder in neural network dysfunction. Schizophr Res 2024; 263:99-108. [PMID: 36244867 DOI: 10.1016/j.schres.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 03/04/2023]
Abstract
Psychiatry is currently negotiating several challenges that are typified by (but are not unique to) schizophrenia: do periodic refinements in operational diagnostic algorithms (a) resolve intricacies and subtleties within and between psychotic and non-psychotic disorders that are authentic and impactful, or (b) constitute arbitrary and porous boundaries that should be complemented, or even replaced, by dimensional-continuum concepts of abnormality and dysfunction. Critically, these issues relate not only to apparent boundaries between diagnoses but also to those between 'health' and 'illness'. This article considers catatonia within evolving dimensional-continuum approaches to the description of impairment and dysfunction among psychotic and non-psychotic disorders. It begins by considering the definition and assessment of catatonia vis-à-vis other disorders, followed by its long-standing conjunction with schizophrenia, relationship with antipsychotic drug treatment, transdiagnostic perspectives and relationships, and pathobiological processes. These appear to involve dysfunction across elements in overlapping neural networks that result in a confluence of psychopathology and intrinsic hypo- and hyperkinetic motor dysfunction. It has been argued that while current diagnostic approaches can have utility in defining groups of cases that are closely related, contemporary evidence indicates categorical diagnoses to be arbitrary divisions of what is essentially a continuous landscape. Psychotic and non-psychotic diagnoses, including catatonia, may reflect arbitrary areas around points of intersection between orthogonal dimensions of psychopathology and intrinsic movement disorder in a poly-dimensional space that characterises this continuous landscape of mental health and dysfunction.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Liu J, Chen L, Chang H, Rudoler J, Al-Zughoul AB, Kang JB, Abrams DA, Menon V. Replicable Patterns of Memory Impairments in Children With Autism and Their Links to Hyperconnected Brain Circuits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1113-1123. [PMID: 37196984 PMCID: PMC10646152 DOI: 10.1016/j.bpsc.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Memory impairments have profound implications for social communication and educational outcomes in children with autism spectrum disorder (ASD). However, the precise nature of memory dysfunction in children with ASD and the underlying neural circuit mechanisms remain poorly understood. The default mode network (DMN) is a brain network that is associated with memory and cognitive function, and DMN dysfunction is among the most replicable and robust brain signatures of ASD. METHODS We used a comprehensive battery of standardized episodic memory assessments and functional circuit analyses in 25 8- to 12-year-old children with ASD and 29 matched typically developing control children. RESULTS Memory performance was reduced in children with ASD compared with control children. General and face memory emerged as distinct dimensions of memory difficulties in ASD. Importantly, findings of diminished episodic memory in children with ASD were replicated in 2 independent data sets. Analysis of intrinsic functional circuits associated with the DMN revealed that general and face memory deficits were associated with distinct, hyperconnected circuits: Aberrant hippocampal connectivity predicted diminished general memory while aberrant posterior cingulate cortex connectivity predicted diminished face memory. Notably, aberrant hippocampal-posterior cingulate cortex circuitry was a common feature of diminished general and face memory in ASD. CONCLUSIONS Our results represent a comprehensive appraisal of episodic memory function in children with ASD and identify extensive and replicable patterns of memory reductions in children with ASD that are linked to dysfunction of distinct DMN-related circuits. These findings highlight a role for DMN dysfunction in ASD that extends beyond face memory to general memory function.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, California
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jeremy Rudoler
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ahmad Belal Al-Zughoul
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
25
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
26
|
Salgado-Pineda P, Ferrer M, Calvo N, Costa X, Ribas N, Lara B, Tarragona B, Fuentes-Claramonte P, Salvador R, Pomarol-Clotet E. Brain functional abnormality in drug treated and drug naïve adolescents with borderline personality disorder: Evidence for default mode network dysfunction. J Psychiatr Res 2023; 161:40-47. [PMID: 36898325 DOI: 10.1016/j.jpsychires.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Patients with borderline personality disorder (BPD) have been found to show functional brain abnormality, including in the medial frontal cortex and other areas of the default mode network (DMN). The current study aimed to examine activations and de-activations in drug treated and medication-free female adolescents with the disorder. METHODS 39 DSM-5 adolescent female patients with BPD without psychiatric comorbidity and 31 matched healthy female adolescents underwent fMRI during the performance of 1-back and 2-back versions of the n-back working memory task. Linear models were used to obtain maps of within-group activations and de-activations and areas of differences between the groups. RESULTS On corrected whole-brain analysis, the BPD patients showed failure to de-activate a region of the medial frontal cortex in the 2-back > 1-back comparison. The 30 never-medicated patients additionally showed a failure to de-activate the right hippocampus in the 2-back versus baseline contrast. CONCLUSIONS Evidence of DMN dysfunction was observed in adolescent patients with BPD. Because the relevant medial frontal and hippocampal changes were seen in unmedicated young patients without comorbidity, they might be considered intrinsic to the disorder.
Collapse
Affiliation(s)
- Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, C/ Dr. Pujades 38, 08830, Sant Boi de Llobregat, Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain.
| | - Marc Ferrer
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Grup TLP-Barcelona, Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatry and Legal Medicine Department, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Psychiatry, Mental Health and Addictions Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Natàlia Calvo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Grup TLP-Barcelona, Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatry and Legal Medicine Department, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Psychiatry, Mental Health and Addictions Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Xavier Costa
- Grup TLP-Barcelona, Fundació Orienta, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ribas
- Grup TLP-Barcelona, CPB Serveis Salut Mental, Barcelona, Spain
| | - Benjamín Lara
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Grup TLP-Barcelona, Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatry, Mental Health and Addictions Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Brenda Tarragona
- Grup TLP-Barcelona, Fundació Orienta, Sant Boi de Llobregat, Barcelona, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, C/ Dr. Pujades 38, 08830, Sant Boi de Llobregat, Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, C/ Dr. Pujades 38, 08830, Sant Boi de Llobregat, Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, C/ Dr. Pujades 38, 08830, Sant Boi de Llobregat, Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| |
Collapse
|
27
|
Tan W, Ouyang X, Huang D, Wu Z, Liu Z, He Z, Long Y. Disrupted intrinsic functional brain network in patients with late-life depression: Evidence from a multi-site dataset. J Affect Disord 2023; 323:631-639. [PMID: 36521664 DOI: 10.1016/j.jad.2022.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Late-life depression (LLD) is a common and serious mental disorder, whose neural mechanisms are not yet fully understood. In this study, we aimed to characterize LLD-related changes in intrinsic functional brain networks using a large, multi-site sample. METHODS Using resting-state functional magnetic resonance imaging, the edge-based functional connectivity (FC) as well as multiple topological brain network metrics at both global and nodal levels were compared between 206 LLD patients and 210 normal controls (NCs). RESULTS Compared with NCs, the LLD patients had extensive alterations in the intrinsic brain FCs, especially significant decreases in FCs within the default mode network (DMN) and within the somatomotor network (SMN). The LLD patients also showed alterations in several global brain network metrics compared with NCs, including significant decreases in global efficiency, local efficiency, clustering coefficient, and small-worldness, as well as a significantly increased characteristic path length. Moreover, significant alterations in nodal network metrics (increased nodal betweenness and decreased nodal efficiency) were found in patients with LLD, which mainly involved the DMN and SMN. Post-hoc subgroup analyses indicated that the above changes in FC strengths were present in both first-episode, drug-naïve (FEDN) and non-FEDN patients, and were correlated with depression severity in the FEDN patients. Moreover, changes in FC strengths were found in both the early/late-onset (depression starts before/after the age of 50) patients, while altered topological metrics were found in only the late-onset patients. CONCLUSIONS These results may help to strengthen our understanding of the underlying neural mechanisms and biological heterogeneity in LLD.
Collapse
Affiliation(s)
- Wenjian Tan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Ouyang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danqing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center For Medical Imaging in Hunan Province, Changsha, Hunan, China.
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | |
Collapse
|
28
|
Butera C, Kaplan J, Kilroy E, Harrison L, Jayashankar A, Loureiro F, Aziz-Zadeh L. The relationship between alexithymia, interoception, and neural functional connectivity during facial expression processing in autism spectrum disorder. Neuropsychologia 2023; 180:108469. [PMID: 36610493 PMCID: PMC9898240 DOI: 10.1016/j.neuropsychologia.2023.108469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Neural processing differences of emotional facial expressions, while common in autism spectrum disorder (ASD), may be related to co-occurring alexithymia and interoceptive processing differences rather than autism per se. Here, we investigate relationships between alexithymia, interoceptive awareness of emotions, and functional connectivity during observation of facial expressions in youth (aged 8-17) with ASD (n = 28) compared to typically developing peers (TD; n = 37). Behaviorally, we found no significant differences between ASD and TD groups in interoceptive awareness of emotions, though alexithymia severity was significantly higher in the ASD group. In the ASD group, increased alexithymia was significantly correlated with lower interoceptive sensation felt during emotion. Using psycho-physiological interaction (PPI) analysis, the ASD group showed higher functional connectivity between the left ventral anterior insula and the left lateral prefrontal cortex than the TD group when viewing facial expressions. Further, alexithymia was associated with reduced left anterior insula-right precuneus connectivity and reduced right dorsal anterior insula-left ventral anterior insula connectivity when viewing facial expressions. In the ASD group, the degree of interoceptive sensation felt during emotion was positively correlated with left ventral anterior insula-right IFG connectivity when viewing facial expressions. However, across all participants, neither alexithymia nor interoceptive awareness of emotions predicted connectivity between emotion-related brain regions when viewing emotional facial expressions. To summarize, we found that in ASD compared to TD: 1) there is stronger connectivity between the insula and lateral prefrontal cortex; and 2) differences in interhemispheric and within left hemisphere connectivity between the insula and other emotion-related brain regions are related to individual differences in interoceptive processing and alexithymia. These results highlight complex relationships between alexithymia, interoception, and brain processing in ASD.
Collapse
Affiliation(s)
- Christiana Butera
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jonas Kaplan
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emily Kilroy
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laura Harrison
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aditya Jayashankar
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fernanda Loureiro
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lisa Aziz-Zadeh
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
29
|
Associations between Elemental Metabolic Dynamics and Default Mode Network Functional Connectivity Are Altered in Autism. J Clin Med 2023; 12:jcm12031022. [PMID: 36769671 PMCID: PMC9917994 DOI: 10.3390/jcm12031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.
Collapse
|
30
|
Hawks ZW, Todorov A, Marrus N, Nishino T, Talovic M, Nebel MB, Girault JB, Davis S, Marek S, Seitzman BA, Eggebrecht AT, Elison J, Dager S, Mosconi MW, Tychsen L, Snyder AZ, Botteron K, Estes A, Evans A, Gerig G, Hazlett HC, McKinstry RC, Pandey J, Schultz RT, Styner M, Wolff JJ, Zwaigenbaum L, Markson L, Petersen SE, Constantino JN, White DA, Piven J, Pruett JR. A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:149-161. [PMID: 36712571 PMCID: PMC9874081 DOI: 10.1016/j.bpsgos.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mary Beth Nebel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Stephen Dager
- Departments of Radiology, University of Washington, Seattle, Washington
| | - Matthew W. Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Annette Estes
- Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Guido Gerig
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, New York
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Juhi Pandey
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Lori Markson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E. Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Desirée A. White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
31
|
Ilioska I, Oldehinkel M, Llera A, Chopra S, Looden T, Chauvin R, Van Rooij D, Floris DL, Tillmann J, Moessnang C, Banaschewski T, Holt RJ, Loth E, Charman T, Murphy DGM, Ecker C, Mennes M, Beckmann CF, Fornito A, Buitelaar JK. Connectome-wide Mega-analysis Reveals Robust Patterns of Atypical Functional Connectivity in Autism. Biol Psychiatry 2022:S0006-3223(22)01852-2. [PMID: 36925414 DOI: 10.1016/j.biopsych.2022.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.
Collapse
Affiliation(s)
- Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia.
| | - Marianne Oldehinkel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Tristan Looden
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roselyne Chauvin
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Daan Van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Maarten Mennes
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Yoon N, Huh Y, Lee H, Kim JI, Lee J, Yang CM, Jang S, Ahn YD, Oh MR, Lee DS, Kang H, Kim BN. Alterations in Social Brain Network Topology at Rest in Children With Autism Spectrum Disorder. Psychiatry Investig 2022; 19:1055-1068. [PMID: 36588440 PMCID: PMC9806512 DOI: 10.30773/pi.2022.0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Underconnectivity in the resting brain is not consistent in autism spectrum disorder (ASD). However, it is known that the functional connectivity of the default mode network is mainly decreased in childhood ASD. This study investigated the brain network topology as the changes in the connection strength and network efficiency in childhood ASD, including the early developmental stages. METHODS In this study, 31 ASD children aged 2-11 years were compared with 31 age and sex-matched children showing typical development. We explored the functional connectivity based on graph filtration by assessing the single linkage distance and global and nodal efficiencies using resting-state functional magnetic resonance imaging. The relationship between functional connectivity and clinical scores was also analyzed. RESULTS Underconnectivities within the posterior default mode network subregions and between the inferior parietal lobule and inferior frontal/superior temporal regions were observed in the ASD group. These areas significantly correlated with the clinical phenotypes. The global, local, and nodal network efficiencies were lower in children with ASD than in those with typical development. In the preschool-age children (2-6 years) with ASD, the anterior-posterior connectivity of the default mode network and cerebellar connectivity were reduced. CONCLUSION The observed topological reorganization, underconnectivity, and disrupted efficiency in the default mode network subregions and social function-related regions could be significant biomarkers of childhood ASD.
Collapse
Affiliation(s)
- Narae Yoon
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Huh
- Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyekyoung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Jung Lee
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Integrative Care Hub, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Chan-Mo Yang
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soomin Jang
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yebin D Ahn
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Rim Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Topological analysis of brain dynamics in autism based on graph and persistent homology. Comput Biol Med 2022; 150:106202. [PMID: 37859293 DOI: 10.1016/j.compbiomed.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder with a rapidly growing prevalence. In recent years, the dynamic functional connectivity (DFC) technique has been used to reveal the transient connectivity behavior of ASDs' brains by clustering connectivity matrices in different states. However, the states of DFC have not been yet studied from a topological point of view. In this paper, this study was performed using global metrics of the graph and persistent homology (PH) and resting-state functional magnetic resonance imaging (fMRI) data. The PH has been recently developed in topological data analysis and deals with persistent structures of data. The structural connectivity (SC) and static FC (SFC) were also studied to know which one of the SC, SFC, and DFC could provide more discriminative topological features when comparing ASDs with typical controls (TCs). Significant discriminative features were only found in states of DFC. Moreover, the best classification performance was offered by persistent homology-based metrics and in two out of four states. In these two states, some networks of ASDs compared to TCs were more segregated and isolated (showing the disruption of network integration in ASDs). The results of this study demonstrated that topological analysis of DFC states could offer discriminative features which were not discriminative in SFC and SC. Also, PH metrics can provide a promising perspective for studying ASD and finding candidate biomarkers.
Collapse
|
34
|
Thérien VD, Degré-Pelletier J, Barbeau EB, Samson F, Soulières I. Differential neural correlates underlying mental rotation processes in two distinct cognitive profiles in autism. Neuroimage Clin 2022; 36:103221. [PMID: 36228483 PMCID: PMC9668634 DOI: 10.1016/j.nicl.2022.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Enhanced visuospatial abilities characterize the cognitive profile of a subgroup of autistics. However, the neural correlates underlying such cognitive strengths are largely unknown. Using functional magnetic resonance imaging (fMRI), we investigated the neural underpinnings of superior visuospatial functioning in different autistic subgroups. Twenty-seven autistic adults, including 13 with a Wechsler's Block Design peak (AUTp) and 14 without (AUTnp), and 23 typically developed adults (TYP) performed a classic mental rotation task. As expected, AUTp participants were faster at the task compared to TYP. At the neural level, AUTp participants showed enhanced bilateral parietal and occipital activation, stronger occipito-parietal and fronto-occipital connectivity, and diminished fronto-parietal connectivity compared to TYP. On the other hand, AUTnp participants presented greater activation in right and anterior regions compared to AUTp. In addition, reduced connectivity between occipital and parietal regions was observed in AUTnp compared to AUTp and TYP participants. A greater reliance on posterior regions is typically reported in the autism literature. Our results suggest that this commonly reported finding may be specific to a subgroup of autistic individuals with enhanced visuospatial functioning. Moreover, this study demonstrated that increased occipito-frontal synchronization was associated with superior visuospatial abilities in autism. This finding contradicts the long-range under-connectivity hypothesis in autism. Finally, given the relationship between distinct cognitive profiles in autism and our observed differences in brain functioning, future studies should provide an adequate characterization of the autistic subgroups in their research. The main limitations are small sample sizes and the inclusion of male-only participants.
Collapse
Affiliation(s)
- Véronique D. Thérien
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Elise B. Barbeau
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Fabienne Samson
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada,Corresponding author at: Psychology Department, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal (Québec) H3C 3P8, Canada.
| |
Collapse
|
35
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
36
|
Hyatt CJ, Wexler BE, Pittman B, Nicholson A, Pearlson GD, Corbera S, Bell MD, Pelphrey K, Calhoun VD, Assaf M. Atypical Dynamic Functional Network Connectivity State Engagement during Social-Emotional Processing in Schizophrenia and Autism. Cereb Cortex 2022; 32:3406-3422. [PMID: 34875687 PMCID: PMC9376868 DOI: 10.1093/cercor/bhab423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are separate clinical entities but share deficits in social-emotional processing and static neural functional connectivity patterns. We compared patients' dynamic functional network connectivity (dFNC) state engagement with typically developed (TD) individuals during social-emotional processing after initially characterizing such dynamics in TD. Young adults diagnosed with ASD (n = 42), SZ (n = 41), or TD (n = 55) completed three functional MRI runs, viewing social-emotional videos with happy, sad, or neutral content. We examined dFNC of 53 spatially independent networks extracted using independent component analysis and applied k-means clustering to windowed dFNC matrices, identifying four unique whole-brain dFNC states. TD showed differential engagement (fractional time, mean dwell time) in three states as a function of emotion. During Happy videos, patients spent less time than TD in a happy-associated state and instead spent more time in the most weakly connected state. During Sad videos, only ASD spent more time than TD in a sad-associated state. Additionally, only ASD showed a significant relationship between dFNC measures and alexithymia and social-emotional recognition task scores, potentially indicating different neural processing of emotions in ASD and SZ. Our results highlight the importance of examining temporal whole-brain reconfiguration of FNC, indicating engagement in unique emotion-specific dFNC states.
Collapse
Affiliation(s)
- Christopher J Hyatt
- Address correspondence to Christopher J. Hyatt, PhD, Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, Hartford, CT, USA.
| | - Bruce E Wexler
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Brian Pittman
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Alycia Nicholson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
- Department of Psychiatry and Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Silvia Corbera
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Psychological Science, Central Connecticut State University, New Britain, CT 06050, USA
| | - Morris D Bell
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Psychiatry, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
| | - Kevin Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| | - Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
37
|
Girault JB, Donovan K, Hawks Z, Talovic M, Forsen E, Elison JT, Shen MD, Swanson MR, Wolff JJ, Kim SH, Nishino T, Davis S, Snyder AZ, Botteron KN, Estes AM, Dager SR, Hazlett HC, Gerig G, McKinstry R, Pandey J, Schultz RT, St John T, Zwaigenbaum L, Todorov A, Truong Y, Styner M, Pruett JR, Constantino JN, Piven J. Infant Visual Brain Development and Inherited Genetic Liability in Autism. Am J Psychiatry 2022; 179:573-585. [PMID: 35615814 PMCID: PMC9356977 DOI: 10.1176/appi.ajp.21101002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is heritable, and younger siblings of ASD probands are at higher likelihood of developing ASD themselves. Prospective MRI studies of siblings report that atypical brain development precedes ASD diagnosis, although the link between brain maturation and genetic factors is unclear. Given that familial recurrence of ASD is predicted by higher levels of ASD traits in the proband, the authors investigated associations between proband ASD traits and brain development among younger siblings. METHODS In a sample of 384 proband-sibling pairs (89 pairs concordant for ASD), the authors examined associations between proband ASD traits and sibling brain development at 6, 12, and 24 months in key MRI phenotypes: total cerebral volume, cortical surface area, extra-axial cerebrospinal fluid, occipital cortical surface area, and splenium white matter microstructure. Results from primary analyses led the authors to implement a data-driven approach using functional connectivity MRI at 6 months. RESULTS Greater levels of proband ASD traits were associated with larger total cerebral volume and surface area and larger surface area and reduced white matter integrity in components of the visual system in siblings who developed ASD. This aligned with weaker functional connectivity between several networks and the visual system among all siblings during infancy. CONCLUSIONS The findings provide evidence that specific early brain MRI phenotypes of ASD reflect quantitative variation in familial ASD traits. Multimodal anatomical and functional convergence on cortical regions, fiber pathways, and functional networks involved in visual processing suggest that inherited liability has a role in shaping the prodromal development of visual circuitry in ASD.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Educational Psychology (Wolff), University of Minnesota, Minneapolis;Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Kevin Donovan
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Zoë Hawks
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Muhamed Talovic
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Elizabeth Forsen
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Jed T Elison
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Meghan R Swanson
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Jason J Wolff
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Sun Hyung Kim
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Tomoyuki Nishino
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Savannah Davis
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Abraham Z Snyder
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Kelly N Botteron
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Annette M Estes
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Stephen R Dager
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Guido Gerig
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Robert McKinstry
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Juhi Pandey
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Robert T Schultz
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Tanya St John
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Lonnie Zwaigenbaum
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Alexandre Todorov
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Young Truong
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Martin Styner
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - John R Pruett
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - John N Constantino
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| |
Collapse
|
38
|
Yi T, Wei W, Ma D, Wu Y, Cai Q, Jin K, Gao X. Individual Brain Morphological Connectome Indicator Based on Jensen-Shannon Divergence Similarity Estimation for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:952067. [PMID: 35837129 PMCID: PMC9275791 DOI: 10.3389/fnins.2022.952067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Structural magnetic resonance imaging (sMRI) reveals abnormalities in patients with autism spectrum syndrome (ASD). Previous connectome studies of ASD have failed to identify the individual neuroanatomical details in preschool-age individuals. This paper aims to establish an individual morphological connectome method to characterize the connectivity patterns and topological alterations of the individual-level brain connectome and their diagnostic value in patients with ASD. Methods Brain sMRI data from 24 patients with ASD and 17 normal controls (NCs) were collected; participants in both groups were aged 24-47 months. By using the Jensen-Shannon Divergence Similarity Estimation (JSSE) method, all participants's morphological brain network were ascertained. Student's t-tests were used to extract the most significant features in morphological connection values, global graph measurement, and node graph measurement. Results The results of global metrics' analysis showed no statistical significance in the difference between two groups. Brain regions with meaningful properties for consensus connections and nodal metric features are mostly distributed in are predominantly distributed in the basal ganglia, thalamus, and cortical regions spanning the frontal, temporal, and parietal lobes. Consensus connectivity results showed an increase in most of the consensus connections in the frontal, parietal, and thalamic regions of patients with ASD, while there was a decrease in consensus connectivity in the occipital, prefrontal lobe, temporal lobe, and pale regions. The model that combined morphological connectivity, global metrics, and node metric features had optimal performance in identifying patients with ASD, with an accuracy rate of 94.59%. Conclusion The individual brain network indicator based on the JSSE method is an effective indicator for identifying individual-level brain network abnormalities in patients with ASD. The proposed classification method can contribute to the early clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Ting Yi
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Weian Wei
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Di Ma
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yali Wu
- Department of Child Health Care Centre, Hunan Children’s Hospital, Changsha, China
| | - Qifang Cai
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| |
Collapse
|
39
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
40
|
Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: An updated conceptual review. Autism Res 2022; 15:384-412. [PMID: 34967130 PMCID: PMC8931527 DOI: 10.1002/aur.2659] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are separate disorders, with distinct clinical profiles and natural histories. ASD, typically diagnosed in childhood, is characterized by restricted or repetitive interests or behaviors and impaired social communication, and it tends to have a stable course. SCZ, typically diagnosed in adolescence or adulthood, is characterized by hallucinations and delusions, and tends to be associated with declining function. However, youth with ASD are three to six times more likely to develop SCZ than their neurotypical counterparts, and increasingly, research has shown that ASD and SCZ converge at several levels. We conducted a systematic review of studies since 2013 relevant to understanding this convergence, and present here a narrative synthesis of key findings, which we have organized into four broad categories: symptoms and behavior, perception and cognition, biomarkers, and genetic and environmental risk. We then discuss opportunities for future research into the phenomenology and neurobiology of overlap between ASD and SCZ. Understanding this overlap will allow for researchers, and eventually clinicians, to understand the factors that may make a child with ASD vulnerable to developing SCZ. LAY SUMMARY: Autism spectrum disorder and schizophrenia are distinct diagnoses, but people with autism and people with schizophrena share several characteristics. We review recent studies that have examined these areas of overlap, and discuss the kinds of studies we will need to better understand how these disorders are related. Understanding this will be important to help us identify which autistic children are at risk of developing schizophrenia.
Collapse
Affiliation(s)
- Amandeep Jutla
- Columbia University Vagelos College of Physicians and
Surgeons, 630 W 168th St, New York, NY 10032, United States
- New York State Psychiatric Institute, 1051 Riverside
Drive, Mail Unit 78, New York, NY 10032, United States
| | - Jennifer Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn
School of Medicine at Mount Sinai, Department of Psychiatry, 1 Gustave L. Levy
Place, Box 1230, New York, NY 10029, United States
| | - Jeremy Veenstra-VanderWeele
- Columbia University Vagelos College of Physicians and
Surgeons, 630 W 168th St, New York, NY 10032, United States
- New York State Psychiatric Institute, 1051 Riverside
Drive, Mail Unit 78, New York, NY 10032, United States
- Center for Autism and the Developing Brain, New
York-Presbyterian Westchester Behavioral Health Center, 21 Bloomingdale Road, White
Plains, NY 10605, United States
| |
Collapse
|
41
|
Fu L, Li C, Li Y, Cheng X, Cui X, Jiang J, Ding N, Fang H, Tang T, Ke X. Heritability of abnormalities in limbic networks of autism spectrum disorder children: Evidence from an autism spectrum disorder twin study. Autism Res 2022; 15:628-640. [PMID: 35212461 DOI: 10.1002/aur.2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
Although the limbic system is closely related to emotion and social behaviors, little is known about the integrity of limbic pathways and how genetics influence the anatomical abnormalities of limbic networks in children with autism spectrum disorder (ASD). Therefore, we used an ASD twin study design to evaluate the microstructural integrity and autism-related differences in limbic pathways of young children with ASD and to estimate the heritability of limbic tracts microstructure variance. We obtained diffusion tensor imaging scans from 33 pairs of twins with ASD aged 2-9 years and 20 age-matched typically developing children. The ACE model was used to estimate the relative effects of additive genetic factors (A), shared environmental factors (C) and specific environmental factors (E) on the variability of diffusivity measurements. We found a significant decrease in fractional anisotropy (FA) in the bilateral fornix and uncinate fasciculus (UF), as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the bilateral fornix and right UF of ASD children. Correlation analysis showed that FA, MD, and lateralization indices of UF were correlated with autism diagnostic observation schedule scores. The ACE model revealed that genetic effects may drive some of the variability of microstructure in the bilateral fornix, cingulum, and left UF. In conclusion, in children with ASD, there are abnormalities in the white matter microstructure of the limbic system, which is related to the core symptoms; these abnormalities may be related to the relative contribution of genetic and environmental effects on specific tracts. LAY SUMMARY: Autism spectrum disorder (ASD) children have abnormal white matter structure in limbic system related to ASD symptoms, and genetic factors play an important role in the development of limbic tracts.
Collapse
Affiliation(s)
- Linyan Fu
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Guangdong Mental Health Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunyan Li
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Li
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cheng
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiying Jiang
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Ding
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoyan Ke
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Takarae Y, Zanesco A, Keehn B, Chukoskie L, Müller RA, Townsend J. EEG microstates suggest atypical resting-state network activity in high-functioning children and adolescents with Autism Spectrum Development. Dev Sci 2022; 25:e13231. [PMID: 35005839 DOI: 10.1111/desc.13231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
EEG microstates represent transient electrocortical events that reflect synchronized activities of large-scale networks, which allows investigations of brain dynamics with sub-second resolution. We recorded resting EEG from 38 children and adolescents with Autism Spectrum Development (ASD) and 48 age, IQ, sex, and handedness-matched typically developing (TD) participants. The EEG was segmented into a time series of microstates using modified k-means clustering of scalp voltage topographies. The frequency and global explained variance (GEV) of a specific microstate (type C) were significantly lower in the ASD group compared to the TD group while the duration of the same microstate was correlated with the presence of ASD-related behaviors. The duration of this microstate was also positively correlated with participant age in the TD group, but not in the ASD group. Further, the frequency and duration of the microstate were significantly correlated with the overall alpha power only in the TD group. The signal strength and GEV for another microstate (type G) was greater in the ASD group than the TD group, and the associated topographical pattern differed between groups with greater variations in the ASD group. While more work is needed to clarify the underlying neural sources, the existing literature supports associations between the two microstates and the default mode and salience networks. The current study suggests specific alterations of temporal dynamics of the resting cortical network activities as well as their developmental trajectories and relationships to alpha power, which has been proposed to reflect reduced neural inhibition in ASD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University
| | - Leanne Chukoskie
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University
| | | | - Jeanne Townsend
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
43
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
44
|
Hilland E, Johannessen C, Jonassen R, Alnæs D, Jørgensen KN, Barth C, Andreou D, Nerland S, Wortinger LA, Smelror RE, Wedervang-Resell K, Bohman H, Lundberg M, Westlye LT, Andreassen OA, Jönsson EG, Agartz I. Aberrant default mode connectivity in adolescents with early-onset psychosis: A resting state fMRI study. Neuroimage Clin 2021; 33:102881. [PMID: 34883402 PMCID: PMC8662331 DOI: 10.1016/j.nicl.2021.102881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Abnormal default mode network (DMN) connectivity has been found in schizophrenia and other psychotic disorders. However, there are limited studies on early onset psychosis (EOP), and their results show lack of agreement. Here, we investigated within-network DMN connectivity in EOP compared to healthy controls (HC), and its relationship to clinical characteristics. A sample of 68 adolescent patients with EOP (mean age 16.53 ± 1.12 [SD] years, females 66%) and 95 HC (mean age 16.24 ± 1.50 [SD], females 60%) from two Scandinavian cohorts underwent resting state functional magnetic resonance imaging (rsfMRI). A group independent component analysis (ICA) was performed to identify the DMN across all participants. Dual regression was used to estimate spatial maps reflecting each participant's DMN network, which were compared between EOP and HC using voxel-wise general linear models and permutation-based analyses. Subgroup analyses were performed within the patient group, to explore associations between diagnostic subcategories and current use of psychotropic medication in relation to connectivity strength. The analysis revealed significantly reduced DMN connectivity in EOP compared to HC in the posterior cingulate cortex, precuneus, fusiform cortex, putamen, pallidum, amygdala, and insula. The subgroup analysis in the EOP group showed strongest deviations for affective psychosis, followed by other psychotic disorders and schizophrenia. There was no association between DMN connectivity strength and the current use of psychotropic medication. In conclusion, the findings demonstrate weaker DMN connectivity in adolescent patients with EOP compared to healthy peers, and differential effects across diagnostic subcategories, which may inform our understanding of underlying disease mechanisms in EOP.
Collapse
Affiliation(s)
- Eva Hilland
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Health Sciences, Oslo Metropolitan University, Norway.
| | - Cecilie Johannessen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rune Jonassen
- Faculty of Health Sciences, Oslo Metropolitan University, Norway
| | - Dag Alnæs
- Bjørknes College, Oslo, Norway; Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil N Jørgensen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar E Smelror
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Hannes Bohman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden; Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden; Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
45
|
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021; 55:1613-1624. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric continuum of disorders characterized by persistent deficits in social communication and restricted repetitive patterns of behavior which impede optimal functioning. Early detection and intervention in ASD children can mitigate the deficits in social interaction and result in a better outcome. Various non-invasive imaging methods and molecular techniques have been developed for the early identification of ASD characteristics. There is no general consensus on specific neuroimaging features of autism; however, quantitative magnetic resonance techniques have provided valuable structural and functional information in understanding the neuropathophysiology of ASD and how the autistic brain changes during childhood, adolescence, and adulthood. In this review of decades of ASD neuroimaging research, we identify the structural, functional, and molecular imaging clues that most accurately point to the diagnosis of ASD vs. typically developing children. These studies highlight the 1) exaggerated synaptic pruning, 2) anomalous gyrification, 3) interhemispheric under- and overconnectivity, and 4) excitatory glutamate and inhibitory GABA imbalance theories of ASD. The application of these various theories to the analysis of a patient with ASD is mitigated often by superimposed comorbid neuropsychological disorders, evolving brain maturation processes, and pharmacologic and behavioral interventions that may affect the structure and function of the brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Faranak Rafiee
- Department of Radiology, Fara Parto Medical Imaging and Interventional Radiology Center, Shiraz, Iran
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | - Mina Motaghi
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | |
Collapse
|
46
|
Sex Differences in Functional Connectivity Between Resting State Brain Networks in Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:3088-3101. [PMID: 34272649 PMCID: PMC9213274 DOI: 10.1007/s10803-021-05191-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/05/2022]
Abstract
Functional brain connectivity (FBC) has previously been examined in autism spectrum disorder (ASD) between-resting-state networks (RSNs) using a highly sensitive and reproducible hypothesis-free approach. However, results have been inconsistent and sex differences have only recently been taken into consideration using this approach. We estimated main effects of diagnosis and sex and a diagnosis by sex interaction on between-RSNs FBC in 83 ASD (40 females/43 males) and 85 typically developing controls (TC; 43 females/42 males). We found increased connectivity between the default mode (DM) and (a) the executive control networks in ASD (vs. TC); (b) the cerebellum networks in males (vs. females); and (c) female-specific altered connectivity involving visual, language and basal ganglia (BG) networks in ASD—in suggestive compatibility with ASD cognitive and neuroscientific theories.
Collapse
|
47
|
Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Semin Cell Dev Biol 2021; 118:35-49. [PMID: 34034988 DOI: 10.1016/j.semcdb.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
A hierarchical development of cortical areas was suggested over a century ago, but the diversity and complexity of cortical hierarchy properties have so far prevented a formal demonstration. The aim of this review is to clarify the similarities and differences in the developmental processes underlying cortical development of primary and higher-order areas. We start by recapitulating the historical and recent advances underlying the biological principle of cortical hierarchy in adults. We then revisit the arguments for a hierarchical maturation of cortical areas, and further integrate the principles of cortical areas specification during embryonic and postnatal development. We highlight how the dramatic expansion in cortical size might have contributed to the increased number of association areas sustaining cognitive complexification in evolution. Finally, we summarize the recent observations of an alteration of cortical hierarchy in neuropsychiatric disorders and discuss their potential developmental origins.
Collapse
|
48
|
Ayub R, Sun KL, Flores RE, Lam VT, Jo B, Saggar M, Fung LK. Thalamocortical connectivity is associated with autism symptoms in high-functioning adults with autism and typically developing adults. Transl Psychiatry 2021; 11:93. [PMID: 33536431 PMCID: PMC7859407 DOI: 10.1038/s41398-021-01221-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Alterations in sensorimotor functions are common in individuals with autism spectrum disorder (ASD). Such aberrations suggest the involvement of the thalamus due to its key role in modulating sensorimotor signaling in the cortex. Although previous research has linked atypical thalamocortical connectivity with ASD, investigations of this association in high-functioning adults with autism spectrum disorder (HFASD) are lacking. Here, for the first time, we investigated the resting-state functional connectivity of the thalamus, medial prefrontal, posterior cingulate, and left dorsolateral prefrontal cortices and its association with symptom severity in two matched cohorts of HFASD. The principal cohort consisted of 23 HFASD (mean[SD] 27.1[8.9] years, 39.1% female) and 20 age- and sex-matched typically developing controls (25.1[7.2] years, 30.0% female). The secondary cohort was a subset of the ABIDE database consisting of 58 HFASD (25.4[7.8] years, 37.9% female) and 51 typically developing controls (24.4[6.7] years, 39.2% female). Using seed-based connectivity analysis, between-group differences were revealed as hyperconnectivity in HFASD in the principal cohort between the right thalamus and bilateral precentral/postcentral gyri and between the right thalamus and the right superior parietal lobule. The former was associated with autism-spectrum quotient in a sex-specific manner, and was further validated in the secondary ABIDE cohort. Altogether, we present converging evidence for thalamocortical hyperconnectivity in HFASD that is associated with symptom severity. Our results fill an important knowledge gap regarding atypical thalamocortical connectivity in HFASD, previously only reported in younger cohorts.
Collapse
Affiliation(s)
- Rafi Ayub
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kevin L Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan E Flores
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vicky T Lam
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lawrence K Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Barlati S, Minelli A, Ceraso A, Nibbio G, Carvalho Silva R, Deste G, Turrina C, Vita A. Social Cognition in a Research Domain Criteria Perspective: A Bridge Between Schizophrenia and Autism Spectra Disorders. Front Psychiatry 2020; 11:806. [PMID: 33005149 PMCID: PMC7485015 DOI: 10.3389/fpsyt.2020.00806] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia and autism spectra disorders are currently conceptualized as distinct clinical categories. However, the relationship between these two nosological entities has been revisited in recent years due to the evidence that they share some important clinical and neurobiological features, putting into question the nature and the extent of their commonalities and differences. In this respect, some core symptoms that are present in both disorders, such as social cognitive deficits, could be a primary target of investigation. This review briefly summarizes the commonalities and overlapping features between schizophrenia and autism spectra disorders in social cognitive functions, considering this construct in a Research Domain Criteria perspective. The clinical manifestation of deficits in social cognition are similar in schizophrenia spectrum disorders and autism spectrum disorders, and brain areas that appear to be altered in relation to these impairments are largely shared; however, the results of various studies suggest that, in some cases, the qualitative nature of these alterations may be different in the two spectra. Moreover, relevant differences could be present at the level of brain networks and connections. More research is required in this field, regarding molecular and genetic aspects of both spectra, to better define the neurobiological mechanisms involved in social cognition deficits, with the objective of developing specific and targeted treatments.
Collapse
Affiliation(s)
- Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, and Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Minelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Anna Ceraso
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Cesare Turrina
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
50
|
Brady RO, Beermann A, Nye M, Eack SM, Mesholam-Gately R, Keshavan MS, Lewandowski KE. Cerebellar-Cortical Connectivity Is Linked to Social Cognition Trans-Diagnostically. Front Psychiatry 2020; 11:573002. [PMID: 33329111 PMCID: PMC7672118 DOI: 10.3389/fpsyt.2020.573002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Psychotic disorders are characterized by impairment in social cognitive processing, which is associated with poorer community functioning. However, the neural mechanisms of social impairment in psychosis remain unclear. Social impairment is a hallmark of other psychiatric illnesses as well, including autism spectrum disorders (ASD), and the nature and degree of social cognitive impairments across psychotic disorders and ASD are similar, suggesting that mechanisms that are known to underpin social impairments in ASD may also play a role in the impairments seen in psychosis. Specifically, in both humans and animal models of ASD, a cerebellar-parietal network has been identified that is directly related to social cognition and social functioning. In this study we examined social cognition and resting-state brain connectivity in people with psychosis and in neurotypical adults. We hypothesized that social cognition would be most strongly associated with cerebellar-parietal connectivity, even when using a whole-brain data driven approach. Methods: We examined associations between brain connectivity and social cognition in a trans-diagnostic sample of people with psychosis (n = 81) and neurotypical controls (n = 45). Social cognition was assessed using the social cognition domain score of the MATRICS Consensus Cognitive Battery. We used a multivariate pattern analysis to correlate social cognition with resting-state functional connectivity at the individual voxel level. Results: This approach identified a circuit between right cerebellar Crus I, II and left parietal cortex as the strongest correlate of social cognitive performance. This connectivity-cognition result was observed in both people with psychotic disorders and in neurotypical adults. Conclusions: Using a data-driven whole brain approach we identified a cerebellar-parietal circuit that was robustly associated with social cognitive ability, consistent with findings from people with ASD and animal models. These findings suggest that this circuit may be marker of social cognitive impairment trans-diagnostically and support cerebellar-parietal connectivity as a potential therapeutic target for enhancing social cognition.
Collapse
Affiliation(s)
- Roscoe O Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Adam Beermann
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Madelaine Nye
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Shaun M Eack
- School of Social Work and Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raquelle Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Lewandowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| |
Collapse
|