1
|
Thiel J, Schmidt FM, Lorenzetti R, Troilo A, Janowska I, Nießen L, Pfeiffer S, Staniek J, Benassini B, Bott MT, Korzhenevich J, Konstantinidis L, Burgbacher F, Dufner AK, Frede N, Voll RE, Stuchly J, Bakardjieva M, Kalina T, Smulski CR, Venhoff N, Rizzi M. Defects in B-lymphopoiesis and B-cell maturation underlie prolonged B-cell depletion in ANCA-associated vasculitis. Ann Rheum Dis 2024; 83:1536-1548. [PMID: 38851295 PMCID: PMC11503191 DOI: 10.1136/ard-2024-225587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES B-cell depletion time after rituximab (RTX) treatment is prolonged in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) compared with other autoimmune diseases. We investigated central and peripheral B-cell development to identify the causes for the defect in B-cell reconstitution after RTX therapy. METHODS We recruited 91 patients with AAV and performed deep phenotyping of the peripheral and bone marrow B-cell compartment by spectral flow and mass cytometry. B-cell development was studied by in vitro modelling and the role of BAFF receptor by quantitative PCR, western blot analysis and in vitro assays. RESULTS Treatment-naïve patients with AAV showed low transitional B-cell numbers, suggesting impaired B-lymphopoiesis. We analysed bone marrow of treatment-naïve and RTX-treated patients with AAV and found reduced B-lymphoid precursors. In vitro modelling of B-lymphopoiesis from AAV haematopoietic stem cells showed intact, but slower and reduced immature B-cell development. In a subgroup of patients, after RTX treatment, the presence of transitional B cells did not translate in replenishment of naïve B cells, suggesting an impairment in peripheral B-cell maturation. We found low BAFF-receptor expression on B cells of RTX-treated patients with AAV, resulting in reduced survival in response to BAFF in vitro. CONCLUSIONS Prolonged depletion of B cells in patients with AAV after RTX therapy indicates a B-cell defect that is unmasked by RTX treatment. Our data indicate that impaired bone marrow B-lymphopoiesis results in a delayed recovery of peripheral B cells that may be further aggravated by a survival defect of B cells. Our findings contribute to the understanding of AAV pathogenesis and may have clinical implications regarding RTX retreatment schedules and immunomonitoring after RTX therapy.
Collapse
Affiliation(s)
- Jens Thiel
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Franziska M Schmidt
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raquel Lorenzetti
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lena Nießen
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sophie Pfeiffer
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bruno Benassini
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marei-Theresa Bott
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, University of Freiburg, Freiburg im Breisgau, Germany
| | - Frank Burgbacher
- Department of Orthopedics and Trauma Surgery, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ann-Katrin Dufner
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Natalie Frede
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Cristian Roberto Smulski
- Medical Physics Department, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bariloche, Argentina
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre of Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Liu X, Wang Y, Wang Y, Cui H, Zhao G, Guo Y, Wen J. Effect of myristic acid supplementation on triglyceride synthesis and related genes in the pectoral muscles of broiler chickens. Poult Sci 2024; 103:104038. [PMID: 39079330 PMCID: PMC11340564 DOI: 10.1016/j.psj.2024.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 08/25/2024] Open
Abstract
Fatty acids (FAs) can serve as energy for poultry, maintain normal cell structure and function, and support a healthy immune system. Although the addition of polyunsaturated fatty acids (PUFAs) to the diet has been extensively studied and reported, the mechanism of action of saturated fatty acids (SFAs) remains to be elucidated. We investigated the effect of 0.04% dietary myristic acid (MA) on slaughter performance, lipid components, tissue FAs, and the transcriptome profile in chickens. The results showed that dietary MA had no effect on slaughter performance (body weight, carcass weight, eviscerated weight, and pectoral muscle weight) (P > 0.05). Dietary MA enrichment increased MA (P < 0.001) and triglycerides (TGs) (P < 0.01) levels in the pectoral muscle. The levels of palmitic acid, linoleic acid (LA), arachidonic acid (AA), SFAs, monounsaturated fatty acids (MUFAs), and PUFAs were significantly higher (P < 0.01) in the MA supplementation group compared to the control group. However, there were no significant differences in the ratios of PUFA/SFA and n6/omega-3 (n3) between the two groups. The MA content was positively correlated with the contents of palmitic acid, LA, linolenic acid (ALA), n3, n6, SFAs, and unsaturated fatty acids (UFA). DHCR24, which is known to be involved in steroid metabolism and cholesterol biosynthesis pathways, was found to be a significantly lower in the MA supplementation group compared to the control group (P < 0.05, log2(fold change) = -0.85). Five overlapping co-expressed genes were identified at the intersection between the differential expressed genes and Weighted Gene Co‑expression Network Analysis-derived hub genes associated with MA phenotype, namely BHLHE40, MSL1, PLAGL1, SRSF4, and ENSGALG00000026875. For the TG phenotype, a total of 28 genes were identified, including CHKA, KLF5, TGIF1, etc. Both sets included the gene PLAGL1, which has a negative correlation with the levels of MA and TG. This study provides valuable information to further understand the regulation of gene expression patterns by dietary supplementation with MA and examines at the molecular level the phenotypic changes induced by supplementation with MA.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanke Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
3
|
Tan L, Liu Q, Chen S, You R, Li X, Wen T, Peng Z. Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:276-283. [PMID: 39379083 PMCID: PMC11460776 DOI: 10.17712/nsj.2024.4.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES To determine the effects of all-trans-retinoic acid (ATRA) on the post-stroke inflammatory response and elucidate the underlying molecular mechanisms. METHODS This animal experiment was conducted at Central Laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China during 2020-2022. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h, and treated with ATRA at 2 and 24 h after reperfusion. Neurological deficit scores on behavioral tests, and cerebral infarct volume, microglial polarization, and the expression levels of inflammatory cytokines and proteins associated with TLR4/NF-κB signaling were assessed. RESULTS The ATRA administration reduced cerebral infarct volume and ameliorated neurological deficit scores in MCAO rats. Additionally, ATRA relieved cerebral edema and downregulated the secretion of proinflammatory cytokines after stroke. Finally, ATRA attenuated the polarization of the microglia toward the M1 phenotype and promoted the activation of the beneficial M2 phenotype; the underlying mechanism potentially involved the suppression of the TLR4/NF-κB signaling pathway. CONCLUSION The ATRA treatment promoted functional recovery in an experimental model of ischemic stroke by attenuating neural inflammation. ATRA potentially modulated microglia-mediated neuroinflammation via the downregulation of the TLR4/NF-κB signaling pathway, which makes it a candidate treatment for post-stroke neuroinflammation.
Collapse
Affiliation(s)
- Lixi Tan
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Qian Liu
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Songfa Chen
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Rongjiao You
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Xinyue Li
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Tao Wen
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Zhongxing Peng
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| |
Collapse
|
4
|
Zhao X, Han D, Zhao C, Yang F, Wang Z, Gao Y, Jin M, Tao R. New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms. Front Immunol 2024; 15:1454142. [PMID: 39308872 PMCID: PMC11412887 DOI: 10.3389/fimmu.2024.1454142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
As the body's defense mechanism against damage and infection, the inflammatory response is a pathological process that involves a range of inflammatory cells and cytokines. A healthy inflammatory response helps the body repair by eliminating dangerous irritants. However, tissue fibrosis can result from an overly intense or protracted inflammatory response. The anti-aging gene Klotho suppresses oxidation, delays aging, and fosters development of various organs. Numerous investigations conducted in the last few years have discovered that Klotho expression is changed in a variety of clinical diseases and is strongly linked to the course and outcome of a disease. Klotho functions as a co-receptor for FGF and as a humoral factor that mediates intracellular signaling pathways such as transforming growth factor β (TGF-β), toll-like receptors (TLRs), nuclear factor-kappaB (NF-κB), renin -angiotensin system (RAS), and mitogen-activated protein kinase (MAPK). It also interferes with the phenotype and function of inflammatory cells, such as monocytes, macrophages, T cells, and B cells. Additionally, it regulates the production of inflammatory factors. This article aims to examine Klotho's scientific advances in terms of tissue fibrosis and the inflammatory response in order to provide novel therapy concepts for fibrotic and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyue Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Fengfan Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Yujiao Gao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Huang J, Hu X, Li J, Gong D. Edaravone dexborneol promotes M2 microglia polarization against lipopolysaccharide-induced inflammation via suppressing TLR4/MyD88/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6647-6659. [PMID: 38489082 DOI: 10.1007/s00210-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Edaravone dexborneol (ED) is a novel neuroprotective compound that consists of two active ingredients, edaravone and ( +)-borneol in a 4:1 ratio, which has been shown the anti-inflammatory properties in animal models of ischemic stroke, cerebral hemorrhage, and autoimmune encephalomyelitis. However, the effect of ED on the polarization of microglia in neuroinflammation has not been elucidated. This study was to investigate the effects of ED on the polarization of microglia induced by lipopolysaccharide (LPS) and potential mechanisms. BV-2 microglial cells were incubated with ED (100, 200, and 400 µM) for 2 h, followed by lipopolysaccharide (LPS, 1 µg/ml) for 12 h. The researchers used the Griess method, western blot, immunocytochemistry, and subcellular fractionation to assess the effects and potential mechanisms of ED on neuroinflammatory reactions. The expression of ROS and the activities of antioxidant enzymes (SOD, GPx, and CAT) in LPS-induced BV-2 cells were also measured using the DCFH-DA fluorescent probe and colorimetric methods, respectively. It was observed that ED significantly declined the levels of TLR4/NF-κB pathway-associated proteins (TLR4, MyD88, p65, p-p65, IκBα, p-IκBα, IKKβ, p-IKKβ) and therefore inhibited LPS-induced production of NO, IL-1β, and TNF-α. Moreover, ED markedly downregulated the M1 marker (iNOS) and upregulated the M2 marker (Arginase-1, Ym-1). In addition, ED also reduced ROS generation and enhanced GPx activity. ED induced the polarization of LPS-stimulated microglia from M1 to M2 against inflammation by negatively regulating the TLR4/MyD88/NF-κB signaling pathway. Additionally, ED performed antioxidative function by depleting the intracellular excessive ROS caused by LPS through the enhancement of the enzymatic activity of GPx. ED may be a potential agent to attenuate neuroinflammation via regulating the polarization of microglia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiaohui Hu
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Juanqin Li
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Daokai Gong
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
6
|
Chikopela T, Mwesigwa N, Masenga SK, Kirabo A, Shibao CA. The Interplay of HIV and Long COVID in Sub-Saharan Africa: Mechanisms of Endothelial Dysfunction. Curr Cardiol Rep 2024; 26:859-871. [PMID: 38958890 DOI: 10.1007/s11886-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Long COVID affects approximately 5 million people in Africa. This disease is characterized by persistent symptoms or new onset of symptoms after an acute SARS-CoV-2 infection. Specifically, the most common symptoms include a range of cardiovascular problems such as chest pain, orthostatic intolerance, tachycardia, syncope, and uncontrolled hypertension. Importantly, these conditions appear to have endothelial dysfunction as the common denominator, which is often due to impaired nitric oxide (NO) mechanisms. This review discusses the role of mechanisms contributing to endothelial dysfunction in Long COVID, particularly in people living with HIV. RECENT FINDINGS Recent studies have reported that increased inflammation and oxidative stress, frequently observed in Long COVID, may contribute to NO dysfunction, ultimately leading to decreased vascular reactivity. These mechanisms have also been reported in people living with HIV. In regions like Africa, where HIV infection is still a major public health challenge with a prevalence of approximately 26 million people in 2022. Specifically, endothelial dysfunction has been reported as a major mechanism that appears to contribute to cardiovascular diseases and the intersection with Long COVID mechanisms is of particular concern. Further, it is well established that this population is more likely to develop Long COVID following infection with SARS-CoV-2. Therefore, concomitant infection with SARS-CoV-2 may lead to accelerated cardiovascular disease. We outline the details of the worsening health problems caused by Long COVID, which exacerbate pre-existing conditions such as endothelial dysfunction. The overlapping mechanisms of HIV and SARS-CoV-2, particularly the prolonged inflammatory response and chronic hypoxia, may increase susceptibility to Long COVID. Addressing these overlapping health issues is critical as it provides clinical entry points for interventions that could improve and enhance outcomes and quality of life for those affected by both HIV and Long COVID in the region.
Collapse
Affiliation(s)
- Theresa Chikopela
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA.
| |
Collapse
|
7
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2024:1-13. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
8
|
高 静, 舒 剑, 刘 洋. [Recent research on gene polymorphisms and genetic susceptibility of neonatal sepsis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:879-886. [PMID: 39148395 PMCID: PMC11334549 DOI: 10.7499/j.issn.1008-8830.2401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 08/17/2024]
Abstract
Neonatal sepsis is a common and severe infectious disease with a high mortality rate. Its pathogenesis is complex, lacks specific manifestations, and has a low positive culture rate, making early diagnosis and personalized treatment still a challenge for clinicians. Epidemiological studies on twins have shown that genetic factors are associated with neonatal sepsis. Gene polymorphisms are closely related to susceptibility, disease development, and prognosis. This article provides a review of gene polymorphisms related to neonatal sepsis, including interleukins, tumor necrosis factor, Toll-like receptors, NOD-like receptors, CD14, triggering receptor expressed on myeloid cells-1, mannose-binding lectin, and other immune proteins, aiming to promote precision medicine for this disease.
Collapse
Affiliation(s)
| | - 剑波 舒
- 天津医科大学研究生院天津300070
- 天津市儿童医院/天津大学儿童医院天津300134
- 天津市儿科研究所/天津市儿童出生;缺陷防治重点实验室天津300134
| | | |
Collapse
|
9
|
Zhang F, Wang Z, Men S, Zhang J, Wang L. Two novel compound heterozygous loss-of-function mutations cause fetal IRAK-4 deficiency presenting with Pseudomonas Aeruginosa sepsis. Clin Immunol 2024; 265:110268. [PMID: 38838930 DOI: 10.1016/j.clim.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE To report a case of a five-month-old Chinese infant who died of interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency presenting with rapid and progressive Pseudomonas aeruginosa sepsis. METHODS The genetic etiology of IRAK-4 deficiency was confirmed through trio-whole exome sequencing and Sanger sequencing. Functional consequences were invested using an in vitro minigene splicing assay. RESULTS Trio-whole exome sequencing of genomic DNA identified two novel compound heterozygous mutations, IRAK-4 (NM_016123.3): c.942-1G > A and c.644_651+ 6delTTGCAGCAGTAAGT in the proband, which originated from his symptom-free parents. These mutations were predicted to cause frameshifts and generate three truncated proteins without enzyme activity. CONCLUSIONS Our findings expand the range of IRAK-4 mutations and provide functional support for the pathogenic effects of splice-site mutations. Additionally, this case highlights the importance of considering the underlying genetic defects of immunity when dealing with unusually overwhelming infections in previously healthy children and emphasizes the necessity for timely treatment with wide-spectrum antimicrobials.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, People's Republic of China
| | - Zhiwei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, People's Republic of China
| | - Shuai Men
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, People's Republic of China
| | - Jinglu Zhang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, People's Republic of China
| | - Leilei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, People's Republic of China.
| |
Collapse
|
10
|
Ybarra TK, Bishop GA. TRAF3 regulation of proximal TLR signaling in B cells. J Leukoc Biol 2024; 116:210-223. [PMID: 38489541 PMCID: PMC11271984 DOI: 10.1093/jleuko/qiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.
Collapse
Affiliation(s)
- Tiffany K Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| | - Gail A Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- VA Medical Center, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
11
|
Elabd NS, Helal ML, Elkhayat M, Abd-ElKhalek HK, Ahmed DM, El-Shemy AM, Elsaadawy YS, Abdelmoneum RA, AboShabaan HS, Seddik RM. Insights into the Correlation between Toll-Like Receptor 2 Polymorphism and HBV-Related Disease Progression and Occurrence of Hepatocellular Carcinoma: A Case-Control Study in Egyptian Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5797895. [PMID: 39071840 PMCID: PMC11281855 DOI: 10.1155/2024/5797895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/18/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Methods In total, 170 chronic HBV patients and 50 healthy controls of comparable age and gender were included in this case-control study. Clinical, laboratory, and imaging evaluations were conducted. ELISA was used to determine serum IL-6 levels, and TLR2 (rs3804099) genotyping allelic discrimination assay was performed using real-time PCR. Results IL-6 values were significantly higher in the HCC group, followed by the cirrhotic group, than those in chronic hepatitis and control groups (p < 0.001), with a significant correlation with disease activity and progression parameters. TRL2 homozygous TT was the most frequent in the control group, but the CC genotype was significantly more prevalent in the HCC group than that in the other groups. Furthermore, the CC genetic variant was associated with higher levels of IL-6 and viral load in all HBV patients, whereas the TT genotype was associated with larger tumor size. Multivariate regression analysis demonstrated that in chronic HBV patients, viral load and TRL2 polymorphism are independent risk factors associated with the progression from chronic hepatitis to liver cirrhosis and to HCC. Similarly, the HBV viral load (p=0.03, OR = 2.45, and 95% CI: 1.69-3.65), IL-6 levels (p=0.04, OR = 3.45, and 95% CI: 2.01-6.9), and TRL2 variants (p=0.01, OR = 4.25, and 95% CI: 2.14-13.5) are independent risk factors associated with disease progression from cirrhosis to HCC. Conclusion In chronic HBV patients, TRL2 polymorphism and higher IL-6 levels were positively correlated with a higher likelihood of HCC and chronic hepatitis B disease activity and progression.
Collapse
Affiliation(s)
- Naglaa S. Elabd
- Department of Tropical MedicineFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa L. Helal
- Department of Clinical Biochemistry and Molecular DiagnosticsNational Liver InstituteMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Mohsen Elkhayat
- Department of Tropical MedicineFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Heba Kamal Abd-ElKhalek
- Department of Internal MedicineFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Doaa M. Ahmed
- Department of RadiologyFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Asmaa M. El-Shemy
- Department of Clinical PathologyFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Yara S. Elsaadawy
- Department of Medical Microbiology and ImmunologyFaculty of MedicineAin Shams University, Cairo, Egypt
| | - Rasha A. Abdelmoneum
- Department of Clinical Oncology and Nuclear MedicineFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Hind S. AboShabaan
- BiochemistryNational Liver Institute HospitalMenoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Randa M. Seddik
- Department of Tropical MedicineFaculty of MedicineMenoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
12
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
13
|
Zhang Y, Yan H, Wei Y, Wei X. Decoding mitochondria's role in immunity and cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189107. [PMID: 38734035 DOI: 10.1016/j.bbcan.2024.189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Hong Yan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
14
|
Liu G, Luo J, Xiong W, Meng T, Zhang X, Liu Y, Liu C, Che H. Chlorogenic acid alleviates crayfish allergy by altering the structure of crayfish tropomyosin and upregulating TLR8. Food Chem 2024; 443:138614. [PMID: 38301561 DOI: 10.1016/j.foodchem.2024.138614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Studies have shown that high hydrostatic pressure (HHP) processing and chlorogenic acid (CA) treatment can effectively reduce food allergenicity. We hypothesize that these novel processing techniques can help tackle crayfish allergy and examined the impact and mechanism of HHP (300 MPa, 15 min) and CA (CA:tropomyosin = 1:4000, 15 min) on the allergenicity of crayfish tropomyosin. Our results revealed that CA, rather than HHP, effectively reduced tropomyosin's allergenicity, as evident in the alleviation of allergic symptoms in a food allergy mouse model. Spectroscopy and molecular docking analyses demonstrated that CA could reduce the allergenicity of tropomyosin by covalent or non-covalent binding, altering its secondary structure (2.1 % decrease in α-helix; 1.9 % increase in β-fold) and masking tropomyosin's linear epitopes. Moreover, CA-treated tropomyosin potentially induced milder allergic reactions by up-regulating TLR8. While our results supported the efficacy of CA in alleviating crayfish allergy, further exploration is needed to determine clinical effectiveness.
Collapse
Affiliation(s)
- Guirong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiangzuo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenwen Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Tingyun Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xinyi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yali Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, San Diego, CA, United States.
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
17
|
Xie P, Wang L, Zhu J, Liu Y, Wei M, Gong D, Liu T. Effects of different stocking densities on the development of reproductive and immune functions in young breeder pigeons during the rearing period. Br Poult Sci 2024; 65:213-222. [PMID: 38334444 DOI: 10.1080/00071668.2024.2308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 02/10/2024]
Abstract
1. Stocking density (SD) is closely related to animal performance. This experiment was designed to evaluate the development of reproductive and immune functions of young pigeons under different SDs.2. A total of 288 (half male and half female) 40-day-old pigeons (body weight 400 ± 15 g) were allocated into four groups: High stocking density (HSD; 0.308 m3/bird), standard stocking density (SD; 0.616 m3/bird), and low stocking density (LSD; 1.232 m3/bird) and a caged (control; 0.04125 m3/bird). Every group had six replicates of the same sex.3. The results showed that caged male pigeons had the highest testis index, testosterone content, and gene expression of the androgen receptor gene. LSD treatment induced the highest concentrations of oestradiol, progesterone and mRNA levels of reproductive hormone receptor genes in female pigeons. In male pigeons, the spleen index (organ weight calculated as a percentage of total body weight) showed a peak level (0.09 ± 0.020) in the LSD group, and the thymus index peaked (0.23 ± 0.039) in SD group. However, the index for ovary, spleen, thymus and bursa of Fabricius in female pigeons showed no significant changes among different groups.4. The IL-1β, IL-8, IFN-γ, TGF-β and toll-like receptor 2 (TLR-2) mRNA levels reached their maximum values in both male and female pigeon spleens in the LSD group.5. Young male pigeons housed in cages showed increased testicular development while low stocking density increased the development of reproductive function in young female pigeons. A larger activity space could help enhance the immune function of both male and female pigeons.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - L Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - M Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - D Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - T Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
18
|
Podlacha M, Gaffke L, Grabowski Ł, Mantej J, Grabski M, Pierzchalska M, Pierzynowska K, Węgrzyn G, Węgrzyn A. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat Commun 2024; 15:2274. [PMID: 38480702 PMCID: PMC10937645 DOI: 10.1038/s41467-024-46555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
One of the hopes for overcoming the antibiotic resistance crisis is the use of bacteriophages to combat bacterial infections, the so-called phage therapy. This therapeutic approach is generally believed to be safe for humans and animals as phages should infect only prokaryotic cells. Nevertheless, recent studies suggested that bacteriophages might be recognized by eukaryotic cells, inducing specific cellular responses. Here we show that in chickens infected with Salmonella enterica and treated with a phage cocktail, bacteriophages are initially recognized by animal cells as viruses, however, the cGAS-STING pathway (one of two major pathways of the innate antiviral response) is blocked at the stage of the IRF3 transcription factor phosphorylation. This inhibition is due to the inability of RNA polymerase III to recognize phage DNA and to produce dsRNA molecules which are necessary to stimulate a large protein complex indispensable for IRF3 phosphorylation, indicating the mechanism of the antiviral response impairment.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Łukasz Grabowski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Jagoda Mantej
- Univentum Labs, Bażyńskiego 4, 80-309, Gdansk, Poland
| | - Michał Grabski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149, Cracow, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
19
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
20
|
Wei W, Xiao J, Huang N, Xing C, Wang J, He X, Xu J, Wang H, Guo X, Jiang R. Identification of central regulators related to abdominal fat deposition in chickens based on weighted gene co-expression network analysis. Poult Sci 2024; 103:103436. [PMID: 38237326 PMCID: PMC10828593 DOI: 10.1016/j.psj.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Abdominal fat (AF) is one of the most important economic traits in chickens. Excessive AF in chickens will reduce feed utilization efficiency and negatively affect reproductive performance and disease resistance. However, the regulatory network of AF deposition needs to be further elucidated. In the present study, 300 one-day-old female Wannan chickens were reared to 17 wk of age, and 200 Wannan hens were selected to determine the abdominal fat percentage (AFP). Twenty AF tissue samples with the lowest AFP were selected as the low abdominal fat group (L-AFG), and 20 AF tissue samples with the highest AFP were selected as the high abdominal fat group (H-AFG). Eleven samples from L-AFG and 14 samples from H-AFG were selected for RNA-seq and used for weighted gene co-expression network analysis (WGCNA). Among the 25 RNA-seq samples, 5 samples with the lowest and highest AFP values were selected for differential expression gene analysis. Compared with the L-AFG, 225 and 101 genes were upregulated and downregulated in the H-AFG, respectively. A total of 20,503 genes were used to construct the WGCNA, and 44 co-expression gene modules were identified. Among these modules, 3 modules including turquoise, darkorange2, and floralwhite were identified as significantly associated with AFP traits. Furthermore, several genes including acyl-CoA oxidase 1 (ACOX1), stearoyl-CoA desaturase (SCD), aldehyde dehydrogenase 6 family member A1 (ALDH6A1), jun proto-oncogene, AP-1 transcription factor subunit (JUN), and fos proto-oncogene, AP-1 transcription factor subunit (FOS) involved in the "PPAR signaling pathway," "fatty acid metabolism," and "MAPK signaling pathway" were identified as central regulators that contribute to AF deposition. These results provide valuable information for further understanding of the gene expression and regulation of AF traits and contribute to future molecular breeding for AF in chickens.
Collapse
Affiliation(s)
- Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiaxu Xiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Najun Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaohui Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
22
|
de Sales-Neto JM, Madruga Carvalho DC, Arruda Magalhães DW, Araujo Medeiros AB, Soares MM, Rodrigues-Mascarenhas S. Zika virus: Antiviral immune response, inflammation, and cardiotonic steroids as antiviral agents. Int Immunopharmacol 2024; 127:111368. [PMID: 38103408 DOI: 10.1016/j.intimp.2023.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus first reported from humans in Nigeria in 1954. The first outbreak occurred in Micronesia followed by an outbreak in French Polynesia and another in Brazil when the virus was associated with numerous cases of severe neurological manifestations such as Guillain-Barre syndrome in adults and congenital zika syndrome in fetuses, particularly congenital microcephaly. Innate immunity is the first line of defense against ZIKV through triggering an antiviral immune response. Along with innate immune responses, a sufficient balance between anti- and pro-inflammatory cytokines and the amount of these cytokines are triggered to enhance the antiviral responses. Here, we reviewed the complex interplay between the mediators and signal pathways that coordinate antiviral immune response and inflammation as a key to understanding the development of the underlying diseases triggered by ZIKV. In addition, we summarize current and new therapeutic strategies for ZIKV infection, highlighting cardiotonic steroids as antiviral drugs for the development of this agent.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
23
|
Móvio MI, de Almeida GWC, Martines IDGL, Barros de Lima G, Sasaki SD, Kihara AH, Poole E, Nevels M, Carlan da Silva MC. SARS-CoV-2 ORF8 as a Modulator of Cytokine Induction: Evidence and Search for Molecular Mechanisms. Viruses 2024; 16:161. [PMID: 38275971 PMCID: PMC10819295 DOI: 10.3390/v16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Giovana Waner Carneiro de Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Isabella das Graças Lopes Martines
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Gilmara Barros de Lima
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Emma Poole
- Division of Virology, Department of Pathology, Cambridge University, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael Nevels
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Maria Cristina Carlan da Silva
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| |
Collapse
|
24
|
Zheng Y, Wang L, Wang J, Zhao T, Wang J. Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol. Curr Med Chem 2024; 31:2821-2837. [PMID: 38351696 DOI: 10.2174/0109298673271261231213051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis. METHODS We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments. RESULT We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators. CONCLUSION Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiaru Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| |
Collapse
|
25
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
26
|
Tan J, Ge J, Sahaer P, Li H, Sun H. Identification and functional analysis of circRIPK2 in lipopolysaccharide induced chicken macrophages. Br Poult Sci 2023; 64:678-687. [PMID: 37735991 DOI: 10.1080/00071668.2023.2261870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
1. It was hypothesised that a circular RIPK2 (circRIPK2) highly expressed in chicken macrophages plays an important role during bacterial infection.2. After PCR amplification, Sanger sequencing and RNase R exonuclease treatment of chicken macrophages, it was found that circRIPK2 was a stable circular RNA, which was formed by reverse splicing of exons 4 to 9 of the RIPK2.3. The circRIPK2 can promote the lipopolysaccharide (LPS) induced cellular injury by reducing cell viability and increasing the expression of pro-inflammatory cytokines and apoptosis genes.4. Six miRNAs were identified as interacting with circRIPK2, potentially targeting 1,817 genes, which were significantly enriched in the Wnt signalling pathway, adherens junction and NOD-like receptor signalling pathway.5. This study provides better understanding of the function of circRIPK2, which may prove a potential biomarker and indicate potential targets for the treatment of bacterial infection.
Collapse
Affiliation(s)
- J Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - P Sahaer
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - H Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
| | - H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
He Y, Zhao J, Dong H, Zhang X, Duan Y, Ma Y, Yu M, Fei J, Huang F. TLR2 deficiency is beneficial at the late phase in MPTP-induced Parkinson' disease mice. Life Sci 2023; 333:122171. [PMID: 37827233 DOI: 10.1016/j.lfs.2023.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
AIMS Parkinson's disease (PD) is a progressive neurodegenerative disorder. The etiology of PD is still elusive but neuroinflammation is proved to be an important contributor. Toll-like receptor 2 (TLR2) involves in the release of several inflammatory cytokines. Whether TLR2 serves as a mediator contributing to the damage of DA system in PD remain unclear. MAIN METHODS Tlr2 knockout (Tlr2-/-) and wild-type (WT) mice were treated with a subacute regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At 3, 7 and 14 days after MPTP injection, the behavioral performance, including the Pole test, the Rotarod test, the Rearing test and the Wire hang test was evaluated. Moreover, the PD-like phenotypes, including dopaminergic degeneration, the activation of glial cells and the α-Syn expression were systematically analyzed in the nigrostriatal pathway. Finally, the composition of gut microbiota in the MPTP-treated groups were assessed. KEY FINDINGS TLR2 deficiency had no obvious impact on the dopaminergic injury at 3 and 7 days following MPTP administration. On the contrary, at 14 days post injection, TLR2 deficiency not only significantly attenuated motor deficits in the Pole test and the Rotarod test, and the nigrostriatal dopaminergic degeneration, but also mitigated α-Syn abnormality, astrocyte activation and neuroinflammation through the suppressed TLR2/MyD88/TRAF6/NF-κB signaling pathways. Additionally, the alteration of gut microbiota was also detected in the mutant mice. SIGNIFICANCE These findings highlight the neuroprotective effect of TLR2-pathways at the late phase in the MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
28
|
Feng M, Tan K, Zhang H, Duan X, Li S, Ma H, Zheng H. Effects of high stocking density on growth performance and expression of MyD88, and its temporal expression under the challenge of Vibrio parahaemolyticus in the noble scallop Chlamys nobilis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109059. [PMID: 37678479 DOI: 10.1016/j.fsi.2023.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.
Collapse
Affiliation(s)
- Mingfei Feng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Karsoon Tan
- Borneo Marine Research Institute, University Malaysia Sabah, Sabah, Malaysia
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Xixi Duan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| |
Collapse
|
29
|
Cooray S, Price-Kuehne F, Hong Y, Omoyinmi E, Burleigh A, Gilmour KC, Ahmad B, Choi S, Bahar MW, Torpiano P, Gagunashvili A, Jensen B, Bellos E, Sancho-Shimizu V, Herberg JA, Mankad K, Kumar A, Kaliakatsos M, Worth AJJ, Eleftheriou D, Whittaker E, Brogan PA. Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4. Front Immunol 2023; 14:1231749. [PMID: 37744344 PMCID: PMC10516541 DOI: 10.3389/fimmu.2023.1231749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.
Collapse
Affiliation(s)
- Samantha Cooray
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ying Hong
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alice Burleigh
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
| | - Kimberly C. Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Andrey Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Barbara Jensen
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evangelos Bellos
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jethro A. Herberg
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Atul Kumar
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen J. J. Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elizabeth Whittaker
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
30
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
31
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells 2023; 12:2055. [PMID: 37626865 PMCID: PMC10453926 DOI: 10.3390/cells12162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The human immune system is a complex network of cells, tissues, and molecules that work together to defend the body against pathogens and maintain overall health. However, in some individuals, the immune system fails to function correctly, leading to immunodeficiencies. Immunodeficiencies can be classified into primary (PID) and secondary (SID) types, each with distinct underlying causes and manifestations. Toll-like receptors (TLRs), as key components of the immune system, have been implicated in the pathogenesis of both PID and SID. In this study, we aim to unravel the intricate involvement of TLR2, TLR4, TLR3, TLR7, TLR8, and TLR9 in the immunopathogenesis of common variable immunodeficiency-CVID (as PID)-and chronic lymphocytic leukemia-CLL (as SID). The obtained results indicate a significant increase in the percentage of all tested subpopulations of T lymphocytes and B lymphocytes showing positive expression of all analyzed TLRs in patients with CVID and CLL compared to healthy volunteers, constituting the control group, which is also confirmed by analysis of the concentration of soluble forms of these receptors in the plasma of patients. Furthermore, patients diagnosed with CVID are characterized by the percentage of all lymphocytes showing positive expression of the tested TLR2, TLR4, TLR3, and TLR9 and their plasma concentrations in relation to patients with CLL. By investigating the functions and interactions of TLRs within the immune system, we seek to shed light on their critical role in the development and progression of these immunodeficiencies. Through a comprehensive analysis of the literature and presented experimental data, we hope to deepen our understanding of the complex mechanisms by which TLRs contribute to the pathogenesis of PID and SID. Ultimately, our findings may provide valuable insights into developing targeted therapeutic strategies to mitigate the impact of these disorders on those affected by immunodeficiency.
Collapse
Affiliation(s)
| | | | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
32
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
33
|
Jiang H, Dong Z, Xia X, Li X. Cathepsins in oral diseases: mechanisms and therapeutic implications. Front Immunol 2023; 14:1203071. [PMID: 37334378 PMCID: PMC10272612 DOI: 10.3389/fimmu.2023.1203071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cathepsins are a type of lysosomal globulin hydrolase and are crucial for many physiological processes, including the resorption of bone matrix, innate immunity, apoptosis, proliferation, metastasis, autophagy, and angiogenesis. Findings regarding their functions in human physiological processes and disorders have drawn extensive attention. In this review, we will focus on the relationship between cathepsins and oral diseases. We highlight the structural and functional properties of cathepsins related to oral diseases, as well as the regulatory mechanisms in tissue and cells and their therapeutic uses. Elucidating the associated mechanism between cathepsins and oral diseases is thought to be a promising strategy for the treatment of oral diseases and may be a starting point for further studies at the molecular level.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Lyu M, Qin J, Huang S, Shao D, Huang G, Yang F, Gong X, Zhang S, Zhang Z, Wang J, Cui H. Tuo-Min-Ding-Chuan Decoction Alleviates Airway Inflammations in the Allergic Asthmatic Mice Model by Regulating TLR4-NLRP3 Pathway-Mediated Pyroptosis: A Network Pharmacology and Experimental Verification Study. Drug Des Devel Ther 2023; 17:1613-1630. [PMID: 37287697 PMCID: PMC10243359 DOI: 10.2147/dddt.s406483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Background Tuo-Min-Ding-Chuan Decoction (TMDCD) is an effective traditional Chinese medicine (TCM) formula granule for allergic asthma (AA). Previous studies proved its effects on controlling airway inflammations, while the specific mechanism was not clear. Methods We conducted a network pharmacology study to explore the molecular mechanism of TMDCD against AA with the public databases of TCMSP. Then, HUB genes were screened with the STRING database. DAVID database performed GO annotation and KEGG functional enrichment analysis of HUB genes, and it was verified with molecular docking by Autodock. Then, we built a classic ovalbumin-induced allergic asthma mice model to explore the mechanism of anti-inflammation effects of TMDCD. Results In the network pharmacology study, we found out that the potential mechanism of TMDCD against AA might be related to NOD-like receptor (NLR) signaling pathway and Toll-like receptor (TLR) signaling pathway. In the experiment, TMDCD showed remarkable effects on alleviating airway inflammations, airway hyperresponsiveness (AHR), and airway remodeling in the asthmatic mice model. Further molecular biology and immunohistochemistry experiments suggested TMDCD could repress TLR4-NLRP3 pathway-mediated pyroptosis-related gene transcriptions to inhibit expressions of target proteins. Conclusion TMDCD could alleviate asthmatic mice model airway inflammations by regulating TLR4-NLRP3 pathway-mediated pyroptosis.
Collapse
Affiliation(s)
- Mingsheng Lyu
- Center of Respiratory Disease, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jingbo Qin
- Department of Geratology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Shuaiyang Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dongmei Shao
- Department of Infectious Disease, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, People’s Republic of China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shiyu Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhijie Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hongsheng Cui
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Xie Y, Deng Q, Guo M, Li X, Xian D, Zhong J. Proanthocyanidins: A novel approach to Henoch‑Schonlein purpura through balancing immunity and arresting oxidative stress via TLR4/MyD88/NF‑κB signaling pathway (Review). Exp Ther Med 2023; 25:300. [PMID: 37229322 PMCID: PMC10203752 DOI: 10.3892/etm.2023.11999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Henoch-Schonlein purpura (HSP), a recurrent and immunoglobulin (Ig)A-mediated vasculitis, presents not only as skin lesions but also as systemic involvement that can be life-threatening. Although the etiology of HSP remains unknown, immune imbalance and oxidative stress (OS) are primary contributors to its pathogenesis, alongside the abnormal activation of Toll-like receptor (TLR)/myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. TLRs, especially TLR4, stimulate downstream signaling molecules such as NF-κB and proinflammatory cytokines, which are released when TLRs combine with the key adapter molecule MyD88. This leads to the activation of T helper (Th) cell 2/Th17 and overproduction of reactive oxygen species (ROS). The function of regulatory T (Treg) cells is suppressed in the process. Th17/Treg imbalance then produces various inflammatory cytokines to promote proliferation and differentiation of B cells and the secretion of antibodies. IgA is secreted, and it binds to vascular endothelial surface receptors where the complex induces injury of the vascular endothelial cells. Additionally, excessive ROS creates OS that leads to an inflammatory response and vascular cell apoptosis or necrosis, thereby contributing to vascular endothelial damage and HSP occurrence. Proanthocyanidins are active compounds naturally enriched in fruits, vegetables and plants. Proanthocyanidins have diverse properties, including anti-inflammatory, antioxidant, antibacterial, immunoregulatory, anticarcinogenic and vascular protective effects. Proanthocyanidins are used in the management of various diseases. Proanthocyanidins regulate T cells, equilibrate immunity and arrest OS by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Considering the pathogenesis of HSP and the properties of proanthocyanidins, the present study hypothesized that these compounds may potentially lead to HSP recovery through modulating the immune equilibrium and preventing OS by inhibiting the TLR4/MyD88/NF-κB pathway. To the best of our knowledge, however, little is known about the positive effects of proanthocyanidins against HSP. The present review summarizes the potential of proanthocyanidins to treat HSP.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Menglu Guo
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Deihai Xian
- Department of Neurobiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
36
|
Geng L, Zheng LZ, Kang YF, Pan CL, Wang T, Xie C, Liang B, Liao HL. Zhilong Huoxue Tongyu Capsule attenuates hemorrhagic transformation through the let-7f/TLR4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116521. [PMID: 37080368 DOI: 10.1016/j.jep.2023.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemorrhagic transformation after acute ischemic stroke is a life-threatening disease that currently has no effective chemotherapy. Zhilong Huoxue Tongyu Capsule (ZL) is an empirical prescription of traditional Chinese medicine that is used to prevent and treat cardiovascular and cerebrovascular diseases in China. However, only a few studies have addressed the mechanisms of ZL in treating hemorrhagic transformation. AIM OF THE STUDY To evaluate the anti-inflammatory effects of ZL on hemorrhagic transformation model rats and lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to explore the underlying molecular mechanisms. MATERIALS AND METHODS Murine RAW264.7 cells were treated with ZL and LPS (1 μg/mL), and cell viability was detected by cell counting kit-8 assay. RT-qPCR was used to detect the expression of inflammatory chemokines, microRNA let-7a/e/i/f, toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) p65. The protein expression levels of TLR4, MyD88, NF-κB p65, and apoptosis related molecules were determined by Western blotting. The apoptosis rate of RAW264.7 macrophages was detected by Annexin V-FITC/PI double staining. A hemorrhagic transformation model in rats was established by intraperitoneal injection of high glucose solution combined with thread embolization. Then, the model rats were observed behaviourally, pathologically, and molecularly. The gene expression of TLR4, MyD88, and NF-κB p65 was measured by RT-qPCR and used to evaluate the protective effect of ZL against hemorrhagic transformation in rats. RESULTS ZL (5, 20, 40 μg/mL) was beneficial in cell proliferation. LPS (1 μg/mL) stimulated the production of inflammatory chemokines and inhibited the production of let-7a/e/i/f, with let-7f being influenced most strongly. Moreover, overexpression of let-7f decreased the gene and protein levels of TLR4, MyD88, and NF-κB p65, downregulated TLR4, and inhibited its transcriptional activity. ZL (5, 20, and 40 μg·mL-1) inhibited the production of TLR4, MyD88, and NF-κB p65 and promoted the production of let-7f in a concentration-dependent manner. Furthermore, the blockade of TLR4 antagonized the promoting effects of TLR4 pathway activation in cell inflammation and apoptosis by downregulating let-7f. Critically, it was confirmed in vivo and in vitro that ZL upregulated the expression of let-7f and inhibited the gene expression of TLR4, MyD88, and NF-κB p65 to reduce inflammatory cell infiltration, which determined the occurrence of hemorrhagic transformation. CONCLUSIONS ZL can reduce inflammatory response by upregulating let-7f and subsequently inhibiting the TLR4 signaling pathway, thereby decreasing the occurrence of hemorrhagic transformation.
Collapse
Affiliation(s)
- Lu Geng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Internal Medicine Department One, Wenjiang Traditional Chinese Medicine Hospital of Chengdu, Chengdu, China
| | - Li-Zhu Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Traditional Chinese Medicine Hospital of Long Chang City, Neijiang, China
| | - Ya-Fei Kang
- Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Chuan-Ling Pan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Tao Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Chen Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hui-Ling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
37
|
Arabian S, Boostan A, Darzi S. The role of toll-like receptors (TLRs) and their therapeutic applications in endometrial cancer. Clin Transl Oncol 2023; 25:859-865. [PMID: 36374404 DOI: 10.1007/s12094-022-02999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Endometrial cancer (EC) is developed nations' most prevalent form of gynecologic cancer. Patients are frequently diagnosed with EC when the tumor is still limited to the uterus. Patients without tumor metastasis have a 5-year survival rate ranging from 80 to 90%; however, almost 16.8% of EC patients develop a metastatic form of the tumor. In the early stages of tumorigenesis, the immune system is able to identify aberrant cells as non-self, therefore providing the optimal pro-inflammatory microenvironment for the elimination of cancer cells. Although, chronic inflammation can be a crucial aspect of tumor development. Toll-like receptors (TLRs), as the main pattern recognition receptors (PRRs) in innate immunity, may stimulate an inflammatory response and provide cell survival in the tumor microenvironment (TME). TLRs are vital immunomodulators that may significantly impact the development of gynecologic malignancies. Therefore, TLR inhibitors are being researched for their possible benefits in treating gynecologic cancers. The aim of this study is to review the current knowledge in this field and provide some insight into the therapeutic potential of TLR inhibitors in EC.
Collapse
Affiliation(s)
- Sahereh Arabian
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Aynaz Boostan
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Satinik Darzi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
38
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
39
|
Jezernik G, Gorenjak M, Potočnik U. MIF Variant rs755622 Is Associated with Severe Crohn's Disease and Better Response to Anti-TNF Adalimumab Therapy. Genes (Basel) 2023; 14:452. [PMID: 36833379 PMCID: PMC9957382 DOI: 10.3390/genes14020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Crohn's disease (CD), rheumatoid arthritis, psoriatic arthritis and other inflammatory diseases comprise a group of chronic diseases with immune-mediated pathogenesis which share common pathological pathways, as well as treatment strategies including anti-TNF biologic therapy. However, the response rate to anti-TNF therapy among those diseases varies, and approximately one third of patients do not respond. Since pharmacogenetic studies for anti-TNF therapy have been more frequent for other related diseases and are rare in CD, the aim of our study was to further explore markers associated with anti-TNF response in other inflammatory diseases in Slovenian CD patients treated with the anti-TNF drug adalimumab (ADA). We enrolled 102 CD patients on ADA, for which the response was defined after 4, 12, 20 and 30 weeks of treatment, using an IBDQ questionnaire and blood CRP value. We genotyped 41 SNPs significantly associated with response to anti-TNF treatment in other diseases. We found novel pharmacogenetic association between SNP rs755622 in the gene MIF (macrophage migration inhibitory factor) and SNP rs3740691 in the gene ARFGAP2 in CD patients treated with ADA. The strongest and most consistent association with treatment response was found for the variant rs2275913 in gene IL17A (p = 9.73 × 10-3).
Collapse
Affiliation(s)
- Gregor Jezernik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
40
|
Toll- like receptor 2 polymorphism and IL-6 profile in relation to disease progression in chronic HBV infection: a case control study in Egyptian patients. Clin Exp Med 2023; 23:117-129. [PMID: 35119591 PMCID: PMC9939497 DOI: 10.1007/s10238-022-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Chronic hepatitis B (CHB) has a wide range of outcomes depending on host immune responses mainly Toll-like receptors (TLRs) signaling and released cytokines. Toll-like receptor 2 (TLR2) single nucleotide polymorphisms (SNPs) and interleukin 6 (IL-6) may influence the course of CHB. We aimed to elucidate the relation between TLR-2 polymorphism, IL-6 profile, and CHB progression. We analyzed TLR-2 polymorphism (SNP; rs3804099) in 185 CHB patients and 60 controls using TaqMan allelic discrimination assay. Serum IL-6 levels were assessed by ELISA. IL-6 levels were considerably higher in active CHB and cirrhotic patients compared with inactive carriers and controls (P < 0.001). IL-6 showed positive correlation with ALT and advanced fibrosis in active CHB patients (r = 0.31, P = 0.02). A significant positive correlation was noticed between IL-6 and HBV DNA PCR in all CHB groups. TT genotype of rs3804099/TLR-2 was significantly more prevalent in inactive carriers compared to active hepatitis patients (P = 0.04, OR = 0.39 and 95% CI: 0.16-0.95). Both heterozygous CT and mutant TT genotypes were significantly more frequent among inactive carriers compared to cirrhotic patients (P = 0.01, OR = 0.33, 95% CI: 0.13-0.81 and P = 0.009, OR = 0.32, 95% CI: 0.13-0.77). TT genotype was significantly related to lower IL-6 levels in active hepatitis and cirrhotic groups (P = 0.005 and P = 0.001, respectively) showing that TLR mutations would be associated with milder hepatitis activity and lower possibility for disease progression. There may be a positive association between TLR2 rs3804099 polymorphism and hepatitis B activity. IL-6 is a good indicator of CHB disease progression.
Collapse
|
41
|
Wang X, Liu W, Zhang D, Jiao Y, Zhao Q, Liu Y, Shi W, Bao Y. Salvia miltiorrhiza polysaccharides alleviate florfenicol-induced inflammation and oxidative stress in chick livers by regulating phagosome signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114428. [PMID: 36516627 DOI: 10.1016/j.ecoenv.2022.114428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Florfenicol (FFC) is a commonly used antibiotic in animal breeding, especially in broiler breeding. Previous studies found that FFC could affect the liver function of chickens. However, the mechanisms underlying the effects of FFC on liver function are still not completely clear. Moreover, the research on drugs that antagonize FFC hepatotoxicity is relatively lacking. Salvia miltiorrhiza polysaccharides (SMPs) have been proved to have obvious liver protection effects. Therefore, we exposed chicks to FFC at the clinically recommended dose of 0.15 g/L. At the same time, 0.15 g/L FFC and 5 g/L SMPs were given to another group of chicks. After 5 days of continuous administration, the livers of chicks from different treatment groups were sequenced by transcriptome and proteome. Based on the analysis of sequencing data, we also focused on the detection of inflammation and oxidation indicators related to the phagosome signaling pathway with significant enrichment of differential factors in the livers of chicks. The results showed that some significantly differentially expressed genes and proteins induced by FFC were enriched in the phagosome signaling pathway, and they increased the expression levels of inflammatory factors and peroxides. However, SMPs intervention significantly reversed the tendency of FFC to alter phagosome signaling pathways and reduced the expression levels of inflammatory factors and peroxides. In conclusion, FFC caused liver inflammation and oxidative stress in chicks by regulating the phagosome signaling pathway. Meanwhile, SMPs could improve the adverse effects of FFC on the phagosome signaling pathway. This study provided new insights into the ameliorative effects and mechanisms of SMPs on hepatotoxicity of FFC.
Collapse
Affiliation(s)
- Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Di Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yulan Jiao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071000, China; Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding 071031, China
| | - Qianhui Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071000, China; Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding 071000, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071000, China.
| |
Collapse
|
42
|
Panfili E, Orecchini E, Mondanelli G. Unrevealing the Role of TLRs in the Pathogenesis of Autoimmune Disease by Using Mouse Model of Diabetes. Methods Mol Biol 2023; 2700:187-198. [PMID: 37603182 DOI: 10.1007/978-1-0716-3366-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Toll-like receptors (TLRs) are receptors of the innate immune system specialized in recognizing conserved molecular pattern of pathogens and initiating an appropriate immune response. Along with the recognition of foreign materials, TLRs have also been shown to respond to endogenous molecules, thus mediating the development of autoimmune diseases. Type 1 diabetes (T1D) is a prototypic autoimmune disease in which TLRs play a pathogenic role. We here describe a protocol to study the role of TLRs in the development and progression of T1D by resorting to the nonobese diabetic (NOD) mouse model.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Orecchini
- Department of Onco-Hematology and Cell and Gene Therapy, Bambin Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
43
|
Li Q, Tang Y, Wang T, Zhu J, Zhou Y, Shi J. Novel immunogenic cell death-related risk signature to predict prognosis and immune microenvironment in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:307-323. [PMID: 36575346 DOI: 10.1007/s00432-022-04555-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Immunogenic cell death (ICD) is a type of regulated cell death (RCD) which was discovered to activate adaptive immunity. To date, the effect of ICD on lung adenocarcinoma (LUAD) remains unclear. In this research, we will study the role of ICD-related genes (ICDG) in LUAD. METHODS RNA sequencing and clinical data were gathered from TCGA-LUAD cohorts and GEO database. Using unsupervised cluster analysis, three clusters were identified with distinctive immune characteristics and significant overall survival based on 18 ICDG. Using LASSO Cox regression, three genes were identified and used to construct the prognosis signature. The association between the 3-ICDG risk signature and immune microenvironment analysis, somatic mutation, and enriched molecular pathways was investigated. RESULTS Consensus clustering separated the LUAD samples into three clusters (ICDcluster A, B and C), and ICDcluster B had the best prognosis. Different TME cell infiltration characteristics and biological behavior were found in three ICD clusters. Prognostic risk model was contrasted based on the 3 best prognostic ICD-related genes. Subsequently, vitro experiments verified the above analysis results. The high-risk group showed a poor prognosis and enrichment of cancer promoting signal pathway. Multivariate analysis indicated that this 3-ICDG prognostic model might be an accurate prediction parameter for LUAD. Moreover, conducting immune related analysis, we found that the 3-ICDG risk signature was characterized by an immune-active subtype on account of the high infiltration of immune-active cells. CONCLUSION This study expands our cognition of ICD in LUAD microenvironment, excavated prognostic biomarkers, and provided potential value for guiding immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Qixuan Li
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yijie Tang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiaqi Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
44
|
Peng X, Huang C, Zhang N, Cao Y, Chen Z, Ma W, Liu Z. The mechanism study of Miao medicine Tongfengting decoction in the treatment of gout based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e32300. [PMID: 36595750 PMCID: PMC9794283 DOI: 10.1097/md.0000000000032300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
AIM This study sought to clarify the mechanism of action of Miao medicine Tongfengting decoction in the treatment of gout through network pharmacology and molecular docking by searching for its key targets and related pathways. METHODS The active ingredients of Miao medicine Tongfengting Decoction were obtained from the TCMSP data platform, searched the relevant databases for gout-related targets,using String and Cytoscape 3.9 to build a "compound-cross-target-disease" network diagram,performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis in the DAVID database, and performed the docking analysis using PyMoL 2.3.0 and AutoDock. RESULTS After screening, 298 main targets of the Miao medicine Tongfengting decoction for gout were identified. The target network is established, and the topology of protein-protein interaction (PPI) network is analyzed. The enrichment analysis of KEGG pathway showed that these targets were related to Pathways in cancer, PI3K Akt signaling pathway, MAPK signaling pathway and other pathways. Molecular docking showed that the target protein had good binding power with the main active components of the compound of Miao medicine Tongfengting Decoction. CONCLUSION Miao medicine Tongfengting decoction probably regulates immune mechanism using a multi-component, multi-target, and multi-pathway strategy to reduce inflammatory response and exert its therapeutic effect on gout.
Collapse
Affiliation(s)
- Xin Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| | - Cong Huang
- Basic medical college, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, P.R. China
- Guizhou Province Key Laboratory of Prescription and Syndrome Pharmacology in Chinese Medicine, Guian District, Guiyang, P.R. China
| | - Nannan Zhang
- Basic medical college, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, P.R. China
- Guizhou Province Key Laboratory of Prescription and Syndrome Pharmacology in Chinese Medicine, Guian District, Guiyang, P.R. China
| | - Yuepeng Cao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| | - Zhigang Chen
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| | - Wukai Ma
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| | - Zhengqi Liu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| |
Collapse
|
45
|
Talipova D, Smagulova A, Poddighe D. Toll-like Receptors and Celiac Disease. Int J Mol Sci 2022; 24:265. [PMID: 36613709 PMCID: PMC9820541 DOI: 10.3390/ijms24010265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder triggered by dietary gluten intake in some genetically predisposed individuals; however, the additional non-HLA-related genetic factors implicated in CD immunopathogenesis are not well-defined. The role of the innate immune system in autoimmunity has emerged in the last few years. Genetic polymorphisms of some pattern-recognition receptors, including toll-like receptors (TLRs), have been associated with several autoimmune disorders. In this review, we summarize and discuss the evidence from basic research and clinical studies as regards the potential role of TLRs in CD immunopathogenesis. The evidence supporting the role of TLRs in CD immunopathogenesis is limited, especially in terms of basic research. However, differences in the expression and activation of TLRs between active CD patients from one side, and controls and treated CD patients from the other side, have been described in some clinical studies. Therefore, TLRs may be part of those non-HLA-related genetic factors implicated in CD etiopathogenesis, considering their potential role in the interaction between the host immune system and some environmental factors (including viral infections and gut microbiota), which are included in the list of candidate agents potentially contributing to the determination of CD risk in genetically predisposed individuals exposed to dietary gluten intake. Further basic research and clinical studies focused on TLRs in the context of CD and other gluten-related disorders are needed.
Collapse
Affiliation(s)
- Diana Talipova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Aiganym Smagulova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| |
Collapse
|
46
|
Yu R, Zhang C. miR-124-Antagonist-Loaded Liposomal Nanoparticles Negatively Regulate the Toll-Like Receptor (TLR)-Signaling Pathway in Alveolar Epithelial Cells in Pulmonary Tuberculosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-124 is intensively expressed in the alveolar epithelial cells of pulmonary tuberculosis. This study focused on exploring the negative regulation of miR-124-antagonist-loaded liposomal nanoparticles on the Toll-like receptor (TLR)-signal transduction pathway in the alveolar epithelial
cells from pulmonary tuberculosis, aiming to provide theoretical evidence for the treatment of pulmonary tuberculosis. The purchased alveolar epithelial cells were grouped into Blank group, Empty-vector group, Bacillus Calmette-Guerin (BCG) group, Nanoparticle+MiR-124 Antagonist group, MiR-124
Antagonist group, and MiR-124 Agonist group. The liposomal nanoparticles were identified. The following aspects were investigated: mRNA level of miR-124, mRNA and protein levels of Myeloid differentiation factor 88 (MyD 88), Toll-like receptor the 6 (TLR 6) and their downstream molecules Nuclear
Factor-κB (NF-κB) and Tumor necrosis factor TNF receptor-associated factor 6 (TRAF 6) secretion level of cytokines (NF-κB, IL-8, IL-1α, TNF-α and IL-6), as well as the regulatory link between miR-124-antagonists with TLR6 and
MyD88. The liposomal nanoparticles were uniform in size, with an average particle size of (35.25±10.58) nm and an average Zeta potential of (−48.55±10.27) mV. The miR-124 level was the strongest in the MiR-124 Agonist group, while being the lowest in the Blank group. The
miR-124 level was relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which was higher than the Blank group. The miR-124 level in the MiR-124 Antagonist group was higher than that in the Nanoparticle+MiR-124
Antagonist group (P <0.05). The mRNA and protein levels of MyD88, TLR6, NF-κB and TRAF6 were the highest in the MiR-124 Agonist group, while being the lowest in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were
relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+ MiR-124 Antagonist group, which were higher than in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were in the MiR-124 Antagonist
group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05). The secretion levels of inflammatory factors (NF-κB, IL-8, IL-1α, TNF-α and IL-6) were the highest in the MiR-124 Agonist group, while being the lowest in the
Blank group. The levels of these inflammatory factors were relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which were elevated compared to that in the Blank group. The secretion quantities of these inflammatory
factors in the MiR-124 Antagonist group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05).Dual luciferase experiments indicated that miR-124-antagonists may retard TLR6 and MyD88 to affect the immune response of pulmonary alveolar epithelial cells in
pulmonary tuberculosis. The fluorescence intensity of mutant plasmid was significantly stronger than that of wild-type plasmid (P < 0.05). In the alveolar epithelial cells from pulmonary tuberculosis, the miR-124-antagonistloaded liposomal nanoparticles can significantly reduce the
expression of TLR6 and MyD88, and their downstream molecules (NF-κB and TRAF6), leading to the reduced secretion of the inflammatory factors. As a result, the inflammatory response of lung tissue was alleviated, while the immune function was restored. This regulation was achieved
by the miR-124-antagonist-loaded liposomal nanoparticles via negatively regulating the TLR6/MyD88 pathways.
Collapse
Affiliation(s)
- Rong Yu
- Department of Tuberculosis, The First Hospital of Changsha, Changsha 410000, Hunan, China
| | - Cai Zhang
- Department of Pediatrics, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha 410000, Hunan, China
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer. RECENT FINDINGS Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients. SUMMARY This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
Collapse
|
48
|
Bifidobacterium longum, Lactobacillus plantarum and Pediococcus acidilactici Reversed ETEC-Inducing Intestinal Inflammation in Mice. Microorganisms 2022; 10:microorganisms10122350. [PMID: 36557603 PMCID: PMC9783104 DOI: 10.3390/microorganisms10122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Microecological preparation could relieve Enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhea in piglets, but which bacteria play a key role and the mitigation mechanism have not been fully clarified. In this study, 36 male mice were randomly divided into six groups (CON, K88, BK (Bifidobacterium longum + K88), LK (Lactobacillus plantarum + K88), PK (Pediococcus acidilactici + K88), and MK (mixed strains + K88)) to explore the prevention mechanisms. Three probiotic strains and their mixtures (TPSM) significantly relieved the weight loss and restored the ratio of villus height to crypt depth in the jejunum. Except for Bifidobacterium longum, other strains significantly decreased interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in mice serum. The TPSM treatment significantly downregulated the mRNA expression of the inflammatory cytokines and the Toll-like receptor and downstream gene (TLR4, MyD88, NF-κB) in jejunum induced by ETEC. Furthermore, the TPSM could restore dysbiosis of the intestinal microbiota caused by ETEC. The intestinal microbiota analysis demonstrated that Bifidobacterium longum enriched the Bifidobacterium genus (p < 0.05), Lactobacillus plantarum enriched the Lactobacillus genus (p < 0.05), Pediococcus acidilactici enriched the Coriobacteriaceae_UCG-002 and Christensenellaceae_R-7_group genus (p < 0.05), mixed bacteria enriched the Akkermansia genus (p < 0.05), but ETEC enriched the Desulfovibrio genus (p < 0.05). Meanwhile, the starch and sucrose metabolism, galactose and fructose metabolism, mannose metabolism and ABC transporters were increased with probiotics pre-treatment (p < 0.05). To sum up, the microecological preparation alleviated ETEC-induced diarrhea by regulating the immune response, rebalancing intestinal microbiota and improving carbohydrate metabolism.
Collapse
|
49
|
Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of Bushen Hugu Decoction in the Treatment of Malignant Tumor Bone Metastases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2055900. [DOI: 10.1155/2022/2055900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Purpose. To explore the active compounds of the Chinese medicine prescriptions of Bushen Hugu Decoction (BHD) and demonstrate its mechanisms against malignant tumor bone metastasis (BM) through network pharmacology and molecular docking analysis.Methods. The main components and targets of BHD were retrieved from the TCMSP database, and the targets were normalized by UniProt. The Herbs-Components-Targets network of BHD was established by Cytoscape. The main BM targets were obtained from GeneCards, TTD, DrugBank, and OMIM. STRING and Cytoscape were used to construct a PPI network and obtain hub genes. DAVID and Metascape were used for GO and KEGG enrichment analyses. According to the network topology parameters, the top 4 components were selected for molecular docking verification with the core targets. Results. Compound–target network of BHD mainly contained 51 compounds and 259 corresponding targets including 107 BHD-BM targets. PPI interaction network and subnetworks identified ten hub genes. GO enrichment analysis found 1970 terms (
), and 164 signaling pathways (
) were found in KEGG, including PI3K-Akt signaling pathway, proteoglycans in cancer, prostate cancer, MAPK signaling pathway, and IL-17 signaling pathway. Molecular docking analysis showed that the active components of BHD, quercetin, luteolin, kaempferol, and aureusidin have good binding activity to the core targets. Conclusion. The potential molecular target and signaling pathways were found for BHD major active components. It provides guidance for the future mechanism research of the BHD in malignant tumor bone metastasis. This study also established the foundation for the new strategy for the pharmacology study of Chinese medicine.
Collapse
|
50
|
Li S, Liu G, Gu M, Li Y, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. A novel therapeutic approach for IPF: Based on the "Autophagy - Apoptosis" balance regulation of Zukamu Granules in alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115568. [PMID: 35868548 DOI: 10.1016/j.jep.2022.115568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu Granules (ZKMG) is one of the representative Uygur patent drugs widely used in China, which is included in the National Essential Drugs List (2018 edition). As the first choice for common cold treatment in Uygur medicine theory, it has unique anti-inflammatory and antitussive efficacy. AIM OF THE STUDY According to the recent inflammatory hypothesis, the abnormal proliferation, autophagy and apoptosis process of lung cells especially alveolar macrophages (AMs) may play an important role in the progress of idiopathic pulmonary fibrosis (IPF). Therefore, we came up with a novel treatment approach for IPF by regulating the balance of AMs "autophagy - apoptosis", and took ZKMG as the sample drug for our research. MATERIALS AND METHODS Network pharmacology approach was conducted to predict the active components and intersected targets between ZKMG and inflammation. PPI network, GO and KEGG enrichment analysis were screened and analyzed to predict the anti-inflammatory mechanism of ZKMG. Biological experiment adopted from 128 rats, and hematoxylin-eosin staining, flow cytometry and RT-PCR were performed to examine the pathological morphology, HYP contents in lung tissue, AMs counting, AMs apoptosis, AMs phagocytosis rate, mRNA relative quantity determination of 3 key factors associated with AMs "autophagy - apoptosis" and mRNA relative quantity determination of AMs surface receptor signaling pathway. RESULTS The predicted results showed that the mechanism of ZKMG in anti-inflammatory was related to the response and elimination of inflammatory stimuli, the intervention of apoptosis and surface receptor signaling pathways of cells. The verification experiments showed that excessive apoptosis and insufficient autophagy of AMs always existed in the progression of IPF. ZKMG could inhibit AMs proliferation, significantly reduce AMs apoptosis rate, intervene the binding of the Bcl-2 to Beclin 1, inhibit the Caspase 3 activation, stimulate the enhancement of AMs phagocytosis, and inhibit the high expression of TLR4/MyD88/NF-κB surface receptor signaling pathway, which may partly retard the fibrosis process. CONCLUSION By inhibiting proliferation, enhancing phagocytosis, inhibiting the formation of Bcl-2 complex, and inhibiting the high expression of MYD88-dependent TLR4 signaling pathway, ZKMG can regulate the balance of AMs "autophagy - apoptosis" in the alveolitis stage to retard the fibrosis process partly. With a comprehensive strategy of "target prediction - experimental verification", we have demonstrated that inhibiting the apoptosis and promoting autophagy activity of AMs may suggest a new perspective for IPF treatment, which would provide reference for the subsequent development.
Collapse
Affiliation(s)
- Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Keao Li
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|