1
|
Li J, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. PLANT PHYSIOLOGY 2024; 197:kiae293. [PMID: 38849987 PMCID: PMC11663579 DOI: 10.1093/plphys/kiae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologs.
Collapse
Affiliation(s)
- Jingxia Li
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Ishii
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mika Nomoto
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- The UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Bimpong D, Zhao L, Ran M, Zhao X, Wu C, Li Z, Wang X, Cheng L, Fang Z, Hu Z, Fan C, Gyebi-Nimako B, Luo Y, Wang S, Zhang Y. Transcriptomic analysis reveals the regulatory mechanisms of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in response to waterlogging stress in rye (Secale cereale L.). BMC PLANT BIOLOGY 2024; 24:534. [PMID: 38862913 PMCID: PMC11167852 DOI: 10.1186/s12870-024-05234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Waterlogging stress (WS) negatively impacts crop growth and productivity, making it important to understand crop resistance processes and discover useful WS resistance genes. In this study, rye cultivars and wild rye species were subjected to 12-day WS treatment, and the cultivar Secale cereale L. Imperil showed higher tolerance. Whole transcriptome sequencing was performed on this cultivar to identify differentially expressed (DE) messenger RNAs (DE-mRNAs) and long non-coding RNAs (DE-lncRNAs) involved in WS response. RESULTS Among the 6 species, Secale cereale L. Imperil showed higher tolerance than wild rye species against WS. The cultivar effectively mitigated oxidative stress, and regulated hydrogen peroxide and superoxide anion. A total of 728 DE-mRNAs and 60 DE-lncRNAs were discovered. Among these, 318 DE-mRNAs and 32 DE-lncRNAs were upregulated, and 410 DE-mRNAs and 28 DE-lncRNAs were downregulated. GO enrichment analysis discovered metabolic processes, cellular processes, and single-organism processes as enriched biological processes (BP). For cellular components (CC), the enriched terms were membrane, membrane part, cell, and cell part. Enriched molecular functions (MF) terms were catalytic activity, binding, and transporter activity. LncRNA and mRNA regulatory processes were mainly related to MAPK signaling pathway-plant, plant hormone signal transduction, phenylpropanoid biosynthesis, anthocyanin biosynthesis, glutathione metabolism, ubiquitin-mediated proteolysis, ABC transporter, Cytochrome b6/f complex, secondary metabolite biosynthesis, and carotenoid biosynthesis pathways. The signalling of ethylene-related pathways was not mainly dependent on AP2/ERF and WRKY transcription factors (TF), but on other factors. Photosynthetic activity was active, and carotenoid levels increased in rye under WS. Sphingolipids, the cytochrome b6/f complex, and glutamate are involved in rye WS response. Sucrose transportation was not significantly inhibited, and sucrose breakdown occurs in rye under WS. CONCLUSIONS This study investigated the expression levels and regulatory functions of mRNAs and lncRNAs in 12-day waterlogged rye seedlings. The findings shed light on the genes that play a significant role in rye ability to withstand WS. The findings from this study will serve as a foundation for further investigations into the mRNA and lncRNA WS responses in rye.
Collapse
Affiliation(s)
- Daniel Bimpong
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Lili Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Mingyang Ran
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Xize Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Cuicui Wu
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Ziqun Li
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Xue Wang
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Ling Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Zhengwu Fang
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Yirou Luo
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Shuping Wang
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China.
| | - Yingxin Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China.
| |
Collapse
|
3
|
Pitann B, Mühling KH. Oat-an alternative crop under waterlogging stress? FRONTIERS IN PLANT SCIENCE 2024; 15:1386039. [PMID: 38919823 PMCID: PMC11196775 DOI: 10.3389/fpls.2024.1386039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Introduction Waterlogging is one vast environmental constraint that limits crop growth and yield worldwide. Most major crop species are very sensitive to waterlogging, leading to enormous yield losses every year. Much is already known about wheat, barley or maize; however, hardly any data exist on oat and its tolerance against waterlogging. Thus, this study aimed to investigate if oats can be an adequate alternative in crop rotation under conditions of temporal submergence and if cultivar differences exist. Furthermore, this study was to test (1) whether yield was differently affected when stress is applied at different developmental stages (BBCH 31 and 51), and (2) nutrient imbalances are the reason for growth restrictions. Methods In a large-scale container experiment, three different oat varieties were cultivated and exposed to 14 consecutive days of waterlogging stress at two developmental stages. Results Even though vegetative growth was impaired after early waterlogging and which persists till maturity, mainly due to transient nutrient deficiencies, growth performance after late waterlogging and grain yield of all three oat varieties at maturity was not affected. A high tolerance was also confirmed after late waterlogging in the beginning generative stage: grain yield was even increased. Discussion Overall, all oat varieties performed well under both stress treatments, even though transient nutrient imbalances occurred, but which were ineffective on grain yield. Based on these results, we conclude that oats, independently of the cultivar, should be considered a good alternative in crop production, especially when waterlogging is to be expected during the cultivation phase.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Pan J, Song J, Sohail H, Sharif R, Yan W, Hu Q, Qi X, Yang X, Xu X, Chen X. RNA-seq-based comparative transcriptome analysis reveals the role of CsPrx73 in waterlogging-triggered adventitious root formation in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae062. [PMID: 38659441 PMCID: PMC11040206 DOI: 10.1093/hr/uhae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
Abiotic stressors like waterlogging are detrimental to cucumber development and growth. However, comprehension of the highly complex molecular mechanism underlying waterlogging can provide an opportunity to enhance cucumber tolerance under waterlogging stress. We examined the hypocotyl and stage-specific transcriptomes of the waterlogging-tolerant YZ026A and the waterlogging-sensitive YZ106A, which had different adventitious rooting ability under waterlogging. YZ026A performed better under waterlogging stress by altering its antioxidative machinery and demonstrated a greater superoxide ion (O 2-) scavenging ability. KEGG pathway enrichment analysis showed that a high number of differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis. By pairwise comparison and weighted gene co-expression network analysis analysis, 2616 DEGs were obtained which were categorized into 11 gene co-expression modules. Amongst the 11 modules, black was identified as the common module and yielded a novel key regulatory gene, CsPrx73. Transgenic cucumber plants overexpressing CsPrx73 enhance adventitious root (AR) formation under waterlogging conditions and increase reactive oxygen species (ROS) scavenging. Silencing of CsPrx73 expression by virus-induced gene silencing adversely affects AR formation under the waterlogging condition. Our results also indicated that CsERF7-3, a waterlogging-responsive ERF transcription factor, can directly bind to the ATCTA-box motif in the CsPrx73 promoter to initiate its expression. Overexpression of CsERF7-3 enhanced CsPrx73 expression and AR formation. On the contrary, CsERF7-3-silenced plants decreased CsPrx73 expression and rooting ability. In conclusion , our study demonstrates a novel CsERF7-3-CsPrx73 module that allows cucumbers to adapt more efficiently to waterlogging stress by promoting AR production and ROS scavenging.
Collapse
Affiliation(s)
- Jiawei Pan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenjing Yan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
5
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
6
|
Welle M, Niether W, Stöhr C. The underestimated role of plant root nitric oxide emission under low-oxygen stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1290700. [PMID: 38379951 PMCID: PMC10876902 DOI: 10.3389/fpls.2024.1290700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The biotic release of nitric oxide (NO), a greenhouse gas, into the atmosphere contributes to climate change. In plants, NO plays a significant role in metabolic and signaling processes. However, little attention has been paid to the plant-borne portion of global NO emissions. Owing to the growing significance of global flooding events caused by climate change, the extent of plant NO emissions has been assessed under low-oxygen conditions for the roots of intact plants. Each examined plant species (tomato, tobacco, and barley) exhibited NO emissions in a highly oxygen-dependent manner. The transfer of data obtained under laboratory conditions to the global area of farmland was used to estimate possible plant NO contribution to greenhouse gas budgets. Plant-derived and stress-induced NO emissions were estimated to account for the equivalent of 1 to 9% of global annual NO emissions from agricultural land. Because several stressors induce NO formation in plants, the actual impact may be even higher.
Collapse
Affiliation(s)
- Marcel Welle
- Plant Physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
7
|
Yang H, Cai X, Lu D. Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize. PLANTS (BASEL, SWITZERLAND) 2023; 13:108. [PMID: 38202416 PMCID: PMC10780669 DOI: 10.3390/plants13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Waterlogging is a common abiotic stress in global maize production. Maize flowering stage (from tasseling to silking) is more fragile to environmental stresses, and this stage frequently overlapped the plum rain season in the middle and lower reaches of Yangtze river in China and affect the yield and quality of spring-sown maize severely. In the present study, the soil moisture content under control and waterlogging conditions at the flowering stage was controlled by a negative-pressure water supply and controlling pot device in a pot trial in 2014-2015. The grain yield, starch content, and starch structural and functional properties under two soil moisture levels were compared using Suyunuo5 (SYN5) and Yunuo7 (YN7) as materials, which are the control hybrids of National waxy maize hybrid regional trials in Southern China. The results observed that the grain yield was reduced by 29.1% for SYN5 with waterlogging due to the decreased grain weight and numbers, which was significantly higher than that of YN7 (14.7%), indicated that YN7 was more tolerant to waterlogging. The grain starch content in YN7 was decreased by 9.4% when plants suffered waterlogging at the flowering stage, whereas the content in SYN5 was only decreased in 2014 and unaffected in 2015. The size of starch granules and proportion of small-molecule amylopectin with waterlogging at the flowering stage increased in SYN5 and decreased in YN7 in both years. The type of starch crystalline structure was not changed by waterlogging, whereas the relative crystallinity was reduced in SYN5 and increased in YN7. The pasting viscosities were decreased, and the pasting temperature was unaffected by waterlogging in general. The gelatinization enthalpy was unaffected by waterlogging in both hybrids in both years, whereas the retrogradation enthalpy and percentage in both hybrids were reduced by waterlogging in 2014 and unaffected in 2015. Between the two hybrids, YN7 has high pasting viscosities and low retrogradation percentage than SYN5, indicated its advantages on produce starch for more viscous and less retrograde food. In conclusion, waterlogging at the flowering stage reduced the grain yield, restricted starch accumulation, and deteriorated the pasting viscosity of waxy maize. Results provide information for utilization of waxy maize grain in food production.
Collapse
Affiliation(s)
| | | | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China
| |
Collapse
|
8
|
Sprunger CD, Lindsey A, Lightcap A. Above- and belowground linkages during extreme moisture excess: leveraging knowledge from natural ecosystems to better understand implications for row-crop agroecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2845-2859. [PMID: 36738284 PMCID: PMC10133998 DOI: 10.1093/jxb/erad045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Above- and belowground linkages are responsible for some of the most important ecosystem processes in unmanaged terrestrial systems including net primary production, decomposition, and carbon sequestration. Global change biology is currently altering above- and belowground interactions, reducing ecosystem services provided by natural systems. Less is known regarding how above- and belowground linkages impact climate resilience, especially in intentionally managed cropping systems. Waterlogged or flooded conditions will continue to increase across the Midwestern USA due to climate change. The objective of this paper is to explore what is currently known regarding above- and belowground linkages and how they impact biological, biochemical, and physiological processes in systems experiencing waterlogged conditions. We also identify key above- and belowground processes that are critical for climate resilience in Midwestern cropping systems by exploring various interactions that occur within unmanaged landscapes. Above- and belowground interactions that support plant growth and development, foster multi-trophic-level interactions, and stimulate balanced nutrient cycling are critical for crops experiencing waterlogged conditions. Moreover, incorporating ecological principles such as increasing plant diversity by incorporating crop rotations and adaptive management via delayed planting dates and adjustments in nutrient management will be critical for fostering climate resilience in row-crop agriculture moving forward.
Collapse
Affiliation(s)
| | - Alex Lindsey
- Department of Horticulture and Crop Science, The Ohio State University, OH, USA
| | - Ainsley Lightcap
- School of Environment and Natural Resources, The Ohio State University, OH, USA
| |
Collapse
|
9
|
Santiago-Velasco M, Ortiz-López E, Flores-Méndez A, Barrera-Figueroa BE, García-López E, Peña-Castro JM. Transformation efficiency of Arabidopsis thaliana ecotypes with differential tolerance to submergence stress. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Mayra Santiago-Velasco
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
- División de Estudios de Posgrado, Universidad del Papaloapan, Oaxaca, México
| | - Erick Ortiz-López
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| | - Alexis Flores-Méndez
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| | | | | | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| |
Collapse
|
10
|
Roitsch T, Himanen K, Chawade A, Jaakola L, Nehe A, Alexandersson E. Functional phenomics for improved climate resilience in Nordic agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5111-5127. [PMID: 35727101 PMCID: PMC9440434 DOI: 10.1093/jxb/erac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
Collapse
Affiliation(s)
- Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kristiina Himanen
- National Plant Phenotyping Infrastructure, HiLIFE, University of Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Ajit Nehe
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
11
|
Sonawane H, Shelke D, Chambhare M, Dixit N, Math S, Sen S, Borah SN, Islam NF, Joshi SJ, Yousaf B, Rinklebe J, Sarma H. Fungi-derived agriculturally important nanoparticles and their application in crop stress management - Prospects and environmental risks. ENVIRONMENTAL RESEARCH 2022; 212:113543. [PMID: 35613631 DOI: 10.1016/j.envres.2022.113543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has a wide range of agricultural applications, with emphasize on the development of novel nano-agrochemicals such as, nano-fertilizer and nano-pesticides. It has a significant impact on sustainable agriculture by increasing agricultural productivity, while reducing the use of inorganic fertilizers, pesticides, and herbicides. Nano-coating delivery methods for agrochemicals have improved agrochemical effectiveness, safety, and consistency. Biosynthesis of nanoparticles (NPs) has recently been recognized as an effective tool, contrary to chemically derived NPs, for plant abiotic and biotic stress control, and crop improvement. In this regard, fungi have tremendous scope and importance for producing biogenic NPs of various sizes, shapes, and characteristics. Fungi are potential candidates for synthesis of biogenic NPs due to their enhanced bioavailability, biological activity, and higher metal tolerance. However, their biomimetic properties and high capacity for dispersion in soil, water environments, and foods may have negative environmental consequences. Furthermore, their bioaccumulation raises significant concerns about the novel properties of nanomaterials potentially causing adverse biological effects, including toxicity. This review provides a concise outline of the growing role of fungal-mediated metal NPs synthesis, its potential applications in crop field, and associated issues of nano-pollution in soil and its future implications.
Collapse
Affiliation(s)
- Hiralal Sonawane
- PG Research Centre Botany, PDEA's Prof. Ramkrishna More ACS College, Akurdi, Pune, Maharashtra, India
| | - Deepak Shelke
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Mahadev Chambhare
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Nishi Dixit
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Siddharam Math
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Suparna Sen
- Environmental Biotechnology Lab, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | | | - Nazim Forid Islam
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India
| | - Sanket J Joshi
- Oil & Gas Research Centre, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Balal Yousaf
- Research Group for Advanced Carbonaceous Material for Environmental Applications, Chinese Academy of Science (CAS)-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefai, 230026, Anhui, China
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| | - Hemen Sarma
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India; Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar, BTR, Assam, 783370, India.
| |
Collapse
|
12
|
Frisk CA, Xistris-Songpanya G, Osborne M, Biswas Y, Melzer R, Yearsley JM. Phenotypic variation from waterlogging in multiple perennial ryegrass varieties under climate change conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:954478. [PMID: 35991411 PMCID: PMC9387306 DOI: 10.3389/fpls.2022.954478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Identifying how various components of climate change will influence ecosystems and vegetation subsistence will be fundamental to mitigate negative effects. Climate change-induced waterlogging is understudied in comparison to temperature and CO2. Grasslands are especially vulnerable through the connection with global food security, with perennial ryegrass dominating many flood-prone pasturelands in North-western Europe. We investigated the effect of long-term waterlogging on phenotypic responses of perennial ryegrass using four common varieties (one diploid and three tetraploid) grown in atmospherically controlled growth chambers during two months of peak growth. The climate treatments compare ambient climatological conditions in North-western Europe to the RCP8.5 climate change scenario in 2050 (+2°C and 550 ppm CO2). At the end of each month multiple phenotypic plant measurements were made, the plants were harvested and then allowed to grow back. Using image analysis and principal component analysis (PCA) methodologies, we assessed how multiple predictors (phenotypic, environmental, genotypic, and temporal) influenced overall plant performance, productivity and phenotypic responses. Long-term waterlogging was found to reduce leaf-color intensity, with younger plants having purple hues indicative of anthocyanins. Plant performance and yield was lower in waterlogged plants, with tetraploid varieties coping better than the diploid one. The climate change treatment was found to reduce color intensities further. Flooding was found to reduce plant productivity via reductions in color pigments and root proliferation. These effects will have negative consequences for global food security brought on by increased frequency of extreme weather events and flooding. Our imaging analysis approach to estimate effects of waterlogging can be incorporated into plant health diagnostics tools via remote sensing and drone-technology.
Collapse
Affiliation(s)
- Carl A. Frisk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Matthieu Osborne
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yastika Biswas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Jon M. Yearsley
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Sreeratree J, Butsayawarapat P, Chaisan T, Somta P, Juntawong P. RNA-Seq Reveals Waterlogging-Triggered Root Plasticity in Mungbean Associated with Ethylene and Jasmonic Acid Signal Integrators for Root Regeneration. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070930. [PMID: 35406910 PMCID: PMC9002673 DOI: 10.3390/plants11070930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Global climate changes increase the frequency and intensity of heavy precipitation events, which result in flooding or soil waterlogging. One way to overcome these low-oxygen stresses is via modifying the plant root system to improve internal aeration. Here, we used a comparative RNA-seq based transcriptomic approach to elucidate the molecular mechanisms of waterlogging-triggered root plasticity in mungbean (Vigna radiata), a major grain legume cultivated in Asia. Two mungbean varieties with contrasting waterlogging tolerance due to the plasticity of the root system architecture were subjected to short-term and long-term waterlogging. Then, RNA-seq was performed. Genes highly expressed in both genotypes under short-term waterlogging are related to glycolysis and fermentation. Under long-term waterlogging, the expression of these genes was less induced in the tolerant variety, suggesting it had effectively adapted to waterlogging via enhancing root plasticity. Remarkably, under short-term waterlogging, the expression of several transcription factors that serve as integrators for ethylene and jasmonic acid signals controlling root stem cell development was highly upregulated only in the tolerant variety. Sequentially, root development-related genes were more expressed in the tolerant variety under long-term waterlogging. Our findings suggest that ethylene and jasmonic acids may contribute to waterlogging-triggered root plasticity by relaying environmental signals to reprogram root regeneration. This research provides the basis for the breeding and genetic engineering of waterlogging-tolerant crops in the future.
Collapse
Affiliation(s)
- Jaruwan Sreeratree
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Pimprapai Butsayawarapat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Tanapon Chaisan
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
14
|
Chen CC, Li MS, Chen KT, Lin YH, Ko SS. Photosynthetic and Morphological Responses of Sacha Inchi ( Plukenetia volubilis L.) to Waterlogging Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030249. [PMID: 35161229 PMCID: PMC8840482 DOI: 10.3390/plants11030249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 05/31/2023]
Abstract
Sacha inchi (Plukenetia volubilis L.) is an important oilseed crop that is rich in fatty acids and protein. Climate-change-related stresses, such as chilling, high temperature, and waterlogging can cause severe production loss in this crop. In this study, we investigated the photosynthetic responses of sacha inchi seedlings to short-term waterlogging and their morphological changes after long-term waterlogging stress. Sacha inchi CO2 uptake, stomatal conductance, and transpiration rate are affected by temperature and light intensity. The seedlings had a high CO2 uptake (>10 μmol m-2s-1) during the daytime (08:00 to 15:00), and at 32 and 36 °C. At 32 °C, CO2 uptake peaked at irradiations of 1000 and 1500 µmol m-2s-1, and plants could still perform photosynthesis at high-intensity radiation of 2000-3000 µmol m-2s-1. However, after 5 days of waterlogging (5 DAF) sacha inchi seedlings significantly reduced their photosynthetic ability. The CO2 uptake, stomatal conductance, Fv/Fm, ETR, and qP, etc., of the susceptible genotypes, were significantly decreased and their wilting percentage was higher than 50% at 5 DAF. This led to a higher wilting percentage at 7 days post-recovery. Among the four lines assessed, Line 27 had a high photosynthetic capability and showed the best waterlogging tolerance. We screened many seedlings for long-term waterlogging tolerance and discovered that some seedlings can produce adventitious roots (AR) and survive after two weeks of waterlogging. Hence, AR could be a critical morphological adaptation to waterlogging in this crop. In summary, these results suggest that improvement in waterlogging tolerance has considerable potential for increasing the sustainable production of sacha inchi.
Collapse
Affiliation(s)
- Chyi-Chuann Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; (C.-C.C.); (M.-S.L.); (Y.-H.L.)
| | - Ming-Sheng Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; (C.-C.C.); (M.-S.L.); (Y.-H.L.)
| | - Kuan-Ting Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan;
| | - Yueh-Hua Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; (C.-C.C.); (M.-S.L.); (Y.-H.L.)
| | - Swee-Suak Ko
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; (C.-C.C.); (M.-S.L.); (Y.-H.L.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
15
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
16
|
Mignolli F, Barone JO, Vidoz ML. Root submergence enhances respiration and sugar accumulation in the stem of flooded tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3643-3654. [PMID: 34268805 DOI: 10.1111/pce.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Flooding is a major environmental constraint that obliges plants to adopt plastic responses in order to cope with it. When partially submerged, tomato plants undergo profound changes involving rearrangements in their morphology and metabolism. In this work, we observed that partial submergence markedly dampens root respiration and halts root growth. However, the flooded hypocotyl surprisingly enhances oxygen consumption. Previous results demonstrated that aerenchyma formation in the submerged tomato stem re-establishes internal oxygen tension, making aerobic respiration possible. Indeed, potassium cyanide abruptly stops oxygen uptake, indicating that the cytochrome c pathway is likely to be engaged. Furthermore, we found out that leaf-derived sugars accumulate in large amounts in hypocotyls of flooded plants. Girdling and feeding experiments point to sucrose as the main carbon source for respiration. Consistently, submerged hypocotyls are characterized by high sucrose synthase activity, indicating that sucrose is cleaved and channelled into respiration. Since inhibition of hypocotyl respiration significantly prevents sugar build-up, it is suggested that a high respiration rate is required for sucrose unloading from phloem. As substrate availability increases, respiration is fuelled even more, leading to a maintained allocation of sugars to flooded hypocotyls.
Collapse
Affiliation(s)
- Francesco Mignolli
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Javier Orlando Barone
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
| | - María Laura Vidoz
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
17
|
Kacprzyk J, Burke R, Schwarze J, McCabe PF. Plant programmed cell death meets auxin signalling. FEBS J 2021; 289:1731-1745. [PMID: 34543510 DOI: 10.1111/febs.16210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Rory Burke
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Johanna Schwarze
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Miricescu A, Byrne T, Doorly CM, Ng CKY, Barth S, Graciet E. Experimental comparison of two methods to study barley responses to partial submergence. PLANT METHODS 2021; 17:40. [PMID: 33849604 PMCID: PMC8045378 DOI: 10.1186/s13007-021-00742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/31/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Crop yield is dependent on climate conditions, which are becoming both more variable and extreme in some areas of the world as a consequence of global climate change. Increased precipitation and flooding events are the cause of important yield losses due to waterlogging or (partial) submergence of crops in the field. Our ability to screen efficiently and quickly for varieties that have increased tolerance to waterlogging or (partial) submergence is important. Barley, a staple crop worldwide, is particularly sensitive to waterlogging. Screening for waterlogging tolerant barley varieties has been ongoing for many years, but methods used to screen vary greatly, from the type of soil used to the time at which the treatment is applied. This variation makes it difficult to cross-compare results. RESULTS Here, we have devised a scoring system to assess barley tolerance to waterlogging and compare two different methods when partial submergence is applied with either water or a starch solution at an early developmental stage, which is particularly sensitive to waterlogging or partial submergence. The use of a starch solution has been previously shown to result in more reducing soil conditions and has been used to screen for waterlogging tolerance. CONCLUSIONS Our results show that the two methods provide similar results to qualitatively rank varieties as tolerant or sensitive, while also affecting plants differently, in that application of a starch solution results in stronger and earlier symptoms than applying partial submergence with water.
Collapse
Affiliation(s)
| | - Tomás Byrne
- Crop Science Department, Teagasc Crops, Environment and Land Use Program, Oak Park, Carlow, R93XE12, Ireland
| | - Catherine M Doorly
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland
| | - Carl K Y Ng
- School of Biology and Environmental Science, Centre for Plant Science, UCD Earth Institute, O'Brien Centre for Science West, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland.
| | - Susanne Barth
- Crop Science Department, Teagasc Crops, Environment and Land Use Program, Oak Park, Carlow, R93XE12, Ireland.
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland.
| |
Collapse
|
19
|
Kacprzyk J, Gunawardena AHLAN, Bouteau F, McCabe PF. Editorial: Plant Programmed Cell Death Revisited. FRONTIERS IN PLANT SCIENCE 2021; 12:672465. [PMID: 33841488 PMCID: PMC8027467 DOI: 10.3389/fpls.2021.672465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Francois Bouteau
- Laboratoire Interdisciplinaire des Énergies de Demain, Université de Paris, Paris, France
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Wittig PR, Ambros S, Müller JT, Bammer B, Álvarez-Cansino L, Konnerup D, Pedersen O, Mustroph A. Two Brassica napus cultivars differ in gene expression, but not in their response to submergence. PHYSIOLOGIA PLANTARUM 2021; 171:400-415. [PMID: 33099772 DOI: 10.1111/ppl.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Heavy rainfall causes flooding of natural ecosystems as well as farmland, negatively affecting plant performance. While the responses of the wild model organism Arabidopsis thaliana to such stress conditions is well understood, little is known about the responses of its relative, the important oil crop plant Brassica napus. For the first time, we analyzed the molecular response of Brassica napus seedlings to full submergence in a natural light-dark cycle. We used two cultivars in this study, a European hybrid cultivar and an Asian flood-tolerant cultivar. Despite their genomic differences, those genotypes showed no major differences in their responses to submergence. The molecular responses to submergence included the induction of defense- and hormone-related pathways and the repression of biosynthetic processes. Furthermore, RNAseq revealed a strong carbohydrate-starvation response under submergence in daylight, which corresponded with a fast depletion of sugars. Consequently, both B. napus cultivars exhibited a strong growth repression under water, but there was no indication of a low-oxygen response. The ability of the European hybrid cultivar to form a short-lived leaf gas film neither increased underwater net photosynthesis, underwater dark respiration nor growth during submergence. Due to the high sensitivity of both cultivars, the analysis of other cultivars or related species with higher submergence tolerance is required in order to improve flood tolerance of this crop species. One major target could be the improvement of underwater photosynthesis efficiency in order to enhance submergence survival.
Collapse
Affiliation(s)
- Philipp R Wittig
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Stefanie Ambros
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Jana T Müller
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Bettina Bammer
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | | | - Dennis Konnerup
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Angelika Mustroph
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
21
|
Mano Y, Nakazono M. Genetic regulation of root traits for soil flooding tolerance in genus Zea. BREEDING SCIENCE 2021; 71:30-39. [PMID: 33762874 PMCID: PMC7973494 DOI: 10.1270/jsbbs.20117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/16/2023]
Abstract
Flooding stress caused by excessive precipitation and poor drainage threatens upland crop production and food sustainability, so new upland crop cultivars are needed with greater tolerance to soil flooding (waterlogging). So far, however, there have been no reports of highly flooding-tolerant upland crop cultivars, including maize, because of the lack of flooding-tolerant germplasm and the presence of a large number of traits affecting flooding tolerance. To achieve the goal of breeding flooding-tolerant maize cultivars by overcoming these difficulties, we chose highly flooding-tolerant teosinte germplasm. These flooding-tolerance-related traits were separately assessed by establishing a method for the accurate evaluation of each one, followed by performing quantitative trait locus (QTL) analyses for each trait using maize × teosinte mapping populations, developing introgression lines (ILs) or near-isogenic lines (NILs) containing QTLs and pyramiding useful traits. We have identified QTLs for flooding-tolerance-related root traits, including the capacity to form aerenchyma, formation of radial oxygen loss barriers, tolerance to flooded reducing soil conditions, flooding-induced adventitious root formation and shallow root angle. In addition, we have developed several ILs and NILs with flooding-tolerance-related QTLs and are currently developing pyramided lines. These lines should be valuable for practical maize breeding programs focused on flooding tolerance.
Collapse
Affiliation(s)
- Yoshiro Mano
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
22
|
Lai MC, Lai ZY, Jhan LH, Lai YS, Kao CF. Prioritization and Evaluation of Flooding Tolerance Genes in Soybean [ Glycine max (L.) Merr.]. Front Genet 2021; 11:612131. [PMID: 33584812 PMCID: PMC7873447 DOI: 10.3389/fgene.2020.612131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important legume crops abundant in edible protein and oil in the world. In recent years there has been increasingly more drastic weather caused by climate change, with flooding, drought, and unevenly distributed rainfall gradually increasing in terms of the frequency and intensity worldwide. Severe flooding has caused extensive losses to soybean production and there is an urgent need to breed strong soybean seeds with high flooding tolerance. The present study demonstrates bioinformatics big data mining and integration, meta-analysis, gene mapping, gene prioritization, and systems biology for identifying prioritized genes of flooding tolerance in soybean. A total of 83 flooding tolerance genes (FTgenes), according to the appropriate cut-off point, were prioritized from 36,705 test genes collected from multidimensional genomic features linking to soybean flooding tolerance. Several validation results using independent samples from SoyNet, genome-wide association study, SoyBase, GO database, and transcriptome databases all exhibited excellent agreement, suggesting these 83 FTgenes were significantly superior to others. These results provide valuable information and contribution to research on the varieties selection of soybean.
Collapse
Affiliation(s)
- Mu-Chien Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Pedersen O, Sauter M, Colmer TD, Nakazono M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. THE NEW PHYTOLOGIST 2021; 229:42-49. [PMID: 32045027 DOI: 10.1111/nph.16375] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 05/25/2023]
Abstract
Flooding causes oxygen deprivation in soils. Plants adapt to low soil oxygen availability by changes in root morphology, anatomy, and architecture to maintain root system functioning. Essential traits include aerenchyma formation, a barrier to radial oxygen loss, and outgrowth of adventitious roots into the soil or the floodwater. We highlight recent findings of mechanisms of constitutive aerenchyma formation and of changes in root architecture. Moreover, we use modelling of internal aeration to demonstrate the beneficial effect of increasing cortex-to-stele ratio on sustaining root growth in waterlogged soils. We know the genes for some of the beneficial traits, and the next step is to manipulate these genes in breeding in order to enhance the flood tolerance of our crops.
Collapse
Affiliation(s)
- Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, 2100, Copenhagen, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mikio Nakazono
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
24
|
Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, Sun P, Schuurink RC, Takeuchi J, Todoroki Y, Weig AR, Sasidharan R, Mustroph A. Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). THE NEW PHYTOLOGIST 2021; 229:140-155. [PMID: 31792981 DOI: 10.1111/nph.16350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.
Collapse
Affiliation(s)
- Jana T Müller
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Malte M Bartylla
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Melis Akman
- Plant and Microbial Biology, University of California, Berkeley, 361 Koshland Hall, Berkeley, CA, 94720, USA
- Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
25
|
Torti P, Raineri J, Mencia R, Campi M, Gonzalez DH, Welchen E. The sunflower TLDc-containing protein HaOXR2 confers tolerance to oxidative stress and waterlogging when expressed in maize plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110626. [PMID: 33180706 DOI: 10.1016/j.plantsci.2020.110626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus L.) genome encodes six proteins containing a TLDc domain, typical of the eukaryotic OXidation Resistance (OXR) protein family. Expression of sunflower HaOXR2 in Arabidopsis generated plants with increased rosette diameter, higher number of leaves and increased seed production. Maize inbred lines expressing HaOXR2 also showed increased total leaf area per plant. In addition, heterologous expression of HaOXR2 induced an increase in the oxidative stress tolerance in Arabidopsis and maize. Maize transgenic plants expressing HaOXR2 experienced less oxidative damage and exhibited increased photosynthetic performance and efficiency than non-transgenic segregant plants after treatment of leaves with the reactive oxygen species generating compound Paraquat. Expression of HaOXR2 in maize also improved tolerance to waterlogging. The number of expanded leaves, aerial biomass, and stem height and cross-section area were less affected by waterlogging in HaOXR2 expressing plants, which also displayed less aerial tissue damage under these conditions. Transgenic plants also showed an increased production of roots, a typical adaptive stress response. The results show the existence of functional conservation of OXR proteins in dicot and monocot plants and indicate that HaOXR2 could be useful to improve plant performance under conditions that increase oxidative stress.
Collapse
Affiliation(s)
- Pablo Torti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Mabel Campi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| |
Collapse
|
26
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
27
|
Hartman S, van Dongen N, Renneberg DM, Welschen-Evertman RA, Kociemba J, Sasidharan R, Voesenek LA. Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species. PLANTS 2020; 9:plants9081022. [PMID: 32823611 PMCID: PMC7465973 DOI: 10.3390/plants9081022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The increasing occurrence of floods hinders agricultural crop production and threatens global food security. The majority of vegetable crops are highly sensitive to flooding and it is unclear how these plants use flooding signals to acclimate to impending oxygen deprivation (hypoxia). Previous research has shown that the early flooding signal ethylene augments hypoxia responses and improves survival in Arabidopsis. To unravel how cultivated and wild Solanum species integrate ethylene signaling to control subsequent hypoxia acclimation, we studied the transcript levels of a selection of marker genes, whose upregulation is indicative of ethylene-mediated hypoxia acclimation in Arabidopsis. Our results suggest that ethylene-mediated hypoxia acclimation is conserved in both shoots and roots of the wild Solanum species bittersweet (Solanum dulcamara) and a waterlogging-tolerant potato (Solanum tuberosum) cultivar. However, ethylene did not enhance the transcriptional hypoxia response in roots of a waterlogging-sensitive potato cultivar, suggesting that waterlogging tolerance in potato could depend on ethylene-controlled hypoxia responses in the roots. Finally, we show that ethylene rarely enhances hypoxia-adaptive genes and does not improve hypoxia survival in tomato (Solanum lycopersicum). We conclude that analyzing genes indicative of ethylene-mediated hypoxia acclimation is a promising approach to identifying key signaling cascades that confer flooding tolerance in crops.
Collapse
|
28
|
Burke R, Schwarze J, Sherwood OL, Jnaid Y, McCabe PF, Kacprzyk J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:1235. [PMID: 32903426 PMCID: PMC7434935 DOI: 10.3389/fpls.2020.01235] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled pathway that plants can use to selectively eliminate redundant or damaged cells. In addition to its fundamental role in plant development, PCD can often be activated as an essential defense response when dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can promote plant survival by restricting pathogen growth, driving the development of morphological traits for stress tolerance such as aerenchyma, or triggering systemic pro-survival responses. Relatively little is known about the molecular control of this essential process in plants, especially in comparison to well-described cell death models in animals. However, the networks orchestrating transcriptional regulation of plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli inducible genes and play a fundamental role in plant responses, such as PCD, to abiotic and biotic stresses. Here, we discuss the roles of different classes of transcription factors, including members of NAC, ERF and WRKY families, in cell fate regulation in response to environmental stresses. The role of TFs in stress-induced mitochondrial retrograde signaling is also reviewed in the context of life-and-death decisions of the plant cell and future research directions for further elucidation of TF-mediated control of stress-induced PCD events are proposed. An increased understanding of these complex signaling networks will inform and facilitate future breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, Lan P. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteomics 2020; 220:103756. [PMID: 32201361 DOI: 10.1016/j.jprot.2020.103756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the major crops worldwide and its production is inevitably subjected to various biotic/abiotic stresses during the life cycle. Drought, salinity and flooding are among the most severe abiotic stresses restricting wheat yields and could occur at very early stages such as seed germination. How wheat seed germination responds to these different stresses remains incomplete. To fill the information gap, a label-free proteomic analysis was applied to decipher the proteomic profiling of the germinating wheat seeds subjected to PEG, NaCl and submergence treatments. In total, 4295 proteins were detected, of which 465, 397 and 732 showed significant alterations in abundance under those stresses when compared with control. A common denominator found in the response observed to all three stresses are changes related to small molecule metabolic processes, and particularly in pathways associated with phenylpropanoid biosynthesis and fatty acid degradation. It was also noticeable that pathways like cysteine and methionine metabolism in the PEG or submergence treatment and starch and sucrose metabolism in the submergence treatment are specifically pronounced. Functional analysis of putative proteins participating in these pathways revealed distinct responsive patterns across different stresses. SIGNIFICANCE: Wheat (Triticum aestivum L.) is one of the most important staple crops in the world, but its growth and productivity are frequently restrained by stresses such as drought, salinity and flooding. To date, many resources have been documented to investigate how wheat responds and adapts to these individual stresses during plant development and yield formation, but little attention was paid to the understandings of the internal link between different conditions, especially during the germination process, a critical stage that determines the optimal growth of wheat. In this study, we carried out the proteome profiling of the germinating seeds of a common wheat cultivar, Chinese Spring, subjected to PEG, NaCl and submergence stresses. We found that the phenylpropanoid biosynthesis and fatty acid degradation pathways were enriched as the ubiquitous stress responses, while some pathways were stress-specific, for instance, starch and sucrose metabolism against submergence. The changes in some of the altered processes were further validated by physiological and molecular approaches. Our results suggest that the overall pathway profiles concerned with the three stresses were similar, but the specific procedures and components in each process varied greatly. The altered proteins and processes can be taken as effective candidates in future breeding and agronomic modification researches.
Collapse
Affiliation(s)
- Mingke Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Xiong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
31
|
Pegg T, Edelmann RR, Gladish DK. Immunoprofiling of Cell Wall Carbohydrate Modifications During Flooding-Induced Aerenchyma Formation in Fabaceae Roots. FRONTIERS IN PLANT SCIENCE 2020; 10:1805. [PMID: 32117353 PMCID: PMC7008352 DOI: 10.3389/fpls.2019.01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Understanding plant adaptation mechanisms to prolonged water immersion provides options for genetic modification of existing crops to create cultivars more tolerant of periodic flooding. An important advancement in understanding flooding adaptation would be to elucidate mechanisms, such as aerenchyma air-space formation induced by hypoxic conditions, consistent with prolonged immersion. Lysigenous aerenchyma formation occurs through programmed cell death (PCD), which may entail the chemical modification of polysaccharides in root tissue cell walls. We investigated if a relationship exists between modification of pectic polysaccharides through de-methyl esterification (DME) and the formation of root aerenchyma in select Fabaceae species. To test this hypothesis, we first characterized the progression of aerenchyma formation within the vascular stele of three different legumes-Pisum sativum, Cicer arietinum, and Phaseolus coccineus-through traditional light microscopy histological staining and scanning electron microscopy. We assessed alterations in stele morphology, cavity dimensions, and cell wall chemistry. Then we conducted an immunolabeling protocol to detect specific degrees of DME among species during a 48-hour flooding time series. Additionally, we performed an enzymatic pretreatment to remove select cell wall polymers prior to immunolabeling for DME pectins. We were able to determine that all species possessed similar aerenchyma formation mechanisms that begin with degradation of root vascular stele metaxylem cells. Immunolabeling results demonstrated DME occurs prior to aerenchyma formation and prepares vascular tissues for the beginning of cavity formation in flooded roots. Furthermore, enzymatic pretreatment demonstrated that removal of cellulose and select hemicellulosic carbohydrates unmasks additional antigen binding sites for DME pectin antibodies. These results suggest that additional carbohydrate modification may be required to permit DME and subsequent enzyme activity to form aerenchyma. By providing a greater understanding of cell wall pectin remodeling among legume species, we encourage further investigation into the mechanism of carbohydrate modifications during aerenchyma formation and possible avenues for flood-tolerance improvement of legume crops.
Collapse
Affiliation(s)
- Timothy Pegg
- Department of Biology, Miami University, Oxford, OH, United States
| | - Richard R. Edelmann
- Department of Biology, Miami University, Oxford, OH, United States
- Center for Advance Microscopy & Imaging, Miami University, Oxford, OH, United States
| | | |
Collapse
|
32
|
Gong F, Takahashi H, Omori F, Wang W, Mano Y, Nakazono M. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6475-6487. [PMID: 31587072 PMCID: PMC6859735 DOI: 10.1093/jxb/erz403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/01/2019] [Indexed: 05/21/2023]
Abstract
Zea nicaraguensis is a wild relative of Zea mays subsp. mays (maize) that has high waterlogging tolerance. One of its traits is constitutive aerenchyma formation (CAF) in roots and this may be one of the reasons for the tolerance, but it has not yet been proven by comparing plants that differ only in CAF in the same genetic background. We therefore produced an introgression line AE24-50-44-91 (IL-AE91) possessing four quantitative trait loci for CAF from Z. nicaraguensis in the background of maize (inbred line Mi29). The degree of root CAF in IL-AE91 was intermediate between that of Mi29 and Z. nicaraguensis. Seedlings of IL-AE91 grown aerobically were more tolerant to transfer to oxygen-deficient conditions than were Mi29 seedlings. On day 2 of oxygen deficiency, the root extension rate and viability of root-tip cells in IL-AE91 were ~2.7 and ~1.3 times greater, respectively, than they were in Mi29. On day 4, the area of aerenchyma at 80 mm from the root tips was ~1.5 times greater in IL-AE91 and radial oxygen loss from the apical parts of roots was ~3.4 times higher than in Mi29. These results demonstrate that CAF reduces the stress from low external oxygen levels caused by soil waterlogging.
Collapse
Affiliation(s)
- Fangping Gong
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Hirokazu Takahashi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Fumie Omori
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, Senbonmatsu, Nasushiobara, Tochigi, Japan
| | - Wei Wang
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yoshiro Mano
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, Senbonmatsu, Nasushiobara, Tochigi, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA, Australia
| |
Collapse
|
33
|
Klaas M, Haiminen N, Grant J, Cormican P, Finnan J, Arojju SK, Utro F, Vellani T, Parida L, Barth S. Transcriptome characterization and differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata. ANNALS OF BOTANY 2019; 124:717-730. [PMID: 31241131 PMCID: PMC6821378 DOI: 10.1093/aob/mcz074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Perennial grasses are a global resource as forage, and for alternative uses in bioenergy and as raw materials for the processing industry. Marginal lands can be valuable for perennial biomass grass production, if perennial biomass grasses can cope with adverse abiotic environmental stresses such as drought and waterlogging. METHODS In this study, two perennial grass species, reed canary grass (Phalaris arundinacea) and cocksfoot (Dactylis glomerata) were subjected to drought and waterlogging stress to study their responses for insights to improving environmental stress tolerance. Physiological responses were recorded, reference transcriptomes established and differential gene expression investigated between control and stress conditions. We applied a robust non-parametric method, RoDEO, based on rank ordering of transcripts to investigate differential gene expression. Furthermore, we extended and validated vRoDEO for comparing samples with varying sequencing depths. KEY RESULTS This allowed us to identify expressed genes under drought and waterlogging whilst using only a limited number of RNA sequencing experiments. Validating the methodology, several differentially expressed candidate genes involved in the stage 3 step-wise scheme in detoxification and degradation of xenobiotics were recovered, while several novel stress-related genes classified as of unknown function were discovered. CONCLUSIONS Reed canary grass is a species coping particularly well with flooding conditions, but this study adds novel information on how its transcriptome reacts under drought stress. We built extensive transcriptomes for the two investigated C3 species cocksfoot and reed canary grass under both extremes of water stress to provide a clear comparison amongst the two species to broaden our horizon for comparative studies, but further confirmation of the data would be ideal to obtain a more detailed picture.
Collapse
Affiliation(s)
- Manfred Klaas
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Niina Haiminen
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Jim Grant
- Teagasc Statistics and Applied Physics Research Operations Group, Ashtown, Dublin, Ireland
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - John Finnan
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Sai Krishna Arojju
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Filippo Utro
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Tia Vellani
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Laxmi Parida
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Susanne Barth
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| |
Collapse
|
34
|
Arduini I, Baldanzi M, Pampana S. Reduced Growth and Nitrogen Uptake During Waterlogging at Tillering Permanently Affect Yield Components in Late Sown Oats. FRONTIERS IN PLANT SCIENCE 2019; 10:1087. [PMID: 31572410 PMCID: PMC6751512 DOI: 10.3389/fpls.2019.01087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 05/28/2023]
Abstract
In Mediterranean Europe, winter cereals can experience soil waterlogging starting from crop establishment up to stem elongation and, in late sowings, this stress is combined with temperatures favorable to plant metabolism. Oats response to waterlogging has been rarely investigated, but these species seems to recover better than other cereals. In a 2-year experiment, Avena sativa and Avena byzantina were sown at the end of winter in pots placed outdoors. At the two-tiller stage, plants were exposed to waterlogging for periods ranging from 0 to 35 days. The dry weight and the N-concentration of shoots and roots were determined on waterlogged plants and drained controls at the start and the end of each waterlogging period, and at maturity. At maturity, the grain yield and its components were determined. To relate oat response to its specific morphological and developmental traits, results were compared to the published results in wheat and barley. Both oat species suffered severe damage during waterlogging: the uptake of nitrogen and the N-concentration of shoots were reduced after 7 days, tiller initiation and root growth after 14 days, and shoot growth after 21 days. All plants survived waterlogging, and the relative growth rates of roots and shoots and the net uptake rate of nitrogen were resumed during recovery. Nevertheless, at maturity, the straw and root biomass were markedly lower with all waterlogging durations, and grain yield decreased by 42% up to approximately 81% following an asymptotic equation. The most affected yield components were the number of panicles per plant and the number of kernels per panicle, but their relative sensitivity changed according to waterlogging duration. The slight increase in tiller fertility in response to short waterlogging and the small and irregular decrease in the number of kernels per spikelet suggest that the two oats could recover the initiation and size of inflorescences better than other winter cereals. Despite this, waterlogging in spring was highly detrimental to these oats because of severe damage under waterlogging and because of the inability to initiate new tillers and adequately resume root growth during recovery, once plants had achieved the phase of stem elongation.
Collapse
Affiliation(s)
- Iduna Arduini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
35
|
Butsayawarapat P, Juntawong P, Khamsuk O, Somta P. Comparative Transcriptome Analysis of Waterlogging-Sensitive and Tolerant Zombi Pea ( Vigna Vexillata) Reveals Energy Conservation and Root Plasticity Controlling Waterlogging Tolerance. PLANTS 2019; 8:plants8080264. [PMID: 31382508 PMCID: PMC6724125 DOI: 10.3390/plants8080264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Vigna vexillata (zombi pea) is an underutilized legume crop considered to be a potential gene source in breeding for abiotic stress tolerance. This study focuses on the molecular characterization of mechanisms controlling waterlogging tolerance using two zombi pea varieties with contrasting waterlogging tolerance. Morphological examination revealed that in contrast to the sensitive variety, the tolerant variety was able to grow, maintain chlorophyll, form lateral roots, and develop aerenchyma in hypocotyl and taproots under waterlogging. To find the mechanism controlling waterlogging tolerance in zombi pea, comparative transcriptome analysis was performed using roots subjected to short-term waterlogging. Functional analysis indicated that glycolysis and fermentative genes were strongly upregulated in the sensitive variety, but not in the tolerant one. In contrast, the genes involved in auxin-regulated lateral root initiation and formation were expressed only in the tolerant variety. In addition, cell wall modification, aquaporin, and peroxidase genes were highly induced in the tolerant variety under waterlogging. Our findings suggest that energy management and root plasticity play important roles in mitigating the impact of waterlogging in zombi pea. The basic knowledge obtained from this study can be used in the molecular breeding of waterlogging-tolerant legume crops in the future.
Collapse
Affiliation(s)
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| | - Ornusa Khamsuk
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
36
|
Climate change and abiotic stress mechanisms in plants. Emerg Top Life Sci 2019; 3:165-181. [DOI: 10.1042/etls20180105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.
Collapse
|
37
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
38
|
Del Bianco M, Kepinski S. Building a future with root architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5319-5323. [PMID: 30445468 PMCID: PMC6255693 DOI: 10.1093/jxb/ery390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Marta Del Bianco
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
39
|
Abstract
Agricultural productivity depends on increasingly extreme weather phenomena, and the use of germplasm that has to be continuously improved by plant breeders to become tolerant to various biotic and abiotic stresses. Molecular plant biologists try to understand the mechanisms associated with stress responses and provide knowledge that could be used in breeding programs. To provide a partial overview about our current understanding about molecular and physiological stress responses, and how this knowledge can be used in agriculture, we have edited a special issue on “Biotic and Abiotic Stress Responses in Crop Plants”. Contributions are from different fields including heat stress responses, stress responses during drought and salinity, as well as during flooding, and resistance and susceptibility to pathogenetic stresses and about the role of plant functional metabolites in biotic stress responses. Future research demand in particular areas of crop stress physiology is discussed, as well as the importance of translational research and investigations directly in elite crop plants and in the genetic resources available for breeding.
Collapse
|