1
|
Zhang X, Gao H, Chen X, Liu Z, Wang H, Cui M, Li Y, Yu Y, Chen S, Xing X, Chen L, Li D, Zeng X, Wang Q. Identification of sanguinarine as a novel antagonist for perfluorooctanoate/perfluorooctane sulfonate-induced senescence of hepatocytes: An integrated computational and experimental analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135583. [PMID: 39180998 DOI: 10.1016/j.jhazmat.2024.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), two prominent per- and polyfluoroalkyl substances (PFASs), are potentially harmful to many human organs. However, there only exist limited methods to mitigate their health hazards. The aim of this study is to combine a bioinformatics analysis with in vitro experiments to discover small molecules that can alleviate liver damage caused by PFOA/PFOS. We identified 192 and 82 key genes related to hepatocytes exposed to PFOA and PFOS, respectively. The functional enrichment analysis of key genes suggested cellular senescence may be important in PFOA/PFOS-induced hepatotoxicity. The in vitro models revealed that PFOA/PFOS led to hepatocyte senescence by increasing the activity of SA-β-gal, inducing mitochondrial dysfunction, impacting cell cycle arrest, and elevating the expressions of p21, p53, IL-1β, and SASP-related cytokines. The drug-target gene set enrichment analysis method was employed to compare the transcriptome data from the Gene Expression Omnibus database (GEO), Comparative Toxicogenomics Database (CTD), and the high-throughput experiment- and reference-guided database (HERB), and 21 traditional Chinese medicines (TCMs) were identified that may alleviate PFOA/PFOS-induced liver aging. The experimental results of co-exposure to PFOA/PFOS and TCMs showed that sanguinarine has particular promise in alleviating cellular senescence caused by PFOA/PFOS. Further investigations revealed that the mTOR-p53 signaling pathway was involved in PFOA/PFOS-mediated hepatic senescence and can be blocked using sanguinarine.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajie Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Infinitus (China) Company Ltd, Guangzhou 510623, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Rifa RA, Lavado R. Cytotoxic impacts of seven alternative bisphenols on human in vitro cellular models. CHEMOSPHERE 2024; 366:143408. [PMID: 39326710 DOI: 10.1016/j.chemosphere.2024.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Bisphenols (BPs), common in plastics, coatings, and resins, are under scrutiny for potential endocrine disruption. Despite banning bisphenol A (BPA), its perceived safer alternatives may still pose health risks, urging thorough studies on their toxicity mechanisms. This study aimed to investigate the cellular toxicity of the top seven most commonly used BPs, bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol P (BPP), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol E (BPE) in eight different relevant human in vitro cell models: liver (HepaRG), intestinal (Caco-2), breast (T47D), brain (HMC-3), lungs (MRC-5), kidney (HEK293), endothelial (HMEC-1), and skin (HEK-001) cell lines. BPE manifested the highest cytotoxicity in Caco-2 cells, presenting an EC50 value of roughly 0.2 μM (95% confidence interval). In contrast, HEK293 and HepaRG cells demonstrated significant resilience to BPS (EC50 > 1000 μM). BPAF, BPP, and BPAP had consistently low EC50 values across cell lines (6-27.9 μM, 0.6-134.7 μM, and 3.6-178.8 μM), indicating elevated toxicity. After 24 h, all bisphenols adhered to nominal concentrations except BPAF, BPP, and BPS. BPP's concentration notably decreased (30.82 ± 5.53% of nominal value). The results revealed diverse effects of bisphenol analogs on different cell types. These findings emphasized the considerable cytotoxic potential of specific bisphenol analogs across various human cell models, underlining the necessity for a re-evaluation of their safety and regulatory standards.
Collapse
Affiliation(s)
- Rafia Afroze Rifa
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
3
|
Yasuda A, Murase W, Kubota A, Uramaru N, Okuda K, Hakota R, Ikeda A, Kojima H. Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells. Toxicol In Vitro 2024; 101:105943. [PMID: 39341470 DOI: 10.1016/j.tiv.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.
Collapse
Affiliation(s)
- Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuhiro Okuda
- Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
4
|
Arjmandi H, Kanebratt KP, Vilén L, Gennemark P, Noel A. 3D cell aggregates amplify diffusion signals. PLoS One 2024; 19:e0310109. [PMID: 39264935 DOI: 10.1371/journal.pone.0310109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
Biophysical models can predict the behavior of cell cultures including 3D cell aggregates (3DCAs), thereby reducing the need for costly and time-consuming experiments. Specifically, mass transfer models enable studying the transport of nutrients, oxygen, signaling molecules, and drugs in 3DCA. These models require the defining of boundary conditions (BC) between the 3DCA and surrounding medium. However, accurately modeling the BC that relates the inner and outer boundary concentrations at the border between the 3DCA and the medium remains a challenge that this paper addresses using both theoretical and experimental methods. The provided biophysical analysis indicates that the concentration of molecules inside boundary is higher than that at the outer boundary, revealing an amplification factor that is confirmed by a particle-based simulator (PBS). Due to the amplification factor, the PBS confirms that when a 3DCA with a low concentration of target molecules is introduced to a culture medium with a higher concentration, the molecule concentration in the medium rapidly decreases. The theoretical model and PBS simulations were used to design a pilot experiment with liver spheroids as the 3DCA and glucose as the target molecule. Experimental results agree with the proposed theory and derived properties.
Collapse
Affiliation(s)
- Hamidreza Arjmandi
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Liisa Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Adam Noel
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
Wuerger LTD, Sprenger H, Krasikova K, Templin M, Stahl A, Herfurth UM, Sieg H, Braeuning A. A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol 2024; 98:2919-2935. [PMID: 38832940 PMCID: PMC11324782 DOI: 10.1007/s00204-024-03796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA concentrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phosphoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulating the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.
Collapse
Affiliation(s)
- Leonie T D Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ksenia Krasikova
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
6
|
Sundi PRIO, Thipe VC, Omar MA, Adelusi TI, Gedefa J, Olaoba OT. Preclinical human and murine models of hepatocellular carcinoma (HCC). Clin Res Hepatol Gastroenterol 2024; 48:102418. [PMID: 39004339 DOI: 10.1016/j.clinre.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/17/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer, which account for more than 90 % of all liver cancer cases. It is the fifth leading cause of cancer globally and the second leading cause of cancer-related mortality in men. The availability of competent HCC preclinical models is fundamental to the success of mechanistic studies, molecular target identification, and drug testing. However, there are challenges associated with the use of these models. In this review, we provided updates on various cell lines, animals, and human HCC models, their specific preclinic use and associated potential challenges. Overall, the understanding of the merits and demerits of a particular HCC model will improve model selection for various preclinical studies.
Collapse
Affiliation(s)
- Pharidah Rajan Ibrahim Omar Sundi
- Lusaka Apex Medical University, Off Mumbwa Road, Lusaka 10101, Zambia; Pan African Organization for Health, Education and Research (POHER), United States
| | - Velaphi C Thipe
- Department of Radiology, Institute of Green Nanotechnology and Cancer Nanotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Jalene Gedefa
- Collage of Health Sciences, Addis Ababa University, Ethiopia
| | - Olamide T Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Müllers E, Karlsson F, Clausen M, Hansson SF, Leonard L, Cairns J, Jansson Löfmark R, Ämmälä C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilén LK. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun Biol 2024; 7:877. [PMID: 39025915 PMCID: PMC11258270 DOI: 10.1038/s42003-024-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Collapse
Affiliation(s)
| | - Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa U Magnusson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louise Leonard
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rasmus Jansson Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liisa K Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Li Y, Zhang Y, Zhong K, Liao S, Zhang G. The Development of a 3D PET Fibrous Scaffold Modified with an Umbilical Cord dECM for Liver Tissue Engineering. Polymers (Basel) 2024; 16:1794. [PMID: 39000651 PMCID: PMC11243929 DOI: 10.3390/polym16131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Organ and tissue dysfunction represents a clinically significant condition. By integrating cell biology with materials science, tissue engineering enables the reconstruction and restoration of damaged tissues or organs, offering a noninvasive repair approach. In our study, we replicated the cellular growth environment by utilizing a human umbilical cord-derived decellularized extracellular matrix (dECM) as a modifying agent for the polyethylene terephthalate (PET) polymeric fiber scaffold. This allowed us to create a dECM-coated polyester fiber-based scaffold, PET-dECM, tailored for liver tissue engineering purposes. We effectively produced a decellularized human umbilical cord-derived ECM through a combined decellularization process involving trypsin/EDTA, TritonX-100, and sodium deoxycholate. The application of the dECM coating onto the PET material was accomplished through several steps, such as ester hydrolysis, EDC/NHS-activated crosslinking, and dECM conjugation. The biological performance of the PET-dECM was validated using RG cell culture assays. Notably, the dECM coating significantly improved PET's hydrophilicity and biocompatibility, thereby aiding cell adhesion, proliferation, and functional differentiation (p < 0.05). It was further found that the hepatocyte function of HepaRG was significantly enhanced on the PET-dECM, which may be attributed to the dECM's ability to facilitate the restoration of cell polarity. The PET-dECM holds promise as an effective hepatocyte culture carrier and could potentially find application in liver tissue engineering.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Kebo Zhong
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuguang Liao
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lehmann A, Geburek I, Hessel-Pras S, Enge AM, Mielke H, Müller-Graf C, Kloft C, Hethey C. PBTK model-based analysis of CYP3A4 induction and the toxicokinetics of the pyrrolizidine alkaloid retrorsine in man. Arch Toxicol 2024; 98:1757-1769. [PMID: 38528153 DOI: 10.1007/s00204-024-03698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP)3A4 induction by drugs and pesticides plays a critical role in the enhancement of pyrrolizidine alkaloid (PA) toxicity as it leads to increased formation of hepatotoxic dehydro-PA metabolites. Addressing the need for a quantitative analysis of this interaction, we developed a physiologically-based toxicokinetic (PBTK) model. Specifically, the model describes the impact of the well-characterized CYP3A4 inducer rifampicin on the kinetics of retrorsine, which is a prototypic PA and contaminant in herbal teas. Based on consumption data, the kinetics after daily intake of retrorsine were simulated with concomitant rifampicin treatment. Strongest impact on retrorsine kinetics (plasma AUC24 and C max reduced to 67% and 74% compared to the rifampicin-free reference) was predicted directly after withdrawal of rifampicin. At this time point, the competitive inhibitory effect of rifampicin stopped, while CYP3A4 induction was still near its maximum. Due to the impacted metabolism kinetics, the cumulative formation of intestinal retrorsine CYP3A4 metabolites increased to 254% (from 10 to 25 nmol), while the cumulative formation of hepatic CYP3A4 metabolites was not affected (57 nmol). Return to baseline PA toxicokinetics was predicted 14 days after stop of a 14-day rifampicin treatment. In conclusion, the PBTK model showed to be a promising tool to assess the dynamic interplay of enzyme induction and toxification pathways.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne-Margarethe Enge
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
10
|
Seo JE, Le Y, Revollo J, Miranda-Colon J, Xu H, McKinzie P, Mei N, Chen T, Heflich RH, Zhou T, Robison T, Bonzo JA, Guo X. Evaluating the mutagenicity of N-nitrosodimethylamine in 2D and 3D HepaRG cell cultures using error-corrected next generation sequencing. Arch Toxicol 2024; 98:1919-1935. [PMID: 38584193 PMCID: PMC11106104 DOI: 10.1007/s00204-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
11
|
Wupperfeld D, Fricker G, Bois De Fer B, Popovic B. Essential phospholipids impact cytokine secretion and alter lipid-metabolizing enzymes in human hepatocyte cell lines. Pharmacol Rep 2024; 76:572-584. [PMID: 38664334 PMCID: PMC11126482 DOI: 10.1007/s43440-024-00595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Essential phospholipids (EPL) are hepatoprotective. METHODS The effects on interleukin (IL)-6 and -8 secretion and on certain lipid-metabolizing enzymes of non-cytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), polyenylphosphatidylcholine (PPC), and phosphatidylinositol (PtdIns) (both at 0.1 and 1 mg/ml), compared with untreated controls, were assessed in human hepatocyte cell lines (HepG2, HepaRG, and steatotic HepaRG). RESULTS Lipopolysaccharide (LPS)-induced IL-6 secretion was significantly decreased in HepaRG cells by most phospholipids, and significantly increased in steatotic HepaRG cells with at least one concentration of EPL and PtdIns. LPS-induced IL-8 secretion was significantly increased in HepaRG and steatotic HepaRG cells with all phospholipids. All phospholipids significantly decreased amounts of fatty acid synthase in steatotic HepaRG cells and the amounts of acyl-CoA oxidase in HepaRG cells. Amounts of lecithin cholesterol acyltransferase were significantly decreased in HepG2 and HepaRG cells by most phospholipids, and significantly increased with 0.1 mg/ml PPC (HepaRG cells) and 1 mg/ml PtdIns (steatotic HepaRG cells). Glucose-6-phosphate dehydrogenase activity was unaffected by any phospholipid in any cell line. CONCLUSIONS EPL, PPC, and PtdIns impacted the secretion of pro-inflammatory cytokines and affected amounts of several key lipid-metabolizing enzymes in human hepatocyte cell lines. Such changes may help liver function improvement, and provide further insights into the EPL's mechanism of action.
Collapse
Affiliation(s)
- Dominik Wupperfeld
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | | | - Branko Popovic
- Sanofi, Frankfurt am Main, K607, 65929, Industriepark Hoechst, Germany.
| |
Collapse
|
12
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
13
|
Varet J, Barranger A, Crochet C, Huet S, Hogeveen K, Le Hégarat L, Fessard V. New methodological developments for testing the in vitro genotoxicity of nanomaterials: Comparison of 2D and 3D HepaRG liver cell models and classical and high throughput comet assay formats. CHEMOSPHERE 2024; 350:140975. [PMID: 38142884 DOI: 10.1016/j.chemosphere.2023.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Nanomaterials (NMs) are defined as materials with at least one external dimension below 100 nm. Their small size confers them interesting unique physico-chemical properties, hence NMs are increasingly used in a diversity of applications. However, the specific properties of NMs could also make them more harmful than their bulk counterparts. Therefore, there is a crucial need to deliver efficient NM hazard assessment in order to sustain the responsible development of nanotechnology. This study analysed the genotoxic potential of several NMs: one titanium dioxide (TiO2) and two zinc oxide NMs (ZnO) that were tested up to 100 μg/mL on 2D and 3D hepatic HepaRG models. Genotoxicity analysis was performed comparing the alkaline comet assay in classical and high throughput formats. Moreover, oxidative DNA lesions were investigated with the Fpg-modified comet assay. Results showed that TiO2 NMs were not cytotoxic and not genotoxic in either cell model, although a small increase in the % tail DNA was observed in 3D HepaRG cells at 100 μg/mL in the classical format. The two ZnO NMs (ZnO S. NMs a commercial suspension and NM110 provided by the European Union Joint Research Centre) induced a concentration-dependent increase in cytotoxicity that was more pronounced in the 2D (>20% cytotoxicity was observed for ZnO S. at concentrations greater than 25 μg/mL, and for NM 110 at 50 μg/mL) than in the 3D model (more than 20% cytotoxicity for ZnO S. NMs at 50 μg/mL). While ZnO S. NMs induced DNA damage associated with cytotoxicity (at 25 and 50 μg/mL in 2D and 50 μg/mL in 3D), NM110 showed a clear genotoxic effect at non-cytotoxic concentrations (25 μg/mL in 2D and at 25 and 50 μg/mL in 3D). No major differences could be observed in the comet assay in the presence or absence of the Fpg enzyme. High throughput analysis using CometChip® mostly confirmed the results obtained with the classical format, and even enhanced the detection of genotoxicity in the 3D model. In conclusion, this study demonstrated that new approach methodologies (NAMs), 3D models and the high throughput format for the comet assay, were more efficient in the detection of genotoxic effects, and are therefore promising approaches to improve hazard assessment of NMs.
Collapse
Affiliation(s)
- Julia Varet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| | - Audrey Barranger
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Camille Crochet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Sylvie Huet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Kevin Hogeveen
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Ludovic Le Hégarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| |
Collapse
|
14
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Bernal K, Touma C, Le-Grand B, Rose S, Degerli S, Genêt V, Lagadic-Gossmann D, Coumoul X, Martin-Chouly C, Langouët S, Blanc EB. Assessment of endocrine disruptor impacts on lipid metabolism in a fatty acid-supplemented HepaRG human hepatic cell line. CHEMOSPHERE 2024; 349:140883. [PMID: 38092172 DOI: 10.1016/j.chemosphere.2023.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. This disease encompasses several stages, from steatosis to steatohepatitis and, eventually, to fibrosis and cirrhosis. Exposure to environmental contaminants is one of the risk factors and an increasing amount of evidence points to a role for endocrine disrupting compounds (EDCs). This study assesses the impact of selected EDCs on the formation of lipid droplets, the marker for steatosis in a hepatic model. The mechanisms underlying this effect are then explored. Ten compounds were selected according to their obesogenic properties: bisphenol A, F and S, butyl-paraben, cadmium chloride, p,p'-DDE, DBP, DEHP, PFOA and PFOS. Using a 2D or 3D model, HepaRG cells were exposed to the compounds with or without fatty acid supplementation. Then, the formation of lipid droplets was quantified by an automated fluorescence-based method. The expression of genes and proteins involved in lipid metabolism and the impact on cellular respiration was analyzed. The formation of lipid droplets, which is revealed or enhanced by oleic acid supplementation, was most effectively induced by p,p'-DDE and DEHP. Experiments employing either 2D or 3D culture conditions gave similar results. Both compounds induced the expression of PLIN2. p,p'-DDE also appears to act by decreasing in fatty acid oxidation. Some EDCs were able to induce the formation of lipid droplets, in HepaRG cells, an effect which was increased after supplementation of the cells with oleic acid. A full understanding of the mechanisms of these effects will require further investigation. The novel automated detection method described here may also be useful in the future as a regulatory test for EDC risk assessment.
Collapse
Affiliation(s)
- Kévin Bernal
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Béatrice Le-Grand
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Sophie Rose
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Selenay Degerli
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Valentine Genêt
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Xavier Coumoul
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Sophie Langouët
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Etienne B Blanc
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France.
| |
Collapse
|
16
|
Wuerger LT, Birkholz G, Oberemm A, Sieg H, Braeuning A. Proteomic analysis of hepatic effects of okadaic acid in HepaRG human liver cells. EXCLI JOURNAL 2023; 22:1135-1145. [PMID: 38054204 PMCID: PMC10694344 DOI: 10.17179/excli2023-6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The marine biotoxin okadaic acid (OA) is produced by dinoflagellates and enters the human food chain by accumulating in the fatty tissue of filter-feeding shellfish. Consumption of highly contaminated shellfish can lead to diarrheic shellfish poisoning. However, apart from the acute effects in the intestine, OA can also provoke toxic effects in the liver, as it is able to pass the intestinal barrier into the blood stream. However, molecular details of OA-induced hepatotoxicity are still insufficiently characterized, and especially at the proteomic level data are scarce. In this study, we used human HepaRG liver cells and exposed them to non-cytotoxic OA concentrations for 24 hours. Global changes in protein expression were analyzed using 2-dimensional gel electrophoresis in combination with mass-spectrometric protein identification. The results constitute the first proteomic analysis of OA effects in human liver cells and indicate, amongst others, that OA affects the energy homeostasis, induces oxidative stress, and induces cytoskeletal changes.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Greta Birkholz
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
17
|
Brun C, Allain C, Ferron PJ, Younoussa H, Colicchio B, Jeandidier E, M’Kacher R, Guguen-Guillouzo C, Bertile F. Extended lifespan and improved genome stability in HepaRG-derived cell lines through reprogramming by high-density stress. Proc Natl Acad Sci U S A 2023; 120:e2219298120. [PMID: 37639591 PMCID: PMC10483629 DOI: 10.1073/pnas.2219298120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
The characteristics and fate of cancer cells partly depend on their environmental stiffness, i.e., the local mechanical cues they face. HepaRG progenitors are liver carcinoma cells exhibiting transdifferentiation properties; however, the underlying mechanisms remain unknown. To evaluate the impact of external physical forces mimicking the tumor microenvironment, we seeded them at very high density for 20 h, keeping the cells round and unanchored to the substrate. Applied without corticoids, spatial confinement due to very high density induced reprogramming of HepaRG cells into stable replicative stem-like cells after replating at normal density. Redifferentiation of these stem-like cells into cells very similar to the original HepaRG cells was then achieved using the same stress but in the presence of corticoids. This demonstrates that the cells retained the memory required to run the complete hepatic differentiation program, after bypassing the Hayflick limit twice. We show that physical stress improved chromosome quality and genomic stability, through greater efficiency of DNA repair and restoration of telomerase activity, thus enabling cells to escape progression to a more aggressive cancer state. We also show the primary importance of high-density seeding, possibly triggering compressive stress, in these processes, rather than that of cell roundness or intracellular tensional signals. The HepaRG-derived lines established here considerably extend the lifespan and availability of this surrogate cell system for mature human hepatocytes. External physical stress is a promising way to create a variety of cell lines, and it paves the way for the development of strategies to improve cancer prognosis.
Collapse
Affiliation(s)
- Charlotte Brun
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien UMR 7178, StrasbourgF-67000, France
- Proteomics French Infrastructure, FR2048, ProFI, StrasbourgF-67000, France
| | - Coralie Allain
- Université de Rennes 1, INSERM U1241, Nutrition, Métabolismes et Cancer, RennesF-35033, France
| | - Pierre-Jean Ferron
- Université de Rennes 1, INSERM U1241, Nutrition, Métabolismes et Cancer, RennesF-35033, France
| | | | - Bruno Colicchio
- Université de Haute-Alsace, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, MulhouseF-68093, France
| | - Eric Jeandidier
- Groupe Hospitalier de la Région de Mulhouse et Sud Alsace Mulhouse, Service de génétique, MulhouseF-68070, France
| | - Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, EvryF-91058, France
| | | | - Fabrice Bertile
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien UMR 7178, StrasbourgF-67000, France
- Proteomics French Infrastructure, FR2048, ProFI, StrasbourgF-67000, France
| |
Collapse
|
18
|
Solan ME, Koperski CP, Senthilkumar S, Lavado R. Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. ENVIRONMENTAL RESEARCH 2023; 223:115424. [PMID: 36740157 DOI: 10.1016/j.envres.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Long-chain per- and polyfluoralkyl substances (PFAS) are ubiquitous contaminants implicated in the induction of intracellular reactive oxygen species (ROS), compromising antioxidant defense mechanisms in vitro and in vivo. While a handful of studies have assessed oxidative stress effects by PFAS, few specifically address short-chain PFAS. We conducted an evaluation of oxidative stress biomarkers in vitro following exposures to low (1 nM) and high (1 μM) concentrations of five short-chain PFAS compounds: perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), [undecafluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)], 6:2 fluorotelomer alcohol (6:2 FTOH) and perfluorohexanesulfonic acid (PFHxS). We conducted experiments in human kidney (HEK293-hTLR2), liver (HepaRG), microglia (HMC-3), and muscle (RMS-13) cell lines. Fluorescence microscopy measurements in HepaRG cells indicated ROS generation in cells exposed to PFBS and PFHxA for 24 h. Antioxidant enzyme activities were determined following 24 h short-chain PFAS exposures in HepaRG, HEK293-hTLR2, HMC-3, and RMS-13. Notably, exposure to PFBS for 24 h increased the activity of GPX in all four cell types at 1 μM and 1 nM in HepaRG and RMS-13 cells. Every short-chain PFAS evaluated, except for PFHxS, increased the activity of at least one antioxidant enzyme. To our knowledge, this is the first study of its kind to explore antioxidant defense alterations to microglia and muscle cell lines by PFAS. The findings of this study hold great potential to contribute to the limited understanding of short-chain PFAS mechanisms of toxicity and provide data necessary to inform the human health risk assessment process.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Camryn P Koperski
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
19
|
Seo JE, Li X, Le Y, Mei N, Zhou T, Guo X. High-throughput micronucleus assay using three-dimensional HepaRG spheroids for in vitro genotoxicity testing. Arch Toxicol 2023; 97:1163-1175. [PMID: 36847820 DOI: 10.1007/s00204-023-03461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
The in vitro micronucleus (MN) assay is a component of most test batteries used in assessing potential genotoxicity. Our previous study adapted metabolically competent HepaRG cells to the high-throughput (HT) flow-cytometry-based MN assay for genotoxicity assessment (Guo et al. in J Toxicol Environ Health A 83:702-717, 2020b, https://doi.org/10.1080/15287394.2020.1822972 ). We also demonstrated that, compared to HepaRG cells grown as two-dimensional (2D) cultures, 3D HepaRG spheroids have increased metabolic capacity and improved sensitivity in detecting DNA damage induced by genotoxicants using the comet assay (Seo et al. in ALTEX 39:583-604, 2022, https://doi.org/10.14573/altex.22011212022 ). In the present study, we have compared the performance of the HT flow-cytometry-based MN assay in HepaRG spheroids and 2D HepaRG cells by testing 34 compounds, including 19 genotoxicants or carcinogens and 15 compounds that show different genotoxic responses in vitro and in vivo. 2D HepaRG cells and spheroids were exposed to the test compounds for 24 h, followed by an additional 3- or 6-day incubation with human epidermal growth factor to stimulate cell division. The results demonstrated that HepaRG spheroids showed generally higher sensitivity in detecting several indirect-acting genotoxicants (require metabolic activation) compared to 2D cultures, with 7,12-dimethylbenzanthracene and N-nitrosodimethylamine inducing higher % MN formation along with having significantly lower benchmark dose values for MN induction in 3D spheroids. These data suggest that 3D HepaRG spheroids can be adapted to the HT flow-cytometry-based MN assay for genotoxicity testing. Our findings also indicate that integration of the MN and comet assays improved the sensitivity for detecting genotoxicants that require metabolic activation. These results suggest that HepaRG spheroids may contribute to New Approach Methodologies for genotoxicity assessment.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Wuerger LTD, Kudiabor F, Alarcan J, Templin M, Poetz O, Sieg H, Braeuning A. Okadaic Acid Activates JAK/STAT Signaling to Affect Xenobiotic Metabolism in HepaRG Cells. Cells 2023; 12:770. [PMID: 36899906 PMCID: PMC10000888 DOI: 10.3390/cells12050770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.
Collapse
Affiliation(s)
- Leonie T. D. Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Felicia Kudiabor
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
21
|
Casas B, Vilén L, Bauer S, Kanebratt KP, Wennberg Huldt C, Magnusson L, Marx U, Andersson TB, Gennemark P, Cedersund G. Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research. PLoS Comput Biol 2022; 18:e1010587. [PMID: 36260620 PMCID: PMC9621595 DOI: 10.1371/journal.pcbi.1010587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/31/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where HepaRG single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behaviour of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders. Microphysiological systems (MPS) are powerful tools to unravel biological knowledge underlying disease. MPS provide a physiologically relevant, human-based in vitro setting, which can potentially yield better translatability to humans than current animal models and traditional cell cultures. However, mechanistic interpretation and extrapolation of the experimental results to human outcome remain significant challenges. In this study, we confront these challenges using an integrated experimental-computational approach. We present a computational model describing glucose metabolism in a previously reported MPS integrating liver and pancreas. This MPS supports a homeostatic feedback loop between HepaRG/HHSteC spheroids and pancreatic islets, and allows for detailed investigations of mechanisms underlying type 2 diabetes in humans. We show that the computational model captures the complex dynamics of glucose-insulin regulation observed in the system, and can provide mechanistic insight into disease progression features, such as insulin resistance and β-cell dynamics. Furthermore, the computational model can explain key differences in temporal dynamics between MPS and human responses, and thus provides a tool for translating experimental insights into human outcome. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
Collapse
Affiliation(s)
- Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Liisa Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Kajsa P. Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Magnusson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
22
|
Knebel C, Süssmuth RD, Hammer HS, Braeuning A, Marx-Stoelting P. New Approach Methods for Hazard Identification: A Case Study with Azole Fungicides Affecting Molecular Targets Associated with the Adverse Outcome Pathway for Cholestasis. Cells 2022; 11:cells11203293. [PMID: 36291160 PMCID: PMC9600068 DOI: 10.3390/cells11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Triazole fungicides such as propiconazole (Pi) or tebuconazole (Te) show hepatotoxicity in vivo, e.g., hypertrophy and vacuolization of liver cells following interaction with nuclear receptors such as PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor). Accordingly, azoles affect gene expression associated with these adverse outcomes in vivo but also in human liver cells in vitro. Additionally, genes indicative of liver cholestasis are affected in vivo and in vitro. We therefore analyzed the capability of Pi and Te to cause cholestasis in an adverse outcome pathway (AOP)-driven approach in hepatic cells of human origin in vitro, considering also previous in vivo studies. Bile salt export pump (BSEP) activity assays confirmed that both azoles are weak inhibitors of BSEP. They alternate the expression of various cholestasis-associated target genes and proteins as well as the mitochondrial membrane function. Published in vivo data, however, demonstrate that neither Pi nor Te cause cholestasis in rodent bioassays. This discrepancy can be explained by the in vivo concentrations of both azoles being well below their EC50 for BSEP inhibition. From a regulatory perspective, this illustrates that toxicogenomics and human in vitro models are valuable tools to detect the potential of a substance to cause a specific type of toxicity. To come to a sound regulatory conclusion on the in vivo relevance of such a finding, results will have to be considered in a broader context also including toxicokinetics in a weight-of-evidence approach.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Helen S. Hammer
- Signatope GmbH, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| |
Collapse
|
23
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Wupperfeld D, Fricker G, Bois De Fer B, Frank L, Wehrle A, Popovic B. Essential phospholipids decrease apoptosis and increase membrane transport in human hepatocyte cell lines. Lipids Health Dis 2022; 21:91. [PMID: 36153592 PMCID: PMC9508738 DOI: 10.1186/s12944-022-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated.
Methods
Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).
Results
Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells.
Conclusions
EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.
Collapse
|
25
|
Dehelean CA, Coricovac D, Pinzaru I, Marcovici I, Macasoi IG, Semenescu A, Lazar G, Cinta Pinzaru S, Radulov I, Alexa E, Cretu O. Rutin bioconjugates as potential nutraceutical prodrugs: An in vitro and in ovo toxicological screening. Front Pharmacol 2022; 13:1000608. [PMID: 36210849 PMCID: PMC9538480 DOI: 10.3389/fphar.2022.1000608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)—rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1–100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes—HepaRG, and keratinocytes—HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration—and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds—RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.
Collapse
Affiliation(s)
- Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- *Correspondence: Iulia Pinzaru,
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Alexandra Semenescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Geza Lazar
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Isidora Radulov
- Faculty of Agriculture, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
26
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
27
|
Ball AL, Solan ME, Franco ME, Lavado R. Comparative cytotoxicity induced by parabens and their halogenated byproducts in human and fish cell lines. Drug Chem Toxicol 2022:1-9. [PMID: 35854652 DOI: 10.1080/01480545.2022.2100900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parabens are a group of para-hydroxybenzoic acid (p-HBA) esters widely used in pharmaceutical industries. Their safety is well documented in mammalian models, but little is known about their toxicity in non-mammal species. In addition, chlorinated and brominated parabens resulting from wastewater treatment have been identified in effluents. In the present study, we explored the cytotoxic effects (EC50) of five parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BuP), and benzylparaben (BeP); the primary metabolite, 4-hydroxybenzoic acid (4-HBA), and three of the wastewater chlorinated/brominated byproducts on fish and human cell lines. In general, higher cytotoxicity was observed with increased paraben chain length. The tested compounds induced toxicity in the order of 4-HBA < MP < EP < PP < BuP < BeP. The halogenated byproducts led to higher toxicity with the addition of second chlorine. The longer chain-parabens (BuP and BeP) caused a concentration-dependent decrease in cell viability in fish cell lines. Intriguingly, the main paraben metabolite, 4-HBA, proved to be more toxic to fish hepatocytes than human hepatocytes by 100-fold. Our study demonstrated that the cytotoxicity of some of these compounds appears to be tissue-dependent. These observations provide valuable information for early cellular responses in human and non-mammalian models upon exposure to paraben congeners.
Collapse
Affiliation(s)
- Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
28
|
Solan ME, Senthilkumar S, Aquino GV, Bruce ED, Lavado R. Comparative cytotoxicity of seven per- and polyfluoroalkyl substances (PFAS) in six human cell lines. Toxicology 2022; 477:153281. [PMID: 35933025 DOI: 10.1016/j.tox.2022.153281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Human exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to several diseases associated with adverse health outcomes. Animal studies have been conducted, though these may not be sufficient due to the inherent differences in metabolic processes between humans and rodents. Acquiring relevant data on the health effects of short-chain PFAS can be achieved through methods supported by in vitro human cell-based models. Specifically, cytotoxicity assays are the crucial first step to providing meaningful information used for determining safety and providing baseline information for further testing. To this end, we exposed human cell lines representative of six different tissue types, including colon (CaCo-2), liver (HepaRG), kidney (HEK293), brain (HMC-3), lung (MRC-5), and muscle (RMS-13) to five short-chain PFAS and two legacy PFAS. The exposure of the individual PFAS was assessed using a range of concentrations starting from a low concentration (10-11 M) to a high concentration of (10-4 M). Our results indicated that CaCo-2 and HEK293 cells were the least sensitive to PFAS exposure, while HMC-3, HepaRG, MRC-5, and RMS-13 demonstrated significant decreases in viability in a relatively narrow range (EC50 ranging from 1 to 70 µM). The most sensitive cell line was the neural HMC-3 for all short- and long-chain PFAS (with EC50 ranging from 1.34 to 2.73 µM). Our data suggest that PFAS do not exert toxicity on all cell types equally, and the cytotoxicity estimates we obtained varied from previously reported values. Overall, this study is novel because it uses human cell lines that have not been widely used to understand human health outcomes associated with PFAS exposure.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Grace V Aquino
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
29
|
Knecht S, Eberl HC, Bantscheff M. Interval-Based Secretomics Unravels Acute-Phase Response in Hepatocyte Model Systems. Mol Cell Proteomics 2022; 21:100241. [PMID: 35525403 PMCID: PMC9184749 DOI: 10.1016/j.mcpro.2022.100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
Mass spectrometry-based secretomics approaches frequently utilize serum-free culture conditions to circumvent serum-induced interference and to increase analytical depth. However, this can negatively affect a wide range of cellular functions and cell viability. These effects become particularly apparent when investigating transcriptionally regulated secretion events and feedback-loops in response to perturbations that require 48 h or more to fully manifest. We present an “interval-based” secretomics workflow, which determines protein secretion rates in short serum-free time windows. Relative quantification using tandem mass tags enables precise monitoring of time-dependent changes. We applied this approach to determine temporal profiles of protein secretion in the hepatocyte model cell lines HepG2 and HepaRG after stimulation of the acute-phase response (APR) by the cytokines IL1b and IL6. While the popular hepatocarcinoma cell line HepG2 showed an incomplete APR, secretion patterns derived from differentiated HepaRG cells recapitulated the expected APR more comprehensively. For several APR response proteins, substantial secretion was only observed after 72 h, a time window at which cell fitness is substantially impaired under serum-free cell culture conditions. The interval-based secretomics approach enabled the first comprehensive analysis of time-dependent secretion of liver cell models in response to these proinflammatory cytokines. The extended time range facilitated the observation of distinct chronological phases and cytokine-dependent secretion phenotypes of the APR. IL1b directed the APR toward pathogen defense over three distinct phases—chemotaxis, effector, clearance—while IL6 directed the APR toward regeneration. Protein shedding on the cell surface was pronounced upon IL1b stimulation, and small molecule inhibition of ADAM and matrix metalloproteases identified induced as well as constitutive shedding events. Inhibition of ADAM proteases with TAPI-0 resulted in reduced shedding of the sorting receptor SORT1, and an attenuated cytokine response suggesting a direct link between cell surface shedding and cytokine secretion rates. Interval-based secretomics enables extended time course analysis. Time-resolved acute phase response in liver model systems HepG2 and HepaRG. IL1b response clusters in three phases. Cell surface shedding is amplified during acute-phase response. ADAM inhibition dampens secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Sascha Knecht
- Cellzome GmbH, GlaxoSmithKline (GSK), Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor. Bioengineering (Basel) 2022; 9:bioengineering9050196. [PMID: 35621474 PMCID: PMC9137798 DOI: 10.3390/bioengineering9050196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Real-time monitoring of bioanalytes in organotypic cell cultivation devices is a major research challenge in establishing stand-alone diagnostic systems. Presently, no general technical facility is available that offers a plug-in system for bioanalytics in diversely available organotypic culture models. Therefore, each analytical device has to be tuned according to the microfluidic and interface environment of the 3D in vitro system. Herein, we report the design and function of a 3D automated culture and analysis device (3D-ACAD) which actively perfuses a custom-made 3D microbioreactor, samples the culture medium and simultaneously performs capillary-based flow ELISA. A microstructured MatriGrid® has been explored as a 3D scaffold for culturing HepaRG cells, with albumin investigated as a bioanalytical marker using flow ELISA. We investigated the effect of acetaminophen (APAP) on the albumin secretion of HepaRG cells over 96 h and compared this with the albumin secretion of 2D monolayer HepaRG cultures. Automated on-line monitoring of albumin secretion in the 3D in vitro mode revealed that the application of hepatotoxic drug-like APAP results in decreased albumin secretion. Furthermore, a higher sensitivity of the HepaRG cell culture in the automated 3D-ACAD system to APAP was observed compared to HepaRG cells cultivated as a monolayer. The results support the use of the 3D-ACAD model as a stand-alone device, working in real time and capable of analyzing the condition of the cell culture by measuring a functional analyte. Information obtained from our system is compared with conventional cell culture and plate ELISA, the results of which are presented herein.
Collapse
|
31
|
Iturrospe E, da Silva KM, Robeyns R, van de Lavoir M, Boeckmans J, Vanhaecke T, van Nuijs ALN, Covaci A. Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by Liquid Chromatography-Mass Spectrometry-Based Untargeted Metabolomics. J Proteome Res 2022; 21:1153-1166. [PMID: 35274962 DOI: 10.1021/acs.jproteome.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease is highly prevalent but poorly identified and characterized, leading to knowledge gaps, which impairs early diagnosis. Excessive alcohol consumption is known to alter lipid metabolism, followed by progressive intracellular lipid accumulation, resulting in alcoholic fatty liver disease. In this study, HepaRG cells were exposed to ethanol at IC10 and 1/10 IC10 for 24 and 48 h. Metabolic alterations were investigated intra- and extracellularly with liquid chromatography-high-resolution mass spectrometry. Ion mobility was added as an extra separation dimension for untargeted lipidomics to improve annotation confidence. Distinctive patterns between exposed and control cells were consistently observed, with intracellular upregulation of di- and triglycerides, downregulation of phosphatidylcholines and phosphatidylethanolamines, sphingomyelins, and S-adenosylmethionine, among others. Several intracellular metabolic patterns could be related to changes in the extracellular environment, such as increased intracellular hydrolysis of sphingomyelins, leading to increased phosphorylcholine secretion. Carnitines showed alterations depending on the size of their carbon chain, which highlights the interplay between β-oxidation in mitochondria and peroxisomes. Potential new biomarkers of ethanol-induced hepatotoxicity have been observed, such as ceramides with a sphingadienine backbone, octanoylcarnitine, creatine, acetylcholine, and ethoxylated phosphorylcholine. The combination of the metabolic fingerprint and footprint enabled a comprehensive investigation of the pathophysiology behind ethanol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Maria van de Lavoir
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
32
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
33
|
The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life (Basel) 2021; 11:life11080856. [PMID: 34440600 PMCID: PMC8400973 DOI: 10.3390/life11080856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Investigation of drug-induced liver injuries requires appropriate in vivo and in vitro toxicological model systems. In our study, an attempt was made to compare the hepatocarcinoma HepG2 and the stem cell-derived HepaRG cell lines both in two- and three-dimensional culture conditions to find the most suitable model. Comparison of the liver-specific characteristics of these models was performed via the extent and mechanism of acetaminophen (APAP)-induced hepatotoxicity. Investigating the detailed mechanism of APAP-induced hepatotoxicity, different specific cell death inhibitors were used: the pan-caspase inhibitor zVAD-fmk and dabrafenib significantly protected both cell lines from APAP-induced cell death. However, the known specific inhibitors of necroptosis (necrostatin-1 and MDIVI) were only effective in differentiated HepaRG, which suggest a differential execution of activated pathways in the two models. By applying 3D culture methods, CYP2E1 mRNA levels could be elevated, but we failed to achieve a significant increase in hepatocyte function; hence, the 3D cultivation especially in APAP toxicity studies is not necessarily worth the complicated maintenance. Based on our findings, the hepatocyte functions of HepaRG may stand between the properties of HepG2 cells and primary hepatocytes (PHHs). However, it should be noted that in contrast to PHHs having many limitations, HepaRG cells are relatively immortal, having a stable phenotype and CYP450 expression.
Collapse
|
34
|
A versatile microfluidic tool for the 3D culture of HepaRG cells seeded at various stages of differentiation. Sci Rep 2021; 11:14075. [PMID: 34234159 DOI: 10.1038/s41598-021-92011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
The development of livers-on-a-chip aims to provide pharmaceutical companies with reliable systems to perform drug screening and toxicological studies. To that end, microfluidic systems are engineered to mimic the functions and architecture of this organ. In this context we have designed a device that reproduces series of liver microarchitectures, each permitting the 3D culture of hepatocytes by confining them to a chamber that is separated from the medium conveying channel by very thin slits. We modified the structure to ensure its compatibility with the culture of hepatocytes from different sources. Our device was adapted to the migratory and adhesion properties of the human HepaRG cell line at various stages of differentiation. Using this device, it was possible to keep the cells alive for more than 14 days, during which they achieved a 3D organisation and acquired or maintained their differentiation into hepatocytes. Albumin secretion as well as functional bile canaliculi were confirmed on the liver-on-a-chip. Finally, an acetaminophen toxicological assay was performed. With its multiple micro-chambers for hepatocyte culture, this microfluidic device architecture offers a promising opportunity to provide new tools for drug screening applications.
Collapse
|
35
|
Young CKJ, Wheeler JH, Rahman MM, Young MJ. The antiretroviral 2',3'-dideoxycytidine causes mitochondrial dysfunction in proliferating and differentiated HepaRG human cell cultures. J Biol Chem 2021; 296:100206. [PMID: 33334881 PMCID: PMC7948951 DOI: 10.1074/jbc.ra120.014885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus infection, and their use can cause mitochondrial toxicity, including mitochondrial DNA (mtDNA) depletion in several cases. The first-generation NRTIs, including 2',3'-dideoxycytidine (ddC), were originally and are still pursued as anticancer agents. NRTI-sensitive DNA polymerases localizing to mitochondria allow for the opportunity to poison proliferating cancer cell mtDNA replication as certain cancers rely heavily on mitochondrial functions. However, mtDNA replication is independent of the cell cycle creating a significant concern that toxicants such as ddC impair mtDNA maintenance in both proliferating and nonproliferating cells. To examine this possibility, we tested the utility of the HepaRG cell line to study ddC-induced toxicity in isogenic proliferating (undifferentiated) and nonproliferating (differentiated) cells. Following ddC exposures, we measured cell viability, mtDNA copy number, and mitochondrial bioenergetics utilizing trypan blue, Southern blotting, and extracellular flux analysis, respectively. After 13 days of 1 μM ddC exposure, proliferating and differentiated HepaRG harbored mtDNA levels of 0.9% and 17.9% compared with control cells, respectively. Cells exposed to 12 μM ddC contained even less mtDNA. By day 13, differentiated cell viability was maintained but declined for proliferating cells. Proliferating HepaRG bioenergetic parameters were severely impaired by day 8, with 1 and 12 μM ddC, whereas differentiated cells displayed defects of spare and maximal respiratory capacities (day 8) and proton-leak linked respiration (day 14) with 12 μM ddC. These results indicate HepaRG is a useful model to study proliferating and differentiated cell mitochondrial toxicant exposures.
Collapse
Affiliation(s)
- Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Joel H Wheeler
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| |
Collapse
|
36
|
Guo X, Seo JE, Petibone D, Tryndyak V, Lee UJ, Zhou T, Robison TW, Mei N. Performance of HepaRG and HepG2 cells in the high-throughput micronucleus assay for in vitro genotoxicity assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:702-717. [PMID: 32981483 DOI: 10.1080/15287394.2020.1822972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The micronucleus (MN) assay is a core test used to evaluate genotoxic potential of xenobiotics. The traditional in vitro MN assay is usually conducted in cells lacking metabolic competency or by supplementing cultures with an exogenous rat S9 metabolic system, which creates a significant assay limitation for detecting genotoxic metabolites. Our previous study demonstrated that compared to HepG2, HepaRG cells exhibited a significantly higher level of CYP450 enzyme activities and detected a greater portion of genotoxic carcinogens requiring metabolic activation using the Comet assay. The aim of this study was to assess the performance of HepaRG cells in the flow cytometry-based MN assay by testing 28 compounds with known genotoxic or carcinogenic modes of action (MoA). HepaRG cells exhibited higher sensitivity (83%) than HepG2 cells (67%) in detecting 12 indirect-acting genotoxicants or carcinogens. The HepaRG MN assay was 100% specific and 93% accurate in detecting genotoxic potential of the 28 compounds. Quantitative comparison of the MN concentration-response data using benchmark dose analysis showed that most of the tested compounds induced higher % MN in HepaRG than HepG2 cells. In addition, HepaRG cells were compatible with the Multiflow DNA damage assay, which predicts the genotoxic MoA of compounds tested. These results suggest that high-throughput flow cytometry-based MN assay may be adapted using HepaRG cells for genotoxicity assessment, and that HepaRG cells appear to be more sensitive than HepG2 cells in detecting genotoxicants or carcinogens that require metabolic activation.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Un Jung Lee
- Department of Medicine, Epidemiology and Population Health, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville, MD, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration , Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| |
Collapse
|
37
|
Steger-Hartmann T, Raschke M. Translating in vitro to in vivo and animal to human. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Kim J, Ryu B, Kim U, Kim CH, Hur GH, Kim CY, Park JH. Improved human hematopoietic reconstitution in HepaRG co-transplanted humanized NSG mice. BMB Rep 2020. [PMID: 32336318 PMCID: PMC7526976 DOI: 10.5483/bmbrep.2020.53.9.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Chang-Hwan Kim
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - Gyeung-Haeng Hur
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05030, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Legler J, Zalko D, Jourdan F, Jacobs M, Fromenty B, Balaguer P, Bourguet W, Munic Kos V, Nadal A, Beausoleil C, Cristobal S, Remy S, Ermler S, Margiotta-Casaluci L, Griffin JL, Blumberg B, Chesné C, Hoffmann S, Andersson PL, Kamstra JH. The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. Int J Mol Sci 2020; 21:E3480. [PMID: 32423144 PMCID: PMC7279023 DOI: 10.3390/ijms21103480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
Collapse
Affiliation(s)
- Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Daniel Zalko
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Fabien Jourdan
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Miriam Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OXON. OX11 0RQ, UK;
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) INSERM UMR_A 1341, UMR_S 1241, Université de Rennes, F-35000 Rennes, France;
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Université de Montpellier, 34298 Montpellier, France;
| | - William Bourguet
- Center for Structural Biochemistry (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France;
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, 03202 Elche (Alicante), Spain;
| | - Claire Beausoleil
- ANSES, Direction de l’Evaluation des Risques, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort CEDEX, France;
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences (BKV), Cell Biology, Medical Faculty, Linköping University, SE-581 85 Linköping, Sweden;
| | - Sylvie Remy
- Sustainable Health, Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium;
| | - Sibylle Ermler
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Julian L. Griffin
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, 2011 BioSci 3, University of California, Irvine, CA 92697-2300, USA;
| | - Christophe Chesné
- Biopredic International, Parc d’Activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France;
| | | | | | - Jorke H. Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| |
Collapse
|
40
|
Reshitko GS, Yamansarov EY, Evteev SA, Lopatukhina EV, Shkil' DO, Saltykova IV, Lopukhov AV, Kovalev SV, Lobov AN, Kislyakov IV, Burenina OY, Klyachko NL, Garanina AS, Dontsova OA, Ivanenkov YA, Erofeev AS, Gorelkin PV, Beloglazkina EK, Majouga AG. Synthesis and Evaluation of New Trivalent Ligands for Hepatocyte Targeting via the Asialoglycoprotein Receptor. Bioconjug Chem 2020; 31:1313-1319. [PMID: 32379426 DOI: 10.1021/acs.bioconjchem.0c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.
Collapse
Affiliation(s)
- Galina S Reshitko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Emil Yu Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Sergei A Evteev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Dmitry O Shkil'
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Anton V Lopukhov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russian Federation
| | - Ivan V Kislyakov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Olga Yu Burenina
- Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny City, Moscow Region 141700, Russian Federation.,Institute of Biochemistry and Genetics, Russian Academy of Science (IBG RAS) of the Ufa Federal Research Centre, Ufa, 450054, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Peter V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| |
Collapse
|
41
|
Franco ME, Fernandez-Luna MT, Ramirez AJ, Lavado R. Metabolomic-based assessment reveals dysregulation of lipid profiles in human liver cells exposed to environmental obesogens. Toxicol Appl Pharmacol 2020; 398:115009. [PMID: 32353385 DOI: 10.1016/j.taap.2020.115009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Significant attention has been given to the potential of environmental chemicals to disrupt lipid homeostasis at the cellular level. These chemicals, classified as obesogens, are abundantly used in a wide variety of consumer products. However, there is a significant lack of information regarding the mechanisms by which environmental exposure can contribute to the onset of obesity and non-alcoholic fatty liver disease (NAFLD). Several studies have described the interaction of potential obesogens with lipid-related peroxisome proliferator-activated receptors (PPAR). However, no studies have quantified the degree of modification to lipidomic profiles in relevant human models, making it difficult to directly link PPAR agonists to the onset of lipid-related diseases. A quantitative metabolomic approach was used to examine the dysregulation of lipid metabolism in human liver cells upon exposure to potential obesogenic compounds. The chemicals rosiglitazone, perfluorooctanoic acid, di-2-ethylexylphthalate, and tributyltin significantly increased total lipids in liver cells, being diglycerides, triglycerides and phosphatidylcholines the most prominent. Contrarily, perfluorooctane sulfonic acid and the pharmaceutical fenofibrate appeared to lower total lipid concentrations, especially those belonging to the acylcarnitine, ceramide, triglyceride, and phosphatidylcholine groups. Fluorescence microscopy analysis for cellular neutral lipids revealed significant lipid bioaccumulation upon exposure to obesogens at environmentally relevant concentrations. This integrated omics analysis provides unique mechanistic insight into the potential of these environmental pollutants to promote diseases like obesity and NAFLD. Furthermore, this study provides a significant contribution to advance the understanding of molecular signatures related to obesogenic chemicals and to the development of alternatives to in vivo experimentation.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States of America
| | | | - Alejandro J Ramirez
- Mass Spectrometry Center, Baylor University, Waco, TX 76798, United States of America
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States of America.
| |
Collapse
|
42
|
Performance of high-throughput CometChip assay using primary human hepatocytes: a comparison of DNA damage responses with in vitro human hepatoma cell lines. Arch Toxicol 2020; 94:2207-2224. [PMID: 32318794 DOI: 10.1007/s00204-020-02736-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Primary human hepatocytes (PHHs) are considered the "gold standard" for evaluating hepatic metabolism and toxicity of xenobiotics. In the present study, we evaluated the genotoxic potential of four indirect-acting (requiring metabolic activation) and six direct-acting genotoxic carcinogens, one aneugen, and five non-carcinogens that are negative or equivocal for genotoxicity in vivo in cryopreserved PHHs derived from three individual donors. DNA damage was determined over a wide range of concentrations using the CometChip technology and the resulting dose-responses were quantified using benchmark dose (BMD) modeling. Following a 24-h treatment, nine out of ten genotoxic carcinogens produced positive responses in PHHs, while negative responses were found for hydroquinone, aneugen colchicine and five non-carcinogens. Overall, PHHs demonstrated a higher sensitivity (90%) for detecting DNA damage from genotoxic carcinogens than the sensitivities previously reported for HepG2 (60%) and HepaRG (70%) cells. Quantitative analysis revealed that most of the compounds produced comparable BMD10 values among the three types of hepatocytes, while PHHs and HepaRG cells produced similar BMD1SD values. Evidence of sex- and ethnicity-related interindividual variation in DNA damage responses was also observed in the PHHs. A literature search for in vivo Comet assay data conducted in rodent liver tissues demonstrated consistent positive/negative calls for the compounds tested between in vitro PHHs and in vivo animal models. These results demonstrate that CometChip technology can be applied using PHHs for human risk assessment and that PHHs had higher sensitivity than HepaRG cells for detecting genotoxic carcinogens in the CometChip assay.
Collapse
|
43
|
Schulz C, Kammerer S, Küpper JH. NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies. Clin Hemorheol Microcirc 2020; 73:249-260. [PMID: 31561354 PMCID: PMC6918903 DOI: 10.3233/ch-199226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: Human hepatocyte in vitro cell culture systems are important models for drug development and toxicology studies in the context of liver xenobiotic metabolism. Often, such culture systems are used to elucidate the biotransformation of xenobiotics or drugs and further investigate drug and drug metabolite effects on biological systems in terms of potential therapeutic benefit or toxicity. Human hepatocytes currently used for such in vitro studies are mostly primary cells or cell lines derived from liver cancers. Both approaches have limitations such as low proliferation capacity and progressive dedifferentiation found in primary cells or lack of liver functions in cell lines, which makes it difficult to reliably predict biotransformation of xenobiotics in patients. In order to overcome these limitations, HepaFH3 cells and Upcyte® hepatocytes representing primary-like hepatocytes of the first and second generation are increasingly used. Based on primary human hepatocyte cells transduced for stable expression of Upcyte® proliferation genes, they are mitotically active and exhibit liver functions over an extended period, making them comparable to primary human hepatocytes. These hepatocyte models show active liver metabolism such as urea and glycogen formation as well as biotransformation of xenobiotics. The latter is based on the expression, activity and inducibility of cytochrome P450 enzymes (CYP) as essential phase I reaction components. However, for further characterisation in terms of performance and existing limitations, additional studies are needed to elucidate the mechanisms involved in phase I reactions. One prerequisite is sufficient activity of microsomal NADPH-cytochrome P450 reductase (POR) functionally connected as electron donor to those CYP enzymes. OBJECTIVE: For Upcyte® hepatocytes and HepaFH3 cells, it is so far unknown to what extent POR is expressed, active, and may exert CYP-modulating effects. Here we studied POR expression and corresponding enzyme activity in human hepatoblastoma cell line HepG2 and compared this with HepaFH3 and Upcyte® hepatocytes representing proliferating primary-like hepatocytes. METHODS: POR expression of those hepatocyte models was determined at mRNA and protein level using qRT-PCR, Western Blot and immunofluorescence staining. Kinetic studies on POR activity in isolated microsomes were performed by a colorimetric method. RESULTS: The investigated hepatocyte models showed remarkable differences at the level of POR expression. Compared to primary-like hepatocytes, POR expression of HepG2 cells was 4-fold higher at mRNA and 2-fold higher at protein level. However, this higher expression did not correlate with corresponding enzyme activity levels in isolated microsomes, which were comparable between all cell systems tested. A tendency of higher POR activity in HepG2 cells compared to HepaFH3 (p = 0.0829) might be present. Compared to primary human hepatocyte microsomes, POR activity was considerably lower in all hepatocyte models. CONCLUSION: In summary, our study revealed that POR expression and activity were clearly detectable in all in vitro hepatocyte models with the highest POR expression in cancer cell line HepG2. However, POR activity was lower in tested hepatocyte models when compared to human primary hepatocyte microsomes. Whether this was caused by e.g. polymorphisms or metabolic differences of investigated hepatocyte models will be target for future studies.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany, located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg
| | - Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
44
|
Franco ME, Sutherland GE, Fernandez-Luna MT, Lavado R. Altered expression and activity of phase I and II biotransformation enzymes in human liver cells by perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). Toxicology 2020; 430:152339. [DOI: 10.1016/j.tox.2019.152339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
45
|
Leblanc AF, Attignon EA, Distel E, Karakitsios SP, Sarigiannis DA, Bortoli S, Barouki R, Coumoul X, Aggerbeck M, Blanc EB. A dual mixture of persistent organic pollutants modifies carbohydrate metabolism in the human hepatic cell line HepaRG. ENVIRONMENTAL RESEARCH 2019; 178:108628. [PMID: 31520823 DOI: 10.1016/j.envres.2019.108628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Individuals as well as entire ecosystems are exposed to mixtures of Persistent Organic Pollutants (POPs). Previously, we showed, by a non-targeted approach, that the expression of several genes involved in carbohydrate metabolism was almost completely inhibited in the human hepatic cell line HepaRG following exposure to a mixture of the organochlorine insecticide alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin. In this European HEALS project, which studies the effects of the exposome on human health, we used a Physiologically Based BioKinetic model to compare the concentrations previously used in vitro with in vivo exposures for humans. We investigated the effects of these POPs on the levels of proteins, on glycogen content, glucose production and the oxidation of glucose into CO2 and correlated them to the expression of genes involved in carbohydrate metabolism as measured by RT-qPCR. Exposure to individual POPs and the mixture decreased the expression of the proteins investigated as well as glucose output (up to 82%), glucose oxidation (up to 29%) and glycogen content (up to 48%). siRNAs that specifically inhibit the expression of several xenobiotic receptors were used to assess receptor involvement in the effects of the POPs. In the HepaRG model, we demonstrate that the effects are mediated by the aryl hydrocarbon receptor and the estrogen receptor alpha, but not the pregnane X receptor or the constitutive androstane receptor. These results provide evidence that exposure to combinations of POPs, acting through different signaling pathways, may affect, more profoundly than single pollutants alone, metabolic pathways such as carbohydrate/energy metabolism and play a potential role in pollutant associated metabolic disorders.
Collapse
Affiliation(s)
- Alix F Leblanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Eléonore A Attignon
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Emilie Distel
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece.
| | - Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece; Environmental Health Engineering, Institute for Advanced Study, Pavia, Italy.
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Robert Barouki
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 149, rue de Sèvres, 75743, Paris, France.
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Martine Aggerbeck
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Etienne B Blanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
46
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|
47
|
Identification of the Secreted Proteins Originated from Primary Human Hepatocytes and HepG2 Cells. Nutrients 2019; 11:nu11081795. [PMID: 31382615 PMCID: PMC6723870 DOI: 10.3390/nu11081795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in whole-body carbohydrate, lipid, and protein metabolism. One of the key regulators of glucose and lipid metabolism are hepatokines, which are found among the liver secreted proteins, defined as liver secretome. To elucidate the composition of the human liver secretome and identify hepatokines in primary human hepatocytes (PHH), we conducted comprehensive protein profiling on conditioned medium (CM) of PHH. Secretome profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) identified 691 potential hepatokines in PHH. Subsequently, pathway analysis assigned these proteins to acute phase response, coagulation, and complement system pathways. The secretome of PHH was compared to the secreted proteins of the liver hepatoma cell line HepG2. Although the secretome of PHH and HepG2 cells show a high overlap, the HepG2 secretome rather mirrors the fetal liver with some cancer characteristics. Collectively, our study represents one of the most comprehensive secretome profiling approaches for PHH, allowing new insights into the composition of the secretome derived from primary human material, and points out strength and weakness of using HepG2 cell secretome as a model for the analysis of the human liver secretome.
Collapse
|
48
|
Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses 2019; 11:E608. [PMID: 31277308 PMCID: PMC6669563 DOI: 10.3390/v11070608] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a growing awareness, hepatitis E virus (HEV) remains understudied and investigations have been historically hampered by the absence of efficient cell culture systems. As a result, the pathogenesis of HEV infection and basic steps of the HEV life cycle are poorly understood. Major efforts have recently been made through the development of HEV infectious clones and cellular systems that significantly advanced HEV research. Here, we summarize these systems, discussing their advantages and disadvantages for HEV studies. We further capitalize on the need for HEV-permissive polarized cell models to better recapitulate the entire HEV life cycle and transmission.
Collapse
Affiliation(s)
- Rebecca Menhua Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Caroline Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Abstract
Since HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium.
Collapse
Affiliation(s)
| | - André Guillouzo
- INSERM U1241, NuMeCan, Université de Rennes 1, Rennes, France.
| |
Collapse
|